
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Continuous-time formulation and differential evolution algorithm for anContinuous-time formulation and differential evolution algorithm for an
integrated batching and scheduling problem in aluminium industryintegrated batching and scheduling problem in aluminium industry

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1080/00207543.2020.1747656

PUBLISHER

Taylor and Francis

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of
Production Research on 06 Apr 2020, available online: https://doi.org/10.1080/00207543.2020.1747656

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Guo, Q, L Tang, Jiyin Liu, and S Zhao. 2020. “Continuous-time Formulation and Differential Evolution
Algorithm for an Integrated Batching and Scheduling Problem in Aluminium Industry”. Loughborough
University. https://hdl.handle.net/2134/12442706.v1.

https://lboro.figshare.com/
https://doi.org/10.1080/00207543.2020.1747656


1 
 

 

Continuous-time Formulation and Differential Evolution Algorithm for an 
Integrated Batching and Scheduling Problem in Aluminium Industry 

Qingxin Guoa,b, Lixin Tanga,c,
0F

*, Jiyin Liud and Shengnan Zhaoc,e 

a Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern 
University), Ministry of Education, Shenyang, China 

b Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry, 
Northeastern University, Shenyang, China 

c Institute of Industrial and Systems Engineering, Northeastern University, Shenyang, China 
d School of Business and Economics, Loughborough University, Leicestershire LE11 3TU, UK 

e Liaoning Key Laboratory of Manufacturing System and Logistics, Northeastern University, 
Shenyang, China 

Abstract 

This paper investigates an integrated batching and scheduling problem of 

electrolysis and caster in aluminium industry. The problem is to determine the 

assignment and scheduling of orders considering sequence-dependent setup times 

caused by technological and operational constraints of electrolysis cells, and 

determine the batching and scheduling of orders in the following casters. A novel 

unit-specific event-based continuous-time mixed integer linear programming 

model (MILP) is proposed to describe the problem. In this model, the event point 

is stage specific, and lower bounds are specified to tighten the model. A hybrid 

pointer-based differential evolution algorithm with new individual representation 

scheme is designed to solve the problem of industrial scale. An improved hybrid 

pointer-based mutation operator and a new point-cross crossover operator are 

proposed to enhance the performance of the algorithm. Computational experiments 

show that the proposed algorithm is more efficient when compared with CPLEX 

for medium and large size instances. Comparisons with the lower bound 

demonstrate that the algorithm is effective. 

Keywords: integrated batching and scheduling; aluminium industry; unit-

specific event-based; continuous-time model; differential evolution. 
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1. Introduction 

Aluminium is the most abundant metal in the earth's crust. Due to favourable properties, 

e.g., lightweight and corrosion resistant, aluminium is widely used in aerospace 

engineering and chemical engineering.  As illustrated in Figure 1, the production process 

of aluminium roughly consists of two stages: mining raw material (alumina) and 

aluminium fabrication process.  

Insert Figure 1 about here. 

Electrolysis and casting are important operations in aluminium fabrication process. 

In electrolysis production, pure aluminium is extracted from alumina which is called Hall-

Hẻroult process. Electrolysis cells work at low voltage, like 5-6 volts, but at huge currents, 

150,000 amps or more. The heating effect of these large currents keeps the cells at a 

temperature of about 950-980°C (Moors. 2006). Cells are operated 24 hours a day so that 

the molten aluminium will not solidify. Both electrolysis and casting are energy intensive 

and highly polluting processes since large amount of electricity, natural gas or other fuel 

are consumed to achieve the desired production conditions. After decades of research and 

development of technology, it is difficult to save energy by improving the production 

process or equipment. However, from another point of view, a good scheduling of 

electrolysis and casting is an effective approach to achieve reduction of energy 

consumption by reducing setup times and shorten makespan. In this paper, we investigate 

the integrated batching and scheduling problem for aluminium electrolysis and casting 

processes. Considering the practical scale, effective formulation and new algorithms are 

needed to obtain near optimal solutions. 

There is less research on production scheduling of aluminium compared with iron 

and steel industry. Bowers et al. (1995) proposed a two-phase model for aluminium ingot 

casting to reduce misapplication/import and maintain low inventory levels. Gravel et al. 

(2000) presented a genetic algorithm for scheduling jobs in an aluminium foundry with 

sequence-dependent setup times. Gravel et al. (2002) proposed an ant colony optimization 

algorithm for an aluminium casting scheduling problem. They proposed a representation 

of a continuous horizon which considered several objectives. Schwindt and Trautmann 

(2003) formulated rolling ingots scheduling using prescribed time lags between 

operations, different kinds of resources, and sequence-dependent changeovers. A branch-
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and-bound procedure was implemented to solve it. Prasad et al. (2006) presented an MILP 

model for the optimization of aluminium smelter cast house operations. An iterative 

decomposition scheme was developed to solve medium-sized to large-sized problems. 

Ladurantaye et al. (2007) studied the integrated homogenizing furnaces and the mill 

scheduling problem to minimize the idle time and penalties for soft constraint violations. 

Duman et al. (2008) considered the casting lines scheduling of an aluminium casting and 

processing plant. Their objective was to minimize setup time for a given time period while 

balancing workload to accommodate potential new orders. Steinrücke (2011) studied a 

global aluminium supply chain network, relax-and-fix heuristics were proposed. 

Steinrücke (2015) studied an integrated aluminium production, distribution and 

scheduling problem, and proposed a continuous-time MILP model and decomposition 

heuristic. To the best of our knowledge, no attention has been paid on integrated batching 

and scheduling of electrolysis and casting. 

Considering time representation, the mathematical models for the scheduling 

problems could be classified into: precedence-based, discrete-time, and continuous-time. 

Floudas and Lin (2004, 2005), Mendez et al. (2006), and Harjunkoski et al. (2014) have 

presented extensive reviews for the formulations. Lee and Maravelias (2017, 2017) 

presented discrete-time MILP formulations for short-term scheduling and simultaneous 

batching and scheduling in multipurpose environments, respectively. Seid and Majozi 

(2014) proposed a formulation to optimize the use of both water and energy in 

multipurpose batch plants. The approaches to formulate continuous-time models include: 

time slots based models, global event based models and unit-specific event-based models. 

Comparing with other models, unit-specific event-based models (Ierapetritou and 

Floudas, 1998a, 1998b) requires fewer event points, leading to a smaller model size, and 

hence, a better computational performance. Shaik et al. (2006), Janak and Floudas (2008), 

Shaik and Floudas (2007, 2008, 2009), Li and Floudas (2010) proposed improved version 

of this formulation for short-term scheduling problems. Vooradi and Shaik (2012) 

proposed improvements in allocation, duration and sequencing constraints, and 

investigated the effect of big-M terms of unit-specific event-based models. Shaik and 

Vooradi (2017) proposed a reformulation of this model to reduce events, constraints and 

variables. There are also successful applications of this formulation on iron and steel, and 

crude oil scheduling problems (Li et al. 2012, 2012, and 2016).  
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Most  unit-specific event-based models are represented as MILP or MINLP. For 

the small and medium scale instances, the models could be solved by standard 

optimization solvers such as CPLEX and ANTIGONE (Misener and Floudas, 2014). 

Merchan and Maravelias (2016) proposed preprocessing and tightening methods for time-

indexed, discrete and continuous, MIP scheduling models which could reduce 

computational time or improve optimality gap. However, it may be difficult to obtain 

optimal solutions for some large-scale instances within short solution time. In this case, 

evolutionary computation algorithms could be used to obtain near-optimal solutions. 

Differential evolution (DE) is a population-based stochastic evolutionary algorithm 

proposed by Storn and Price (1995, 1997), which has exhibit remarkable performance for 

many optimization problems. DE variants have been proposed for both benchmark and 

practical optimization problems (Tang et al., 2015, Tang et al., 2014). The recent 

developments of DE were reviewed by Das and Suganthan (2011) and Das et al. (2016).  

In this paper, we propose a continuous-time formulation and an improved DE 

algorithm for the aluminium integrated batching and scheduling problem. The remainder 

of this paper is organized as follows: Section 2 describes the problem in more details. The 

proposed model is formulated in Section 3. The improved DE algorithm is proposed in 

Section 4. Section 5 reports the experimental results. Conclusions are stated in Section 6. 

2. Problem description 

In a typical aluminium fabrication plant of China, there are a large number of parallel 

electrolysis cells in the electrolysis workshop, and parallel casters in the smelter. Pure 

aluminium is extracted from alumina by electrolysis cells and then casted into ingots by 

casters. The aluminium production is order-oriented, which means that customer orders 

are first contracted between the customers and the aluminium plant, and then transformed 

to production orders in the form of alloy composition, size and due date with the 

consideration of production capacity and operation constraints. Finally, the production 

orders are scheduled on the electrolysis cells and casters. 

Insert Figure 2 about here. 

Figure 2 shows a schematic of the proposed batching and scheduling problem. 

According to technological requirements, each order has order-specific processing time 

and needs to be assigned to cells according to assignment regulations. The orders at the 
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same cell should be sequenced considering the possible setup times, which are mainly 

caused by the variation of the alloy composition of orders. The setup time is sequence-

dependent in the light of setup forms such as adjustment of facilities and cleaning of cells, 

which are both costly and time consuming. 

After the electrolysis production, orders are processed at the furnace and caster 

stage. The basic unit of furnace and caster production is a cast, which is defined as a 

“batch” in the scheduling. All the orders for the same batch have to arrive at the furnace 

in order to be pre-processed together and then casted continuously.  Before finishing the 

current batch, the furnace cannot start pre-processing the orders for the next batch.  The 

pre-processing time can be considered as proportional to the casting time and so both are 

counted into the processing time of this stage. The batching decisions for aluminium 

caster involve grouping different cells to form a set of casts. The total molten aluminium 

for each batch must be within a certain range of capacity. In real production, each caster 

batch is made of up to 3 electrolysis cells, since each electrolysis cell has a capacity of 

1.5-2 tons, and a caster has about 5 tons. The casters are expected to run in high or full 

load, in order to provide high productivity and save energy. Based on this reality, we 

assume that the batch capacity is fixed to three in this paper to simplify the problem. The 

production time of a cast is equal to the summation of pre-treatment and production time 

of the orders that are assigned to this cast. For the furnace and caster stage, the production 

structure of orders is roughly the same and the production is continuous. Therefore, we 

consider the furnace and caster as one stage which could simplify the problem. 

As shown in Figure 2, the process of this problem includes two stages: electrolysis 

and casting. A number of orders are needed to be assigned to electrolysis cells and 

scheduled considering production constraints and sequence-dependent setups. Then the 

electrolyzed pure molten aluminium will be combined into different batches (casts), 

which are assigned and scheduled at casters. 

The characteristics of this problem are summarized as follows: 1) the scheduling 

of production orders at the first stage must consider the requirements from the batching 

and scheduling decisions at the second stage; 2) the batching and scheduling at the second 

stage should consider the batch capacity and the release time which depend on the 

scheduling at the first stage. The interaction of the two stages makes it difficult to obtain 

the optimal batching and scheduling plan for the whole production. This problem could 

be described as a variant of the two-stage hybrid flow shop scheduling problem but can 
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be distinguished by the setup times and the batching decision. For more details of classical 

two-stage hybrid flow shop scheduling problem, readers are referred to Gupta et al. 

(1997) Lee and Kim (2004), Gong et al. (2010), Yu et al. (2017), and Hwang and Lin 

(2018). Due to these new features, the existing formulations and algorithms for the typical 

hybrid flow shop scheduling problem cannot be adopted well to this problem. 

3. Mathematical Model 

In this section, we formulate the considered batching and scheduling problem as a novel 

unit-specific event-based model. The main feature of this problem is that the production 

objects are orders at the first stage and batches at the second stage. To deal with this 

feature, different event points are proposed for the two stages respectively. Other 

characteristics of this model include: practical production features (setup times, batching) 

are considered, lower bounds are specified to tighten the model, and a strategy is 

presented to estimate the minimum number of event points. 

The proposed formulation requires the indices, sets, parameters, and variables 

given as follows. 

Indices: 

i orders 

j units, a unit here is equivalent to a machine in the hybrid flow shop. 

n event points  

Sets: 

I set of orders 

J1 set of units at the first stage (electrolysis cells) 

J2 set of units at the second stage (casters) 

N1 set of event points at the first stage 

N2 set of event points at the second stage 

Parameters: 

v(i) the weight of order i 

Bnum the number of orders in a batch 

Bmax the maximum weight of a batch 

P1(i) the processing time of order i at the first stage 

P2(i) the processing time of order i at the second stage 
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'iiτ  
the sequence dependent setup time between orders i and i’ at the first 

stage 

H time horizon 

Binary Variables: 

w1(i, j, n) assignment of order i to unit j at event point n at the first stage 

w2(i, j, n) assignment of order i to unit j at event point n at the second stage 

v(j, n) equal to 1 if unit j is idle at event point n 

Continuous Variables: 

1 ( , , )sT i j n  start time of order i at unit j at event point n at the first stage 

1 ( , , )fT i j n  finish time of order i at unit j at event point n at the first stage 

2 ( , , )sT i j n  start time of order i at unit j at event point n at the second stage 

2 ( , , )fT i j n  finish time of order i at unit j at event point n at the second stage 

MS makespan  

Based on the above notation, the mathematical model for this problem involves 

the following constraints. 

Allocation Constraints. 

 1
1 1

( , , ) 1,
j J n N

w i j n i I
∈ ∈

= ∀ ∈∑ ∑  (1) 

Constraints (1) express the requirement that each order i must be allocated exactly 

to one event point n at one electrolysis cell j at the first stage. 

 1( , , ) ( , ) 1, 1, 1
i I

w i j n v j n j J n N
∈

+ = ∀ ∈ ∈∑  (2) 

 ( , 1) ( , ), 1, 1, 1v j n v j n j J n N n− ≤ ∀ ∈ ∈ >  (3) 

Constraints (2) indicate that at most one order could be produced at unit j at any 

event point n. If event point n at unit j is not assigned with any order, the unit will be idle 

and v(j, n) is equal to 1. Constraints (3) enforce all empty event points to be at the end of 

each unit’s schedule. 

 2
2 2

( , , ) 1,
j J n N

w i j n i I
∈ ∈

= ∀ ∈∑ ∑  (4) 
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Constraints (4) ensure that each order i must be allocated exactly to one event 

point n and one unit j at the second stage. 

 num
2 ( , , )= (1 ( , )), 2, 2

i I
w i j n B v j n j J n N

∈

⋅ − ∀ ∈ ∈∑  (5) 

Constraints (5) ensure that the number of orders assigned to every event point at 

the units of the second stage should be equal to the predesigned number Bnum, as long as 

it is not an empty event point. For systems without such managerial guideline, this set of 

constraints can be removed. 

 2 ( , , ) ( , ) 1, 2, 2
i I

w i j n v j n j J n N
∈

+ ≥ ∀ ∈ ∈∑  (6) 

Constraints (6) ensure that v(j, n) is equal to 1 when there is no order allocated at 

unit j at event point n of the second stage. 

 ( , 1) ( , ), 2, 2, 1v j n v j n j J n N n− ≤ ∀ ∈ ∈ >  (7) 

Constraints (7) enforce all empty event points to be at the end of each unit’s 

schedule in the second stage. 

Capacity Constraints. 

 max
2 ( , , ) ( ) , 2, 2

i I
w i j n v i B j J n N

∈

⋅ ≤ ∀ ∈ ∈∑  (8) 

Constraints (8) express that the total weight of the orders allocated to a batch 

should be less than the required maximum weight of a batch. 

Duration Constraints. 

 1 1 1( , , )= ( , , ) ( , , ) 1( ), , 1, 1f sT i j n T i j n w i j n P i i I j J n N+ ⋅ ∀ ∈ ∈ ∈  (9) 

Constraints (9) represent the relationship between the finishing and starting times 

of order i at unit j at event point n at the first stage. The finishing time of order i at event 

point n at unit j is equal to its starting time plus processing time. 

At the second stage, the processing time of event point n at unit j is equal to the 

summation of the processing time of assigned orders, as represented by constraints (10). 
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 2( , ) ( ( , , ) 2( )), 2, 2
i I

pTotal j n w i j n P i j J n N
∈

= ⋅ ∀ ∈ ∈∑  (10) 

Constraints (11) require that the finishing time of order i at unit j at event point n 

at the second stage must be equal to the starting time plus the total processing time. 

 2 2( , , )= ( , , ) ( , ), , 2, 2f sT i j n T i j n pTotal j n i I j J n N+ ∀ ∈ ∈ ∈  (11) 

For orders allocated to the same batch at the second stage, the starting time should 

be the same as expressed by constraints (12) and (13). 

 2 2 2 2( , , ) ( ', , ) (2 ( , , ) ( ', , )),
, ' , ', 2, 2

s sT i j n T i j n H w i j n w i j n
i I i I i i j J n N
≥ − − −

∀ ∈ ∈ ≠ ∈ ∈
 (12) 

 2 2 2 2( , , ) ( ', , ) (2 ( , , ) ( ', , )),
, ' , ', 2, 2

s sT i j n T i j n H w i j n w i j n
i I i I i i j J n N
≤ + − −

∀ ∈ ∈ ≠ ∈ ∈
 (13) 

Constraints (14) and (15) represent that the finishing time of orders allocated to 

the same batch should be the same. 

 2 2 2 2( , , ) ( ', , ) (2 ( , , ) ( ', , )),
, ' , ', 2, 2

f fT i j n T i j n H w i j n w i j n
i I i I i i j J n N
≥ − − −

∀ ∈ ∈ ≠ ∈ ∈
 (14) 

 2 2 2 2( , , ) ( ', , ) (2 ( , , ) ( ', , )),
, ' , ', 2, 2

f fT i j n T i j n H w i j n w i j n
i I i I i i j J n N
≤ + − −

∀ ∈ ∈ ≠ ∈ ∈
 (15) 

Sequence Constraints. 

One of the differences between our problem and the chemical process is that each 

order must be allocated exactly to one event point at one unit at the two stages, so there 

are no sequence constraints for the same order at the same unit. We only consider the 

sequence of different orders at the same unit. The following constraints (16) represent the 

sequence at the first stage, and constraints (17) represent the sequence at the second stage, 

respectively. 

 1 1 1 1( ', , ) ( , , 1) (2 ( ', , ) ( , , 1)),
, ' , ', 1, 1, 1

s fT i j n T i j n H w i j n w i j n
i I i I i i j J n N n
≥ − − ⋅ − − −

∀ ∈ ∈ ≠ ∈ ∈ >
 (16) 
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 2 2 2 2( ', , ) ( , , 1) (2 ( ', , ) ( , , 1)),
, ' , ', 2, 2, 1

s fT i j n T i j n H w i j n w i j n
i I i I i i j J n N n
≥ − − ⋅ − − −

∀ ∈ ∈ ≠ ∈ ∈ >
 (17) 

For an order i, the sequence between the two stages are expressed by constraints 

(18) that ensure the starting time of order i at the second stage should be greater than or 

equal to its finishing time at the first stage. 

 2 1( , ', ') ( , , ), , 1, ' 2, 1, ' 2s fT i j n T i j n i I j J j J n N n N≥ ∀ ∈ ∈ ∈ ∈ ∈  (18) 

Sequence Dependent Changeovers. 

 1 1 ' 1 1( ', , ) ( , , 1) (2 ( ', , ) ( , , 1)),
, ' , ', 1, 1, 1

s f
iiT i j n T i j n H w i j n w i j n

i I i I i i j J n N n
τ≥ − + − ⋅ − − −

∀ ∈ ∈ ≠ ∈ ∈ >
 (19) 

At the first stage, if the alloy composition of the order i’ is different from the 

predecessor order i, there is a changeover between them. 

Objective. 

The objective of this problem is to minimize makespan. 

Bounds. 

Constraints (20)-(23) represent bounds on the starting time and the finishing time 

of all orders at the two stages. Constraints (24) represent that the starting time of the 

orders at the first event point is 0. 

 1 ( , , ) , , 1, 1sT i j n MS i I j J n N≤ ∀ ∈ ∈ ∈  (20) 

 1 ( , , ) , , 1, 1fT i j n MS i I j J n N≤ ∀ ∈ ∈ ∈  (21) 

 1 ( , , ) , , 2, 2sT i j n MS i I j J n N≤ ∀ ∈ ∈ ∈  (22) 

 2 ( , , ) , , 2, 2fT i j n MS i I j J n N≤ ∀ ∈ ∈ ∈  (23) 

 1 ( , ,1)=0, , 1sT i j i I j J∀ ∈ ∈  (24) 

Constraints (25)-(27) represent bounds on the makespan. Constraints (25) 

represent that the makespan should be larger than or equal to the total processing time of 

each order at the two stages. 

 1( ) 2( ),MS P i P i i I≥ + ∀ ∈  (25) 
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More accurate lower bounds on the makespan are given by constraints (26) and 

(27). Bound (26) represents that the makespan should be larger than or equal to the 

average processing time of all orders at the first stage plus the minimum processing time 

of orders at the second stage. 

 ''

1 1( ) min( ) MinP2
1 iii Ii I

MS P i
J

τ
∈

∈

  ≥ + +   
∑  (26) 

Bound (27) represents that the makespan should be larger than or equal to the 

minimum processing time of orders at the first stage plus the average processing time of 

all orders at the second stage. 

 1MinP1 2( )
2 i I

MS P i
J ∈

 ≥ +   
∑  (27) 

There are different formulations of the minimum processing times at the first stage 

and the second stage. The minimum processing time at the second stage is only depended 

on the data scale, and the minimum processing time at the first stage is more complex, 

which is depended on both the problem structure and the data scale of the two stages. For 

the second stage, the minimum process time is the minimum of the processing times of 

all possible batches, which could be described by (28). 

 
num

' 1
MinP2 min 2( )

B

i
P i

=

 
=  

 
∑  (28) 

While for the first stage, the minimum process time depends on the number of 

orders and units. The following are two examples for this formulation. If there are three 

units at both the first and second stages, then the minimum processing time could be 

described by (29). And if there are nine units in the first stage and three units in the second 

stage, then the minimum process time could be described by (30). 

 ' ' '', ', ''
MinP1= min[ 1( )+ 1( ') 1( '')]ii i ii i i I

P i P i P iτ τ
∈

+ + +  (29) 

 
, ', ''

MinP1=max min[ 1( ), 1( '), 1( '')]
i i i I

P i P i P i
∈

 (30) 
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To this end, we complete the continuous-time MILP formulation for the 

aluminium batching and scheduling problem. 

Minimum number of event points. 

One of the key issues of the unit-specific event-based modelling is to determine 

the number of event points, which is used as an input parameter for the solver. In the 

previous studies (Li and Floudas, 2010, Seid and Majozi, 2012), the general procedure of 

determining the optimal number of event points is to start with a small number and 

gradually increase it until no improvement of the objective function can be achieved. In 

order to do this, valid lower and upper bounds are needed for the event points.  

The lower bound for the number of event points at the first stage is 
1

I
J

 
  

, which 

is the average number of orders that an electrolysis cell should process. 

To achieve the upper bound for the number of the event points at the first stage, 

orders are first sequenced based on the SPT heuristic in a single machine to obtain MSSPT, 

which is the makespan using SPT heuristic. The upper bound for the number of event 

points at the first stage is just equal to the maximum number of orders, of which the 

finishing time is less than 
1
SPTS

J
M 
  

. 

The lower bound and upper bound for the number of event points at the second 

stage can be estimated in a similar way, where the only difference is that the orders are 

replaced by batches. 

Then the proposed method starts with the lower bounds and gradually increases 

until the upper bounds are reached. The numbers of event points with the best objective 

function value are chosen for the solver. It has to be noted that the optimal number of 

event points may be different for the various instances of the same scale. This is because 

the optimal number is related to both the parameters and the data of the instances. 

In this paper, the proposed continuous-time model is used in aluminium industry 

which has different problem characteristics comparing with the continuous chemical 

engineering production process. New constraints and lower bounds are specified 

considering the practical problem. 
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4. Solution methodology 

In this paper, a hybrid pointer-based DE (HYPDE) is proposed to solve the problem under 

consideration. The description of HYPDE is as follows. 

(1) Individual representation 

In each generation g of standard DE, there is a population consisting of NP 

variable vectors 1 2{ , , , }g g gg
NPx x x=P   and each vector ,,1 ,2{ , , , }g g gg

r r Dr rx x x x=  represents an 

individual, D is the dimension of the problem. 

Due to the continuous nature of DE, individuals are usually encoded by real 

numbers. To describe the discrete scheduling problem, an operation-based representation 

scheme is proposed, in which the individuals are encoded as matrixes of integers. The 

matrix will represent the order assignments and sequencing at the first stage of 

production. The individual matrix A is given by: 

 

11 12 1 '

21 22 2 '

1 2 '

I

I

M M MI

a a a
a a a

a a a

 
 
 =
 
 
 

A





   



 (31) 

In the matrix, element ,j ia is an integer number which denotes an order is the ith 

one to be processed at unit j, 1j J∈ and ,j ia I∈ . M is the number of units at first production 

stage and I’ is the number of orders to be processed at unit j, '
1

I
I

J
= . Each element is 

unique in the matrix. A solution of the problem which is also a complete schedule can be 

uniquely interpreted from an individual through a decoding scheme. The complete 

schedule is used to evaluate the solution in the selection operation. 

(2) Decoding scheme 

Due to the sequentially relationship of these two stages, the batching and 

scheduling decisions at the second stage can be established based on the decisions at the 

first stage via a decoding scheme. We assume that the orders which are released earlier 

from the first stage have priority to be processed earlier at the second stage. For each 

individual, once the release times of orders at the first stage are determined, the batch 
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composition and scheduling at the second stage could then be established. The details of 

the decoding scheme are expressed as follows. 

Step 1. Calculate the time of all candidate orders released from the first stage. These 

candidate orders form a Candidate Order set CO. 

Step 2. Group batches at the second stage. 

Step 2.1 Sort all orders in ascending order of their release times from the first stage. 

Step 2.2 Assuming nb is the capacity of a batch. Group the nb earliest released orders 

in CO into a batch and remove these orders from CO. Add this batch to 

Batch set B. 

Step 2.3 Repeat the operations in Step 2.2 until there is no order left in CO. 

Step 2.4 Calculate the ready times of the batches in B. The ready time of a batch 

equals to the maximum release time of the orders in this batch. 

Step 3 Schedule the batches according to the ascending order of their ready times. 

Step 3.1 Allocate the batch with the earliest ready time in B to the first available 

unit. If there is more than one unit being available at the same time, then 

choose an arbitrary one. Locate this batch at the end of the batch sequence 

on that unit. Remove this batch from B. 

Step 3.2 Update available time of the unit. The new available time is equal to the 

processing time of the newly assigned batch add the larger one of the batch 

ready time and the last available time of the unit. 

Step 3.3 Loop to Step 3.1 until there is no batch left in B. 

(3) Population initialization 

Similar to the standard DE, HYPDE needs to initialize a population of NP 

individuals before iteration. According to the feature of the proposed encoding scheme, a 

new initialization method is proposed by (32). 

 ( ),
( )

g
rx Form

rands
=

=
S

S DSN
 (32) 
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DSN is an ascending sequence of D consecutive integers initializing with 0 and 

the function rands( ) is to generate a random permutation vector of elements in DSN. 

Function Form() is to convert integer vector S to a matrix. In this paper we assume that 

each unit will process equal amount of orders. Therefore, the function Form() cuts the 

sequence S into M segments averagely, and then group these pieces into a two- 

dimensional matrix, which is an individual. An example of the generation of 9-order 

individual is given in Figure 3. 

Insert Figure 3 about here. 

(4) Mutation 

In this paper, an improved mutation operation is proposed in (33) based on Dong 

et al. (2013). The operation will adjust the mutation strategy through iterations. 

 

2 3

1 2 3

( ),  2 3, if '  and ( )

, if '  and ( )

( ),  if '  and 0.5

( ),  1 2 3, if '  and 0.5

g g g
r rbest

g
rg

r g
best

g g g
r r r

x x x r r g g rand r F

x g g rand r F
v

Swap x g g r NP

x x x r r r g g r NP

 ⊕ ≠ < ≤

 < >= 

≥ ≤ ×


⊕ ≠ ≠ ≥ > ×

!

!

 (33) 

Where ' 0.3 maxg G= × , Gmax is the maximum generation of iterations. In the 

proposed mutation operation, the pointer-based operator 2 3( )g g g
r rbestx x x⊕ !  is used at the 

early stage of the evolution to keep the population in good diversity. g
bestx  is the best 

individual in current population. The operator !  in (33) corresponds to the subtraction 

operation in the mutation operation of DE to generate the difference vector, which is a 

vector consisting of the location indexes of the elements of 2
g
rx in 3

g
rx , while the operator⊕

corresponds to the addition operation of mutation in standard DE. With⊕ operator, the 

elements of the current best individual g
bestx are permutated according to the location 

indexes that stored in the result of 2 3
g g
r rx x! . Fig. 4 is an example of 2 3( )g g g

r rbestx x x⊕ !

mutation operator. As the evolution continues, we employ operator ( )g
bestSwap x  to 

enhance the exploiting ability of the algorithm. Operator ( )g
bestSwap x  is to swap any two 

randomly selected components of g
bestx  to seek for more promising individuals in the 
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neighborhoods of g
bestx . However, if all mutant individuals were generated by operator

( )g
bestSwap x , the search would be easy to be trapped in local optima. Therefore, we adopt 

the hybrid of operator ( )g
bestSwap x  and the pointer-based operator in the later stage of 

evolution to achieve efficient convergence and avoid premature convergence. Figure 5 is 

an example of operator ( )g
bestSwap x . 

Insert Figure 5 about here. 

(5) Crossover 

A new crossover operation is proposed in (34), which is based on point-crossover 

and repetitiveness repair. 

 

,
,

,

,  if ( , ) '
' '

,  otherwise

Repair( ' ),  if ( )

,  otherwise

g
j igg

r j i g
j i

g
rg

r g
r

v rand j i CR
v v

x

v rand r CR
u

x

 <= = 


 <= 


 (34) 

Function  ( , )rand j i is to generate a real number in the range of [0,1] for each 

component of the individual. Each component of 'grv is alternatively selected from ,
g
j iv or

,
g
j ix according to the comparison of  ( , )rand j i and CR’, where CR’ is a predetermined real 

number. And then the Repair( )⋅  operator is applied on the individual 'grv to fix it to be a 

feasible solution. The Repair operator can be described as follows: For every component

,
g
j iv in g

rv , we check if it appears in 'grv . If so, then continue to check the next component; 

otherwise, we find the first repeated component in 'grv and replace it with ,
g
j iv . Figure 6 is 

an example of the proposed crossover operation.  

Insert Figure 6 about here. 

(6) Selection 

In HYPDE, tournament selection is adopted as shown in (35). Makespan is used 

as the evaluation criterion in the selection operation. 
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 1 ,  if ( ) ( )

,  otherwise

g g g
r r rg

r g
r

u f u f x
x

x
+

 <= 


 (35) 

The algorithm is then obtained by incorporating all operations above. Figure 7 is 

the pseudo-code of HYPDE.  

Insert Figure 7 about here. 

5. Computational experiments 

To evaluate the proposed formulation and HYPDE, 20 instances are randomly 

generated according to the scope of the practical production data in a Chinese aluminium 

fabrication company. This company takes 24 hours as a production duration. Our 

experiments basically refer to the actual background, the scheduling period is about one 

day. For ease of calculation, processing times and setup times are generated as integers 

in the experiments. The processing times of orders at the first and second stage are 

between 3 hours to 8 hours, and 2 hours to 6 hours, respectively. The setup times at the 

first stage are between 1 hours to 4 hours. Three parameters characterize the instances: 

the number of orders, the number of units at the first stage and the number of units at the 

second stage. Instances 1-10 are established by the following parameters: the number of 

orders = {12, 24, 36, 48, 60}, the number of units in first stage = {4, 6, 8, 10, 12}, and 

the number of units at the second stage= {2}, the combinations of these parameters leads 

to 10 test instances. Instances 11-20 are established by the following parameters: the 

number of orders = {18, 27, 36, 45, 54}, the number of units in first stage = {6, 9, 12, 15, 

18} and the number of units in second stage = {3}, the combinations of these parameters 

leads to another 10 test instances. 

HYPDE was compared with CPLEX which could also provide effective lower 

bounds as criterions for comparison, therefore, it is no need to compare with other DEs. 

All computational experiments were performed on a PC with Core i5 2.0GHz CPU and 

4 GB of RAM using 64-bit Windows 7 operating system. The continuous-time 

formulation was solved by CPLEX 12.6.1, and the proposed HYPDE was coded in C++ 

language. The upper limits of CPU times for CPLEX were set as 3000 seconds for each 

instance.  

Optimal solutions of small-scale instances were obtained by CPLEX, and then 

Gantt charts are generated to illustrate the production process, which could verify the 
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correctness of the model. When solving with CPLEX, the proposed lower bound is used 

to determine the number of event points. This method cannot guarantee the optimal 

number of event points, but it can get satisfactory results in actual production. 

The parameters of HYPDE were set as follows: the population size NP was set to 

be 50, the maximum number of iterations Gmax was set to be 200, the scaling factor F 

and crossover probability CR were set to be 1 and 0.5, respectively. The HYPDE 

algorithm was stopped when the number of evolution iterations reached Gmax. The 

computational results are presented in Table 1 and Table 3, and the model statistics for 

these instances are given in Table 2 and Table 4, which describe the scale of the problem 

instances. 

In Table 1 and Table 3, the first four columns represent the number of instances, 

number of orders, number of machines at the first stage, and number of machines at the 

second stage. The following columns report the lower bound (LB), results of CPLEX, 

CPU times of CPLEX, results of HYPDE, and CPU times of HYPDE. Note that bold 

numbers in Table 1 and Table 3 show the optimal solutions obtained by either CPLEX or 

HYPDE.  

Insert Table 1-4 about here. 

Based on the results shown in these tables, the following conclusions could be 

drawn. 

Among the 20 instances, CPLEX could obtain 1 optimal solution and HYPDE 

could obtain 6 optimal solutions. While comparing with CPLEX, 16 instances (80%) out 

of 20 are improved by HYPDE, 1 instance (5%) out of 20 is even, and 3 instances (15%) 

out of 20 are inferior. Addition to this, the solution time of HYPDE is much shorter than 

CPLEX. For instances 7-10, 20, the results of HYPDE algorithm are equal to the 

underlined lower bound of the problem, which means that the HYPDE has obtained the 

optimal solutions for these instances. For other instances, the HYPDE algorithm is still 

demonstrated to be effective, since the HYPDE solution is much close to the lower bound 

of the problem for instances 1, 6, 1-19. For instances 3,4 & 12, due to the data of 

production time and setup time, it is difficult for HYPDE to obtain better makespan than 

CPLEX. The influence of different data instances on HYPDE could be studied in the 

future. Therefore, HYPDE is able to generate quick and high-quality solution in the real 

application environment.  
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Insert Figure 8 about here. 

Figure 8 is an illustrative line chart of the experiment results. The abscissa and 

ordinate denote instances and makespan, respectively. Besides, Gantt charts of the 

optimal solution for instance 2 obtained by CPLEX and HYPDE are illustrated in Figure 

9 and Figure 10, respectively. It could be found in the Gantt charts that CPLEX and 

HYPDE have obtained different but both optimal scheduling solutions for instance 2. 

Insert Figure 9-10 about here. 

6. Conclusions 

In this paper, we formulated the integrated batching and scheduling problem of 

aluminium electrolysis and caster as a novel unit-specific event-based continuous-time 

model. An event point specific strategy was proposed for the practical two-stage batching 

constraint, and effective bounds were also proposed to tighten the model. For small and 

medium scale instance, the model could be solved by CPLEX to obtain near-optimal 

solutions. A HYPDE algorithm with hybrid pointer-based mutation and point-cross 

crossover strategies was proposed to solve the problem for industrial scale instances. The 

results of computational experiments demonstrated the effectiveness of the proposed 

continuous-time formulation and the HYPDE algorithm. 
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Table 1. The computational results of instance 1-10. 

Problem 

 LB  

CPLEX 

 

HYPDE 

nos number 
of 

orders 

number of 
machines at 

stage 1 

number of 
machines at 

stage 2 
makespan CPU time makespan CPU time 

1 12 4 2  30  33 3000  32 20.129 

2 12 6 2  28.7  29 23.7  29 19.317 

3 24 4 2  46  55 3000  57 38.392 

4 24 6 2  46  49 3000  54 42.954 

5 36 4 2  77  106 3000  83 97.005 

6 36 6 2  77  85 3000  78 129.15 

7 48 8 2  91  104 3000  91 152.596 

8 48 12 2  91  100 3000  91 176.714 

9 60 10 2  124  134 3000  124 213.823 

10 60 12 2  124  145 3000  124 238.131 

 
 

 
Table 2. Model statistics for instance 1-10 from model F. 

problem number of binary variables number of continuous variables number of constraints number of nonzeros 

1 208 598 5745 20972 

2 208 598 5239 18880 

3 800 2346 50181 188736 

4 800 2346 48019 179948 

5 1776 5246 174777 662260 

6 1776 5246 169807 642168 

7 3136 9298 403145 1528512 

8 3136 9298 385285 1456504 

9 4880 14502 788211 2992920 

10 4880 14502 774169 2936396 
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Table 3. The computational results of instance 11-20. 

Problem 

 LB  

CPLEX 

 

HYPDE 

nos number 
of 

orders 

number of 
machines at 

stage 1 

number of 
machines 
at stage 2 

makespan CPU time makespan CPU time 

11 18 6 3  30  35 3000  34 56.069 

12 18 9 3  30  31 3000  32 36.803 

13 27 6 3  39  48 3000  40 43.64 

14 27 9 3  39  42 3000  41 57.612 

15 36 9 3  53  56 3000  55 96.81 

16 36 12 3  53  57 3000  54 114.62 

17 45 9 3  63  82 3000  64 168.606 

18 45 15 3  63  70 3000  64 172.911 

19 54 9 3  72  91 3000  73 297.154 

20 54 18 3  72  77 3000  72 456.502 

 
 

Table 4. Model statistics for instance 11-20 from model F. 

problem number of binary variables number of continuous variables number of constraints number of nonzeros 

11 456 1328 19038 70480 

12 456 1328 17253 63184 

13 1092 3209 73926 277294 

14 1092 3209 64602 241477 

15 1776 5246 161091 606988 

16 1776 5246 153636 576850 

17 2760 8177 324216 1226785 

18 2760 8177 300720 1132003 

19 3960 11756 571473 2167936 

20 3960 11756 520434 1962340 
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Figure 1. Aluminium production process. 
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Figure 2. Schematic of batching and scheduling in aluminium electrolysis and cast 

production. 
 

 
Figure 3. An example of the generation of 9-job individual. 
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Figure 4. An example of 2 3( )g g g
r rbestx x x⊕ ! mutation operator 
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Figure 5. An example of operator ( )g
bestSwap x . 
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Figure 6. An example of crossover operation. 

 

 

Figure 7. The pseudo-code of HYPDE. 

 

 

Step1: Initialization
Set the Maximum generation number Gmax, generation index g = 0, scaling factor F(0,1), crossover 
rate factor CR(0,1), and initialize a population of NP individuals
                                           with                                                  .
Step2: Evolutionary iteration
WHILE the iteration criterion is not satisfied
Do

Step2.1: Mutation operation
FOR r=1 to NP

Generate mutant individualaccording to the proposed mutation strategy given by Equation (33)
END FOR
Step2.2: Crossover operation
FOR r=1 to NP

Generate a trial individualaccording to the crossover strategy given by Equation (34)
END FOR
Step2.3: Selection operation
Evaluate the trial individuals
FOR r=1 to NP

Select the better individuals from trial population and current population according to Equation (35)
END FOR
Step2.4: Increase the generation count
g=g+1

END WHILE

0 0 0 0 0
1 2{ , ,..., , }r NPx x x x=P  0 ( ), ( )rx Form rands= =S S DSN
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Figure 8. Line chart of experiment results. 
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Figure 9. Gantt chart of the optimal solution for instance 2 by CPLEX. 
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Figure 10. Gantt chart of the optimal solution for instance 2 by HYPDE. 

 


