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Fitting Cornering Speed Models with
One-Class Support Vector Machines

James M. Fleming Xingda Yan Roberto Lot
University of Southampton, UK

Abstract—This paper investigates the modelling of cornering
speed using road curvature as a predictive variable, which
is of interest for advanced driver assistance system (ADAS)
applications including eco-driving assistance and curve warning.
Such models are common in the driver modelling and human
factors literature, yet lack reliable parameter estimation methods,
requiring an ad-hoc evaluation of the upper envelope of the
data followed by linear regression to that envelope. Considering
the space of possible combinations of lateral acceleration and
cornering speed, we cast the modelling of cornering speed as
an ‘outlier detection’ problem which may be solved using one-
class Support Vector Machine (SVM) methods from machine
learning. For an existing cornering model, we suggest a fitting
method using a specific choice of kernel function in a one-class
SVM. As the parameters of the cornering speed model may be
recovered from the SVM solution, this provides a more robust
and reproducible fitting method for this model of cornering speed
than the existing envelope-based approaches. In addition, this
gives comparable outlier detection performance to generic SVM
methods based on Radial Basis Function (RBF) kernels while
reducing training times by a factor of 10, indicating potential
for use in adaptive eco-driving assistance systems that require
retraining either online or between drives.

I. INTRODUCTION

It is of considerable interest to be able to predict the speed
at which a driver will negotiate a curve based on values
which may be readily estimated from mapping services, such
as road curvature, as this has several useful applications to
Advanced Driver Assistance Systems (ADAS). The authors’
main motivation in investigating this problem is to build
predictive models of cornering speed for eco-driving assistance
systems, which are designed to save fuel and emissions by
coaching the driver to coast down and to avoid braking before
corners and intersections [1]. Another potential application is
in curve warning systems, which rely on estimates of the speed
at which a driver will take a corner in order to identify when
a warning is required [2]. Such systems may be particularly
useful to riders of motorcycles, as a relatively high proportion
of motorcycle accidents are due to rider error in curves [3].

More generally, ADAS that adapt to driver behaviour may
be beneficial for improved user acceptance and better out-
comes in both fuel-saving and safety applications. This can
be achieved by estimation of the parameters of some model
of the driver’s behaviour, which may be carried out online or
between journeys. Such adaptive ADAS have been explored
in the context of collision warning and adaptive cruise control
systems [4]. Methods for estimation of parameters of longitu-
dinal models of driver behaviour, such as the Intelligent Driver

Model (IDM) of vehicle-following [5], are already available,
for example by minimisation of the least-squares error [6] or
Kalman filtering performed online [7]. In contrast, there has
been little work on parameter fitting methods for models of
cornering speed, forming a gap in the current literature.

Existing models of cornering speed often take the form
of an inequality relating either speed and road curvature or
speed and lateral acceleration, precluding the use of least-
squares fitting methods unless some (normally subjective)
identification of the envelope of the data is made first. In
this paper, we propose that models of this type may be fit
more robustly and repeatably by employing one-class SVM
techniques for outlier detection from the machine learning
literature, and we illustrate this by providing a parameter
fitting method for the ‘lateral acceleration margin’ model of
cornering speed given by Reymond et al. in [8]. Similar one-
class SVM techniques have already been suggested for use
in ADAS, in particular for collision warning systems based
on measurements of time-to-collision [9]. Viewing the prob-
lem as one of ‘one-class classification’ is natural for ADAS
applications involving cornering since real-world driving data
contains many examples of ‘normal’ or ‘acceptable’ cornering
speeds but, by definition, very few examples of ‘abnormal’ or
‘outlier’ cornering speeds that are of interest to the ADAS.
With the potential curve warning application in mind, we
compare the performance of the fitted model as a classifier to
generic kernel SVM methods based on Radial Basis Functions
(RBFs). For eco-driving assistance, in which a closed-form
predictive model of cornering speed is required, we provide
formulae to calculate the parameters of the model of [8] in
terms of the one-class SVM solution.

II. LITERATURE REVIEW

A. Models of cornering speed

Early studies on driver cornering speed behaviour concen-
trated on lateral acceleration as sensed by the human vestibular
system as the perceived quantity limiting speed in curves, with
it being noted as early as 1968 that drivers choose lower lateral
accelerations at higher speeds [10]. Later work confirmed this
effect and attempted to model the relationship empirically,
finding a nonlinear relationship [11]. From dynamics, the
lateral acceleration while traversing a path of curvature κ, or
equivalently of curvature radius R, is given by

alat = κv2 =
v2

R
(1)



where v is the forward velocity along the path. For a driver
following a road the path may be considered fixed. In that
case, an upper bound on the lateral acceleration the driver
will tolerate then implies a maximum tolerable speed for each
curve. This has been confirmed empirically, with curvature
found to the be the predominant factor affecting speed choice
on curves on rural roads when drivers are not constrained by
other factors such as signage [12], [13].

From experiments performed in a fixed-base driving sim-
ulator (in which the effects of lateral acceleration cannot be
felt by the driver), [14] identified that the amount of time
until the vehicle crosses the lane marking on the outside-
edge of the lane is approximately constant for curves of
different curvatures. This forms a quantity known as time-to-
lane crossing (TLC) that, by visual feedback, is kept above a
certain minimum threshold by drivers negotiating a curve. This
quantity has also been shown to be important in lane-change
manoeuvres [15]. If steering error is assumed to increase when
negotiating curves of larger curvature, a lower bound on TLC
also implies a lower cornering speed for tighter curves.

The link between these apparently different viewpoints of
vestibular versus visual feedback was given by Reymond et
al. in the appendix to [8], which shows that for a curve radius
R and the assumption of some small steering error, the TLC
satisfies the relationship

TLC ∝ R1/2

v
(2)

so that a lower bound on TLC implies an upper bound to the
lateral acceleration (1). This led the authors to postulate a mar-
gin of error of the driver when estimating the curvature of an
upcoming corner, implying a decreasing quadratic relationship
between the upper bound of lateral acceleration and vehicle
velocity. Denoting road curvature by κ and cornering speed
by v, this implies a bound on lateral acceleration given by

alat = κv2 ≤ Γmax −∆Cmaxv
2 (3)

in which Γmax is a parameter representing the maximum
desirable lateral acceleration value and ∆Cmax is the error
margin for curvature estimation. This relationship was veri-
fied experimentally in both a simulator and on a test track.
To estimate these parameters for drivers, [8] uses a two-
step process of estimating the upper envelope of the lateral
acceleration when plotted against speed, and then performs a
linear regression to this envelope. This method is also used to
fit the same model in [16], which compares it to the hypothesis
of a constant TLC and other models.

To obtain the implied relationship of the model between
curvature and maximum cornering speed, we may rearrange
(3) to find

v ≤
√

Γmax

κ+ ∆Cmax
(4)

from which it is clear that maximum velocity decreases as
road curvature increases, with an overall limit on velocity for
κ = 0 given by v ≤

√
Γmax

∆Cmax
. The particular values of Γmax

Fig. 1. Estimates of data envelope

Fig. 2. Lat. accel. margin model, fit to envelopes

and ∆Cmax vary between drivers. For example, it is noted
in [8] that a trained test driver had a higher value of Γmax
and significantly lower value of ∆Cmax than the other drivers
involved in the study.

B. Problems with envelope-based parameter estimation

In this section, we note some shortcomings of the approach
of estimating the upper envelope of lateral acceleration data
and using this to perform a linear regression, which motivates
the fitting procedure developed in the remainder of the paper.
In [8] the envelope was estimated subjectively by inspection of
the data, but we consider a computational approach similar to
[17] which estimates the upper tangent points of the envelope
and then fits an interpolating spline to these points. This is
implemented in the envelope function in the Matlab Signal
Processing toolbox using the ‘peaks’ option for the algorithm.
This function also includes a parameter, N , such that the
points chosen for interpolation are local maxima of the data



Γmax [m/s2] ∆Cmax [rad/km]
N = 100 2.45 1.94
N = 400 3.06 2.13
N = 1600 4.23 2.93

TABLE I
VALUES OF FITTED PARAMETERS, ENVELOPE METHOD

with a separation of at least N points between successive
interpolation points. The results of applying this to determine
the upper envelope are shown in Figure 1 for varying values of
N . Depending upon the smoothness required for the envelope,
it can be seen that quite different curves are obtained. The
endpoints of the envelopes are chosen to be at 9m/s and 30m/s.
Although it is not apparent from the figure, the resulting curves
also vary depending on this choice of endpoints.

These envelopes were then used to determine Γmax and
∆Cmax of (3) by linear regression, following the method given
in [8]. The results are shown in Figure 2 and Table I for
the different values of N , and it is apparent that different
choices of envelope lead to very different fitted curves and
parameters. In fact, for repeatability we must specify not
only the value of N , but also those of the endpoints, and
the resulting variation in the fitted parameters is considerable
even for small changes in these values. In addition, there is
no reason to believe that the obtained curve generalises well
when more data is collected, with no a priori indication of
the number of measurements expected to be outliers and fall
outside the fitted curve. This motivates us, in the following
sections, to develop an alternative method that is more robust
and repeatable, considering all the data points rather than
only the ones on the envelope and requiring the specification
of only a single parameter for repeatability. By basing this
method on the theory of one-class classification from machine
learning, we can also specify ahead of time the proportion of
measurements expected to fall outside the fitted curve.

III. METHODS

A. Data collection

Real-world cornering data was collected as part of a small-
scale driving study, carried out as part of the G-ACTIVE
research project (http://www.g-active.uk) at the University of
Southampton in the UK. The data was collected over a series
of drives from a participant who had a daily commute through
a rural area and who contributed a total of 10 hours of data
over 17 individual drives, mostly in rural conditions in which
speed was not limited by other traffic. Time-series data from
GPS was analysed by extracting all local curvature maxima
and the corresponding observed velocity, giving a total of
7384 cornering events that we denote by a pair (vi, ai) of
cornering speed and lateral acceleration values. For more
detailed information on the collection and processing of this
cornering data, we refer readers to [18], which describes the
data processing and analysis, and [19], which describes the
data collection device used.

B. One-class SVM classifiers

The one-class SVM approach that we use was developed in
[20], and consists of solving the Quadratic Program (QP)

minimise
w∈F, ξ∈Rl, ρ∈R

1

2
‖w‖2 +

1

lν

∑
i

ξi − ρ

subject to w · Φ(xi) ≥ ρ− ξi, ξi ≥ 0 ∀i
(5)

in which xi represents the data points in some training set,
l is the number of such points, Φ(·) is a mapping of those
points to a feature space used for classification, w and ρ are
decision variables that will define the classifier, and the ξi are
slack variables associated with the constraint w · Φ(xi) ≥ ρ.
Noting that the sum of these slack variables is penalised in
the cost function, so we may expect that for the solution w∗,
ρ∗ we have w∗ ·Φ(xi) ≥ ρ∗ for most xi, so that this specifies
some region containing most of the data. The parameter ν has
the useful interpretation as an upper bound on the proportion
of outliers in the training set [20].

Rather than solving 5 directly, it is more common to solve
the Lagrange dual, which may be expressed as the QP

minimise
α∈Rl

1

2

∑
i

∑
j

αiαjk(xi,xj)

subject to 0 ≤ αi ≤
1

lν
∀i,

∑
i

αi = 0

(6)

in which we have introduced the kernel function:

k(x,y) = Φ(x) · Φ(y) (7)

This has the advantage that k(x,y) may sometimes be much
faster to calculate than Φ(x)·Φ(y). For classification purposes,
we may recover w∗ and ρ∗ from the solutions α∗i using

w∗ =
∑
i

α∗iΦ(xi) (8)

and, for any i such that 0 < αi <
1
lν :

ρ∗ = w∗ · Φ(xi) (9)

By introducing different kernel functions k(·, ·), various non-
linear classifiers may be constructed. Common choices are the
polynomial kernels k(x,y) = (x · y + c)d for c ≥ 0 and
some integer d, or the Radial Basis Function (RBF) kernel
k(x,y) = exp(−‖x−y‖

2

2σ2 ) for some σ ≥ 0, which we use for
comparison purposes later in the present paper.

C. One-class SVMs for cornering models

For each corner, we assume that we have measurements
of lateral acceleration ai and cornering speed vi available. We
would like to find some region of the (v, a)-space that contains
a high proportion, 1−ν, of the points (vi, ai) so that abnormal
values may be identified, for example when approaching a
corner at excessive speed for a curve warning system. This
is an ‘outlier detection’ problem that is naturally handled by
the one-class classification methods already discussed, in that
data for the ‘abnormal’ values of (v, a) is typically unavailable



while a large quantity of ‘normal’ values (vi, ai) are available
for model fitting.

To develop a fitting method for the safety-margin model (3),
we consider the simple feature mapping Φ : (vi, ai)→ (v2

i , ai)
and the primal form of the one-class SVM (5). This squaring
of the velocity is likely to lead to large values that lead to
poor scaling of the problem, so we additionally standardise
the predictors by introducing scaled and centred variables

yi =
v2
i − µv2
σv2

(10)

and
zi =

ai − µa
σa

(11)

where µ and σ represent the usual sample mean and standard
deviation respectively. We therefore obtain the QP problem

minimise
ξ∈Rl, w1,w2,ρ∈R

w2
1

2
+
w2

2

2
+

1

lν

∑
i

ξi − ρ

subject to w1yi + w2zi ≥ ρ− ξi, ξi ≥ 0 ∀i
w1 ≤ 0, w2 ≤ −ε2

(12)

which is a modification of the standard one-class SVM (5)
in which the variables w1 and w2 are constrained to be
nonpositive and negative respectively via the use of a small
parameter ε. In many cases, these constraints on w1 and w2

may be omitted without altering the solution, but we include
them to ensure that the fitted decision boundary represents
an upper bound on lateral acceleration that decreases with
increasing v, regardless of the data (vi, ai). As before, ν
denotes an upper bound on the desired proportion of outlier
measurements in the training data, and the penalisation of
the slack variables ξi in the cost function ensures that the
constraint w∗1yi +w∗2zi ≥ ρ∗ holds in the solution w∗1 , w∗2 , ρ∗

for at least 1− ν of the training values (vi, ai).
Comparing coefficients with the safety-margin model (3)

and noting that w∗2 < 0, we see that for these two constraints
to be equivalent requires

Γmax = µa + σa
ρ∗

w∗2
+ σa

µv2

σv2

w∗1
w∗2

(13)

and
∆Cmax = σa

µv2

σv2

w∗1
w∗2

(14)

so that we may consider (12) as a parameter fitting procedure
for this model ensuring that at least 1−ν of the training values
(vi, ai) satisfy the inequality (3).

Examples of the results when using the preceding method
to fit (3) are shown in Figure 3, which takes ν = 0.1%
and ν = 1%. This figure also shows the line given by
a = κmaxv

2 which represents a physical upper bound on the
lateral acceleration based on the maximum cornering curvature
κmax of the vehicle used for data collection. As expected,
fewer points lie below the curve as ν is increased, and for
given data (vi, ai) the fitting procedure is entirely repeatable
for a given value of ν. We also compare this approach with
the one-class SVM optimisation of (5) using the RBF kernel

Fig. 3. Lat. accel. margin model, SVM fit to training data. The black dash-
dotted line shows the cornering capability of the vehicle

Fig. 4. RBF Kernel SVM, fit to training data

k(x,y) = exp(−‖x−y‖
2

2σ2 ), for which the resulting decision
boundaries are shown in Figure 4 using the same training data.

D. Data analysis and testing

We now consider the application of the one-class SVM pro-
cedures to the outlier detection problem as required for a curve
warning system. The data were split into Training, Validation
and Test subsets with approximately 70%, 10% and 20% in
each subset respectively. Two techniques were used to fit to
the data in the Training set, the one-class SVM optimisation
of (5) using the RBF kernel k(x,y) = exp(−‖x−y‖

2

2σ2 ), and
the safety-margin model (3) using the optimisation of (12)
with the model parameters recovered using (13) and (14). This
was carried out using the fitcsvm function in the Matlab
Statistics and Machine Learning toolbox in each case. The
validation subset was used to choose the scaling factor for
the Gaussian kernel used in the kernel SVM by choosing the



Fig. 5. Artificial outlier data for testing

kernel size that gave the lowest misclassification rate over the
validation data.

For testing purposes, it is useful to generate some artificial
data that can be treated as a second ‘outlier’ class to evaluate
the performance of the one-class classifier over the testing
subset. This is necessary as it is difficult to obtain true data
for this outlier class, as it would correspond to rare instances
in which the driver took a corner at a high and possibly unsafe
speed. The artificial outlier data generated is shown in Figure
5 and consists of samples from a uniform distribution over
the space of possible cornering speed and lateral acceleration
combinations, excluding cases for which alat > kmaxv

2, where
kmax is the maximum turning curvature of the vehicle, as these
correspond to combinations of speed and lateral acceleration
that are impossible to achieve. As the distribution of these
artificial test points is uniform, the number of these artificial
‘outlier’ points misclassified as inliers can be interpreted as
a measure of the volume under the decision boundary of the
one-class classifier. Intuitively, our testing procedure penalises
methods that require a larger volume of (v, a)-space to contain
the desired proportion of data points.

IV. RESULTS

We examine the classification results on the testing subset
of the data. Figure 6 shows the confusion matrices resulting
from the RBF kernel SVM and that based on the safety-margin
model when using a target outlier rate of 0.1%. As expected,
a considerable number of ‘outlier’ points are misclassified
as inliers, in proportion to the area underneath the decision
boundary. The overall accuracy, misclassification rate, and
computational time required for the training are also given in
Table II. The misclassification rate of the safety-margin model
SVM is only 2.2 percentage points higher than when using an
RBF kernel function, yet the computation time for training has
improved by a factor of 10. This indicates that this approach
may be competitive for adaptive eco-driving assistance and

Fig. 6. Confusion matrices, 0.1% target outlier rate, test data

RBF kernel, 0.1% Cornering model, 0.1%
Accuracy 67.1% 64.9%
Misclassification rate 32.9% 35.1%
Computation time 1.56s 0.152s

TABLE II
RESULTS, 0.1% TARGET OUTLIER RATE

curve-warning systems that require retraining, as it is possible
to fit the training set of over 7000 points in 0.15 seconds.

Similarly, Figure 7 shows the confusion matrices resulting
from both SVM techniques when using a target outlier rate
of 1%, with the accuracy, misclassification rate, and training
time shown in Table III. Once again, there is a factor of 10 im-
provement in the training time, indicating that the SVM based
on the safety-margin model of cornering speed may be more
suited to applications requiring retraining. However, there is
now a 7.1 percentage point increase in the misclassification
rate compared to the SVM using the RBF kernel function. As
a result, the RBF kernel SVM may outperform the use of the
lateral acceleration margin model of cornering speed in curve
warning applications if relatively large outlier rates of greater
than 1% are required, though we expect that the proportion
of corners for which a curve warning system should sound a
warning should be lower than this in practice.

The fitted model parameters, recovered using (13) and (14),
for both the 0.1% and 1% outlier rates are given in Table
IV. In comparison with the parameters fit using the envelope-
based method, the values of ∆Cmax appear to be higher, such
that parameter values reported using the two different fitting
methods should not be considered as comparable. On the other
hand, as the fitting procedure presented in this paper provides
a repeatable method of parameter estimation, this allows the
Γmax and ∆Cmax values of different drivers to be compared
as long as identical values of ν are used for the fitting in
each case, providing a reliable basis for comparing values
of Γmax and ∆Cmax in studies comparing cornering speed
preferences of different demographics. It also forms a good
candidate method for applications such as adaptive eco-driving
assistance in which a predictive model of cornering speeds
must be retrained without human intervention, either online
or between successive drives.



Fig. 7. Confusion matrices, 1% target outlier rate, test data

RBF kernel, 1% Cornering model, 1%
Accuracy 78.9% 71.8%
Misclassification rate 21.1% 28.2%
Computation time 1.59s 0.154s

TABLE III
RESULTS, 1% TARGET OUTLIER RATE

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a fitting method based on one-
class SVMs for parameter estimation of a model of driver
cornering speed. This may be used for learning of driver
cornering preferences from measurements of cornering speeds
and curvatures. Compared to existing envelope-based methods
of parameter fitting for this model, this should lead to more
robust parameter estimates and has the advantage that as
long as the desired outlier fraction ν is stated with the fitted
parameters, the method is repeatable. The approach also has
the benefit of good theoretical generalisation properties due to
the statistical properties of the underlying SVM.

For curve warning, the fitting method appears to give
comparable classificiation performance to generic one-class
SVM methods based on RBF kernels in terms of accuracy and
misclassification rates. For eco-driving assistance applications,
the models of the underlying cornering model may easily be
recovered from the SVM solution and used as a predictive
model of cornering speed. Compared to the RBF kernel
methods, there is a significant reduction in training time which
may be important if learning is to be performed periodically as
part of an adaptive ADAS. Future work will consider online
training and estimation of model parameters for application
to eco-driving assistance systems. A key question is whether
such a model could be fit by considering the training points
one-at-a-time, eliminating the need to store a large quantity
of data for retraining. Finally, it is also of interest to extend
such methods to include influences on cornering speed choice
other than curvature, such as road width.
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Γmax [m/s2] ∆Cmax [rad/km]
1% target outlier rate 3.49 3.23
0.1% target outlier rate 4.08 3.36

TABLE IV
VALUES OF FITTED PARAMETERS, SVM METHOD
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