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Abstract
Most information sources in the current technological world are generating data sequentially and rapidly, in the form of

data streams. The evolving nature of processes may often cause changes in data distribution, also known as concept drift,

which is difficult to detect and causes loss of accuracy in supervised learning algorithms. As a consequence, online

machine learning algorithms that are able to update actively according to possible changes in the data distribution are

required. Although many strategies have been developed to tackle this problem, most of them are designed for classifi-

cation problems. Therefore, in the domain of regression problems, there is a need for the development of accurate

algorithms with dynamic updating mechanisms that can operate in a computational time compatible with today’s

demanding market. In this article, the authors propose a new bagging ensemble approach based on neural network with

random weights for online data stream regression. The proposed method improves the data prediction accuracy as well as

minimises the required computational time compared to a recent algorithm for online data stream regression from liter-

ature. The experiments are carried out using four synthetic datasets to evaluate the algorithm’s response to concept drift,

along with four benchmark datasets from different industries. The results indicate improvement in data prediction accu-

racy, effectiveness in handling concept drift, and much faster updating times compared to the existing available approach.

Additionally, the use of design of experiments as an effective tool for hyperparameter tuning is demonstrated.

Keywords Ensembles � Data stream regression � Neural networks with random weights � Hyperparameter adjustment

1 Introduction

The field of machine learning has been developing rapidly

and proved useful in modelling complex real-life applica-

tions. In many application domains such as social net-

works, financial industries, and engineering monitoring

systems, data are generated in continuous flows in the form

of data streams. Such data format requires the models to

work in an online mode, i.e. analysing the data in real time

and evolving accordingly. Examples of data streams

include network event logs, telephone call records, credit

card transactional flows, sensing and surveillance video

streams, financial applications, monitoring patient health,

and many others (Wang et al. 2003; Fan 2004).

Usually, traditional supervised learning approaches

assume that the data probability distribution does not

change between training data and the application data.

Such assumption typically means that data used to train the

predictive models can reflect the probability distribution of

the problem. However, this assumption is often violated in

real-world applications (Gállego et al. 2017; Ren et al.

2018). For many reasons, the data distribution in real-world

applications is often not stable and tends to change with

time (Tsymbal 2004; Zliobaite et al. 2016). This is due to

the evolving nature of the processes, which causes a phe-

nomenon frequently referred to in the literature as concept

drift. The presence of concept drift is likely to cause a
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decrease in the accuracy of the models as time passes, since

the training data used to build the models may be carrying

out-of-date concepts. Besides the evolving nature of data,

other properties that make the prediction task in data

streams challenging include infinite length, high dimen-

sionality, orderliness, non-repetitive, high speed, and time

varying (Masud et al. 2008; Farid et al. 2013). These

characteristics demand for algorithms that can process the

data under time constraints with a right level of accuracy

and can adapt rapidly to change in the data distribution.

A significant research effort has been made in recent

years towards data stream mining, although most of the

attention has been directed to supervised classification

problems. Krawczyk et al. (2017) recognised an evident

lack of research dedicated to the regression online learning

algorithms, as also stated in Ikonomovska et al. (2015). A

promising research direction in the context of modelling

data streams are the ensemble methods (Krawczyk et al.

2017). Single models usually require complex operations to

modify the internal structure of the model and may perform

poorly in the presence of concept drift (Masud et al. 2011).

Ensemble approaches are proven to be effective to over-

come common limitations of single models, such as

accuracy and stability (Yin et al. 2015). Additionally, they

are able to maintain information about different concepts

and new models can be easily trained to cope with new

concepts that may appear. Hence, they can efficiently deal

with evolving data streams and achieve superior accuracy

compared to single models.

A crucial aspect of ensemble design is the choice of base

models. Artificial neural networks (ANNs) is a successful

model widely used in the field of machine learning for

tasks such as classification and regression. Despite its

success, some problems such as slow convergence and

local minima have led to the emergence of research

towards neural networks with random weights (NNRW)

(Cao et al. 2018). NNRW was introduced by Pao and

Takefuji (1992), which proposed the random vector func-

tional link (RVFL). The main idea of such models is to

randomly initialise the weights between input and hidden

layers, which are kept fixed during the optimisation pro-

cess, and optimise the weights between the hidden and

output layers. This process results in a much lower training

complexity compared to traditional ANN training

algorithms.

In this article, the authors propose a new bagging

ensemble method based on NNRW. The proposed

approach, bagging NNRW (B-NNRW), is developed to

deal with online regression problems and takes advantage

of the efficiency of NNRWs and bootstrapping mechanisms

to build the ensemble. The approach enables the use of

different updating strategies to accommodate possible

concept drifts. Three main updating mechanisms are

evaluated. These include weighting (B-NNRW), pruning

(BP-NNRW), and replacement (BR-NNRW). The updating

process is performed at fixed intervals in a batch mode, i.e.

data samples are stored before the updating is applied. This

approach avoids the assumption of the presence and type of

concept drift and also improves the accuracy in case of

insufficient training data. The proposed approach relies on

a primary buffer of training data to build the initial

ensemble. Although some of the online ensemble approa-

ches do not rely on data buffering, these methods require

that a considerable amount of training samples are pre-

sented to the model before it reaches an acceptable level of

accuracy (Oza and Russell 2001; Ikonomovska et al. 2015).

The authors have evaluated the proposed approach by

comparing its performance with a recent ensemble algo-

rithm, O-DNNE (online-decorrelated neural network

ensemble), developed by Ding et al. (2017), and have

demonstrated an apparent enhancement to the existing

approach.

As a further contribution reported by this article, the use

of factorial experiments is examined and proven to be

effective to adjust the algorithm’s hyperparameters. The

current hyperparameter optimisation approaches do not

consider the importance of each hyperparameter or the

interaction between them. The use of factorial experiments

offers a systematic way to identify the hyperparameters

that have higher effect in the algorithm’s variability. Fur-

thermore, it is possible to identify significant interactions

between hyperparameters, which helps to understand how

the adjustment of one hyperparameter affects another and

achieve a better hyperparameter tuning.

The remainder of this article is structured as follows: in

Sect. 2, the authors report state of the art in the domain of

data stream prediction and Sect. 3 describes the method-

ology for hyperparameter tuning and the new ensemble

approach to data stream regression. The experiments and

resultsare outlined and discussed in Sects. 4 and 5 con-

cludes the article and suggests further research directions.

2 Literature review

The evolving nature of data has presented as an important

challenge in the field of machine learning due to several

factors, such as a change in consumer preferences, change

in economic dynamics, or change in environmental con-

ditions. Besides concept drift (data mining and predictive

analytics), this phenomenon is also found in the literature

as covariate shift or dataset shift (pattern recognition) and

non-stationary (signal processing) (Zliobaite et al. 2016).

Tsai et al. (2009) defined three main categories of

algorithms for concept drift: window-based approaches,

weight-based approaches, and ensemble classifiers. Elwell
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and Polikar (2011) further classified algorithms for concept

drift as:

(1) Online versus batch algorithms: online algorithms

learn one instance at a time while batch algorithms

learn chunks of instances;

(2) Single model versus ensemble-based approaches;

and

(3) Active versus passive approaches: active approaches

rely on drift detector mechanisms while passive

approaches assume constant drift and update the

model continuously.

Ensemble approaches have been successfully applied in

both classification and regression problems. The classical

ensemble approaches include boosting (Schapire 1990),

staking (Wolpert 1992), bagging (Breiman 1996), and

random forests (Breiman 2001), and many variants can be

found in the literature for solving a wide variety of tasks.

The ensemble learning represents an important research

direction in solving concept-drifting data streams (Yin

et al. 2015) and has been successfully applied in classifi-

cation and regression problems. Some advantages of

ensemble approaches, compared to single models, include

the suitability for dynamic updates and integration with

drift detection mechanisms (Gomes et al. 2017). Moreover,

they are easy to scale and parallelise, and the underper-

forming parts can be pruned to adapt to changes and usu-

ally generate more accurate concept description compared

to single models (Bifet et al. 2009). The ensembles can be

divided into two categories: fixed ensemble, where base

predictors are trained in advance and are updated online;

and growing ensembles, where component learners are

added and/or removed, and voting weights are updated

according to the incoming data.

2.1 Ensemble approaches for concept-drifting
data streams

Wang et al. (2003) introduced a weighted ensemble clas-

sifier to address data stream mining and concept drift. They

emphasise the advantage of their approach compared to

single classifiers in terms of accuracy, efficiency, and ease

of use. The classifiers are trained sequentially from chunks

of data. The criterion to discard data is not based on time of

arrival, i.e. old models are replaced, but base on the class

distributions that better represent the current concept. In

the approach developed by Fan (2004), the new models are

built based on the last chunk of data and a combination of

new data and old data. The old data are composed of a

selection of examples from past chunks. Fan (2004) also

highlights the problem of data insufficiency, where the use

of additional data from previous chunks improves the

model accuracy when concept drift is not present.

An approach developed by Gao et al. (2008) trains a

new classifier at each new chunk of data. Besides keeping

the model up to date with the latest concept, a sampling

mechanism allows the model to deal with unbalanced

datasets. Another method that trains a new model for every

new chunk of data to cope with data evolution is presented

by Masud et al. (2011). The classification is performed

using k-NN as base models and is designed to be effective

in problems with a limited amount of labelled data. Fur-

thermore, this approach also incorporates a novels class

detection mechanism based on clustering. In both algo-

rithms, the new model is incorporated into the ensemble

based on its accuracy in modelling the current concept.

Two variants of bagging were introduced by Bifet et al.

(2009), ADWIN bagging and adaptive-size Hoeffding tree

(ASHT) bagging. While both algorithms deal with classi-

fication tasks, the first one adapts the concept drift using a

drift detector and the latter takes advantage of the incre-

mental property of Hoeffding Trees to restart the trees

according to its size and keep the ensemble updated. Elwell

and Polikar (2011) developed an incremental learning

algorithm to solve classification problems in non-stationary

environments. The algorithm trains a new classifier for

each new chunk of data and uses a dynamically weighted

majority voting scheme in order to cope with concept drift.

An adaptive ensemble that is not only able to deal with

concept drift but also is capable of detecting new classes is

presented by Farid et al. (2013). The authors train three

Decision Trees in a boosting manner, i.e. creating subsets

of the training data based on instance weighting. A new

Decision Tree is trained for each new data chunk, and this

new tree can replace one of the existing trees based on

accuracy criterion. The novel class detection is performed

by a clustering mechanism in the tree leaves.

An ensemble of ensembles is proposed by Yin et al.

(2015). They argue that while in the traditional batch

growing ensemble methods all the previous ensembles are

discarded, their approach takes advantage of them for the

final decision. Since the previous ensembles are composed

of the same classifiers minus the last trained classifiers, the

combination of ensembles is performed through the

weights of previous ensembles. Ren et al. (2018) aggre-

gated the operators of online ensembles and chunk-based

ensembles to develop an ensemble classifier that is able to

manage different types of drift and a limited number of

labelled data. Iwashita et al. (2019) tackled classification in

drifting data streams using ensembles of optimum-path

forest with different approaches for training and updating

the OPFs, i.e. full memory, no memory, and window of

fixed size. The base models are combined using three

voting mechanisms: Combined, Weighted, and Major.

In the context of data stream regression learning, only a

few research papers have been published in the literature
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(Ding et al. 2017). Despite the success of batch growing

ensembles achieved in data stream classification, in gen-

eral, regression ensemble algorithms use iterative strate-

gies. The Additive Expert Ensemble (AddExp) was

developed to deal with online classification tasks with

concept drift (Kolter and Maloof 2005). However, the

authors argue that this approach can be further extended to

also deal with the regression problems. AddExp relies on

incremental algorithms, i.e. algorithms that adapt to every

new instance. In the case of regression tasks, an online

version of least squares regression is adopted as base

learner. In order to control the size of the ensemble, two

pruning strategies were evaluated, oldest first (the oldest

model is excluded) and weakest first (the weakest model is

excluded). The latter proved a better pruning choice. This

approach works under the assumption that there is no

change in the output distribution, since it is designed to

make predictions in the interval [0, 1], and this assumption

would be easily violated in practical applications. The

AddExp also relies on a threshold parameter that deter-

mines when new experts should be added to the ensemble,

which may be especially difficult to adjust in noisy

datasets.

Kadlec and Gabrys (2011) developed an algorithmic soft

sensor, i.e. simulating the sensor’s output, based on itera-

tive recursive partial least squares (RPLS) model, called

ILLSA (incremental local learning soft sensing algorithm).

The ensemble is built using partitions of historical data. In

order to cope with concept drift, the ensemble is updated in

two levels. At the local level, the RPLSs are updated using

the new data, and at the global level, the model’s weights

are updated according to its performance. Another incre-

mental online ensemble algorithm for regression based on

partial least squares, the OWE (online-weighted ensemble)

algorithm, was proposed by Soares and Araújo (2015a). It

updates the ensemble weights at the arrival of each new

data sample based on the error on a sliding window of data.

The training of new models considers the error of the

ensemble in each sample of the current data window using

a boosting strategy. It also retains information about old

data windows in the hope that this information could be

useful in case of recurrent concept drift.

Soares and Araújo (2015b) also developed another

sliding window-based ensemble, the dynamic and online

ensemble regression (DOER). DOER uses OS-ELM (Liang

et al. 2006), which is a type of NNRW, as base models. The

updating approach is based on an overlapping sliding

window, and at each new data sample, all the base models

are re-trained and the weights of each model are updated.

The approach also considers a mechanism that replaces

underperforming models when the accuracy of the

ensemble decreases.

Two algorithms based on online Hoeffding-based

regression trees (Ikonomovska et al. 2010), namely OBag

(online bagging of Hoeffding-based trees for regression)

and ORF (online random forest for any-time regression),

are presented by Ikonomovska et al. (2015). The models

are constructed using online bagging meta-algorithm and

learn in an incremental fashion. The adaptation to concept

drift is performed by replacing with low-accuracy models

when a significant increase in error is detected.

The main problem with iterative approaches is the fact

that, in general, all new samples are presented to the base

models, which could result in a higher correlation between

the base models and consequently lower diversity of the

ensemble. The diversity among the models is responsible

for uncorrelated predictions that lead to improved accu-

racy. Several authors have highlighted the importance of

ensemble diversity (Tumer and Ghosh 1996; Liu and Yao

1999; Brown et al. 2005; Rokach 2010; Alhamdoosh and

Wang 2014; Ding et al. 2017).

More recently, regression of sequential data stream is

addressed by Ding et al. (2017), who proposed the

O-DNNE. Their algorithm is an online version of DNNE

(Alhamdoosh and Wang 2014) that is based on a decor-

related strategy (Bruce 1996) and the negative correlation

learning (Liu and Yao 1999). DNNE is an ensemble of

NNRWs that trains all base models simultaneously and

considers the correlation among them in the optimisation

process. This method allows that fewer models are required

to build the ensemble since redundant models are avoided;

however, the training and updating process may become

computationally cumbersome, especially when a large

number of models and/or a large number of hidden nodes

are required, as shown in Sect. 3.3. Additionally, base

models with convergence problems due to the choice of the

random weights are kept in the ensemble since no pruning

mechanism is provided.

A summary of the ensembles approaches for data stream

classification and regression in the presence of concept

drift is presented in Table 1, in chronological order.

2.2 Base models

The challenges posed by data streams require base models

that are not only accurate but also computationally effi-

cient. ANNs have been successfully applied for classifi-

cation and regression tasks in many fields. However, some

issues may make the ANN model difficult for implemen-

tation. These include high computational cost, a high

number of hyperparameters, and convergence issues. ANN

training process is usually based on the optimisation of a

nonlinear least squares problem, where the derivatives of

the loss function are back-propagated to each layer to

control the weights’ adjustment. This may cause slow
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convergence and/or convergence to local minima (Zhang

and Suganthan 2016). Cao et al. (2018) yet point out the

model selection uncertainty as an additional drawback of

ANNs.

Back in the early 1990s, Schmidt et al. (1992) evaluated

the use of random weights in the hidden layer of a single-

hidden-layer ANN to analyse the behaviour of ANNs in

terms of learning. At the same year, Pao and Takefuji

(1992) proposed a similar approach called random vector

functional link (RVFL). The mentioned approaches share

the same principle, i.e. to randomly generate the weights

between input and hidden layers, which are kept fixed

during the training process. Only the weights between the

hidden layer and output layer are optimised, which trans-

form the optimisation function in a linear least squares

minimisation that can be solved in a single step using

pseudo-inverse algorithms or ridge regression. In this

sense, the attention of the research community towards the

NNRW has been increasing due to its efficiency compared

to traditional ANNs.

The NNRW capabilities make it a good choice to deal

with high-dimensional datasets and online applications

where computational efficiency is an essential requirement.

The usually lower accuracy compared to the traditional

ANNs can be compensated with the use of ensembles.

Several approaches can be used to introduce diversity in

the ensemble and increase its accuracy, such as varying

initial random weights, varying the topology of ANNs,

varying the training algorithm, and varying the training

datasets (Masoudnia and Ebrahimpour 2014).

Following a comprehensive review of the existing lit-

erature and methods, a number of problems with the cur-

rent approaches are identified. These include:

(a) Need for development of faster algorithms that can

be effectively updated under restricted time

constraints;

(b) Lack of a systematic approach for hyperparameter

adjustment;

(c) Need for accuracy improvement, which is always a

desirable property, especially in response to concept

drift.

The drawbacks of current approaches in dealing with

online data stream regression with concept drift motivate

the development of an ensemble algorithm using NNRW as

Table 1 Ensemble approaches developed to deal with data streams in the presence of concept drift

References Task Strategy

Wang et al. (2003) Classification Batch growing ensemble using each chunk of data to build a new model

Fan (2004) Classification Batch growing ensemble using selected past data to build new models

Kolter and Maloof

(2005)

Classification Ensemble based on incremental algorithms to adapt to every new instance. New models are added

according to a threshold parameter and excluded based on age or accuracy.

Gao et al. (2008) Classification Batch growing ensemble and sampling mechanism to deal with unbalanced datasets

Masud et al. (2011) Classification Batch growing ensemble designed to deal with limited labelled data and novel class detection

Bifet et al. (2009) Classification Fixed ensemble that uses drift detector and restarting trees to update the model.

Elwell and Polikar

(2011)

Classification Batch growing ensemble that updates using a dynamically weighted majority voting scheme

Kadlec and Gabrys

(2011)

Regression Fixed ensemble based on PLS with local and global updating.

Farid et al. (2013) Classification Fixed ensemble that trains new models based on optimised data selection and detects new classes based on

clustering

Ikonomovska et al.

(2015)

Regression Incremental Hoeffding-based regression trees built based on bagging and low-performing models are

excluded

Soares and Araújo

(2015a)

Regression PLS models are updated at every new instance. Each model is weighted according to its accuracy on a

sliding window

Soares and Araújo

(2015b)

Regression The models (ELM variant) are updated at every instance, and the weights are updated based on accuracy

on a sliding window

Yin et al. (2015) Classification Combination of ensembles that builds a new ensemble at each new chunk of data

Ding et al. (2017) Regression NNRW models trained using decorrelation learning that can be updated at each instance or by chunk

Ren et al. (2018) Classification Bach growing ensemble that incorporates drift detection mechanisms and applies online and chunk-based

updating mechanisms to cope with various types of drift

Iwashita et al.

(2019)

Classification Bach growing ensemble using OPF-based classifiers that consider approaches to train the new models (full

memory, no memory, and window of fixed size)
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base models for data stream regression to improve com-

putational efficiency and accuracy.

3 Methodology

In this section, the methodology adopted to develop the

proposed approach is described. The novelty of this

approach is to combine a bootstrap sampling with random

feature selection to train a highly diversified pool

NNRWs. In the proposed approach, the least accurate

base models are replaced and deactivated at updating

points, while the highly accurate models have their

decision power increased through a weighting mechanism.

Firstly, the use of design of experiments as an alternative

for hyperparameter tuning is outlined. Then, a description

of the NNRW algorithm and the B-NNRW approach is

presented. Finally, some limitations of the existing

method, i.e. O-DNNE, are discussed. The performance of

the proposed B-NNRW algorithm will be evaluated in

Sect. 4 using eight datasets (four synthetic and four

benchmark datasets).

3.1 Hyperparameter optimisation

Usually, machine learning algorithms have several hyper-

parameters, and their adjustment is an important aspect to

be taken into consideration. Besides the manual hyperpa-

rameter adjustment, another popular approach is grid

search, which is used to perform an exhaustive search

through all combinations of predefined levels of hyperpa-

rameters to find the best combinations. Other methods for

hyperparameter optimisation include random search,

Bayesian optimisation, and evolutionary algorithms (Hutter

et al. 2015; Francescomarino et al. 2018). It was observed

in all previous approaches that the importance of each

hyperparameter and the information regarding the inter-

actions among them are neglected.

In this research, the use of design of experiments (DOE)

(Montgomery 2012) for hyperparameter adjustment,

specifically the full factorial design, is proposed by the

authors. The factorial design relies on the computation of

all combinations of predefined levels of hyperparameters.

However, similar to grid search, it offers a systematic way

of analysing not only the sensitiveness of each hyperpa-

rameter but also the interactions among them.

The sensitiveness refers to the amount of change in the

algorithm’s response due to a change in the hyperparameter

level. This can help to identify the most critical hyperpa-

rameters and direct the effort to their optimisation, espe-

cially for algorithms with a high number of

hyperparameters. When a high number of hyperparameters

are involved, the tuning can be done in two steps. Firstly,

experiments with fewer levels are carried out to identify the

importance of each hyperparameter. Secondly, a new

experiment is executed for fine-tuning, keeping hyperpa-

rameters with low importance at fixed levels and therefore

reducing the search space.

The interaction among hyperparameters may also play a

critical role in hyperparameter optimisation. Using DOE, it

is possible to identify significant hyperparameter interac-

tions, i.e. different response patterns of one hyperparameter

for different levels of a second hyperparameter. As a

hypothetical example, one could observe that for the level

1 of hyperparameter A, the accuracy of the algorithm

increases when the level of hyperparameter B changes

from 1 to 2, while the accuracy decreases, for the same

change in B, when A is at level 2.

This article will adopt the full factorial DOE to adjust

the hyperparameters of both B-NNRW and O-DNNE. The

authors highlight that this approach is only used to tune the

hyperparameters of the initial model fitting, which are kept

fixed through the evaluation of the simulated stream.

3.2 Neural networks with random weights

The use of NN with randomised weights appeared simul-

taneously in the works of Schmidt et al. (1992) and Pao and

Takefuji (1992). While the former authors were interested

in evaluating the effect of the parameters in the hidden

layer, the latter proposed the RVFL network. Both

approaches shared a similar architecture, which is a fully

connected feed-forward neural network, as shown in

Fig. 1, except for the fact that Schmidt’s approach does not

consider the use of direct links between the input layer and

the output layer.

Fig. 1 Single-hidden-layer feed-forward neural network
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In both cases, the weights between the input layer and

the hidden layer are chosen randomly and are kept fixed

during the training process. Only the weights between

hidden and output layers are optimised. The main advan-

tage of this procedure is that it converts the non-convex

optimisation of parameters into a convex optimisation

problem, where the global minimum can be fast approxi-

mated using a pseudo-inverse technique, such as Moore–

Penrose or ridge regression.

In this work, the authors considered an NNRW with no

direct link using ridge regression as the learning algorithm.

The learning function can be mathematically expressed by

Eq. (1):

T ¼ g X �WH þ Bð Þ �WO ð1Þ

where T is the target vector, X is the set of input training

data, WH is the set of weights from the input layer to the

hidden layer, B is the bias vector, and WO is the vector of

weights from the hidden layer to the output layer. The

function g(•) is the activation function, in this article the

sigmoid function, given by Eq. (2):

g xð Þ ¼ 1

1þ e�x
ð2Þ

Since the NNRW learning process does not rely on

derivatives, as is the case of back-propagation learning

algorithms, almost any nonzero activation function can be

successfully applied (Huang et al. 2004).

Due to the fact that WH and B are randomly chosen and

kept fixed during the training process, the training function

becomes a linear system and can be summarised as Eq. (3):

T ¼ H �WO ð3Þ

where H is the output from the hidden layer and is com-

puted as Eq. (4).

H ¼ g X �WH þ Bð Þ ð4Þ

The optimised set of weights Wo is the one that satisfies

Eq. (5):

min H �WO � Tk k ð5Þ

The optimisation algorithm applied by Schmidt et al.

(1992), referred to as Fisher solution, can be written as

Eq. (6):

W�
O ¼ HT �H

� ��1�HT � T ð6Þ

which is equivalent to the least squares (LS) estimator. The

computation of HT �H
� ��1

may lead to instability if the

matrix resulted from HT �H is singular or nearly singular.

This issue can be addressed using the ridge regression,

introduced by Hoerl and Kennard (1970), which consists of

small positive quantities added to the diagonal of HT �H,

given by Eq. (7).

W�
O ¼ HT �H þ k � I

� ��1�HT � T ð7Þ

where k is a small constant value and I is the identity

matrix, also known as penalty term, since it penalises large

weights in the optimisation process.

3.3 Proposed bagging of NNRW approach

In this section, a new bagging ensemble of NNRW (B-

NNRW) to tackle online regression problems is presented.

The main advantage compared with O-DNNE is the

potential ability to cope with problems with high rates of

data arrival and also with high-dimensional data that usu-

ally require more complex models. Two interrelated factors

contribute to this advantage, and they are mainly related to

the matrix inversion needed for the model optimisation

process. Primarily, the fact that the computational com-

plexity is O(M(N3)), in case of B-NNRW, while O-DNNE

computational complexity is O((MN)3). In addition, since

each model is optimised separately in B-NNRW, it is prone

to be parallelised.

Both algorithms update without making any assump-

tions on the type or rate of drift. The diversity of B-NNRW

is mainly introduced through bootstrapping the samples,

not only to generate new training sets as the original bag-

ging algorithm but also bootstrapping the features from the

training set. The number of features that are used to build

each model is given according to the percentage of total

features, and several values are evaluated in this article.

Three updating approaches are adopted and evaluated:

weighting, pruning, and replacement.

(a) Weighting Each model in the ensemble is assigned a

weight according to its accuracy in the most recent

data chunk. Given the most recent chunk of data C,

and an ensemble of M elements (m = 1, 2, …, M),

the weight of each model is computed according to

Eq. (8):

wm ¼ 1

msem
ð8Þ

where msem is the mean square error of the mth model,

computed on C. Therefore, the output yE of the ensemble

for a data sample xn is calculated according to Eq. (9):

yE xnð Þ ¼
PM

m¼1 wm � ŷm xnð Þ
PM

m¼1 wm

ð9Þ

where ŷm xnð Þ is the individual prediction of the mth model

on the data sample xn.

(b) Pruning Pruning consists of temporarily deactivating

the less accurate models of the ensemble. For each

data chunk C, only Q models with the lowest error

(Q\M) are eligible to participate in the final
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ensemble decision. Given a pruning rate p 2 R 0;1ð �,
the number of Q models that participate in the

prediction is given by Eq. (10):

Q ¼ p �M ð10Þ

The idea behind keeping the deactivated models is that

they may carry useful information learnt from past exam-

ples and can be helpful in future predictions, such as in the

case of recurrent data concepts. The algorithm keeps track

of the deactivated models’ accuracy, and once one of them

is included in the Q models with the lowest error, it is

reactivated and used in the prediction of the subsequent

chunk of data. The updating B-NNRW with pruning

mechanism is referred to as BP-NNRW.

(c) Replacement Replacement consists of training new

models, one at a time, using labelled data from the

last chunk of data. The data chunk is randomly

divided into training (85%) and validation (15%)

sets. If the accuracy of the newly trained model is

better than the worst existing model, then the worst

model is replaced by the new model. This process is

repeated until the desired number of new models is

trained. Given a replacement rate r 2 R 0;1½ �, the

number of new models Mnew is computed as

Eq. (11):

Mnew ¼ round r �Mð Þ ð11Þ

The replacement not only keeps the ensemble up to date

with the most recent data concepts but also works as a

natural selection mechanism since low-performing models

are constantly excluded. The updating B-NNRW with

replacement mechanism is referred to as BR-NNRW.

Figure 2 illustrates the B-NNRW procedure. It is

assumed that an initial amount of data is available to build

the initial model. The updating approaches above are

applied at each predetermined updating point, which is

given by the number of data samples.

3.4 Online DNNE

The O-DNNE (Ding et al. 2017) is an approach derived

from the decorrelated neural network ensemble (DNNE) to

deal with online regression problems. DNNE builds an

ensemble of single-hidden-layer NNRWs, as described in

Sect. 3.2, and incorporates the concept of negative corre-

lation learning (NCL) in the training process to create a

well-diversified set of models. The main idea behind NCL

is to train the models simultaneously in a way that their

individual errors are decorrelated (Rosen 1996) since no

gains can be obtained from a combination of outputs if they

are positively correlated. Given a dataset of size N con-

sisting of pairs (xn, yn) and fi(xn) the output of sample xn of

the ith model in the ensemble of size (M), the error function

for the ith model can be written as Eq. (12).

Ei ¼
XN

n¼1

1

2
ðfi xnÞ � ynð Þ2 ð12Þ

Rosen (1996) proposed a modification in the error

function (Eq. 12) to include a decorrelation penalty term pi,

resulting in the error model given by Eq. (13):

ei ¼
XN

n¼1

1

2
ðfi xnÞ � ynð Þ2�kpi xnð Þ

� �
ð13Þ

Fig. 2 B-NNRW ensemble

procedure
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where k 2 0; 1½ � is a regularisation factor. Alhamdoosh and

Wang (2004) adopted the penalty term formulated in

Eq. (14):

pi xnð Þ ¼ fi xnð Þ � �f ðxnÞð Þ
X

j 6¼i

fj xnð Þ � �f ðxnÞ
� �

ð14Þ

where �f ðxnÞ is the average output, which is used instead of

the target value yn to reduce the correlation among

ensemble individuals mutually. The final DNNE consists of

a set of weights Bens ¼ b11; . . .; b1L; . . .; bM1; . . .;½
bML�TML�1, where bij is the output weight of the jth hidden

node of the ith model and can be obtained by solving the

following linear system given by Eq. (15):

B̂ens ¼ Hþ
corrTh ð15Þ

The Hþ
corr is generalised pseudo-inverse of matrix Hcorr.

The hidden–target matrix Th ¼ u 1; 1ð Þ; . . .;u 1; Lð Þ; . . .;½
u M; 1ð Þ; . . .;u M; Lð Þ�TML�1, where u i; jð Þ models the cor-

relation between the jth hidden neuron of the ith base

model and the target function G �ð Þ (Eq. 4) and is computed

as Eq. (16):

u i; jð Þ ¼
XN

n¼1

gij xnð Þyn ð16Þ

Finally, Hcorr is an ML 9 ML, where each element is

given the following condition:

Hcorr p; qð Þ ¼ C1u m; n; k; lð Þ if m ¼ k;
C2u m; n; k; lð Þ otherwise:

�

where p, q = 1,…, M 9 L; m ¼ p
L
; n ¼ ððp� 1Þ

mod LÞ þ 1; k ¼ q
L
; l ¼ ððq� 1Þmod LÞ þ 1. The con-

stants C1 and C2 and the correlation between the jth hidden

neuron of the ith base model and lth hidden neuron of the

kth base model u m; n; k; lð Þ are formulated as Eqs. (17),

(18), and (19), respectively.

u i; j; k; lð Þ ¼
XN

n¼1

gij xnð Þgkl xnð Þ ð17Þ

C1 ¼ 1� 2k
M � 1ð Þ2

M2
ð18Þ

C2 ¼ 2k
M � 1

M2
ð19Þ

In the online version of DNNE (Ding et al. 2017), both

Hcorr and Th are updated according to new data simply by

adding the Hcorr and Th computed using the new data (Hnew
corr

and Tnew
h , respectively) and then adding up to the existing

Hcorr and Th, (H
old
corr and Told

h , respectively) as shown in

Eqs. (20) and (21), respectively:

Hcorr ¼ Hold
corr þHnew

corr ð20Þ

Th ¼ Told
h þ Tnew

h ð21Þ

For further details, the reader could refer to Ding et al.

(2017). Once Hcorr and Th are updated, the Bens is recom-

puted according to Eq. (15).

The O-DNNE can effectively process a single new data

sample due to the fact that the processing cost of com-

puting Eq. (15) is not affected by the number of samples to

be evaluated. However, the computation of Hþ
corr is very

sensitive to the number of NNRW hidden nodes as well as

the number of models. Considering an ensemble with n

nodes and m models, an increment of one node results in an

increment in the size of Hcorr matrix in the order of

m2 n2 þ 2nþ 1ð Þ; likewise, an increment in one model in

the ensemble increases the size of Hcorr in the order of

n2 m2 þ 2mþ 1ð Þ.

4 Experiments

In this section, the description of the benchmark datasets

used in this article is presented, followed by the hyperpa-

rameter analysis and tuning using DOE. Finally, the

B-NNRW algorithm and its variants (BP-NNRW and BR-

NNRW) are analysed and compared to the O-DNNE.

Fig. 3 Synthetic dataset

generation schematics showing

the drifting points at 2000,

3000, and 4000 samples
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4.1 Datasets

The experiments are carried out using eight datasets, four

synthetic datasets (Ding et al. 2017) and four benchmark

datasets. The synthetic datasets are used to evaluate how

the algorithms respond to drift, which is simulated by

expanding the variable domain. For each synthetic dataset,

5000 samples are generated. The variable domain of each

attribute is divided into ten parts, with seven parts used to

create the first 2000 samples. A new part is added at every

1000 samples, expanding the domain and including new

data never presented to the algorithms, as illustrated in

Fig. 3.

The benchmark datasets were chosen from public

repositories based on the number of features, the number of

samples to simulate the stream, and the diversity of

application domains. A summary of the main features of

each dataset, i.e. the number of predictive attributes and the

number of data samples, is presented in Table 2.

At data pre-processing stage, the standardisation feature

scaling (zero mean and unit variance) was applied to the

attributes of all datasets to avoid the effects of large

differences in scale. It also prevents the impact of outliers

when compared to the normalisation feature scale. The

data transformation is given by Eq. (22):

Xnew ¼ X � l Xð Þ
r Xð Þ ð22Þ

Additionally, a random Gaussian noise e 2 N(0, 0.02) is

added to the input variables of the synthetic datasets. In

Sects. (4.2 and 4.3), the authors analyse the hyperparam-

eter optimisation using DOE.

4.2 Hyperparameter adjustment

In this section, the authors detail the experimental protocol

to tune the models’ hyperparameters using full factorial

DOE. The full factorial relies on the two-way ANOVA

(Montgomery 2012) and works under the following

assumptions: populations are normally distributed, popu-

lations have equal variances, and samples are randomly and

independently drawn.

For the purpose of hyperparameter tuning, a real appli-

cation is simulated where only a portion of the data is

Table 2 Dataset features
Name Dataset # samples # attributes

3-D Mex. Hat (Mex) Synthetic 5000 2

Friedman #1 (Fried1) Synthetic 5000 5

Friedman # 3 (Fried3) Synthetic 5000 4

Multi (Multi) Synthetic 5000 5

California housinga (Housing) Benchmark 20,640 8

Wine qualityb (Quality) Benchmark 4898 11

Condition-based maintenanceb (Maintenance) Benchmark 11,934 14

Appliances energy predictionb (Energy) Benchmark 20,640 26

aStatLib repository: https://lib.stat.cmu.edu
bUCI repository: https://archive.ics.uci.edu/ml/datasets.html

Table 3 Set of evaluated hyperparameters for DNNE and B-NNRW

Factors Algorithm Levels

M B-NNRW 40 60 80 100 120

DNNE 3 6 9 12 15

N B-NNRW 8x 10x 12x 14x 16x

DNNE 60 80 100 120 140

R B-NNRW 0.0001 0.0010 0.0050 0.0100 0.0500

DNNE 0.1 0.2 0.3 0.4 0.5

W B-NNRW [- 0.50, 0.50] [- 0.75, 0.75] [- 1.00, 1.00] [- 1.25, 1.25] [- 1.50, 1.50]

DNNE [- 0.005, 0.005] [- 0.020, 0.020] [- 0.035, 0.035] [- 0.050, 0.050] [- 0.065, 0.065]

A B-NNRW 0.6 0.7 0.8 0.9 1.0

DNNE – – – – –

9844 R. Almeida et al.
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available. The first 1000 data samples of each dataset were

used, randomly divided into 70% for training and 30%

reserved for testing. The hyperparameters to be optimised

for both B-NNRW and DNNE algorithms are described as

follows:

• Number of models (M) Number of base models that

compose the ensemble;

• Number of nodes (N) Number of hidden nodes for each

base model;

• Regularisation factor (R) In the case of B-NNRW, the

regularisation factor is responsible for penalising large

weights in the optimisation process. For DNNE, it acts

to control the decorrelation term in the optimisation

function;

• Random weights range (W) This hyperparameter deter-

mines the interval in which the initial random weights

are uniformly distributed. Although the authors (Al-

hamdoosh and Wang 2014; Ding et al. 2017) suggest

the weights of DNNE to be set in the interval [- 1, 1],

this hyperparameter plays a vital role in the accuracy of

the models. The effect of initial weights in RVFL was

investigated by Zhang and Sugantham (2016);

• Number of attributes (A) This hyperparameter is

exclusive of B-NNRW. It determines the fraction of

total inputs that are randomly selected to train each

NNRW base model.

Five levels of each hyperparameter are investigated, and

each treatment (a combination of hyperparameters) was run

ten times. The hyperparameter levels are summarised in

Table 3.

It is important to note that for B-NNRW, N is a function

of the number of inputs. For a dataset with ten inputs and

A = 0.8, N is equal to the resulting number of inputs

(10 9 0.8 = 8) times N. The analysis of hyperparameter

tuning and the resulting hyperparameter set for each

algorithm is presented in the next section.

4.3 Hyperparameter analysis

The results of experiments show that not only each

hyperparameter has a different level of importance in the

hyperparameter optimisation but also the levels of impor-

tance change for different problems. Tables 4 and 5 show

the first three most important sources of variability, given

by the F0 statistic. The small p values (� 0.01) indicate

that the results are statistically significant. The analysis of

the importance of each factor can help to prioritise the

optimisation of the hyperparameters that have more influ-

ence in the model’s performance.

The adjustment of W is the most important hyperpa-

rameter to the tuning of DNNE, except in the Mex dataset

that showed no statistically significant differences among

different treatments. In the case of B-NNRW algorithm, the

critical factor depends on the problem, although the num-

ber of features was found to be the most important

hyperparameter for synthetic datasets. The results also

showed that some interactions between factors also resul-

ted in relevant sources of variability. An illustrative

example is an interaction between the N and W of

B-NNRW in the quality dataset, which is statistically sig-

nificant and is responsible for 10.8% of the total variability.

Table 4 DNNE significance

(p value), F0 statistic, the

percentage of explained

variance, and cumulative

percentage of explained

variance

p value F0 % Cum% p value F0 % Cum%

A) Mex B) Fried1

P 9 M 0.06 1.6 19.0 19.0 W � 0.01 28,287.6 93.7 93.7

M 9 W 0.17 1.3 15.6 34.6 M � 0.01 957.8 3.2 96.9

N 0.36 1.1 12.8 47.4 M 9 W � 0.01 547.8 1.8 98.7

C) Fried3 D) Multi

W � 0.01 4719.8 88.1 88.1 W � 0.01 5361.3 93.1 93.1

M � 0.01 335.7 6.3 94.4 M � 0.01 160.9 2.8 95.9

M 9 W � 0.01 149.3 2.8 97.2 M 9 W � 0.01 96.6 1.7 97.6

E) Housing F) Quality

W � 0.01 122.5 69.7 69.7 W � 0.01 124.3 40.2 40.2

M � 0.01 19.5 11.1 80.8 N � 0.01 104.9 33.9 74.0

N � 0.01 7.0 4.0 84.7 R � 0.01 35.4 11.4 85.5

G) Maintenance H) Energy

W � 0.01 39,694.5 98.7 98.7 W � 0.01 286.8 46.5 46.5

M � 0.01 210.8 0.5 99.2 N � 0.01 233.9 37.9 84.3

M 9 W � 0.01 126.5 0.3 99.5 M � 0.01 36.2 5.9 90.2

M number of models, N number of nodes, W random weights range, R regularisation factor
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Figure 4 shows the different effect of the number of nodes

according to the levels of weight initialisation. This type of

analysis is not possible when the traditional hyperparam-

eter tuning approaches are applied.

Following the analysis of DOE results, supported by the

results of paired t test and Wilcoxon tests, the hyperpa-

rameters for each problem were optimised. The best set of

hyperparameters for each problem is summarised in

Table 6.

The optimised models are evaluated in a simulated data

stream, as described in Sects. 4.4 and 4.5.

4.4 Data stream evaluation set-up

The second set of experiments was aimed at evaluating the

performance of the algorithms in the data stream environ-

ment. The optimised models, obtained from the model

fitting process, are run in a simulated data stream that

consists of the remaining data from the hyperparameter

tuning process. The effectiveness of BP-NNRW (B-NNRW

with pruning) and BR-NNRW (B-NNRW with replace-

ment) is evaluated for different ranges of pruning (p) and

replacement (r), respectively. The range of p evaluated in

this experiment is p = [0.1, 0.3, 0.5, 0.7, 0.9]. The r range

investigated is defined as r = [0.1, 0.2, 0.3, 0.4, 0.5].

The algorithms are updated at fixed intervals. Once the

algorithms start the predictions, the data samples are stored

until the updating point is reached. It is assumed that the

true label of the stored data is available at this point;

therefore, they can be used to compute the evaluation

metrics and update the models. In the case of synthetic

datasets, where a drift occurs at every 1000 samples, the

updating interval is set at every 250 samples. For the

benchmark datasets, since no drift is reported, several

updating points are evaluated (at every 250, 500, 1000, and

1500 samples). The updating process of DNNE follows the

O-DNNE procedure described in Ding et al. (2017). The

algorithms are compared in terms of MSE over the simu-

lated data stream. Each experiment is run for 20 times

using a random seed, and the results are compared in terms

of MSE. Furthermore, all the results are submitted to the

t test with 95% confidence to check the statistical signifi-

cance. The algorithms were coded by the authors using the

Matlab� software version 2017b.

Table 5 B-NNRW significance

(p value), F0 statistic, the

percentage of explained

variance, and cumulative

percentage of explained

variance

p value F0 % Cum% p value F0 % Cum%

A) Mex B) Fried1

A � 0.01 53.4 55.2 55.2 A � 0.01 183,045.5 91.9 91.9

W � 0.01 18.5 19.1 74.3 P � 0.01 7160.7 3.6 95.5

P � 0.01 6.9 7.2 81.5 N � 0.01 5398.2 2.7 98.3

C) Fried3 D) Multi

A � 0.01 33,207.2 93.2 93.2 A � 0.01 146,166.6 99.8 99.8

P � 0.01 1485.6 4.2 97.3 W � 0.01 146.2 0.1 99.9

N � 0.01 477.6 1.3 98.7 N � 0.01 41.4 0.0 99.9

E) Housing F) Quality

W � 0.01 334.9 45.6 45.6 N � 0.01 39.2 28.7 28.7

R � 0.01 121.5 16.6 62.2 A � 0.01 24.3 17.8 46.6

A � 0.01 121.4 16.5 78.7 W � 0.01 15.4 11.3 57.9

G) Maintenance G) Energy

R � 0.01 235,822.8 64.2 64.2 N � 0.01 173.9 41.0 41.0

W � 0.01 58,369.6 15.9 80.1 M � 0.01 45.2 10.7 51.7

A � 0.01 40,241.0 11.0 91.0 A � 0.01 41.5 9.8 61.5

M number of models, N number of nodes, R regularisation factor, W random weights range, A number of

attributes
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Fig. 4 Effects of the number of nodes (N) given different initialisa-

tion weights for the quality dataset (B-NNRW)
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4.5 Results and discussion

The results of O-DNNE and B-NNRW strategies are

compared in this section using the optimised hyperparam-

eter sets for synthetic and benchmark datasets.

(a) Synthetic datasets

First, the response of the algorithms in the synthetic

datasets is discussed. The main results are summarised in

Table 7.

In general, the replacement strategy (BR-NNRW)

resulted in better accuracy than the pruning (BP-NNRW)

and weight updating (B-NNRW) strategies. An analysis

based on statistical tests, specifically the t test with 95% of

confidence, showed that different accuracies are achieved

according to the level of replacement. For the Mex dataset,

0.2 and 0.3 were statistically equal and resulted in better

accuracy. For Fried1 and Multi, all levels are statistically

different, and the best result is achieved with a 0.5

replacement rate. The increase in accuracy for the Fried3

dataset is observed until the rate of 0.3, from where

onwards the results are statistically equal.

When compared to O-DNNE, the BR-NNRW achieved

statistically better accuracy in Mex, Fried1 and Multi

datasets, while O-DNNE performed better in Fried3 data-

set. However, before the first point of drift (the first 1000

test samples), the O-DNNE showed better accuracy, sug-

gesting a better learning capability. After the first point of

drift, at the test sample 1001, BR-NNRW resulted in better

accuracy, showing a better ability to cope with concept

drift. The results are summarised in Table 8, where the

MSE of O-DNNE and BR-NNRW (with the best replace-

ment rate, according to Table 7) on test data is presented.

The test data shown are separated by the samples on each

Table 6 Best set of

hyperparameters for each

problem: B-NNRW and DNNE

algorithms

Mex Fried1 Fried3 Multi Housing Quality Maintenance Energy

B-NNRW

P 0.05 0.0001 0.0001 0.0001 0.0010 0.0050 0.0001 0.0050

W ± 1.5 ± 0.5 ± 0.75 ± 0.5 ± 1.50 ± 1.00 ± 1.50 ± 1.00

N 10 9 16 9 14 9 16 9 14 9 14 9 16 9 14 9

M 40 100 100 80 80 60 40 100

A 0.9 0.9 0.9 0.9 0.7 0.7 1.0 0.8

DNNE

P 0.5 0.4 0.2 0.1 0.1 0.1 0.3 0.5

W ± 0.05 ± 0.065 ± 0.065 ± 0.05 ± 0.005 ± 0.005 ± 0.065 ± 0.035

N 120 100 60 140 60 60 60 120

M 9 12 9 9 12 6 3 12

Table 7 General results of

B-NNRW and its variants and

O-DNNE for the synthetic

datasets

Mex Fried1 Fried3 Multi

MSE SD MSE SD MSE SD MSE SD

O-DNNE 2.718E-02 0.000 5.514 0.002 0.872E-02 0.000 0.268 0.000

B-NNRW 2.697E-02 0.000 10.943 0.033 1.803E-02 0.000 0.516 0.001

BP-NNRW

0.1 2.696E-02 0.000 10.884 0.045 1.773E-02 0.000 0.515 0.001

0.3 2.695E-02 0.000 10.793 0.037 1.661E-02 0.000 0.513 0.001

0.5 2.695E-02 0.000 10.731 0.044 1.599E-02 0.001 0.512 0.001

0.7 2.694E-02 0.000 10.613 0.031 1.498E-02 0.000 0.511 0.001

0.9 2.695E-02 0.000 10.457 0.051 1.402E-02 0.001 0.509 0.001

Average 2.695E-02 10.696 1.587E-02 0.512

BR-NNRW

0.1 2.683E-02 0.000 3.374 0.054 1.601E-02 0.000 0.065 0.002

0.2 2.680E-02 0.000 2.547 0.046 1.548E-02 0.000 0.046 0.001

0.3 2.680E-02 0.000 2.294 0.032 1.499E-02 0.000 0.039 0.001

0.4 2.683E-02 0.000 2.176 0.018 1.492E-02 0.000 0.037 0.000

0.5 2.686E-02 0.000 2.106 0.028 1.497E-02 0.000 0.035 0.001

Average 2.682E-02 2.499 1.527E-02 0.044
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domain. Table 8 also shows the average updating time, in

seconds, where the computational advantage of BR-

NNRW to keep updated to the data can be observed.

The smoothed error curves shown in Fig. 5 illustrate

how the BR-NNRW and O-DNNE algorithms perform on

each dataset.

For synthetic datasets with known drifts, BR-NNRW

has been shown to improve the accuracy compared to

B-NNRW and BP-NNRW. The best results were achieved

with different replacement rates, highlighting the impor-

tance of keeping old knowledge (low replacement rate) or

discarding old knowledge (high replacement rate) accord-

ing to the problem at hand. The O-DNNE showed con-

siderable learning capability, achieving better accuracy in

the first part of the test data, which is within the same

domain of the training data. BR-NNRW, on the other hand,

showed an advantage to cope with concept drift not only in

terms of accuracy but especially in terms of computational

efficiency.

In the next section, the tests of the algorithms on

benchmark datasets of four varied application domains

with larger sample sizes and attributes are presented.

Table 8 Accuracy (MSE) of

BR-NNRW and O-DNNE by

the samples on each domain in

the test data

0–1000 1001–2000 2001–3000 3001–4000 Updating time (s)

Mex

O-DNNE 3.614E-02 3.026E-02 2.448E-02 1.786E-02 2.393

BR-NNRW 3.577E-02 3.004E-02 2.405E-02 1.735E-02 0.003

Fried1

O-DNNE 0.107 2.625 5.737 13.586 3.152

BR-NNRW 0.410 1.616 2.245 4.153 0.015

Fried3

O-DNNE 0.680E-02 0.770E-02 1.073E-02 0.964E-02 0.539

BR-NNRW 1.495E-02 1.552E-02 1.552E-02 1.397E-02 0.009

Multi

O-DNNE 0.112E-02 8.803E-02 34.332E-02 63.884E-02 3.462

BR-NNRW 0.335E-02 3.437E-02 4.811E-02 5.454E-02 0.012

Fig. 5 Effects of the number of nodes (N) given different initialisation weights for the quality dataset (B-NNRW)
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(b) Benchmark datasets

Next, the performance of O-DNNE and B-NNRW,

along with its variations (BP-NNRW and BR-NNRW), is

analysed at different updating intervals on the benchmark

datasets. The main results are summarised in Tables 9, 10,

11, and 12.

The first result that should be highlighted is the effect of

updating interval. In general, for each problem, all algo-

rithms showed a similar pattern in terms of the best

updating interval. This trend is illustrated in Fig. 6, which

shows the average accuracy of all algorithms for each

dataset. In this figure, the MSE was normalised between 0

and 1 for each algorithm and then averaged.

The results show that the choice of updating frequency

is related to the problem that is being studied, which in turn

may be related not only to the level of drift present in data

but also to data sufficiency. The best updating interval for

Maintenance and Quality datasets is likely to be near 1000

observations. Better accuracy is achieved in Energy dataset

when it is updated more frequently, i.e. smaller data

chunks, while an opposite behaviour is observed in Hous-

ing dataset, which can indicate that no dataset shift is

occurring in this dataset.

From Tables 9, 10, 11, and 12, it is possible to observe

the advantage of the replacement strategy compared to the

pruning strategy. In Fig. 7, the results of BP-NNRW and

BR-NNRW, averaged over the chunk size, are summarised

to illustrate the effects of the different levels of pruning and

replacement.

The pruning (BP-NNRW) approach can prevent the vote

of low-performing members of the ensemble in the final

decision. If properly adjusted, the pruning can increase the

accuracy of the model significantly compared to weight

update only, as given in Tables 9, 10, 11, and 12. The

replacement (BR-NNRW) not only avoids the use of low-

performing members due to the exclusion of them but also

includes new members trained with the most recent data.

Although the flat lines shown in Fig. 7b, c, d for the levels

of replacement suggest no difference in response for dif-

ferent levels, especially for Energy and Maintenance

datasets, the results of t test with 95% of significance

showed that there are statistically significant differences

between the replacement levels. The difference between

various levels of replacement is shown in Fig. 8, consid-

ering the average results of the best updating frequency of

each dataset.

For the Energy and Housing datasets, the best accuracy

was achieved with a lower rate of replacement (0.1). It

should be pointed out that in both cases, the difference

between 0.1 and 0.2 rates of replacement was statistically

significant, according to the t test. In Quality and Mainte-

nance datasets, B-NNRW required higher rates of

replacement to achieve their best performance. The best

replacement rate for Quality was 0.5, while for Mainte-

nance, the best accuracy was achieved by replacing 40% of

Table 9 Results of O-DNNE and B-NNRW variations for Housing problem at various model updating intervals

Housing

Updating interval 250 500 1000 1500

MSE SD MSE SD MSE SD MSE SD

O-DNNE 1.08E?10 1.53E?07 9.85E?09 1.51E?07 9.13E?09 2.06E?07 8.70E?09 2.98E?07

B-NNRW 1.14E?10 1.93E?08 1.04E?10 1.48E?08 9.83E?09 1.96E?08 9.18E?09 1.26E?08

BP-NNRW

0.1 1.12E?10 1.50E?08 1.02E?10 1.82E?08 9.47E?09 2.05E?08 9.09E?09 1.88E?08

0.3 1.09E?10 1.13E?08 9.92E?09 1.97E?08 9.31E?09 1.56E?08 8.84E?09 2.13E?08

0.5 1.08E?10 1.11E?08 9.85E?09 1.59E?08 9.19E?09 1.46E?08 8.67E?09 1.11E?08

0.7 1.07E?10 1.09E?08 9.84E?09 1.78E?08 9.17E?09 1.48E?08 8.59E?09 1.57E?08

0.9 1.09E?10 8.89E?07 1.01E?10 2.34E?08 9.35E?09 2.33E?08 8.88E?09 1.80E?08

Average 1.09E?10 9.99E?09 9.30E?09 8.81E?09

BR-NNRW

0.1 9.83E?09 9.96E?07 1.02E?10 6.66E?08 9.47E?09 1.70E?08 8.41E?09 1.63E?08

0.2 1.07E?10 1.02E?08 1.21E?10 1.21E?09 9.99E?09 1.42E?08 8.70E?09 1.46E?08

0.3 1.11E?10 1.36E?08 1.30E?10 1.12E?09 1.05E?10 1.34E?08 9.20E?09 1.06E?08

0.4 1.14E?10 1.17E?08 1.30E?10 1.02E?09 1.12E?10 1.37E?08 9.70E?09 1.33E?08

0.5 1.17E?10 1.04E?08 1.34E?10 8.99E?08 1.18E?10 1.63E?08 1.02E?10 2.26E?08

Average 1.10E?10 1.09E?10 9.82E?09 9.00E?09
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the models. The adjustment of the rate of replacement is an

additional challenge for the use of BR-NNRW; however,

the gain in accuracy greatly outweighs the effort.

A comparison between the algorithm with a more

accurate updating strategy (BR-NNRW) and a recent

online data stream regression algorithm from literature (O-

DNNE) is summarised in Table 13. The BR-NNRW is set

with the best replacement rate for each dataset. Table 13

shows the average MSE and average updating time (in

seconds), i.e. the computational processing time spent to

Table 11 Results of O-DNNE and B-NNRW variations for the Maintenance problem at various model updating intervals

Maintenance

Updating interval 250 500 1000 1500

MSE SD MSE SD MSE SD MSE SD

O-DNNE 5.95E-07 3.56E-08 5.27E-07 4.49E-08 5.13E-07 6.62E-08 8.73E-07 1.77E-07

B-NNRW 3.84E-06 3.06E-07 3.69E-06 3.93E-07 3.52E-06 4.25E-07 3.86E-06 4.05E-07

BP-NNRW

0.1 3.72E-06 3.53E-07 3.39E-06 2.483E-07 3.33E-06 4.49E-07 3.45E-06 4.06E-07

0.3 3.56E-06 3.03E-07 3.06E-06 4.642E-07 3.03E-06 2.83E-07 3.16E-06 2.71E-07

0.5 3.07E-06 3.08E-07 2.92E-06 3.773E-07 2.78E-06 3.80E-07 2.90E-06 2.90E-07

0.7 2.79E-06 2.48E-07 2.70E-06 2.982E-07 2.45E-06 3.03E-07 2.70E-06 3.79E-07

0.9 2.51E-06 2.60E-07 2.36E-06 3.903E-07 2.11E-06 3.35E-07 2.37E-06 4.47E-07

Average 3.13E-06 2.89E-06 2.74E-06 2.92E-06

BR-NNRW

0.1 1.04E-06 2.12E-08 9.22E-07 2.40E-08 5.61E-07 5.51E-08 9.11E-07 1.37E-07

0.2 1.08E-06 1.53E-08 9.47E-07 1.99E-08 5.15E-07 3.79E-08 8.35E-07 8.70E-08

0.3 1.10E-06 1.58E-08 9.56E-07 1.88E-08 5.03E-07 4.89E-08 8.45E-07 8.01E-08

0.4 1.12E-06 1.81E-08 9.64E-07 1.53E-08 4.98E-07 3.38E-08 8.19E-07 7.95E-08

0.5 1.13E-06 9.95E-09 9.73E-07 1.42E-08 5.04E-07 2.44E-08 8.58E-07 8.14E-08

Average 1.09E-06 9.53E-07 5.16E-07 8.53E-07

Table 10 Results of O-DNNE

and B-NNRW variations for the

Quality problem at various

model updating intervals

Quality

Updating interval 250 500 1000 1500

MSE SD MSE SD MSE SD MSE SD

O-DNNE 0.549 0.006 0.557 0.008 0.546 0.005 0.575 0.009

B-NNRW 0.584 0.004 0.580 0.003 0.565 0.005 0.571 0.003

BP-NNRW

0.1 0.577 0.005 0.574 0.006 0.559 0.005 0.566 0.004

0.3 0.575 0.006 0.571 0.005 0.557 0.007 0.564 0.005

0.5 0.575 0.007 0.567 0.005 0.553 0.007 0.567 0.006

0.7 0.575 0.006 0.569 0.006 0.557 0.006 0.570 0.007

0.9 0.605 0.008 0.599 0.010 0.585 0.013 0.601 0.009

Average 0.581 0.576 0.562 0.574

BR-NNRW

0.1 0.562 0.003 0.546 0.005 0.532 0.004 0.550 0.004

0.2 0.550 0.005 0.536 0.003 0.519 0.003 0.538 0.003

0.3 0.546 0.004 0.533 0.004 0.513 0.003 0.532 0.004

0.4 0.539 0.004 0.535 0.004 0.510 0.003 0.528 0.003

0.5 0.537 0.004 0.535 0.004 0.509 0.004 0.526 0.003

Average 0.547 0.537 0.516 0.535
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execute the updating process of each algorithm, consider-

ing the best updating interval for each dataset (Fig. 6).

Both BR-NNRW and O-DNNE algorithms showed

statistically similar results, according to the t tests with

95% significance, in Maintenance dataset. Furthermore, in

this dataset, the O-DNNE showed an advantage in pro-

cessing time due to the reduced number of models resulted

from the hyperparameter tuning; however, as the number of

models and nodes increases, the exponential increase in the

Hcorr matrix (Sect. 3.4) makes the model updating com-

putationally expensive. In the other benchmark datasets,

the results showed the advantage of BR-NNRW compared

to O-DNNE, in terms of both accuracy and updating time.

The replacement mechanism was able to effectively update

the ensemble and keep/improve the accuracy through the

simulated stream of data. Although no concept drift was

reported in the benchmark datasets studied in this paper,

the advantage of the use of updating methods compared to

static algorithms is clear. This is shown in Fig. 9, where a

comparison between the smoothed error of B-NNRW with

no updating (static) and BR-NNRW (dynamic) is

presented.

From Fig. 9, it is possible to observe that, except in

Housing dataset, the use of updating strategies was able to

improve the results compared with their static versions, i.e.

no update applied. In the case of Housing dataset, it can be

concluded that the data used for training may not have been

sufficient to train the models, or no concept drift was

observed during the evaluation period. The behaviour of

the error in the Quality dataset may indicate a recurring

drift, due to the decrease of accuracy achieved by the static

model through the stream of data. The Maintenance dataset

Table 12 Results of O-DNNE and B-NNRW variations for Energy problem at various model updating intervals

Energy

Updating interval 250 500 1000 1500

MSE SD MSE SD MSE SD MSE SD

O-DNNE 1.72E?04 8.45E?02 2.48E?04 2.67E?03 2.60E?04 2.34E?03 2.54E?04 2.16E?03

B-NNRW 3.50E?04 2.79E?03 3.31E?04 2.24E?03 3.48E?04 2.04E?03 3.52E?04 3.32E?03

BP-NNRW

0.1 3.54E?04 2.30E?03 3.34E?04 2.10E?03 3.48E?04 1.81E?03 3.38E?04 2.94E?03

0.3 3.45E?04 2.05E?03 3.30E?04 2.02E?03 3.26E?04 2.46E?03 3.19E?04 2.09E?03

0.5 3.46E?04 1.32E?03 3.30E?04 2.28E?03 3.36E?04 2.07E?03 3.13E?04 2.78E?03

0.7 3.81E?04 2.15E?03 3.45E?04 2.01E?03 3.56E?04 2.34E?03 3.35E?04 2.59E?03

0.9 5.32E?04 3.55E?03 4.93E?04 2.78E?03 4.71E?04 2.84E?03 4.38E?04 4.10E?03

Average 3.92E?04 3.66E?04 3.67E?04 3.49E?04

BR-NNRW

0.1 1.39E?04 3.51E?02 1.63E?04 4.27E?02 1.74E?04 4.44E?02 1.74E?04 7.55E?02

0.2 1.45E?04 3.62E?02 1.63E?04 5.93E?02 1.63E?04 6.21E?02 1.65E?04 5.55E?02

0.3 1.48E?04 3.85E?02 1.71E?04 7.09E?02 1.62E?04 4.76E?02 1.61E?04 3.72E?02

0.4 1.51E?04 3.95E?02 1.82E?04 5.77E?02 1.63E?04 3.86E?02 1.62E?04 5.44E?02

0.5 1.54E?04 3.71E?02 1.87E?04 6.04E?02 1.62E?04 4.11E?02 1.66E?04 4.91E?02

Average 1.47E?04 1.73E?04 1.65E?04 1.66E?04
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showed stronger evidence of concept drift not only due to

the difference in accuracy between static and dynamic

models but also due to the high level of replacement

required. Both static and dynamic models start at a similar

level of accuracy. However, as the time evolves, the static

models lose accuracy, while the updating process keeps the

error of dynamic models at low levels. The Energy dataset

benefited from the updating strategies, especially in the

beginning of the evaluation period, where the MSE shows a

decrease before it stabilises, which could indicate that the

Fig. 7 Average results of pruning (BP-NNRW) and replacement (BR-NNRW) strategies

Fig. 8 Average MSE for B-NNRW for different rates of replacement levels
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data used for training may not be sufficient to represent all

the concepts present in data; this idea is reinforced by the

low rate of replacement required for this dataset.

5 Conclusions

In this article, the authors have reviewed the available

solutions to the online data stream regression problems and

identified a need for a faster and more accurate approach.

The development of a new B-NNRW method is presented,

which is designed to adapt to the evolving nature of the

data streams by updating the ensemble in specified inter-

vals to maintain the accuracy of the predictions. This was

made possible through combining a bootstrap sampling

with random feature selection to train a highly diversified

pool of NNRWs. Synthetic datasets for simulating concept

drift were used to validate the ability of the proposed

algorithm to deal with changing data concepts.

Additionally, datasets from various industries were

selected to evaluate the potential enhancement to the pre-

diction model in different dataset types. A series of

Table 13 O-DNNE versus B-NNRW

Dataset Housing Energy Maintenance Quality

Interval/rep. rate 1500/0.1 250/0.1 1000/0.4 1000/0.5

Avg SD Avg SD Avg SD Avg SD

MSE

BR-NNRW 8.41E?09 1.63E?08 1.39E?04 3.51E?02 4.98E-07 3.38E-08 0.509 0.004

O-DNNE 8.70E?09 2.98E?07 1.72E?04 8.45E?02 5.13E-07 6.62E-08 0.546 0.005

% decrease in MSE 3.4% 18.9% 2.9% 6.8%

Updating time (s)

BR-NNRW 0.023 0.002 0.044 0.004 0.135 0.006 0.088 0.005

O-DNNE 1.599 0.029 5.037 0.083 0.080 0.004 0.322 0.012

Times faster 69.7 113.6 0.6 3.7

The bold figures indicate the best value for each dataset. In case of Maintenance dataset, the MSE for both algorithms are statistically similar

(confidence interval of 95%)

Fig. 9 Comparison between

static B-NNRW and dynamic

BP-NNRW
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experiments were carried out on datasets from Housing,

Maintenance, Energy, and Quality Control applications,

and the results were compared with the existing O-DNNE

method. The results with the proposed updating mechanism

showed an average of 8% improvement in the accuracy of

predictions across all four types of datasets, with up to 47

times shorter computational time. Furthermore, the use of

DOE proved a promising technique to optimise the

hyperparameters systematically and can be applied to any

ML algorithm.

As part of future research, the next step will be the

development of strategies to automatically define the rate

of replacement in the proposed approach. The results of the

experiments indicated that such automated updating

mechanism should also be linked to the types of the data-

sets. Such a development could potentially improve the

suitability of the proposed method for industrial

applications.
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ensemble methods for evolving data streams. In: Proceedings of

the 15th ACM SIGKDD international conference on knowledge

discovery and data mining, pp 139–148

Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

Breiman L (2001) Random forests. Mach Learn 45:5–32

Brown G, Wyatt J, Harris H, Yao X (2005) Diversity creation

methods: a survey and categorization. Inf Fusion 6:5–20

Bruce R (1996) Ensemble learning using decorrelated neural

networks. Connect Sci 8:373–384

Cao W, Wang X, Ming Z, Gao J (2018) A review on neural networks

with random weights. Neurocomputing 275:278–287

Ding J, Wang H, Li C, Chai T, Wang J (2017) An online learning

neural network ensemble with random weights for regression of

sequential data stream. Soft Comput 21(20):5919–5937

Elwell R, Polikar R (2011) Incremental learning of concept drift in

nonstationary environments. IEEE Trans Neural Netw

22(10):1517–1531

Fan W (2004) Systematic data selection to mine concept-drifting data

streams. In: Proceedings of the tenth ACM SIGKDD interna-

tional conference on knowledge discovery and data mining,

pp 128–137

Farid DM, Zhang L, Hossain A, Rahman CM, Strachan R, Sexton G,

Dahal K (2013) An adaptive ensemble classifier for mining

concept drifting data streams. Expert Syst Appl 40:5895–5906

Francescomarino CD, Dumas M, Federici M, Ghidini C, Maggi FM,

Rizzi W, Simonetto L (2018) Genetic algorithms for hyperpa-

rameter optimization in predictive business process monitoring.

Inf Syst 74(1):67–83

Gállego PP, Quevedo JR, Coz JJ (2017) Using ensembles for

problems with characterizable changes in data distribution: a

case study on quantification. Inf Fusion 34:87–100

Gao J, Ding B, Han J, Fan W, Yu PS (2008) Classifying data streams

with skewed class distributions and concept drifts. IEEE Internet

Comput 12(6):37–49

Gomes HM, Bardal JP, Enembreck F, Bifet A (2017) Survey on

ensemble learning for data stream classification. ACM Comput

Surv 50(2):23:1–23:36

Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation

for nonorthogonal problems. Technometrics 12(1):55–67

Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning machine: a

new learning scheme of feedforward neural networks. In:

Proceedings of the 2004 IEEE international joint conference

on neural networks, vol 2, pp 985–990
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Soares SG, Araújo R (2015a) An on-line weighted ensemble of

regressor models to handle concept drifts. Eng Appl Artif Intell

37:392–406
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