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Abstract

In this paper we continue the study of non-diagonalisable hyperbolic systems with variable multiplicity 
started by the authors in [1]. In the case of space dependent coefficients, we prove a representation formula 
for solutions that allows us to derive results of regularity and propagation of singularities.
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1. Introduction

In this work, we continue the study of non-diagonalisable systems that begun in [1] by proving 
a result on solution representations and propagation of singularities for a hyperbolic system with 
x-dependent principal part. Let us consider{

Dtu = A(x,Dx)u + B(t, x,Dx)u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

u|t=0 = u0, x ∈Rn,
(1.1)

with the usual notation Dt = −i∂t and Dx = −i∂x . We assume that A(x, Dx) =
(
aij (x, Dx)

)m
i,j=1

is an m × m matrix of pseudo-differential operators of order 1, i.e., aij ∈ �1
1,0(R

n)) and that 
B(t, x, Dx) =

(
bij (t, x, Dx)

)m
i,j=1 is an m × m matrix of pseudo-differential operators of order 

0, i.e., bij ∈ C([0, T ], �0
1,0(R

n)). We also assume that the matrix A is upper triangular and 
hyperbolic, i.e.,

A(x,Dx) = �(x,Dx) + N(x,Dx) = diag(λ1(x,Dx),λ2(x,Dx), . . . , λm(x,Dx)) + N(x,Dx)

with real eigenvalues λ1(x, ξ), λ2(x, ξ), . . . , λm(x, ξ) and

N(x,Dx) =

⎛⎜⎜⎜⎜⎜⎝
0 a12(x,Dx) a13(x,Dx) · · · a1m(x,Dx)

0 0 a23(x,Dx) · · · a2m(x,Dx)
...

...
... · · · ...

0 0 0 . . . am−1m(x,Dx)

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

We recall that the well-posedness of this kind of systems has been proven in anisotropic Sobolev 
spaces in [1] under specific assumptions on the lower order terms.

Propagation of singularities for systems with vanishing iterated Poisson brackets has been 
studied by several authors as Iwasaki and Morimoto [6] who studied 3 × 3 systems where 
the twice iterated Poisson bracket vanishes and Ichinose [5] studied 2 × 2 systems under the 
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same condition. In [8], Rozenblum considered smoothly diagonalisable systems with transver-
sally intersecting characteristics, and derived a formula for the propagation of its singularities. 
Consequently, the transversality condition was removed in [7], replaced by a weaker condition 
of intersection of finite order at points of multiplicity, with propagation of singularities result 
as well. Here we extend the results of [7] to non-diagonalisable hyperbolic systems with vari-
able multiplicity. The paper is organised as follows. Section 2 collects some important notions 
of Fourier integral operators and related integral operators relevant to our problem. The main 
well-posed result and corresponding representation formula is proven in Section 3. Section 4 is 
devoted to propagation of singularities. The paper ends in Section 5 with an application of our 
results to higher order hyperbolic equations with multiplicities.

1.1. Notations and preliminary notions

For the convenience of the reader we recall here some notations and preliminary notions that 
we will use throughout the paper.

Let μ ∈ R. We recall that Sμ
1,0(R

n) is the space of symbols of order μ and type (1, 0), i.e., 
a = a(x, ξ) ∈ C∞(Rn ×Rn) belongs to Sμ

1,0(R
n) if there exist constants Cα,β > 0 such that

∀α,β ∈ Nn
0 : |∂α

x ∂
β
ξ a(x, ξ)| ≤ Cα,β 〈ξ 〉m−|β| ∀(x, ξ) ∈ Rn ×Rn,

with 〈ξ 〉 = (1 + |ξ |2)1/2.
The set of pseudo-differential operators associated to the symbols in Sμ

1,0(R
n) is denoted 

by �μ
1,0(R

n). If the symbol has an extra (continuous) dependence on t ∈ [0, T ] we will use 
the notations C([0, T ], Sμ) and C([0, T ], �μ

1,0) for symbols and operators, respectively. For the 
sake of simplicity we will adopt the abbreviated notations Sμ and �μ for Sμ

1,0(R
n) and �μ

1,0(R
n), 

respectively, and CSμ and C�m for C([0, T ], Sμ) and C([0, T ], �μ
1,0), respectively.

With Iμ we denote the class of Fourier Integral Operators with amplitude in Sμ, i.e., of oper-
ators of the type

Iϕ(a)(f )(t, x) =
∫
Rn

eiϕ(t,x,ξ)a(t, x, ξ)f̂ (ξ)dξ,

where ϕ is a phase function and f̂ is the Fourier transform of f . This notation is standard and 
further details can be found in [1] and the references therein, for instance [3]. In this paper we 
will use the short expression integrated Fourier integral operator to denote an operator of the 
type

t∫
0

∫
Rn

eiϕ(t,s,x,ξ)a(t, s, x, ξ)f̂ (ξ, s)dξ ds,

where the Fourier transform of f = f (y, s) is meant with respect to the variable y.

By Lp
α(Rn), we denote the Sobolev space (I − 
)

−α
2 Lp(Rn). As usual, we set Hs = L2

s . By 
‖ · ‖L

p
loc(R

n) we denote any localisation of the Lp(Rn)-norm, i.e. the estimate ‖f ‖L
p
loc(R

n) ≤ C

means that for all χ ∈ C∞(Rn), we have the estimate ‖χf ‖Lp(Rn) ≤ C, where the constant C
0
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may depend on χ . Since we only work in Rn and no confusion can arise, we drop the indication 
of Rn from here on.

Finally, we recall that the Poisson bracket of two differentiable functions f = f (x, ξ) and 
g = g(x, ξ) is defined as

{f , g } =
n∑

i=1

∂f

∂ξi

∂g

∂xi

− ∂f

∂xi

∂g

∂ξi

.

1.2. Assumptions on the matrices A(x, Dx) and B(t, x, Dx)

In this paper, we make the following assumptions on lower order terms and multiplicities:

(H1) (Lower order terms) The entries of the matrix B(t, x, Dx) = [bij (t, x, D))]mi,j=1 belong 

to C([0, T ], �0) and are of decreasing order below the diagonal, i.e.,

bij ∈ C([0, T ],�j−i ) for i > j . (1.2)

(H2) (Multiplicities) There exists M ∈ N such that if λj (x, ξ) = λk(x, ξ) for some j, k ∈
{1, . . . , m} and λj (x, ξ) and λk(x, ξ) are not identically equal near (x, ξ) then there ex-
ists some N ≤ M such that

λj (x, ξ) = λk(x, ξ) ⇒ HN
λj

(λk) := {λj , {λj , . . . , {λj ,λk}} . . . } �= 0,

where the Poisson bracket {·, ·} in HN
λj

is iterated N times.

Remark 1.1. In [1], for A depending on t as well and under the condition (H1) on B , we proved 
that for any s ∈ R, u0

k ∈ Hs+k−1, k = 1, . . . , m, and fk ∈ C([0, T ], Hs+k−1), k = 1, . . . , m, 
the Cauchy problem (1.1) has a unique anisotropic Sobolev solution u with components uk ∈
C
([0, T ],H s+k−1

)
, k = 1, . . . , m. In this paper we do the microlocal analysis of solutions in the 

case of A depending only on x.

Remark 1.2. The condition (H2) was introduced in [7, p.3]. For 1 < p < ∞ and α = (n −
1)|1/p − 1/2|, it was proved in [7] that when the matrix A(x, Dx) is smoothly microlocally 
diagonalisable, with smooth eigenspaces and real eigenvalues λj , j = 1, . . . , m, fulfilling the 
condition (H2) then for every compactly supported initial data u0 ∈ L

p
α ∩ L2

comp the Cauchy 
problem (1.1) has a unique solution u such that u(t, ·) ∈ L

p
loc for every t ∈ [0, T ]. Previously, a 

similar result had been proved in L2 by Rozenblum in [8], in the special case of (H2) with N = 1.

We are now ready to state the main result of our paper. This is a representation formula for the 
solution u which shows how this depends on initial data and right-hand side. This dependence is 
given in terms of integral operators (of Fourier type) modulo regularising operators of order N , 
i.e. mapping Hs into Hs+N , for any s ∈R.

Theorem 1.3. Let n ≥ 1, m ≥ 2, and let{
Dtu = A(x,Dx)u + B(t, x,Dx)u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

u| = u (x), x ∈Rn,
t=0 0
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where A(x, Dx) is an upper-triangular matrix of pseudo-differential operators of order 1 and 
B(t, x, Dx) is a matrix of pseudo-differential operators of order 0, continuous with respect 
to t . Let u0 and f have components u0

j and fj , respectively, with u0
j ∈ Hs+j−1(Rn) and 

fj ∈ C([0, T ], Hs+j−1) for j = 1, . . . , m. Then, under condition (H1) and (H2), we have the 
following:

(i) the Cauchy problem above has a unique anisotropic Sobolev solution u, i.e., uj ∈
C([0, T ], Hs+j−1) for j = 1, . . . , m;

(ii) for any N ∈N , the components uj , j = 1, . . . , m, of the solution u are given by

uj (t, x) =
m∑

l=1

(
Hl−j

j,l (t) + Rj,l(t)
)

u0
l +
(
Kl−j

j,l (t) + Sj,l(t)
)

fl, (1.3)

where Rj,l , Sj,l ∈ L(Hs, C([0, T ], Hs+N−l+j )) and the operators Hl−j
j,l , Kl−j

j,l ∈
L(C([0, T ], Hs), C([0, T ], Hs−l+j )) are integrated Fourier Integral Operators of order 
l − j .

For the convenience of the reader we recall here Theorem 1 in [1] which proves already 
assertion (i) in Theorem 1.3.

Theorem 1.4 (Theorem 1 in [1]). Let n ≥ 1, m ≥ 2, and let{
Dtu = A(t, x,Dx)u + B(t, x,Dx)u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

u|t=0 = u0(x), x ∈ Rn,
(1.4)

where A(t, x, Dx) = (aij (t, x, Dx))
m
i,j=1 is an upper-triangular matrix of pseudo-differential 

operators of order 1 and B(t, x, Dx) = (bij (t, x, Dx))
m
i,j=1 is a matrix of pseudo-differential 

operators of order 0, continuous with respect to t . Assume that (H1) holds. Then, given u0
j ∈

Hs+j−1(Rn) and fj ∈ C([0, T ], Hs+j−1) for j = 1, . . . , m, the Cauchy problem (1.4) has a 
unique anisotropic Sobolev solution u, i.e., uj ∈ C([0, T ], Hs+j−1) for j = 1, . . . , m.

2. Auxiliary results

This section contains some auxiliary results on Fourier integral operators and related integral 
operators that we will use throughout the paper. For the convenience of the reader, we begin by 
recalling some notations introduced in [1].

For each eigenvalue λj (x, ξ) of A(x, ξ), we will be denoting by G0
j θ the solution to

{
Dtw = λj (x,Dx)w + bjj (t, x,Dx)w,

w(0, x) = θ(x),

and by Gjg the solution to{
Dtw = λj (x,Dx)w + bjj (t, x,Dx)w + g(t, x),

w(0, x) = 0.
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The bjj are the diagonal elements of the lower order term B(t, x, Dx) in (1.1). The operators 
G0

j and Gj can be locally represented by a Fourier integral operator and an integrated Fourier 
integral operator, respectively, i.e.,

G0
j θ(t, x) =

∫
Rn

eiϕj (t,x,ξ)cj (t, x, ξ)θ̂ (ξ)dξ (2.1)

and

Gjg(t, x) =
t∫

0

∫
Rn

eiϕj (t,s,x,ξ)Cj (t, s, x, ξ)ĝ(s, ξ)dξds, (2.2)

with ϕj (t, s, x, ξ) solving the eikonal equation

{
∂tϕj = λj (x,∇xϕj (t, s, x, ξ)),

ϕj (s, s, x, ξ) = x · ξ,

and ϕj (t, x, ξ) = ϕj (t, 0, x, ξ). Note that the amplitudes Cj in (2.2) have asymptotic expan-

sions 
+∞∑
k=0

Cj,−k where the element Cj,−k(s, x, ξ) is of order −k, k ∈ N , and satisfies transport 

equations with initial data at t = s. By construction, cj (t, x, ξ) = Cj (t, 0, x, ξ). In the above 
construction of propagators for hyperbolic equations, we have cj ∈ S0, so that G0

j ∈ I 0.
Further, to simplify the analysis of the regularising part in (1.3) we introduce the notation

Ej (t, s)g(s, x) =
∫
Rn

eiϕj (t,s,x,ξ)Cj (s, x, ξ)ĝ(s, ξ)dξ, (2.3)

i.e., the integrated Fourier integral operator Gj can now be written as

Gjg(t, x) =
t∫

0

Ej (t, s)g(s, x)ds. (2.4)

2.1. Composition of FIOs and regularising effect

In this section, we state and prove auxiliary results that are crucial to the proof of the solution 
representation formula stated in Theorem 1.3. In particular, we investigate the mapping properties 
of compositions and powers of Fourier integral operators and integrated Fourier integral operators 
as in (2.1) and (2.2). This will be useful when analysing the regularising part of our representation 
formula (1.3).
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2.1.1. Integrated Fourier integral operators
The composition of integrated Fourier integral operators like in (2.2) was studied in [7]. Their 

result, that we recall in the sequel, is crucial for our proof and is a generalisation of a previous 
result by Rozenblum in [8].

Let t1, t2, . . . , tl ∈ [0, T ], t = (t1, t2, . . . , tl) and let H(t) be the operator

H(t) = eiλj1 t1eiλj2 (t2−t1) · . . . · eiλjl
(tl−tl−1)e−iλjl

tl , (2.5)

where λi are pseudo-differential operators of order 1.
By [3], H(t) is a (parameter dependent) Fourier integral operator and its canonical relation 

�t ⊆ T ∗Rn × T ∗Rn is given by

�t =
{
(x,p, y, ξ) : (x,p) = �t(y, ξ)

}
,

where

�t = 
t1
j1

◦ · · · ◦ 
tl−tl−1
jl

◦ 
−tl
jl+1

and the t
j are the transformations corresponding to a shift by t along the trajectories of the 

Hamiltonian flow defined by the λj .

Theorem 2.1 (Thm 2.1 in [7]). With the above notation, assume that not all λis are identical to 
each other and let (H2) be satisfied for the λj in (2.5). Further, suppose that D(t) ∈ �0. Then, 
the operator

Ql =
t∫

0

t1∫
0

. . .

tl−1∫
0

D(t)H(t) dtl . . . dt1

belongs to L(Hs, Hs+N(l)), where N(l) → +∞ as l → +∞.

Remark 2.2. If the global estimate in the definition of the symbols classes Sm
1,0 in [1] is replaced 

with an estimate that holds locally on every compact set, then the conclusions of Theorem 2.1
hold true if L(Hs, Hs+N(l)) is replaced by L(Hs

comp, Hs+N(l)
loc ).

Theorem 2.1 allows us to investigate the composition GiGj .

2.1.2. The composition GiGj

Let Gi and Gj be two operators as in (2.2). Then, we can write

GiGju =
t∫

0

t1∫
0

Ei (t, t1)Ej (t1, t2)udt2dt1,

with Ei , Ej as in (2.4). If we now iterate this k times, we obtain
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(GiGj )
k =

t∫
0

t1∫
0

· · ·
t2k−1∫
0

Ei (t, t1)Ej (t1, t2)· . . . · Ei (t2k−3, t2k−2)Ej (t2k−2, t2k−1) dt,

where t = dt1 . . . dt2k−1. This is an operator of the same type as Ql above so we can apply 
Theorem 2.1 and obtain the following corollary.

Corollary 2.3. Let conditions (H1) and (H2) be satisfied. Let j ∈ {1, . . . , m}, s ∈R. Then, for all 
N ∈N , k ∈ {1, . . . , m}, there exists M ∈N such that

(
k∏

i=1

Gσ(i)

)M

∈ L
(
C([0, T ],H s),C([0, T ],H s+N)

)
,

where σ is an element of the symmetric group over {1, . . . , m}.

Remark 2.4. The same conclusion as in Corollary 2.3 holds true if we have a product that con-
tains a collection G0

j ’s as long as there is at least one integrated version Gj present.

3. Solution representations

This section is devoted to the proof of Theorem 1.3. For the sake of simplicity and for the 
advantage of the reader we give first a detailed explanatory proof for 2 × 2 systems and we then 
pass to consider the m × m case. We adopt the notations introduced in Section 2.

3.1. The 2 × 2 case

Let us consider the system{
Dtu = A(x,Dx)u + B(t, x,Dx)u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

u|t=0 = u0, x ∈ Rn,
(3.1)

where u0(x) = (u0
1(x), u0

2(x)
)T , f (t, x) = (f1(t, x), f2(t, x)

)T , and with the operators A(x, Dx)

and B(t, x, Dx) given by

A(x,Dx) =
(

λ1(x,Dx) a12(x,Dx)

0 λ2(x,Dx)

)
(3.2)

and

B(t, x,Dx) =
(

b11(t, x,Dx) b12(t, x,Dx)

b21(t, x,Dx) b22(t, x,Dx)

)
.

We suppose that all entries of A(x, Dx) belong to �1
1,0 and all entries of B(t, x, Dx) belong to 

C�0 .
1,0
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As detailed in Subsection 2.2 in [1], we obtain the equations

u1 = G0
1(u

0
1) + G1(f1) + G1(a12u2) + G1(b12u2)

= G0
1(u

0
1) + G1(f1) + G1((a12 + b12)u2),

u2 = G0
2(u

0
2) + G2(f2) + G2(b21u1),

and with that

u1 = G0
1(u

0
1) + G1((a12 + b12)G

0
2(u

0
2)) + G1(f1) + G1((a12 + b12)G2(f2))

+ G1((a12 + b12)G2(b21u1)),

u2 = G0
2(u

0
2) + G2(b21G

0
1(u

1
0)) + G2(b21G1(f1)) + G2(f2)

+ G2(b21G1((a12 + b12)u2)).

(3.3)

We note that the operators G1 ◦ (a12 + b12) ◦ G2 ◦ b21 and G2 ◦ b21 ◦ G1 ◦ (a12 + b12) are of 
order 0 under the assumption (H1) made on the lower order terms; here in particular b21 ∈ �−1. 
From (3.3), we have

u1 − G1((a12 + b12)G2(b21u1))

= G0
1(u

0
1) + G1((a12 + b12)G

0
2(u

0
2)) + G1(f1) + G1((a12 + b12)G2(f2))

and

u2 − G2(b21G1((a12 + b12)u2))

= G0
2(u

0
2) + G2(b21G

0
1(u

1
0)) + G2(b21G1(f1)) + G2(f2).

(3.4)

3.2. Inversion of the operator L1

Adopting the notations introduced in [1] we introduce the operator

L1 := I − G1 ◦ (a12 + b12) ◦ G2 ◦ b21 = I − G0
1

Note that G0
1 = G1 ◦ (a12 +b12) ◦G2 ◦b21 is of order 0 and from the Sobolev mapping properties 

of Fourier Integral Operators (see Lemma 1 in [1]) the norm of this operator can be estimated 
by a constant times the length of the time interval [0, T ]. So it can be made as small as wanted 
by a suitable choice of T . It follows that L1 is invertible for T small enough and its inverse can 
be written as sum of a Neumann series. More precisely, under the assumptions (H1) and (H2) 
from Corollary 2.3 we get that for every N ∈ N the operator L−1 can be written as a finite sum 
of powers of the operator G0

1 modulo some regularising operator mapping C([0, T ], Hs) into 
C([0, T ], Hs+N)), i.e., for every N ∈ N , there exists M ∈ N such that

L−1
1 =

+∞∑(
G0

1

)k

k=0
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=
M∑

k=0

(
G0

1

)k
mod L(C([0, T ],H s),C([0, T ],H s+N)).

It is important to remark here that the estimates needed to ensure the small norm of the opera-
tor G0

1 , do not depend on the initial data and therefore one can repeat the same argument covering 
the original interval [0, T ].

3.3. Representation formulas

We now apply the operator L−1
1 as written above to both sides of the equality

L1u1 = G0
1(u

0
1) + G1((a12 + b12)G

0
2(u

0
2)) + G1(f1) + G1((a12 + b12)G2(f2)).

We obtain the following representation for u1, where

R1 = L−1
1 −

M∑
k=0

(
G0

1

)k
is a regularising operator, i.e., R1 ∈ L(C([0, T ], Hs), C([0, T ], Hs+N)):

u1 =
M∑

k=0

(
G0

1

)k
G0

1(u
0
1)︸ ︷︷ ︸

=H1−1
1,1 u0

1

+
M∑

k=0

(
G0

1

)k
G1((a12 + b12)G

0
2(u

0
2))︸ ︷︷ ︸

=H2−1
1,2 u0

2

+
M∑

k=0

(
G0

1

)k
G1(f1)︸ ︷︷ ︸

=K1−1
1,1 f1

+
M∑

k=0

(
G0

1

)k
G1((a12 + b12)G2(f2))︸ ︷︷ ︸

=K2−1
1,2 f2

+R1G
0
1(u

0
1) + R1G1((a12 + b12)G

0
2(u

0
2))

+R1G1(f1) + R1G1((a12 + b12)G2(f2)).

Denoting R1G
0
1 and R1G1((a12 + b12)G

0
2 by R1,1 and R1,2 respectively, and R1G1 and 

R1G1((a12 + b12)G2 by S1,1 and S1,2, respectively, we have that

u1 =
2∑

l=1

(
Hl−j

1,l (t) + R1,l(t)
)

u0
l +
(
Kl−j

1,l (t) + S1,l(t)
)

fl,

where

• the operators Hl−1
1,l and Kl−1

1,l are of order l − 1 and therefore map C([0, T ], Hs) into 
C([0, T ], Hs−l+1),

• R1,1 and S1,1 map Hs into C([0, T ], Hs+N),
• R1,2 and S1,2 map Hs into C([0, T ], Hs+N−1).
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This means that H1−l
1,l , K1−l

1,l ∈ L(C([0, T ], Hs), C([0, T ], Hs−l+1)) and R1,l , S1,l ∈ L(Hs,

C([0, T ], Hs+N−l+1)). The same argument is true for u2. We have in this way obtained the 
representation formula stated in Theorem 1.3.

3.4. The m × m case

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Throughout this proof we refer to the proof of Theorem 1 in [1], i.e. 
Theorem 1.4 in this paper. Theorem 1.4 proves the well-posedness of this Cauchy problem in 
anisotropic Sobolev spaces. It remains to prove the representation formula for the components of 
the solution u. We begin by observing that under our hypotheses we can write

ui = U0
i +
∑
j<i

G
j−i
i,j (uj ) +

∑
i<j≤m

G1
i,j (uj ),

for i = 1, . . . , m, where Gj−i
i,j and G1

i,j are operators of order j − i and 1, respectively and

U0
i = G0

i u
0
j + Gi(fi).

We begin by substituting

um = U0
m +

∑
j<m

G
j−m
m,j (uj ),

into

um−1 = U0
m−1 +

∑
j<m−1

G
j−m+1
m−1,j (uj ) + G1

m−1,m(um).

We get

um−1 = U0
m−1 +

∑
j<m−1

G
j−m+1
m−1,j (uj ) + G1

m−1,mU0
m +

∑
j<m

G1
m−1,mG

j−m
m,j (uj )

= (U0
m−1 + G1

m−1,mU0
m) +

∑
j<m−1

(G
j−m+1
m−1,j (uj ) + G1

m−1,mG
j−m
m,j (uj ))

+ G1
m−1,mG−1

m,m−1um−1.

Since all the operators above are of order ≤ 0 we conclude that the operator

Lm−1 = I − G1
m−1,mG−1

m,m−1 := I − G0
m−1

is invertible on a sufficiently small interval [0, T ] and, therefore,
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um−1 − G1
m−1,mG−1

m,m−1um−1 = (U0
m−1 + G1

m−1,mU0
m)

+
∑

j<m−1

(G
j−m+1
m−1,j (uj ) + G1

m−1,mG
j−m
m,j (uj )),

(3.5)

yields

um−1 = L−1
m−1Ũ

0
m−1 + L−1

m−1

∑
j<m−1

G̃
j−m+1
m−1 uj , (3.6)

with Ũ0
m−1 and G̃j−m+1

m−1 defined by the right-hand side of (3.5). In particular,

Ũ0
m−1 = U0

m−1 + D1
m−1,mU0

m, (3.7)

where G1
m−1,m = D1

m−1,m is an integrated Fourier integral operator with symbol of order 1. Note 
that we choose the notation D1

m−1,m in order to have simpler notations for the compositions of 
operators in the computations below. Substituting um and um−1 into um−2 and making use of 
(3.6) we find a similar formula to (3.6) for um−2 (see (24) in [1]) with Ũ0

m−2 defined as follows:

Ũ0
m−2 = U0

m−2 + G1
m−2,m−1L

−1
m−1Ũ

0
m−1

+ G1
m−2,mU0

m + G1
m−2,mG−1

m,m−1L
−1
m−1Ũ

0
m−1.

(3.8)

Hence, by implementing (3.7) in (3.8) we have

Ũ0
m−2 = U0

m−2 + G1
m−2,m−1L

−1
m−1(U

0
m−1 + D1

m−1,mU0
m)

+ G1
m−2,mU0

m + G1
m−2,mG−1

m,m−1L
−1
m−1(U

0
m−1 + D1

m−1,mU0
m).

By collecting the terms U0
m−1 and U0

m we conclude that Ũ0
m−2 can be written as

Ũ0
m−2 = U0

m−2 + D1
m−2,m−1U

0
m−1 + D2

m−2,mU0
m,

where the operators D1
m−2,m−1 and D2

m−2,m are of order 1 and 2, respectively. By iterating the 
same argument we prove that for every j = 1, . . . , m − 1,

Ũ0
j = U0

j +
∑
k>j

D
k−j
j,k U0

k ,

where k − j is the order of the operator Dk−j
j,k . For a precise construction of the operators Dk−j

j,k

we refer the reader to the proof of Theorem 1 in [1]. Since

u1 = Ũ0
1 + G0

1u1,

where the operator I − G0 is invertible with inverse L−1 (see [1]) we conclude that
1 1
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u1 = L−1
1

(
U0

1 +
∑
k>1

Dk−1
1,k U0

k

)
= L−1

1

(
G0

1u
0
1 + G1(f1) +

∑
k>1

Dk−1
1,k (G0

ku
0
k + Gk(fk))

)
.

We now argue as in the case 2 × 2 and we apply Corollary 2.3 which holds thanks to the hy-
potheses (H1) and (H2). We obtain that for every N there exists M such that L−1

1 =∑M
j=0(G0

1)j

modulo some regularising operator R1 mapping C([0, T ], Hs) into C([0, T ], Hs+N) and there-
fore

u1 =
M∑

j=0

(G0
1)j
(

G0
1u

0
1 + G1(f1) +

∑
k>1

Dk−1
1,k (G0

ku
0
k + Gk(fk))

)

+ R1

(
G0

1u
0
1 + G1(f1) +

∑
k>1

Dk−1
1,k (G0

ku
0
k + Gk(fk))

)
.

By collecting all the terms with u0
k and all the terms with fk , k = 1, . . . , m we see that

u1 =
m∑

l=1

(
Hl−1

1,l (t) + R1,l(t)
)

u0
l +
(
Kl−1

1,l (t) + S1,l(t)
)

fl,

where Hl−1
1,l and Kl−1

1,l have order l − 1 and R1,l and S1,l are regularising. This is due to the fact 

(G0
1)j is an operator of order 0 as well as G0

k and Gk , and Dk−1
1,k is an operator of order k −1. The 

regularising operator R1 generates R1,l and S1,l . These last two operators map C([0, T ], Hs) into 
C([0, T ], Hs+N−l+1). We have therefore proven the second assertion of this theorem for j = 1. 
Following the proof of Theorem 1 in [1] we now have that

u2 = Ũ0
2 + G0

2u2 + G̃−1
2 u1,

where the operator G0
2 is of order zero and its definition involves invertible operators Lm−1,

Lm−2, . . . , L2 and G̃−1
2 is of order −1. Hence, by inverting the operator L2 = I − G0

2 on a 
sufficiently small interval [0, T ] we have

u2 = L−1
2 Ũ0

2 + L−1
2 G̃−1

2 u1.

By the definition of Ũ0
2 and by the representation formula for u1 obtained above we can write

u2 = L−1
2

(
G0

2u
0
2 + G2(f2) +

∑
k>2

Dk−2
2,k (G0

ku
0
k + Gk(fk))

)

+ L−1
2 G̃−1

2

( m∑
l=1

(
Hl−1

1,l (t) + R1,l(t)
)

u0
l +
(
Kl−1

1,l (t) + S1,l(t)
)

fl

)
.

Note that the operators above are of order l − 2. By arguing as for u1 and by writing L−1
2 as a 

finite number of powers of G̃−1 plus a regularising operator we arrive at the formula
2
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u2 =
m∑

l=1

(
Hl−2

2,l (t) + R2,l(t)
)

u0
l +
(
Kl−2

2,l (t) + S2,l(t)
)

fl,

with the desired order and regularising properties. We conclude the proof by iterating the same 
scheme. From formula (28) in [1] we obtain for j > 2 the following expression for uj :

uj = L−1
j

(
U0

j +
∑
k>j

D
k−j
j,k U0

k

)
+ L−1

j

(∑
k<j

G̃
k−j
j uk

)

= L−1
j

(
G0

j u
0
j + Gj(fj ) +

∑
k>j

D
k−j
j,k (G0

ku
0
k + Gk(fk))

)

+ L−1
j

(∑
k<j

G̃
k−j
j

( m∑
l=1

(
Hl−k

k,l (t) + Rk,l(t)
)

u0
l +
(
Kl−k

k,l (t) + Sk,l(t)
)

fl

))
,

where the operator involved are of order l − j . Writing L−1
j by Neumann series we can conclude 

that

uj =
m∑

l=1

(
Hl−j

j,l (t) + Rj,l(t)
)

u0
l +
(
Kl−j

j,l (t) + Sj,l(t)
)

fl,

where Hl−j
j,l and Kl−j

j,l have order l − j and Rj,l and Sj,l map C([0, T ], Hs) into C([0, T ],
H s+N−l+j ). �
Remark 3.1. Note that in [1], we defined Sm by global estimates on Rn × Rn. If one replaces 
that definition with a locally over every compact sets version then Theorem 1.3 still holds true 
with the spaces L(Hs, C([0, T ], Hs+N)) and L(C([0, T ], Hs), C([0, T ], Hs+N−l+j )) replaced 
by the spaces L(Hs

comp, C([0, T ], Hs+N
loc )) and L(C([0, T ], Hs

comp, C([0, T ], Hs+N−l+j
loc )), re-

spectively.

3.5. Regularity results

We conclude this section with some regularity results in Lp and Hölder spaces. These are 
obtained by arguing as in [7] Theorem 2.2 and Theorem 3.1.

Theorem 3.2. Let 1 < p < ∞ and α = (n − 1)
∣∣ 1
p

− 1
2

∣∣. Let A(x, Dx) be an m × m upper-
triangular matrix of pseudo-differential operators of order 1 and suppose that the eigenvalues 
λi(x, ξ) ∈ S1 of A(x, ξ) are real and satisfy (H2). Assume further, that B(t, x, Dx) is an m × m

matrix of pseudo-differential operators of order 0 satisfying (H1). Then, for any compactly 
supported u0 ∈ L

p
α ∩ L2

comp , the solution u = u(t, x) of the Cauchy problem (1.1) satisfies 
u(t, ·) ∈ L

p
loc , for all t ∈ [0, T ]. Moreover, there is a positive constant CT such that

sup ‖u(t, ·)‖L
p
loc

≤ CT ‖u0‖L
p
α
.

t∈[0,T ]
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Local estimates can be obtained in other spaces as well, for s ∈ R and α as above. In detail, 
assuming u0 below is compactly supported, we have

• u0 ∈ L
p
s+α implies u(t, ·) ∈ L

p
s ;

• u0 ∈ Cs+ n−1
2 implies u(t, ·) ∈ Cs ;

• for 1 < p ≤ q ≤ 2, u0 ∈ L
p

s− 1
q

+ n
p

−n−1
2

implies u(t, ·) ∈ L
q
s .

4. Propagation of singularities

We now want to analyse the solution u under a microlocal point of view. In particular we 
want to see how its wavefront set is related to the wavefront set of the initial data. Thanks to the 
assumptions (H1) and (H2) and the representation formula in Theorem 1.3 we are able to extend 
the result of propagation of singularities in [7] to systems with non-diagonalisable principal part 
(in upper-triangular form). For the sake of the reader we recall below some basic notions of 
microlocal analysis which can be found in [4] and [3].

Definition 4.1 (Def. 8.1.2 in [4], Def. 2.5.2 in [3]). Let v ∈D′(Rn). The wave front set WF(v) ⊆
T ∗(Rn) \ {0} := Rn × Rn \ {0} is defined via its complement as follows: (x0, ξ0) belongs to 
(WF(u))c if and only if there exists a χ ∈ C∞

0 (Rn) with χ(x0) �= 0 and a conic neighbourhood 
� of ξ0 such that for every N ∈N there exists a positive constant CN,χ such that

|F(χu)(ξ)| ≤ Cn,χ 〈ξ 〉−N ,

for all ξ ∈ �.

Let us now discuss the propagation of singularities for operators Ql from Theorem 2.1, given 
by

Ql =
t∫

0

t1∫
0

. . .

tl−1∫
0

D(t)H(t) dtl . . . dt1. (4.1)

Similar analysis was done in [7]. It is clear that singularities propagate along broken Hamiltonian 
flows. Let

J = {j1, . . . , jl+1}, 1 ≤ jk ≤ m, jk �= jk+1.

We recall from the definition of H(t) that its canonical relation �t ⊆ T ∗Rn × T ∗Rn is given by

�t =
{
(x,p, y, ξ) : (x,p) = �t(y, ξ)

}
,

where

�t = 
t1 ◦ · · · ◦ 

tl−tl−1 ◦ 
−tl
j1 jl jl+1
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and the t
j are the transformations corresponding to a shift by t along the trajectories of the 

Hamiltonian flow defined by the λj . Also, recall that t1, t2, . . . , tl ∈ [0, T ], t = (t1, t2, . . . , tl), 
and H(t) is the operator

H(t) = eiλj1 t1eiλj2 (t2−t1) · . . . · eiλjl
(tl−tl−1)e−iλjl

tl , (4.2)

where λi are pseudo-differential operators of order 1.
Let J (t, x, ξ) be the corresponding broken Hamiltonian flow. It means that points follow 

bicharacteristics of λj1 until meeting the characteristic of λj2 , and then continue along the bichar-
acteristic of λj2 , etc. In this procedure the singularities may accumulate if wave front sets for 
different broken trajectories project to the same point of X. We can rewrite (4.1) as

Ql =
∫



I (t̄)dt̄,

where t̄ = (t1, . . . , tl) ranges over the simplex


 = {0 ≤ tl ≤ tl−1 ≤ . . . ≤ t1 ≤ t}
in Rl and

I (t̄) = Z(t1) ◦ . . . ◦ Z(tl),

with Z(tj ) found from (4.2). It is then possible to treat it as a standard Fourier integral operator 
with the change of variables t̄ = ζ |ξ |−1. Let K be a cone in RN = Rn+l and let

Iu(x) =
∫
K

∫
Y

eiϕ(x,y,θ)a(x, y, θ)u(y)dydθ

be a Fourier integral operator with integration over the cone K with respect to θ . Let Kj be K or 
a face of K . Let ϕj (x, y, θj ) = ϕ|Kj

, θj ∈ Kj . Let �j ⊂ T ∗X × T ∗X be a Lagrangian manifold 
with boundary:

�j =
{(

x,
∂ϕj

∂x
, y,−∂ϕj

∂y

)
: ∂ϕj

∂θj

= 0

}
.

For G ⊂ T ∗Y , let

�j(G) = {z ∈ T ∗X : ∃ζ ∈ G : (z, ζ ) ∈ �j }.
Then we have the following statement on the propagation of singularities, see [7].

Theorem 4.2. Let u ∈D′(Y ). Then WF(Iu) ⊂⋃j �j (WF(u)).

Consequently, combining these observations with Theorem 1.3 we obtain the following prop-
erty.
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Corollary 4.3. Let n ≥ 1, m ≥ 2, and let{
Dtu = A(x,Dx)u + B(t, x,Dx)u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

u|t=0 = u0(x), x ∈ Rn,

where A(x, Dx) is an upper-triangular matrix of pseudo-differential operators of order 1 and 
B(t, x, Dx) is a matrix of pseudo-differential operators of order 0, continuous with respect to t . 
Recall that under condition (H1) and (H2), for any N ∈N , the components uj , j = 1, . . . , m, of 
the solution u are given by

uj (t, x) =
m∑

l=1

(
Hl−j

j,l (t) + Rj,l(t)
)

u0
l +
(
Kl−j

j,l (t) + Sj,l(t)
)

fl, (4.3)

where Rj,l , Sj,l ∈ L(Hs, C([0, T ], Hs+N−l+j )) and the operators

Hl−j
j,l ,Kl−j

j,l ∈ L(C([0, T ],H s),C([0, T ],H s−l+j ))

are integrated Fourier Integral Operators of order l − j .
Consequently, up to any Sobolev order (depending on N ), the wave front set of uj is given by

WF(uj (t, ·)) ⊂
(

m⋃
l=1

WF(Hl−j
j,l (t)u0

l )

)⋃( m⋃
l=1

WF(Kl−j
j,l (t)fl)

)
, (4.4)

with each of the wave front sets for terms in the right hand side of (4.4) given by the propagation 
along the broken Hamiltonian flow as in Theorem 4.2.

We conclude the paper by presenting some applications of Theorem 1.3 and Theorem 1.4.

5. Application: higher order hyperbolic equations

In this section we want to study the well-posedness of the Cauchy problem⎧⎪⎨⎪⎩Dm
t u =

m−1∑
j=0

Am−j (t, x,Dx)D
j
t u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

Dk−1
t u(0, x) = gk(x), k = 1, ...,m,

(5.1)

where each Am−j (t, x, Dx) is a scalar differential operator of order m − j with continuous and 
bounded coefficients depending on t and x. As usual, Dt = 1

i ∂t and Dx = 1
i ∂x . Let A(m−j)

denote the principal part of the operator Am−j . We assume that the problem above is hyperbolic, 
i.e., the characteristic equation

τm =
m−1∑

A(m−j)(t, x, ξ)τ j ≡
m−1∑ ∑

am−j,γ (t, x)ξγ τ j
j=0 j=0 |γ |=m−j
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has m real valued roots λ1, λ2, · · · , λm. In addition we work under the hypothesis that the roots 
λi , i = 1, . . . , m are symbols of order 1, i.e.,

λi ∈ C([0, T ], S1),

for all i = 1, . . . , m. For this reason we assume that

(H0) the coefficients of the equation above are continuous in t and smooth in x, with bounded 
derivatives of any order α ∈ Nn

0 with respect to x.

We will make use first of Theorem 1.4 and then of Theorem 1.3.

5.1. Well-posedness in Sobolev spaces

We begin by reducing the m-order partial differential equation in (5.1) into a first order system 
of pseudo-differential equations. Let 〈Dx〉 be the pseudo-differential operator with symbol 〈ξ 〉. 
The transformation

uk = Dk−1
t 〈Dx〉m−ku,

with k = 1, ..., m, makes the Cauchy problem (5.1) equivalent to the following system

Dt

⎛⎜⎜⎝
u1
·
·

um

⎞⎟⎟⎠=

⎛⎜⎜⎝
0 〈Dx〉 0 . . . 0
0 0 〈Dx〉 . . . 0

. . . . . . . . . . . . 〈Dx〉
b1 b2 . . . . . . bm

⎞⎟⎟⎠
⎛⎜⎜⎝

u1
·
·

um

⎞⎟⎟⎠+

⎛⎜⎜⎝
0
0
·
f

⎞⎟⎟⎠ , (5.2)

where

bj = Am−j+1(t, x,Dx)〈Dx〉j−m,

with initial condition

uk|t=0 = 〈Dx〉m−kgk, k = 1, ...,m. (5.3)

The matrix in (5.2) can be written as A + B with

A =

⎛⎜⎜⎝
0 〈Dx〉 0 . . . 0
0 0 〈Dx〉 . . . 0

. . . . . . . . . . . . 〈Dx〉
b(1) b(2) . . . . . . b(m)

⎞⎟⎟⎠ ,

where b(j) = A(m−j+1)(t, x, Dx)〈Dx〉j−m and

B =

⎛⎜⎜⎝
0 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . . . . . 0
b − b b − b . . . . . . b − b

⎞⎟⎟⎠ .
1 (1) 2 (2) m (m)
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It is clear that the eigenvalues of the symbol matrix A(t, x, ξ) are the roots λj (t, ξ), j = 1, ..., m.
We want to apply Theorem 1.4 to our Cauchy problem. This means to find under which 

hypotheses the equation in (5.1) can be reduced into a first order system with upper-triangular 
principal part and lower order terms of suitable order as in (H1).

Theorem 5.1. Let⎧⎪⎨⎪⎩Dm
t u =

m−1∑
j=0

Am−j (t, x,Dx)D
j
t u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

Dk−1
t u(0, x) = gk(x), k = 1, ...,m,

where each Am−j (t, x, Dx) is a differential operator of order m −j with continuous and bounded 
coefficients depending on t and x as in (H0). Let A(m−j) denote the principal part of the operator 
Am−j . Assume that the roots of the corresponding characteristic polynomial are real valued 
symbols

λi ∈ C([0, T ], S1), i = 1, . . . ,m,

and that

Am−j+1(t, x, ξ) ∈ C([0, T ], S0)

for all j = 1, . . . , m − 1. If f ∈ C([0, T ], Hs+m−1) and gk ∈ Hs+m−1(Rn) for all k = 1, . . . , m
then the Cauchy problem (5.1) has a unique solution u ∈ Cm−1([0, T ], Hs+m−1).

Proof. We consider the associated reduced system with principal part given by the matrix

A =

⎛⎜⎜⎝
0 〈Dx〉 0 . . . 0
0 0 〈Dx〉 . . . 0

. . . . . . . . . . . . 〈Dx〉
b(1) b(2) . . . . . . b(m)

⎞⎟⎟⎠ ,

where b(j) = A(m−j+1)(t, x, Dx)〈Dx〉j−m. The operators b(j) are of order 1 so, since we as-
sume that Am−j+1(t, x, ξ) ∈ C([0, T ], S0) for j = 1, . . . , m − 1, it follows that b(j) ≡ 0 for 
j = 1, . . . , m − 1. This means that the Sylvester matrix A is actually upper-triangular and that 
the matrix B of the lower order terms is of the following type:

B =

⎛⎜⎜⎝
0 0 0 . . . 0
0 0 0 . . . 0

. . . . . . . . . . . . 0
b1 b2 . . . . . . bm − b(m)

⎞⎟⎟⎠ ,

with bj = Am−j+1(t, x, Dx)〈Dx〉j−m, for j = 1, . . . , m − 1 and bm − b(m) = A1(t, x, Dx) −
A(1)(t, x, Dx). Since Am−j+1(t, x, ξ) ∈ C([0, T ], S0) for j = 1, . . . , m − 1 we have that bj is 
a pseudo-differential operator of order j − m for j = 1, . . . , m. We are therefore under the as-
sumptions of Theorem 1.4 for the matrices A and B . Since gk ∈ Hs+m−1(Rn) the initial data
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〈Dx〉m−kgk

of the reduced Cauchy problem belong to the space Hs+k−1(Rn) for all k = 1, . . . , m. Thus, by 
Theorem 1.4 there exists a unique solution u(t, x) to the Cauchy problem under consideration 
such that

Dk−1
t 〈Dx〉m−ku ∈ C([0, T ],H s+k−1),

for k = 1, . . . , m. By Sobolev mapping properties of pseudo-differential operators it follows that 
u ∈ Cm−1([0, T ], Hs+m−1). �
5.1.1. Second order examples
(i) The equation

D2
t u = a2(t, x)u + (a1(t, x)Dx + b(t, x))Dtu + f (t, x),

where x ∈R and a1 is real valued falls into the class of equations considered in the previous 
theorem. Indeed, the characteristic polynomial

τ 2 − a1(t, x)τξ

has two real roots and A2 = a2(t, x) is an operator of order 0.
(ii) Let us now consider the second order Cauchy problem⎧⎨⎩ D2

t u = a2(t)D2
xu + b1(t)Dxu + b2(t)Dtu + b3(t)u + f (t, x),

u(0, x) = g0(x),

Dtu(0, x) = g1(x),

where (t, x) ∈ [0, T ] ×R, the equation coefficients are continuous and a ∈ C1 with a(t) ≥ 0. 
Making use of the standard reduction into first order system of pseudo-differential equations 
we have that the Cauchy problem above is equivalent to

DtU =
(

0 〈Dx〉
a2(t)D2

x〈Dx〉−1 0

)
U

+
(

0 0
b1(t)Dx〈Dx〉−1 + b3(t)〈Dx〉−1 b2(t)

)
U +

(
0

f (t, x)

)
,

(5.4)

where U = (u1, u2)
T = (〈Dx〉u, Dtu)T and U(0, x) = U0 = (〈Dx〉g0, g1)

T . In the sequel 
we will denote the right-hand side of the system above with

A(t,Dx)U + B(t,Dx) + F,

where A and B are defined by operators of order 1 and 0, respectively. The principal part 
matrix

A(x, ξ) =
(

0 〈ξ 〉
a2(t)ξ2〈ξ 〉−1 0

)
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is not upper triangular and it is not diagonalisable because of the zeros of the coefficient a. 
However it can be reduced into upper-triangular form. We refer here the reader to [2] and to 
the appendix in [1]. The matrix A has λ1(t, ξ) = −a(t)ξ and λ2(t, ξ) = a(t)ξ as eigenvalues. 
It follows that

h(1) =
(

1
a(t)ξ 〈ξ 〉−1

)
and

h(2) =
(

1
−a(t)ξ 〈ξ 〉−1

)
are eigenvectors corresponding to λ1 and λ2, respectively. Choose now h(1) (the argument is 
analogous with h(2)). The matrix

T1 = (h(1), e2) =
(

1 0
a(t)ξ 〈ξ 〉−1 1

)
is invertible. Its inverse is

T −1
1 =

(
1 0

−a(t)ξ 〈ξ 〉−1 1

)
and

T −1
1 AT1 =

(−a(t)ξ 〈ξ 〉
0 a(t)ξ

)
=
(

λ1(x, ξ) 〈ξ 〉
0 λ2(x, ξ)

)
.

Note that the operator T −1
1 (t, Dx)A(t, Dx)T1(t, Dx) can be therefore written as(

λ1(t,Dx) 〈Dx〉
0 λ2(t,Dx)

)
.

We can now use this transformation to reduce the system DtU = AU into upper-triangular 
form. More precisely, for U = T1V , we have that the system

DtU = A(t,Dx)U + B(t,Dx)U + F

is equivalent to

DtV = (T −1
1 AT1)(t,Dx)V + T −1

1 (BT1 + DtT1)V + T −1
1 F,

=
(

λ1(t,Dx) 〈Dx〉
0 λ2(t,Dx)

)
V +

(
0 0

b(t, ξ) b2(t)

)
V + F,

where

b(t, ξ) = (b1(t) + b2(t)a(t) + Dta(t))ξ 〈ξ 〉−1 + b3(t)〈ξ 〉−1.
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Under the assumption that a ∈ C1([0, T ]) we easily see that the eigenvalues λ1 and λ2 belong 
to C([0, T ], S1). In addition, condition (H1) is fulfilled if the symbol above is of order −1. 
This is the case when

b1(t) + b2(t)a(t) + Dta(t) = 0,

for all t ∈ [0, T ] (for instance when b2 ≡ 0 and b1 = −Dta. Since T −1 is a matrix of pseudo-
differential operators of order 0 we have that V (0, x) = V0 = T −1

1 (0, Dx)U0 has the same 
regularity properties of U0. We can therefore apply Theorem 1.3 to this system and obtain 
the following result.

Theorem 5.2. Let⎧⎨⎩ D2
t u = a2(t)D2

xu + b1(t)Dxu + b2(t)Dtu + b3(t)u + f (t, x),

u(0, x) = g0(x),

Dtu(0, x) = g1(x),

where a(t) ≥ 0 is of class C1, the lower order coefficients bi(t), i = 1, 2, 3, are continuous and

b1(t) + b2(t)a(t) + Dta(t) = 0,

for all t ∈ [0, T ]. Let s ∈ R. If f ∈ C([0, T ], Hs+1) and g0, g1 ∈ Hs+1(Rn) then there exists a 
unique solution u ∈ C1([0, T ], Hs+1) of the Cauchy problem above.

In particular it follows that if f ∈ C∞([0, T ] × R) and compactly supported with respect to x
and g0, g1 ∈ C∞

c (R) then this Cauchy problem is C∞ well-posed.

5.2. Representation formula for the solution

We now assume that the principal part of the equation

Dm
t u =

m−1∑
j=0

Am−j (t, x,Dx)D
j
t u + f (t, x)

depends only on x, i.e.,

Dm
t u =

m−1∑
j=0

A(m−j)(x,Dx)D
j
t u +

m−1∑
j=0

(Am−j − A(m−j))(t, x,Dx)D
j
t u + f (t, x).

If in addition to the hypotheses of Theorem 5.1 we assume that the roots of this equation fulfil 
condition (H2) we obtain the following representation formula by straightforward application of 
Theorem 1.3.



C. Garetto et al. / J. Differential Equations 269 (2020) 7881–7905 7903
Theorem 5.3. Let⎧⎪⎨⎪⎩Dm
t u =

m−1∑
j=0

Am−j (t, x,Dx)D
j
t u + f (t, x), (t, x) ∈ [0, T ] ×Rn,

Dk−1
t u(0, x) = gk(x), k = 1, ...,m,

where each Am−j (t, x, Dx) is a differential operator of order m −j with continuous and bounded 
coefficients depending on t and x as in (H0). Let the principal part A(m−j) of the operator 
Am−j be independent of t and let the roots λi , i = 1, . . . , m, of the corresponding characteristic 
polynomial be real valued symbols of order 1 fulfilling condition (H2). Assume that

Am−j+1(t, x, ξ) ∈ C([0, T ], S0)

for all j = 1, . . . , m − 1. If f ∈ C([0, T ], Hs+m−1) and gk ∈ Hs+m−1(Rn) for all k = 1, . . . , m, 
then for any N ∈ N and j = 1, . . . , m the solution u ∈ Cm−1([0, T ], Hs+m−1) to the Cauchy 
problem can be written as

D
j−1
t u(t, x) =

m∑
l=1

(
Hl−m

j,l (t) + Rj,l(t)
)

〈Dx〉m−lgl +
(
K0

j,m(t) + Sj,m(t)
)

f, (5.5)

where

(i) Hl−m
j,l is an integrated Fourier Integral Operator of order l − m,

(ii) K0
j,m is an integrated Fourier Integral Operator of order 0,

(iii) Rj,l ∈ L(Hs, C([0, T ], Hs+N−l+m)),
(iv) Sj,m ∈ L(Hs, C([0, T ], Hs+N)).

Proof. Since we work under the assumptions (H1) and (H2) we can apply Theorem 1.3 to the 
system in (5.2) where the matrix A of the principal part is only depending on x and is upper-
triangular. Note that the right-hand side is of the type⎛⎜⎜⎜⎝

0
0
...

f

⎞⎟⎟⎟⎠
and the initial condition is given by

uk|t=0 = 〈Dx〉m−kgk, k = 1, ...,m.

A straightforward application of Theorem 1.3 allows us to write

D
j−1
j 〈Dx〉m−j u =

m∑(
Hl−j

j,l (t) + Rj,l(t)
)

〈Dx〉m−lgl +
(
Km−j

j,m (t) + Sj,m(t)
)

f,
l=1
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where Rj,l ∈ L(Hs, C([0, T ], Hs+N−l+j )), Sj,m ∈ L(Hs, C([0, T ], Hs+N−m+j )) and the oper-

ators Hl−j
j,l and Km−j

j,m are of order l − j and m − j , respectively. It follows that

D
j−1
j u =

m∑
l=1

〈Dx〉−m+j
(
Hl−j

j,l (t) + Rj,l(t)
)

〈Dx〉m−lgl + 〈Dx〉−m+j
(
Km−j

j,m (t) + Sj,m(t)
)

f,

for all j = 1, . . . , m. By composition of pseudo- and Fourier integral operators we easily see that

- 〈Dx〉−m+jHl−j
j,l (t) is of order l − m,

- 〈Dx〉−m+jRj,l ∈ L(Hs, C([0, T ], Hs+N−l+m)),

- 〈Dx〉−m+jKm−j
j,m is of order 0,

- 〈Dx〉−m+j Sj,m ∈ L(Hs, C([0, T ], Hs+N)).

This shows that u can be written as in (5.5) and completes the proof. �
5.2.1. Example

Let us consider an m order homogeneous differential operator

A(x,Dt ,Dx), t ∈ [0, T ], x ∈ R,

such that its symbol (which coincides with its principal symbol) is

A(x, τ, ξ) = �m
i=1(τ − ai(x)ξ).

Assume that all the coefficients ai are real valued, smooth and bounded. Assume that the deriva-
tives of the coefficients ai , i = 1, . . . , n, are bounded as well. It follows that the roots of the 
characteristic polynomials above are symbols of order 1 and the operator A is in general a hy-
perbolic operator with multiplicities. We work under the assumption that when the equation 
A(x, Dt, Dx)u = f is transformed into a first order system of pseudo-differential equations the 
matrix of the system is upper-triangular (for a second order example see Subsection 5.1.1(i)). 
Since there are no lower order terms then condition (H1) is trivially fulfilled. We can now inves-
tigate the well-posedness of the Cauchy problem

A(x,Dt ,Dx)u = f (t, x),

Dk−1
t u(0, x) = gk,

(5.6)

k = 1, . . . , m − 1. We have that if f ∈ C∞([0, T ], R) and gk ∈ C∞
c (R) for all k = 1, . . . , m − 1

the Cauchy problem (5.6) has a unique solution u ∈ C∞([0, T ] ×R). In addition if the roots

λi(x, ξ) = ai(x)ξ, i = 1, . . . ,m

fulfil the condition (H2) then the representation formula (5.5) holds. This for instance happens 
when the coefficients ai have distinct first derivatives in the points of multiplicities, i.e. ai(x) =
aj (x) implies a′(x) �= a′ (x).
i j
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