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Abstract 

This paper compares the effectivity of a sequential and a 

simultaneous approach, respectively derived from a 

conventional and an integrated whole-building design 

process, in the optimization of building geometry, fabric, 

HVAC system and its controls for building performance. 

It provides insights regarding theoretical benefits and 

limitations of the two approaches respectively based on  a 

stage-by-stage or integrated optimization process and 

their comparative evaluation through a case-study office 

building nominally located in Nottingham (UK), 

modelled in Grasshopper for Rhino and simulated through 

EnergyPlus engine. The authors utilized a full-factorial 

(exhaustive) search method to explore the design space, 

therefore ensuring the optimality of the solutions. The 

resulting set of design options are postprocessed to 

identify Pareto-optimal designs that minimise energy 

demand while ensuring occupants’ thermal comfort. 12 

combinations of tests have been performed based on the 

initial values & the order sequence of the design 

parameters, and eventual grouping of variables pertaining 

to the same building element category. It has been found 

that, despite the theoretical advantages of a simultaneous 

building optimization approach outperform any adequate 

design optimization effort during individual decoupled 

phases, the sequential search run forward and starting at 

the variables’ upper bound can find the same amount of 

Pareto-optimal solutions obtained from a simultaneous 

optimization while guaranteeing their “global” 

optimality.  

Introduction 

The mounting energy and environmental impact concerns 

are forcing many countries to adopt policies with stringent 

criteria for both new and refurbished buildings (EIA, 

2020). In response, high-performance building design is 

increasingly becoming the object of interest of multi-

disciplinary building stakeholders seeking the 

improvement of a wide variety of environmental goals 

(Mollaoglu-Korkmaz et al., 2012).  

The design of high-performing buildings is a complex 

task since it heavily relies on inter-disciplinary knowledge 

with interacting and highly constrained inter-dependent 

factors, and often conflicting design goals. Additionally, 

building design is a multi-element process, spanning from 

architectural design (building geometries and fabric 

design) to the HVAC system selection, design and sizing, 

and their controls. This results in a large number of 

candidate design options which requires the design team 

to identify, evaluate and select the solutions satisfying the 

design goals, constraints and the team vision through an 

informed decision-making process. 

In this context, computational methods of design 

optimization offer great potential in solving design 

challenges, overcoming the long computational time of 

performance evaluation of candidate design solutions 

when using conventional Building Performance 

Simulation (BPS) (Ostergard et al., 2016). Specifically, a 

simulation-based multi-objective optimization approach 

is suitable to high-performance building design to 

enhance decision-making through a robust resolution of 

highly complex design parameters interactions and trade-

offs between conflicting objectives.  

Buildings are conventionally designed following a step-

by-step design process in which the output of the 

architectural design options (building morphology, façade 

geometries and fabric elements) develops into the input of 

the energy systems considerations (HVAC systems and 

controls). The “conventional” design process (CDP) 

typically involves building stakeholders in separate and 

sequential design stages. Therefore, if an optimization 

process mirroring the CDP were to happen, it would be 

based on individual optimization processes occurring at 

each design step, resulting in passing fixed “optimum” 

solutions to the next stage.  

In the last ten years, a design paradigm called “integrated” 

design process (IDP) has gained increasing interest 

among building practitioners (Karlessi et al., 2017). The 

IDP disrupts the conventional (and sequential) building 

design workflow by involving building stakeholders at the 

same time in a collaborative environment (Kanters and 

Horvat, 2012). If an optimization process mirroring the 

integrated design steps were to happen, it would merge 

the individual optimization processes into a holistic task, 

a joint optimization process of building design elements 

resulting in global “optimum” solution. 

Although recent studies have explored the potential of 

integrated optimization approaches, they focused on 

building energy demand and supply (Ferrara et al., 2019; 

Waibel et al., 2019) in a two-stage process. It is however 

non-trivial to investigate the effectivity of an optimization 

process mirroring a conventional and an integrated 

approach in the holistic design of buildings for optimal 

performance.  



This work is intended as an exploratory comparison 

between a sequential and a simultaneous design approach 

in the optimization of building geometry, building fabric, 

HVAC system and its controls for building performance. 

It provides insights regarding (1) theoretical benefits and 

limitations of the two optimization approaches and (2) 

their evaluation through a case-study building.  

The sequential and simultaneous whole-building 

design optimization processes 

Buildings are conventionally designed following a 

sequential and iterative step-by-step process in which 

client, architect, and engineer are separately involved in 

pre-defined tasks to complete at each stage. During the 

pre-design phase, the goals and baselines are set by the 

whole design team according to the client’s requirements. 

Architectural design alternatives are then explored by the 

architect during the conceptual design phase. The design 

development consists of the discussion of building fabric 

options by the architect team, followed by the HVAC 

system design and sizing by the engineering team and 

control type selection during operation. It is evident how 

the conventional (and sequential) design process relies on 

output-input relationships since the information passing 

between each stage are almost fixed and constitute the 

input for the definition of the subsequent stage, this being 

the output of the previous one. Additionally, since the 

energy systems are often a plug-in at the end of the design 

development, the engineers need to seek the integration 

with the architectural design achieved during the previous 

design stages. This process might not produce satisfactory 

results during the first attempt, requiring a cyclical 

feedback-adjustment loop of design modifications from 

the architectural and engineering team to produce an 

efficient building and system design by reaching a 

feasible design option ensuring the load balance of the 

building (Flager and Haymaker, 2009). 

As portrayed in Figure 1, if an optimization process 

mirroring the CDP were to happen it would occur in 

separate stages, splitting building design process into 

individual domains.  

 

Figure 1: Sequential building design optimization. 

The optimization would then consider building elements 

in isolation diminishing the opportunities for synergies 

between building elements and failing to consider the 

complex interactions that would result. Based on input-

output relationships, a separate optimization process 

would take place at each design step, passing “optimal” 

solutions to the next stage, while the remaining building 

elements are fixed on a baseline scenario.  

If the optimization is multi-criterion, then multiple 

solutions can be carried forward between stages of the 

sequence. The optima from each stage, determine the 

variable values for the next stage of the search. This 

results in a limited number of design possibilities 

explored since the scanning of the feasible options would 

be restricted by the solutions judged “optimal” through 

the previous stages, not covering all the other feasible 

options. The optimization would also compromise the 

iterative feedback-adjustment loop involving energy 

systems and architectural options. In fact, the engineer 

will have to select and size the HVAC system and controls 

based on “optimal” building morphologies and fabric, 

without the possibility of giving feedback to the 

architectural team for adjustments. This might affect the 

integration between building geometries & energy system 

and could compromise building performances, system 

effectiveness or the feasibility of implementation. The 

limitations of the sequential approach are also evident if 

it is acknowledged that an optimization process is only 

able to find “optimal” solutions for the defined problem. 

As illustrated in Figure 1 at stage 1, the building fabric, 

system type, and control strategy are fixed. The impact of 

this is that the geometry is only “optimal” for these 

defined building elements; if they are changed, then it is 

plausible that the geometry will no longer be “optimal”. 

Although at stage 2, the optimized geometry, becomes 

one of the fixed conditions, since the optimality of the 

geometry is only valid for the previously defined fabric, it 

cannot be guaranteed that a new solution to the choice of 

fabric is found, or that it is more “optimal”. 

In the last ten years, a design paradigm which integrates 

the knowledge gained through the application of the CDP 

into a new systematic process for design practice has 

gained increasing interest among building practitioners 

(Karlessi et al., 2017). The fundament of the “integrated” 

design process (IDP) is based on the observation that 

changes and improvements during the building design 

process are relatively easy to make at the beginning but 

become increasingly difficult and influential as the 

process unfolds. For this reason, the IDP disrupts the 

sequential building design workflow by involving 

building stakeholders early in the design process in a 

collaborative environment (Kanters and Horvat, 2012). 

Once baselines and goals are defined during the pre-

design phase by the whole design team according to the 

client’s requirements, the architect can explore 

architectural design decision in collaboration with the 

engineer analyzing HVAC systems and control strategy 

according to the building energy demand and pattern zone 

loads.  



This interlaces the disciplines that inform the building 

design process resulting in a synergetic approach towards 

design solutions. In fact, the HVAC equipment and 

controls are not selected and designed complementary to 

the architectural design but as a joint discussion of 

alternatives early in the design process. As shown in 

Figure 2, if an optimization mirroring the IDP were to 

happen it would occur as a joint task, merging building 

design elements. The optimization would then consider 

buildings in a holistic-thinking perspective, enhancing the 

opportunities for synergies between building elements 

and the consideration of the complex interactions that 

would result. The search among a large amount of design 

options during a single optimization run cyclically 

weights the solutions exploring the various options of 

each building design element.  
 

 

Figure 2: Simultaneous building design optimization. 
 

The consequence is an extensive scanning of design 

potential through the solution space explored, potentially 

leading to “global optimum” solutions. Moreover, a 

simultaneous optimization could enhance the iterative 

feedback-adjusting loop involving architectural options 

and energy systems. Additionally, it could allow to find 

the optimum combination of variable values that 

influence the building energy fluxes since the variables 

are considered jointly and simultaneously. Although the 

simultaneous approach has several benefits, due to the 

large number of iterations required, it may suffer from a 

long computational time. Furthermore, while the 

simultaneous approach could yield “globally optimal” 

solutions, can the sequential search find the same number 

of Pareto-optimal solutions while guaranteeing their 

“global” optimality? If not, are they considerably “worse” 

in terms of building performance? This paper seeks to 

answer these questions through the methodological 

approach described in the next section. 

Methodology 

The methodological approach consists on the evaluation 

and comparison of the two optimization approaches. The 

evaluation begins with the (1) problem formulation where 

optimization objectives, constraints, variables and 

perturbation values are selected, followed by their (2) 

implementation within a thermal model. Subsequently, a 

(3) search method generates the sets of solutions and (4) 

finally the results are post-processed to identifity Pareto-

optimal solutions for each experiment and compared.  

Problem formulation 

The study in this paper is based on 2 building performance 

metrics as optimization objective functions: (1) the total 

heating energy demand (kWh) expressed as the sum of the 

energy consumption of HVAC components, and (2) the 

occupant’s thermal comfort indicated by the 

uncomfortable hours. Fanger’s PMV (Predicted Mean 

Vote) model (Fanger, 1970)  is used to assess the indoor 

environment of the building during the occupied 

conditioned period, with the uncomfortable hours 

indicating the period of time outside the PMV range of +/-

0.5. The two criteria are to be minimized. Figure 3 

illustrates the design parameters and their perturbation 

values grouped by building element, derived from 

building standards, engineering & design practice 

guidebooks and real-world considerations.  
 

 

Figure 3: Variables options and respective values. 
 

In an effort to limit the computational load, the design 

space comprises six design variables, selected due to their 

effect on the design criteria and pertaining to each of the 

analyzed building elements: aspect ratio (building 

geometry); window-to-wall ratio (façade geometry); 

building fabric options; HVAC system options; heating 

setpoint and setback air temperature (controls). 

The 4 selected options of aspect ratio controlling the 

building geometry are based on an incremental value in 

envelope wall area (+10% each option) while keeping the 



building volume fixed. Therefore, from a square building 

with 1:1 ratio, each option represents a proxy for the 

increasing amount of heat gains and losses in a building 

through the linearly increasing exterior wall area. The 

window-to-wall ratio (WWR) controls the percentage of 

opaque and transparent façade and ranges from a 

predominantly opaque façade (20% WWR) to a fully 

glazed one (95% WWR with a 5% extra being the 

mullions area) and a medium value of 50%. Regarding the 

building fabric, 4 types have been selected based on 

Wright et al. (2016): two options complying with the 

Approved Document L2A of the UK Building 

Regulations for new buildings other than dwellings (UK 

Government, 2013) and the remaining two options with 

the Passivhaus Standard (Mead and Brylewski, 2010). 

The two options in compliance with each building 

standard have similar U-values but different thermal 

weights (heavyweight (HW) concrete and lightweight 

(LW) timber constructions), this helping assess the impact 

of thermal mass on optimum performance. However, in 

this contribution, each option comprises all building 

constructions altogether as an entire system (glazing, 

walls, and roof). Table 1 breakdowns the U-values of the 

building assemblies. 
 

Table 1: U-values of building assemblies’ options. 
 

 U-value (W/m2K) 

Part L document Passivhaus 

LW HW LW HW 

Walls 0.394 0.360 0.150 0.143 

Roof 0.262 0.253 0.151 0.149 

Floor 0.253 0.253 

Windows 1.4 0.7 
 

The two HVAC system options analysed are a radiant 

system, which meets more than 50% of the total space 

heating load through thermal radiation, and a 

conventional “all-air” conditioning system, instead 

mainly based on convection. Specifically, a floor 

Embedded Surface System (ESS) has been designed for 

sensible heating while a Dedicated Outdoor Air System 

(DOAS) with a plate heat recovery system is in place for 

humidity control and contaminants removal. The “all-air” 

system designed is a Constant Air Volume (CAV) system 

for both sensible and latent loads with fixed fan speed and 

a plate heat recovery system. Heating setpoint and setback 

values have been defined based on CIBSE Guide A 

(CIBSE, 2006), adopted as design variables since they 

drive the trade-off between energy demand and thermal 

comfort. Three values have been assigned to each variable 

representing an average scenario of 21 ˚C setpoint and 13 

˚C setback, and a cooler (19 ˚C setpoint and 10 ˚C 

setback), and warmer scenario (23 ˚C setpoint and 16 ˚C 

setback). 

Implementation 

The coupling of parametric modelling, building 

performance simulation (BPS) and optimization approach 

allows the definition, self-automated simulation and data 

generation of a case-study building exploring candidate 

building geometries, fabric, HVAC systems and controls 

options. A computational framework has been developed 

in Grasshopper for Rhino (McNeel, 2012), a user-friendly 

visual programming software for modelling. Its main 

interface has been utilized to define the building and 

envelope geometries. Ladybug and Honeybee plug-ins 

translate the geometries into thermal zones assigning 

custom material assemblies, zone loads, programs and 

occupancy patterns. Additionally, it is adopted as an 

umbrella for the building performance analysis utilizing 

Energy-Plus engine and OpenStudio capabilities. Ironbug 

plug-in allows to design customized HVAC systems and 

controls and assigns them to each thermal zone. Finally, 

TT Toolbox plug-in links variables and objectives and 

automates the search process launching the sequence of 

simulations, recording every iteration and storing the 

solutions in csv format, represented as strings of values 

for each simulation in which the set of variables changes 

corresponds to the performance values obtained. Figure 4 

depicts the case study building: a ground-level medium-

size office nominally located in Nottingham (UK), 

featuring an 100 m2 open-space  with a floor to ceiling 

height of 2.7m. Each façade has an operable ribbon 

window without any internal or external shades. 
 

Figure 4: Example configuration of the modelled case 

study office building. 
 

The Test Reference Year (TRY) provided by CIBSE 

(2009) is used as weather file to ensure the compliance 

with the UK Building Regulations Part L (UK 

Government, 2013). Occupancy patterns are distributed 

between 7:00 and 17:00, 5 days per week. The zone has 

typical design conditions of 1 occupant per 10m2 floor 

area and equipment loads of 12 W/m2 floor area. 

Maximum lighting loads are set at 8 W/m2 floor area, 

with a dimming daylighting control with a setpoint of 500 

lux at a reference point located in the middle of the space. 

Infiltration is set at 0.1 air changes per hour, and 

ventilation is provided at a constant rate of 0.01 m3/s, this 

being equivalent to 10 l/s per occupant at full occupancy. 

The radiant floor heating start-time control is set two 

hours before occupancy to allow the system response time 

to meet the setpoint while the CAV start-time is set one 

hour before occupancy; free-cooling is available through 

natural ventilation during the summer period. 

Search method 

Building optimization problems are most frequently 

solved using population-based metaheuristic search 

methods, such as evolutionary and particle swarm 

algorithms (Evins, 2013; Ekici et al., 2019). A 

characteristic of these algorithms is that they use 

probabilistic search operators, the parameters of which 

require careful tuning if consistent convergence onto the 

optima is to be obtained (Alajmi and Wright, 2014). The 



probabilistic nature of the algorithms also results in 

different solutions being found across repeated runs of the 

search (Hamdy et al., 2016).  In contrast, a full-factorial 

(exhaustive) search does not require tuning and is 

guaranteed to identify all optima. The generation of an 

exhaustive set of solutions, also allows a range of 

optimization experiments to be performed without the 

need to re-simulate the building performance for each 

experiment (a set of three different experiments being 

performed in this study).  

Solution Analysis 

The resulting set of solutions containing combinations of 

design options and corresponding objectives values are 

post-processed with the help of programming based on a 

simultaneous and a sequential approach. That is to say, 

considering simultaneously the building elements while 

searching for optima within the whole set of resulting 

design combinations (Figure 2) or addressing the building 

elements individually and sequentially searching for 

optima within each set. In fact, the sequential approach 

searches for optima from each design element while 

keeping the others on a baseline scenario during a one-at-

a-time staged process in which the optima from the 

previous stage become the input of the subsequent one 

(Figure 1). Three series of experiments have been 

performed to evaluate the sequential approach, giving 12 

combinations of tests: analysis on the initial values of the 

design parameters used at the start of the search (low 

bound, middle range and upper bound base points), 

analysis on the order of the sequence of variables during 

the search through a conventional approach (forward: 

geometry > fabric > HVAC systems > setpoints), and a 

test approach (reverse: setpoints > HVAC systems > 

fabric > geometry) mimicking the adoption of a dynamic 

programming approach, and eventual grouping of 

variables pertaining to the same building element 

category (with grouping: geometry [aspect ratio, WWR], 

fabric, HVAC system and controls [setpoint, setback], 

and without grouping. The optima and sub-optima are 

achieved through the Pareto ranking of the solutions as 

trade-offs between the evaluated objectives, and the 

resulting sets of design solutions pertaining to each 

optimization approach are analysed highlighting the 

number of final optima, their optimality, and the direction 

of the search within the design space.  

Results and Analysis 

Simultaneous optimization approach 

Figure 5 portrays the set of solutions of the simultaneous 

search highlighting the dominated and the Pareto-optimal 

solutions. The simultaneous optimization found 9 

“global” optimal solutions as trade-offs between energy 

demand and uncomfortable hours. The Pareto set shows a 

significant discontinuity in the solutions having split 

fronts. 7 solutions lie on the first Pareto front 

characterized by low energy demand while 2 solutions 

can be considered “outliers” characterized by increased 

energy demand but with a lower number of uncomfortable 

hours. 

 

 

Figure 5: Trade-off solutions between uncomfortable 

hours and energy demand of simultaneous optimization. 
 

Sequential optimization approach 

Figure 6 displays the set of solutions of the sequential 

approach for each experiment performed. Different 

coloured symbols (shape outline) show how the search 

progresses for each building element, highlighting the 

Pareto-optimal solutions (shape filling). Table 2 

summarizes the experiments conducted and their results 

illustrating the set of solutions identified and their 

corresponding variables and objectives values. The 

following paragraphs detail the analyses for each 

experiment. 

The sequential optimization approach run forward and 

starting at the variables’ upper bound can find the same 

amount of Pareto-optimal solutions obtained from a 

simultaneous search while guaranteeing their “global” 

optimality. In fact, both the grouped and ungrouped 

searches found 9 optima solutions. As depicted in Figure 

6, two sets of solutions are carried forward from the fabric 

and HVAC system stages to form the final optima 

solutions of the grouped search with the remaining five 

being found during the setpoints optimization, while one 

solution has been carried forward from the fabric stage  

for the ungrouped search with two other sets from the 

HVAC system and setpoint optimizations to form the 

final optima solutions. The remaining four solutions are 

found during the setback search. 

It can be observed that the number of optima found 

changes depending on the variables’ starting point. The 

forward-grouped search starting at the low bound found 7 

optima solutions in split fronts. As portrayed in Figure 6, 

the same sets of solutions have been judged optimal 

during each stage until the last one, where only one 

optimum from the fabric stage is contained in the final 

Pareto-optimal solution set. The optima are the same that 

have been obtained through the simultaneous 

optimization with the two missing ones being the high 

energy demand solutions. Since the “outliers” result in a 

significant discontinuity in the Pareto front, this might 

contribute to the reason for them not being found in the 

sequence.  

 



Both the forward grouped and ungrouped searches 

starting at the middle bound found 3 optima solutions in 

split fronts. As depicted in Figure 6, only one optimum 

from the design stages is contained into the final Pareto 

solution set of the forward-grouped search brought over 

from the HVAC system optimization, while one Pareto-

optimal for the forward-ungrouped search is brought over 

from the HVAC system and one from the setpoint 

optimization stages. All 3 solutions from the forward 

grouped and ungrouped searches are found in the 

simultaneous search as well. 

Generally, the reverse sequential search found less 

“globally” optimal solutions than the forward, regardless 

of the variables’ starting point. Additionally, for both the 

forward and reverse search, grouping has a little effect. In 

fact, the reverse-grouped search starting at a low bound 

found 5 solutions. As portrayed in Figure 6, all the final 

optima are carried forward from previous stages, with 

three solutions since the first stage while the remaining 

two from the fabric optimization. Four solutions [288, 

384, 768, 780] out of five [300] are “globally” optimal.  

Both the forward and reverse searches starting at a low 

bound found 5 optima solutions in split fronts. One 

solution has been judged optimal since the first stage 

while other two sets are carried forward from the WWR 

and the HVAC system optimization stages for the 

forward-ungrouped and from the fabric and HVAC 

system stages for the reverse-ungrouped. Two solutions 

[288, 384] are ”globally” optimal while other 3 [300, 480, 

492] were not found during the simultaneous search.  

Both the reverse grouped and ungrouped searches starting 

at a middle bound found 4 optima solutions in split front. 

As shown in Figure 6, none of the final Pareto solution 

was found during the previous stages but they were 

judged optimal during the last design stage. 2 solutions 

found from the reverse-grouped optimization are 

”globally” optimal [12, 288], while other 2 solutions [0, 

192] were not found in the simultaneous search. 2 

solutions [288, 384] out of 5 [300, 480, 492] are 

“globally” optimal.  

Both the reverse grouped and ungrouped searches starting 

at an upper bound found 4 optima solutions. As illustrated 

in Figure 6, none of the final Pareto solution was found 

during the previous stages but they were judged optimal 

during the last design stage (controls optimization for 

grouped search and setbacks for the ungrouped one). 3 

solutions found from the reverse-grouped optimization 

are “globally” optimal [288, 768, 780], while one [108] 

was not found during the simultaneous search. 2 solutions 

[684, 780] out of 4 [576, 672] found from the reverse-

ungrouped optimization are ”globally” optimal.  

Discussion  

It has been observed that, in a sequential search, the ability 

of finding the correct amount of Pareto-optimal solutions 

while guaranteeing their “global” optimality due to the 

exhaustive exploration of the solution space are 

significantly affected by the initial values and the order 

sequence of the design variables. The impact of variables 

grouping within building element categories can instead 

be considered negligible. Out of 12 experimental runs, 

two sequential searches mirrored the results obtained by a 

simultaneous optimization, these being the forward 

grouped and ungrouped starting from the variables’ upper 

bound. Additionally, while the total number of solutions 

found within each sequence order is similar, the reverse 

searches show that almost half of the Pareto-optimal 

solutions are not “globally” optimal.  

It has been found that the direction of the search is 

influenced by the initial values of the variables adopted at 

the start of the search. In fact, starting from the lower 

bound, initialises a sequence that is close to the the final 

Pareto set, which moves further away during the search 

and returns close to the initial optima to form the final 

solutions, while starting from a middle-range or upper 

bound initialises a sequence far from the final Pareto 

which is progressively reached with each iteration stage-

by-stage.  

Independently on the characteristics of the experiment 

performed, this research found a correlation between the 

number of optima carried forward from previous stages 

and number of the final Pareto solutions. The more 

solutions are able to “survive” through each stage, the 

highest is the number of final optima identified. In fact, 

searches with up to 4 final Pareto-optimal solutions 

identified, generally show that different sets of solutions 

are judged optimal at each stage of the search or a low 

number of final optima soluttions are carried forward, 

while searches with a higher number of final optima (from 

5 to 9) show that at lest half of the final solutions are 

carried forward from previous stages. 

Overall, the Pareto-optimal solutions found during the 

sequential search that were not “globally” optimal, 

showed performance metrics values very “close” to the 

“global” optima set. Regarding the variables, only one 

building geometry has been selected: a square building 

with 1:1 aspect ratio. Among the “globally” optimal 

solutions set, the two outliers have a fully glazed façade 

while the others include a 20% WWR; 10 other geometry 

combinations are sub-optimal. All the optima from the 

sequential searches instead exhibit a 20% WWR. The 2 

building fabric options identified are the constructions 

complying with Passivhaus standard with and without 

thermal mass, while 2 other wall assemblies are sub-

optimal. The “globally” optimal solutions include both 

HVAC system options however the first 7 solutions adopt 

radiant heating while the 2 outliers include an all-air 

system. All the optimal solutions obtained from the 

sequential searches adopt radiant heating. Optimal 

setpoints and setbacks include 7 of the possible 9 

combinations.  

Since there is no change in building shape across the 

solutions, the aspect ratio can be considered a “distance” 

variable that governs the distance of the final optima from 

the true Pareto front while determining how close to the 

Pareto front a solution lies (Brownlee and Wright, 2012). 

In fact, changing the aspect ratio, would move the final 

optima back from the true Pareto front. The window-to-  



 

Figure 6: Trade-off solutions between thermal comfort and energy demand of sequential optimization.  
 

Table 2: Summary of experiments with sets of Pareto-optimal solutions and corresponding objectives values



wall ratio in combination with the energy system type, are 

“position” variables with the change in their value driving 

the change in objectives values along the Pareto front. In 

fact, the result of their variability is a significant increase 

in energy demand when the window-to-wall ratio assumes 

values of 20% or 95%, in combination with the change in 

system type from radiant to all-air system. The setpoints 

are the predominant “position” variables driving the 

change in energy demand and thermal comfort.  

Conclusion 

This contribution presents an exploratory comparison 

between a sequential and a simultaneous design approach 

in the optimization of building geometry, building fabric, 

HVAC system and its controls for building performance. 

The building model with the selected variables and 

therefore the scale of the search, are restricted to the scope 

of this contribution which is intended as a first evaluative 

step. It has been found that, despite the theoretical 

advantages of a simultaneous building optimization 

approach outperform any adequate design optimization 

effort during individual decoupled phases, the sequential 

search run forward and starting at the variables’ upper 

bound can find the same amount of Pareto-optimal 

solutions obtained from a simultaneous optimization 

while guaranteeing their “global” optimality. 

Additionally, the Pareto-optimal solutions found during 

the sequential search that were not “globally” optimal, 

showed performance metrics values very “close” to the 

“global” optima set.. Further research is needed to gain 

additional understanding on the effectivity and reliability 

of a simultaneous and a sequential approach. Insights on 

the interactions between building design elements and 

their dependencies as well as the study of computational 

performances will be drawn by increasing the granularity 

of the problem formulation and testing with a tuned 

genetic algorithm.  
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