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Adaptive driver modelling in ADAS to improve user acceptance:
a study using naturalistic data

James M. Fleming1, Craig K. Allison, Xingda Yan, Neville A. Stanton, Roberto Lot

School of Engineering, University of Southampton, UK

Abstract

Accurate understanding of driver behaviour is crucial for future Advanced Driver Assistance Systems (ADAS) and au-
tonomous driving. For user acceptance it is important that ADAS respect individual driving styles and adapt accordingly.
Using data collected during a naturalistic driving study carried out at the University of Southampton, we assess existing
models of driver acceleration and speed choice during car following and when cornering. We observe that existing models
of driver behaviour that specify a preferred inter-vehicle spacing in car-following situations appear to be too prescriptive,
with a wide range of acceptable spacings visible in the naturalistic data. Bounds on lateral acceleration during cornering
from the literature are visible in the data, but appear to be influenced by the minimum cornering radii specified in design
codes for UK roadway geometry. This analysis of existing driver models is used to suggest a small set of parameters that
are sufficient to characterise driver behaviour in car-following and curve driving, which may be estimated in real-time by
an ADAS to adapt to changing driver behaviour. Finally, we discuss applications to adaptive ADAS with the objectives
of improving road safety and promoting eco-driving, and suggest directions for future research.

Keywords: ADAS, Speed choice, Safe cornering, Car following, Driver modelling, Naturalistic driving,

1. Introduction

Advanced Driver Assistance Systems (ADAS), such as
lane departure warning, curve warning and collision warn-
ing systems, are effective in reducing the incidence and
severity of road accidents. Estimates of the reduction in
the number of rear end collisions given by collision warn-
ing systems have been as high as 80% among distracted
drivers, and the same system provides a safety benefit
to attentive drivers by reducing the time required to re-
lease the accelerator before a potential crash (Lee et al.,
2002). A lane departure warning was shown by Kozak
et al. (2006) to decrease reaction time to a lane excur-
sion by a factor of two among sleep-deprived drivers, with
greater reductions when feedback was given in the form of
vibration. ADAS have also been designed that promote
fuel efficient driving (Staubach et al., 2014), motivated
by studies showing that feedback is necessary to retain
learned eco-driving behaviours (Froehlich et al., 2009).

In practice, the efficacy of ADAS is limited by user ac-
ceptance; even the most accurate warning system is useless
if the driver disables it. Operator disablement of warn-
ing systems has been observed in situations as diverse as
aeroplane cockpits (Patterson, 1982) and nuclear power
plant control rooms (Seminara et al., 1977). After design
choices such as the distinctiveness and loudness of alarms,
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Sorkin (1988) implicates high false alarm rates as the most
important factor limiting operator acceptance. For colli-
sion warning systems specifically, the probability of a crash
given an alarm event is usually low due the low prior prob-
ability of collisions (Parasuraman et al., 1997), so that false
alarms are quite common. User acceptance of curve warn-
ing systems for cars is also known to be problematic, as
shown in operational tests (LeBlanc, 2006).

To reduce the number of false alarms generated by
driver assistance systems while retaining a high sensitiv-
ity to potential accidents, good understanding of driver
behaviour is vital. For example, an understanding of typ-
ical car-following behaviour is needed for effective colli-
sion warnings, so that false alarms are not generated dur-
ing normal conditions. But following behaviour varies
greatly between drivers, with Winsum and Heino (1996)
showing time headways during car following ranging from
0.67s to 1.52s, and minimum time-to-collision values dur-
ing braking varying from 2.5s to 5.1s. Likewise, to design
curve warning systems that detect inattention and cau-
tion drivers to slow down, it is necessary to predict the
speed at which an attentive driver would take a curve. In
cornering, Reymond et al. (2001) demonstrates that typi-
cal lateral accelerations differ considerably from driver to
driver with an observed range of 6.4m/s

2
to 11.4m/s

2
. In

addition to this variation between drivers, the behaviour
of a single driver may also change depending on road con-
ditions and driver fatigue (Brown, 1994).

A potential solution to this large variability in driv-
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ing behaviour is to design adaptive ADAS that modify
their behaviour to fit the characteristics of a driver. This
is made possible by the increasing number of sensors on
modern vehicles. One such system has already been sug-
gested by Wang et al. (2013), which recursively updates es-
timates of preferred time headway and driver sensitivity to
deviations in headway and inverse time-to-collision. A key
problem here is to identify parameters that are consistent
at different times and hence may reliably be used to char-
acterise the driver. Updating such a model in real-time
requires that we describe the driver by a small number of
measurable and physically meaningful parameters.

In the present paper, we review the existing literature
on modelling of car-following and curve driving and crit-
ically evaluate these models using the results of a small-
scale naturalistic driving study. The implications of this
analysis for adaptive ADAS are discussed, considering what
parameters of these models may be estimated by on-board
sensors and the benefit in terms of user acceptance of colli-
sion and curve warning systems. Finally, naturalistic data
analysis is used to recommend a set of parameters that
may be used to characterise driver behaviour for adaptive
ADAS. These can be used by the designers of driver as-
sistance systems in order to improve user acceptance and
therefore lead to better safety outcomes.

2. ADAS for safety and eco-driving

A total of 1, 710 people lost their lives between July
2016 and June 2017 as a result of road accidents in the
United Kingdom, and a further 174, 790 people were in-
jured as a result of accidents (Department of Transport,
UK Government, 2017). Since 2011, the number of people
killed or injured on UK roads has fluctuated with no clear
trend, and more work is needed to tackle road traffic ac-
cidents and minimise their transformative and potentially
terminal impact. One approach to minimising this impact
is via the use of ADAS (Marchau et al., 2005).

Estimates of the potential safety implications of ADAS
are promising. Collision warning systems were shown in
simulator studies to reduce the number of rear-end col-
lisions by 80% (Lee et al., 2002), while on-road studies
during the EuroFOT project have confirmed the positive
effects of collision warning and adaptive cruise control sys-
tems on safety and fuel economy (Benmimoun et al., 2013).
Similarly, a reduction of 59% in the number of fatal acci-
dents (Carsten et al., 2000) is claimed to be viable with the
extensive use of Intelligent Speed Adaptation systems. To
achieve the goal of a positive impact on safety, such sys-
tems require high acceptance by their end users (Lindgren
and Chen, 2006). This is especially true for warning sys-
tems where false alarm rates have been implicated in lim-
iting operator acceptance (Sorkin, 1988). Within ADAS
specifically, the need to explore the potential acceptance
of system before implementation is necessary in order to
achieve a positive safety impact (Biassoni et al., 2016).

The concept of an ADAS can be extended to not only
support safety, but also encourage greater fuel efficiency
and more environmentally friendly driving. In addition
to the impact of vehicular drive trains (Chan, 2007) and
mechanical systems (Vining, 2009) on fuel usage, the way
a vehicle is driven can significantly influence fuel use and
emissions. Research has estimated that 5−10% of fuel can
be saved if drivers pursued a more fuel efficient, econom-
ical and environmentally friendly driving style referred to
as eco-driving (Barkenbus, 2010), which is characterised by
behaviours such as modest acceleration, early gear changes,
minimising unnecessary braking, and driving below the
speed limit. Recent analysis of naturalistic driving carried
out as part of the UDRIVE project has indicated that
braking, gear shifting and velocity choice on motorways
each have effects on fuel consumption of 10% or more for
conventional vehicles (Heijne et al., 2017).

Despite the advantages offered by a reduction in fuel
usage and emissions, previous research has found that in-
dividuals typically struggle to maintain eco-driving be-
haviours long term, and rather are reliant on feedback
to regulate their behaviour (Lauper et al., 2015). It has
also been suggested that more individuals would adopt
eco-driving if they understood the impact of their current
actions (Abrahamse et al., 2005). Specifically examining
transportation, (Froehlich et al., 2009) and (Meschtscher-
jakov et al., 2009) argue that providing feedback is a cost-
effective way to encourage and reinforce eco-driving prac-
tices. Based on this, it is clear that ADAS has the poten-
tial to facilitate both safer and more fuel-efficient driving.
Such a system has already been evaluated in a driving sim-
ulator in Staubach et al. (2014), where a 15% fuel saving
was demonstrated by encouraging drivers to coast down
before intersections.

3. Models of driver behaviour

3.1. Car-following behaviour

Modelling drivers’ behaviour when following other ve-
hicles has been the subject of active research since at least
the mid-1940s (Herrey and Herrey, 1945). Much early re-
search was motivated by applications to traffic manage-
ment, and was successful in explaining emergent properties
of traffic flow from the assumption that each driver behaves
according to some simple rule. For example, Pipes (1953)
considers the hypothesis that a driver adjusts their speed
to maintain a ‘legal distance’ to a leader vehicle given by

s = s0 + T0v (1)

where v is the vehicle speed. When applied to a line of
vehicles this implies that each driver accelerates according
to the relative velocity of the preceding vehicle, which is
shown to cause velocity changes in the line of traffic that
propagate as a wave. These waves are often observed in
real-world traffic flow, for instance at intersections when a
traffic signal turns green.
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Experimental evidence for a similar model of acceler-
ation was given by Chandler et al. (1958), who proposed
that the driver accelerates in proportion to the relative ve-
locity of the vehicle ahead but with some finite reaction
time, such that vehicle acceleration is given by the expres-
sion

a(t+ Tr) = λ [vl(t) − v(t)] (2)

where v and a denote velocity and acceleration, vl denotes
the velocity of the preceding vehicle, λ is a parameter rep-
resenting the sensitivity of the driver to velocity differ-
ences, and Tr is the reaction time. An interesting feature
of this model is that it can show instability for sufficiently
large values of λ or Tr. This instability may be the ba-
sis of further emergent properties of traffic flow such as
jams or collisions (Chandler et al., 1958). A great number
of subsequent works have suggested refinements and addi-
tions to these car-following models, as summarised in the
review paper by Brackstone and McDonald (1999). Simi-
larly to (Chandler et al., 1958), these models consist of an
equation for vehicle acceleration expressing some depen-
dence on velocity, lead vehicle velocity, and possibly the
inter-vehicle spacing.

For the present paper our interest in these models is
not that they may be used to simulate traffic flow (Yang
and Koutsopoulos, 1996), but rather that they characterise
driver behaviour by a small number of parameters that are
measurable in real-time as part of an adaptive ADAS. In
particular, this limits the usefulness of models that contain
parameters that must be fit to data by using optimisation
techniques (Kesting and Treiber, 2008) rather than having
a simple physical meaning. The Intelligent Driver Model
(IDM), proposed by Treiber et al. (2000), is useful in this
regard as all parameters correspond to quantities that are
readily estimated from velocity and range data. These
model parameters are given in Table 1 along with their
physical interpretations. Notably, this model assumes a
spacing identical to that given by (1) when moving at a
steady speed behind another vehicle.

Parameter Physical Interpretation
s0 Min. distance to leader when stationary
T0 Min. time headway to leader
amax Max. desired longitudinal acceleration
bmax Max. desired longitudinal deceleration
v0 Desired velocity

Table 1: Parameters of the IDM

Inter-vehicle spacings and car-following behaviour may
also be studied in isolation, without considering the re-
sulting traffic behaviour. Experiments performed on a
test track by Winsum and Heino (1996) suggest that each
driver has a preferred time headway that they maintain
in car following situations. Similarly in (Brackstone et al.,
2002) it is shown that in motorway driving, human drivers
allow a following distance that increases linearly with speed,

corresponding to an approximately constant time separa-
tion. Further work by the same authors (Brackstone et al.,
2009) considers other factors that may affect following dis-
tances and concludes that they are unaffected by the level
of traffic flow or the road geometry, but they are affected
by the type of vehicle that is being followed, and may vary
with time for a given driver.

From studies carried out in an early driving simulator,
Todosiev (1963) noted that the acceleration and relative
velocity of a driver following another vehicle shows a ‘limit
cycle’ with maximum and minimum acceptable following
distances. These cycles, visible as spirals when plotting
vehicle spacing against relative velocity, are also observed
in real-world driving (Brackstone et al., 2002). A percep-
tual basis for this phenomenon has been suggested, with
the limit cycle behaviour due to physiological thresholds on
detection of relative velocity (Todosiev, 1963). Later stud-
ies have developed this into a complete framework for de-
scribing car-following (Leutzbach and Wiedemann, 1986).
Perhaps the most widely-cited work on driver perception
in car following is (Lee, 1976), which advocates the use
of ‘time-to-collision’ as a predictive variable for the onset
and control of braking, based on a simplified analysis of
the human visual system.

Some criticism has been levelled at the existing car-
following models by Boer (1999), who argued that drivers
perform many tasks simultaneously and as a result are
typically satisfied with a range of conditions rather than
having specific preferred vehicle spacings or speeds. This
idea of ‘satisficing’ rather than ‘optimising’ originates in
(Simon, 1955), which suggests that humans do not attempt
to make optimal decisions, and instead classify outcomes
as satisfactory or unsatisfactory and act accordingly.

3.2. Cornering behaviour

In the literature, steering has typically been consid-
ered as a control task independent of speed control, where
the driver makes steering adjustments continuously in re-
sponse to deviations in road position (McRuer et al., 1977).
Similarly to driver response during car-following, experi-
ments using driving simulators have shown limit cycles in
the steering control of drivers when on a straight road that
is consistent with the driver applying feedback subject to
perceptual limits (Baxter and Harrison, 1979). This feed-
back is not the only aspect of steering control, as Godthelp
(1985) demonstrated a precognitive aspect to steering by
occluding the view of drivers during lane-change manoeu-
vres. These models have been refined through the appli-
cation of control theory (Hess and Modjtahedzadeh, 1990)
and modern developments have included consideration of
the driver’s neuromuscular dynamics (Pick and Cole, 2003),
but they do not consider the effect of steering on the
driver’s speed choice, which is important to reduce false
alarms in curve warning systems and to encourage coast-
ing before curves in eco-driving assistance systems.

To model cornering speeds, Godthelp (1986) consid-
ered the role of the human visual system in cornering and
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showed that a quantity called ‘time-to-lane crossing’ is
kept above a threshold by drivers negotiating a curve. This
model predicts that drivers will choose lower speeds on
tighter curves and narrower roads. This was further elab-
orated in (Reymond et al., 2001), which demonstrated that
a minimum time-to-lane crossing is equivalent to an upper
limit to the lateral acceleration of the vehicle while corner-
ing. In experiments carried out on a test track, Reymond
et al. (2001) further showed that drivers’ lateral accelera-
tion, denoted γ, has an upper limit that decreases when
travelling at higher speeds according to the expression

γ ≤ Γmax − ∆Cmaxv
2 (3)

where Γmax is a driver parameter representing the limit on
lateral acceleration tolerated by the driver at low speeds,
while ∆Cmax determines the decrease of this limit with
speed. As the lateral acceleration experienced while driv-
ing around a corner of curvature κ is γ = κv2, the parame-
ter ∆Cmax can be interpreted as a margin of error allowed
by the driver when visually estimating the curvature of an
upcoming corner. By substituting γ = κv2 into (3), this
bound on lateral acceleration implies an upper bound on
speed for a given corner given by:

v ≤
√

Γmax

κ+ ∆Cmax
(4)

It is interesting to note that this decrease of maximum
lateral acceleration with speed cannot be explained from
technical considerations of vehicle grip and handling, as
the lateral acceleration at which the vehicle loses grip and
skids is not dependent on speed (Gillespie, 1997).

Other models have been suggested in the literature that
consider the curvature-speed relation directly. For exam-
ple, Levison et al. (2007) provides an empirically-derived
relationship predicting a limit on driver speed in terms of
road curvature as v ≤ ακ−1/4, where α is a driver pa-
rameter. This is equivalent to a speed-dependent lateral
acceleration bound of

γ ≤ α3

v2
(5)

which allows for direct comparison with the model of (Rey-
mond et al., 2001). Drawing from observed relationships
between velocity and path curvature in human arm move-
ments (Viviani and Schneider, 1991), and subsequent links
to optimal control theory in the motor control literature
(Viviani and Flash, 1995), Bosetti et al. (2015) suggests a
‘two-thirds law’ relationship between the maximum speed
in curves and road curvature given by v ≤ βκ−1/3 which
is equivalent to a lateral acceleration bound

γ ≤ β3

v
(6)

with β the parameter characterising the driver. It has also
been suggested that road width may affect driver speed

choice in curves (DeFazio et al., 1992), although no account
of curvature was taken in that study.

It is notable that much of the existing research into
driver behaviour models, especially for following distances
and cornering speeds, has been carried out on test tracks
and in simulators. There is a gap in the literature in that
comparatively little work has been done to validate these
models in naturalistic conditions. The present study hopes
to address this by starting to fill this gap.

4. Methods

4.1. Hardware

Naturalistic driving data was collected as part of a
small-scale study, carried out at the university of Southamp-
ton in the UK, in which data was collected using a non-
intrusive, portable, Automobile Data Acquisition Mod-
ule (ADAM) (Yan et al., 2017) that attaches to the bot-
tom corner of a car windscreen on the passenger side us-
ing a suction cup. The device then gathers naturalis-
tic driving data, specifically time series data of position
and velocity (via GPS), acceleration and angular rota-
tion (via integrated accelerometers) as well as inter-vehicle
spacing using a pair of stereo cameras. ADAM was de-
signed to collect data as part of the G-ACTIVE research
project currently being carried out at the University of
Southampton and Imperial College London (http://www.
g-active.uk), and has the advantage that it may easily
be installed and removed by the participants in the study,
without any modification to the vehicle. Because this pro-
cess can be carried out daily by the participants them-
selves, it reduces the potential for demand characteristics
whereby participants modify their behaviour in order to
perform in a way pleasing to the researcher.

Figure 1: Example of video data from ADAM

The stereo video captured from ADAM may be post-
processed in order to provide the range to vehicles in front
of the unit. A typical frame from the captured video,
along with a headway value calculated from the stereo
video cameras, can be seen in Figure 1.
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4.2. Naturalistic Data Collection

Data was collected from a total of 6 participants, de-
noted F1–F6, who regularly drove through urban areas
with heavy traffic. These participants took the device for
several days each and recorded their driving by installing
ADAM in their own vehicles. They were not instructed to
follow any particular route, instead following their usual
journeys to gather data. After discarding data recorded at
night time due to difficulties in using ADAM to estimate
range in darkness, 7 hours of time-series data remained to
assess car following behaviour.

To assess cornering behaviour, naturalistic data was
collected from a further 3 participants, denoted C1–C3.
Participant C1 had a daily commute through a rural area
and contributed a total of 10 hours of data over 17 indi-
vidual drives, most of which was in rural conditions where
speed was not limited by traffic. Participants C2 and
C3 contributed approximately an hour of data each us-
ing ADAM, again in rural conditions. Time-series data
of GPS position from these participants was processed to
provide an estimate of road curvature, and the resulting
speed and acceleration data was filtered to remove noise.
All participants (F1–6, C1–3) were frequent drivers aged
between 25-40 with at least 3 years of experience, driving
vehicles with engine sizes between 1.2–2.0 litres.

5. Results

5.1. Car-following

Initial analysis of the data revealed the limit cycles
reported by Todosiev (1963) when the data is plotted in
the ‘phase space’ of vehicle spacing versus relative velocity,
which is defined such that positive values correspond to the
participant’s car travelling faster than the leading vehicle.
A typical such spiral is shown in Figure 2 for a slow-moving
car-following situation (mean velocity 1.5 m/s), with 60
seconds of data shown. The longitudinal accelerations of
the drivers studied ranged between −4.5m/s2 and 4m/s2,
with no emergency braking events observed.

Figure 2: A typical car-following spiral

We investigated the relationship between velocity and
vehicle spacing by filtering and down-sampling the col-
lected time-series data to a sample rate of 1s and retain-
ing only those time instants where the absolute value of
acceleration of both the participant’s vehicle and the pre-
ceding vehicle was less than 0.5m/s

2
(that is, both vehicles

were travelling at approximately constant speed). The re-
tained values of observed spacing are shown in Figure 3 for
participant F1. There was a large variability in observed
vehicle spacings for all participants, although a general
trend of increasing spacing with increasing speed was ob-
served. Figure 3 also shows the line of best fit obtained
by linear regression, corresponding to the relationship (1),
which gave s0 = 9.4m and T0 = 0.90s in this case. The
wide variability in observed spacings and hence poor pre-
dictive value of this relationship is evident from the figure,
with R2 = 0.51.

For all participants, we also observed that the lower
bound of the observed spacings increased with velocity and
was well-approximated by a linear relationship as in (1).
An estimate of this lower bound on observed spacing is
shown in Figure 3 for participant F1, and the estimated
values of smin and Tmin for the other participants are given
in Table 2. The lack of points between 15–25m/s in the
figure is due to steady following at these velocities rarely
being observed in the naturalistic data. This is likely be-
cause the participants mostly drove on roads with speed
limits of 30, 40 and 70 miles/hour.

Figure 3: Observed vehicle spacings for F1

To investigate the Time-To-Collision (TTC) in car-
following, we considered the relationship between spac-
ing and relative velocity. The naturalistic time-series was
again filtered and down-sampled to a rate of 1s, and all
time instants when the participant car had a velocity of
zero were removed. The result of this procedure is shown
in Figure 4 for participant F1. From the figure, it is im-
mediately apparent that there is a lower and upper bound
to the observed relative velocities that appears to be well-
approximated by a linear relationship. Noting that the
inverse of TTC corresponds to the slope of a line on this
graph, the upper bound is consistent with the driver main-
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taining a TTC of greater than 2.4s.

Figure 4: Observed relative velocities for F1

Minimum observed TTC values for the other study par-
ticipants are shown in Table 2. We note also that the lower
bound to observed TTC as shown in Figure 4 for partic-
ipant F1, and the approximately linear lower bound on
observed spacing shown in Figure 3, is observed in the
data collected from the other study participants.

Figure 5: Observed inverse TTC for F1

Finally, we investigated the possible dependence of TTC
on speed by computing the inverse TTC, as shown in Fig-
ure 5. This figure shows the inverse TTC and speed ob-
served for F1 at different time instants. Generally, the
maximum value of inverse TTC appears to decrease with
speed (corresponding to a minimum TTC that increases
with speed). There also appears to be a lower bound on
the inverse TTC, increasing with speed. From inspection
of the figure, it appears that there is some symmetry be-
tween the upper and lower bounds, and this is was also
observed for the other participants.

5.2. Cornering

The time-series data from participants C1–C3 were
analysed in order to obtain relationships involving driver
speed choice when cornering. All of the local maxima of

Participant TTCmin [s] smin [m] Tmin [s]
F1 2.40 1.34 0.38
F2 3.38 1.92 0.48
F3 3.13 1.45 0.45
F4 1.90 0.49 0.30
F5 3.21 1.44 0.64
F6 2.52 1.80 0.34
Mean 2.76 1.41 0.43
S. d. ± 0.57 ± 0.50 ± 0.12

Table 2: Observed minimum car-following parameters

curvature in the time series data were found, and for each
curvature value the corresponding observed velocity was
extracted. This procedure give a total of 7384 cornering
events for C1, 657 for C2 and 730 for C3. These ‘corners’
included junctions and instances in which the speed of the
vehicle was limited by traffic flow, the effect of which is to
reduce the vehicle velocity to less than that attributable
to cornering alone. The lateral acceleration was then es-
timated from the formula γ = κv2, which is the lateral
acceleration when following a curved path, and the peak
value of lateral acceleration in each corner extracted from
the time-series. This provides a large set of observed lat-
eral accelerations against velocity as shown in Figure 6.

Figure 6: Observed lateral accelerations in cornering data

Following the procedure in Reymond et al. (2001), a
‘high-velocity’ upper bound curve following the relation-
ship (3), and a ‘low-velocity’ curve from γ = κv2, were
fitted to this data with some of the observed points classi-
fied as outliers and ignored. The low-velocity part of the
bound is obtained assuming a minimum turning radius for
the vehicle of 10m. Depending on the number of points
designated as outliers, two possible curves are obtained
with values of Γmax = 5.1 and ∆Cmax = 4.5 or Γmax = 3.3
and ∆Cmax = 2.6. It is evident that more corners have
been observed with velocities of between 15–20 m/s and
also 25–30 m/s than at other velocities. This uneven dis-
tribution of velocities is likely due to speed limits on the
rural route that was most often driven by the participant.
In particular, speed limits of 40 and 70 miles per hour
were the most common, and we have indicated these val-
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ues with vertical lines in Figure 6. The high-speed part of
this plot is shown in greater detail in Figure 7. Qualita-
tively, it appears from the latter figure that the red curve
with values of Γmax = 5.1 and ∆Cmax = 4.5 fits the data
better at high speed, but this may be due to the relatively
small number of corners observed above the speed limit of
70 mph (corresponding to 31.3 m/s).

Figure 7: Detail of high-speed data

These lateral acceleration limits imply an upper bound
to velocity that depends on curvature as shown in Fig-
ure 8, which shows the velocities observed at the point
of maximum curvature in each corner. It is notable that
the outliers appear much closer to the rest of the data
when plotting the velocity limit instead of the lateral ac-
celeration. Also shown is a vertical line denoting the maxi-
mum recommended curvature for a 60 mph road according
to the UK design guidelines for road geometry (Highways
Agency, UK Government, 2002). We conjecture that this
causes the rapid apparent drop off in observed velocities
visible in the figure near a curvature of 1.4 rad/km, as cur-
vatures of greater than this are only likely on roads with
a speed limit of 50 mph or less due to the design codes
(Highways Agency, UK Government, 2002). This may also
explain the low values of peak lateral acceleration observed
in Figure 6 between the speeds of 20–25 m/s.

Figure 8: Observed velocities for cornering data

Other models of driver speed choice in curves were also
evaluated against the gathered data. In particular, we as-

sessed the ‘two-thirds law’ of Bosetti et al. (2015) and the
power law relationship of Levison et al. (2007), both of
which were suggested as models to predict driver speed in
curves. Fits of these two relationships as upper bounds
to the observed data are shown in Figure 9. Levison’s re-
lationship (Levison et al., 2007) appears to overestimate
lateral acceleration for the corners with speeds of around
15 m/s observed in the study. Conversely, the two-thirds
law (Bosetti et al., 2015) appears to overestimate the al-
lowable lateral acceleration at high speeds, such as for the
numerous 30 m/s corners seen in the data. Both of these
models appear to allow very large lateral accelerations at
speeds of around 10m/s, such that they appear unlikely to
provide a reasonable description of driver cornering speeds
for large curvatures.

Figure 9: Alternative lateral acceleration models

The boundary fitting procedure was repeated for par-
ticipants C2 and C3 to find the corresponding lateral ac-
celeration bounds according to (3), and the resulting pa-
rameters are shown in Table 3. It is notable that the values
of the parameter Γmax appear to be lower across our three
participants C1–C3 than those given by Reymond et al.
(2001), where the quoted mean was 7.64. A one-sample
t-test for the null hypothesis µ = 7.64 yields t(2) = −4.93,
p < 0.05, suggesting significance, and the corresponding
95% confidence interval for the mean is [3.07, 7.27].

Participant Γmax [m/s2] ∆Cmax [rad/km]
C1 5.13 4.53
C2 5.34 4.95
C3 6.03 3.99
Mean 5.98 4.49
S. d. ± 0.58 ± 0.49

Table 3: Observed cornering parameters

6. Discussion

6.1. Comparison of models with naturalistic data

Preferred vehicle spacings were observed to vary widely,
even when considering the same driver at different times.

7



Parameter Typical Value Physical Interpretation
iTTCmin −0.2s−1 Minimum inverse time-to-collision to leading vehicle
iTTCmax 0.2s−1 Maximum inverse time-to-collision to leading vehicle
smin 2m Minimum distance to leading vehicle when stationary
Tmin 0.7s Minimum time headway to leading vehicle
amax 4m/s2 Maximum desired longitudinal acceleration
bmax 5m/s2 Maximum desired longitudinal deceleration
Γmax 6m/s2 Maximum tolerable lateral acceleration

∆Cmax 4rad/km−1 Driver curvature safety margin

Table 4: Recommended parameters for an ADAS driver model

This conflicts with the results of some previous studies
such as (Winsum and Heino, 1996) which showed that
drivers were consistent in their choice of headway, but this
disparity may appear because that study was not done un-
der naturalistic conditions. In particular, participants in
(Winsum and Heino, 1996) were instructed to drive “as
if they had to reach their destination as soon as possible,
without overtaking other vehicles”, which likely encour-
aged them to drive closer to the preceding vehicle. On the
other hand, Brackstone et al. (2009) showed that for pas-
sive subjects who were unaware they were being studied,
drivers were inconsistent in their choice of following dis-
tance. Brackstone et al. (2009) also observed a day-to-day
variation in headway between the active participants in the
study, supporting our conclusion that preferred following
distances may vary widely for a particular driver.

A consequence is that many of the car-following mod-
els originating in the traffic literature, although success-
ful at describing the bulk aspects of traffic flow, may be
too prescriptive to accurately represent the behaviour of
an individual driver. Many of these models, such as the
Intelligent Driver Model (Treiber et al., 2000), include a
preferred spacing for a given speed that will be approached
in steady-state car following. Yet in our data we observed
that individual drivers may remain at a steady speed at
a wide variety of distances (Figure 3). We also observed
the limit cycles described by Todosiev (1963) in the car
following data (Figure 2), further suggesting a lack of a
constant steady-state headway value. This has immediate
implications for the design of adaptive collision warning
systems, as it implies that it will be difficult to obtain
a consistent estimate of time headway as attempted by
Wang et al. (2013). We conjecture that driver behaviour
is more accurately modelled if a minimum acceptable spac-
ing is specified, which depends upon speed as in (1).

In contrast, when considering relative velocities there
appears to be clearly defined minimum acceptable time-
to-collision values (Figure 4), indicating that the onset of
braking should be predictable according to the perceptual
model of Lee (1976). Calculation of the inverse TTC re-
veals a dependence of the inverse TTC on speed, with
an upper bound that decreases with speed, in agreement
with the model in (Kiefer et al., 2005). We also observed
a increasing lower bound on inverse TTC with speed that

corresponds to the driver accelerating to catch up to the
vehicle in front of them.

Of the cornering models considered, the lateral acceler-
ation margin model of Reymond et al. (2001) appears to fit
the collected naturalistic data better than Levison’s model
(Levison et al., 2007) and the two thirds law (Bosetti et al.,
2015). Reymond’s model also has the advantage of a well-
explained perceptual basis in that drivers allow a margin
for error in their estimate of curvature when cornering.
However, the are several quite subjective aspects to the
model fitting, such as the elimination of outliers and hence
the choice of points on the boundary when performing a
regression analysis. For adaptive curve warning systems,
we may infer that driver preferences are measurable if it is
possible to reliably identify these outliers. A further com-
plication is that design guidelines for road geometry affect
the shape of the boundary and any adaptive ADAS should
not fit to the resulting artificially low values of cornering
speed that result from this (for instance, the region around
2–3 rad/km in Figure 8). These driver lateral acceleration
preferences are also relevant for occupant comfort in au-
tonomous driving, where user acceptance is likely to be
low if the driver perceives the car to be going too fast or
too slow in corners.

6.2. Parameters characterising driver behaviour

Generally, the most successful models in our analysis
are those that prescribe bounds on quantities, such as the
lateral acceleration bound of (Reymond et al., 2001) or the
time-to-collision bound of (Lee, 1976), rather than those
giving expected values, such as the preferred headway of
Winsum and Heino (1996). This fits with the idea of a
driver ‘satisficing’, that is ensuring satisfaction of con-
straints rather than optimising a performance criterion
(Boer, 1999). Knowledge of these constraints is essential
to understand typical driver behaviour, and hence for user
acceptance of ADAS. A suggested set of parameters to be
used to characterise a driver for adaptive ADAS is given
in Table 4, and we now briefly justify these choices con-
sidering curve warning and collision warning systems.

The inverse time-to-collision (TTC) may be a more use-
ful measure than time-to-collision, as in the data there ap-
pears to be an upper and lower bound to this quantity that
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may reduce in magnitude as vehicle velocity increases. In-
verse TTC has already been suggested for use in forward
collision warning systems, for example by Kiefer et al.
(2005), and was also suggested as an input to an adap-
tive collision warning system (Wang et al., 2013). The
observation that TTC appears to have a dependence on
speed is consistent with the results in (Kiefer et al., 2005).

It is possible that the minimum observed spacing is
consistent for each driver, as illustrated in Figure 3. How-
ever, the concept of a preferred spacing is in general not
borne out by the naturalistic data, with linear regressions
typically giving poor correlations of R2 ≈ 0.5. This has
interesting implications for forward collision warning sys-
tems specifically, as the desired inter-vehicle spacing is not
predictable from the current velocity and if using low val-
ues of headway to trigger warnings, care should be taken
in the design not to sound false alarms. Notably the adap-
tive ADAS of (Wang et al., 2013) uses this concept of a
preferred spacing, despite the large variability we observed
in this quantity during naturalistic driving. A much more
consistent measure in our data is the minimum TTC (or
equivalently, inverse TTC), which appears to have a well-
defined acceptable range, and this quantity should be pre-
ferred when designing collision warning systems.

Naturalistic data on cornering speeds matches the model
given in (Reymond et al., 2001) once allowance has been
made for the limits of the road geometry, and this gives
either an upper bound to the lateral acceleration or equiv-
alently an upper bound to speed as a function of curvature
that should be considered in the design of curve-warning
systems. For our participants the observed values of the
maximum lateral acceleration parameter Γmax are signif-
icantly (p < 0.05) lower than those given in (Reymond
et al., 2001), giving some evidence that the values in that
paper may be too high for the naturalistic driving stud-
ied. It is possible that this represents a difference between
naturalistic driving and driving on a test track as in (Rey-
mond et al., 2001), although our sample size is also very
small and it could represent differences in the participants
used in the study. Given that the parameters defining
this bound show considerable variation between drivers, a
curve-warning system should adapt to observed values of
lateral acceleration to minimise false alarms and improve
operator acceptance. This seems especially important as
operational tests of current curve warning systems have
shown limited user acceptance (LeBlanc, 2006).

6.3. Limitations

The main limitation of the present work is the small
number of participants used to gather the naturalistic data.
As a result of this, the numerical values of the driving pa-
rameters considered in Tables 4 and 3 should not be con-
sidered representative of drivers as a whole. Rather, the
main value lies in the investigation of the intra-driver vari-
ation of quantities such as following distance and cornering
velocity, and identification of the models in the existing
literature that give a good description of the behaviour

of individual participants. We also note that all vehicle
following data was collected in the daytime, and that dif-
ferent models may apply during hours of darkness.

The GPS unit of ADAM has a manufacturer-stated
positional error of ±0.9m and a velocity error of ±0.1m/s.
A ‘worst-case’ error analysis of the error when estimating
road curvature based on these values gives ±0.177rad/km
for a corner of curvature 10rad/km, although in practice
the error is likely to be smaller as the curvature is esti-
mated from several consecutive position, speed and head-
ing measurements. Similarly, the lateral acceleration es-
timation error is ±0.070 m/s2 when travelling at 15m/s
around a corner of curvature 10 rad/km. The distance
estimation algorithm of ADAM used to calculate inter-
vehicle spacing has a range error of less than 0.1m and
a relative velocity error of less than 0.1m/s for distances
of up to 40m, which were determined by the authors by
comparison with data from a doppler radar installed on an
instrumented vehicle.

7. Conclusions

Motivated by the high efficacy (Lee et al., 2002; Kozak
et al., 2006) but low reported user acceptance (LeBlanc,
2006; Parasuraman et al., 1997) of some driver assistance
systems, we have advocated the design of ADAS that adapt
to the characteristics of a driver. In doing so, the num-
ber of false alarms can be decreased for warning systems,
which are a major cause of user disablement (Sorkin, 1988).
But to achieve this, accurate understanding of driver be-
haviour in naturalistic conditions is crucial.

Using naturalistic data collected as part of a study at
the University of Southampton, we evaluated the useful-
ness of existing models in describing observed relation-
ships in the data during car-following and cornering, with
a focus on following distance, time-to-collision, cornering
speed and lateral acceleration. In particular:

• There is a poor observed correlation between speed
and inter-vehicle spacing. Speed appears to be a
poor predictor for a driver’s following distance, with
drivers showing a large variation in their following
distances at a given speed in the naturalistic data.
This calls into question the use of models of this type
in the design of collision-warning systems.

• Inverse time-to-collision (TTC) has a well-defined
lower and upper bound for each driver that reduces
in magnitude at higher speeds. This may be used
to predict the onset of braking and acceleration in
following situations, a finding that reinforces its use
to identify critical situations for collision-warning.

• Speed while cornering is well-described by the lat-
eral acceleration margin model of Reymond et al.
(2001), which gives a better description of tolerable
lateral accelerations than competing models and is
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a good candidate for use in curve warning and eco-
driving assistance systems, although values of the
model parameters appear lower in our data than in
the original study.

Finally, we note that our analysis of the naturalistic
data supports the notion that a driver satisfices rather
than optimises when driving (Boer, 1999). For adaptive
ADAS, we have therefore advocated a modelling approach
using parameters that describe limits to quantities such as
time headway, time-to-collision and lateral acceleration.
This will allow future driver assistance systems to adapt
to driver preferences, improving user acceptance and hence
improving safety outcomes.
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