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Figure S1. (A) Illustration of a new ‘probe-type’ on-line DEMS system; (B) Designing drawing of the 

on-line DEMS electrochemical cell. 

 
Figure S2. CO stripping curves of JM Pt/C (A) and Pt-SnO2 /rGO (B), also shown are the  

corresponding MSCVs of CO2 (m/z = 44) 
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Figure S3. (A-D)TEM images of the as-prepared Pt-SnO2 /rGO composites, (E) HR-TEM images of Pt-

SnO2 /rGO, (F) Atomically resolved HAADF-STEM image of Pt-SnO2. Left inset is the FFT of the 

image (F). From the HR-TEM images, the lattice distance of Pt overlayer on SnO2 was found to be 2.33 

Å. This is slightly larger than that of the Pt (111) (2.26 Å), which could be ascribed to the tensile strain 

effect from the SnO2 substrate. The Pt-SnO2 nanoflakes in HAADF-STEM image (Figure S1F) were 

founded to be oriented along the [011] direction with (111) and(002) facets being the abundant 

truncating lattice planes, which were further confirmed by the corresponding fast Fourier transform 

image. 
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Figure S4. SnO2 nanoslices characterization. (A-C) Bright field (HR-)TEM images, (D) size 

distribution, (E) AFM image with marked white line and number showing the height of certain SnO2 

nanoslices, (F) corresponding height distribution and (G) height profiles. 

 
Figure S5. Schematic illustration of ultrathin SnO2 nanoslices. 
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Figure S6. Additional TEM images of SnO2 nanoslices. 

 

Figure S7. N2 sorption isotherms of ultrathin SnO2 nanoslices. The special surface area of ultrathin 

SnO2 nanoslices was estimated to be about 151.95 m2 g-1 from the N2 sorption isotherms.  
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Figure S8. XRD patterns of reduced graphene oxide (rGO), SnO2 powder, SnO2/rGO and Pt-SnO2/rGO 

composites. The bule lines are indexed to the tetragonal structure of SnO2, corresponding to JCPDS No. 

88-0287. 

 

 

Figure S9. (A) CV curves of Pt-SnO2/rGO and JM Pt/C in 1.0 M HClO4 at a scan rate of 50 mV/s, (B) 

The CO stripping curves of Pt-SnO2/rGO in 1.0 M HClO4 before and after the chronoamperometric test. 
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Figure S10. (A) Pt/rGO vs. JM Pt/C, CVs were recorded in 1 M HClO4 + 1 M CH3OH at a scan rate 

of 50 mV/s, (B) The CO stripping curves of Pt-SnO2/rGO and Pt/rGO in 1.0 M HClO4, (C) Pt-

SnO2/rGO vs. JM PtRu/C, CVs were recorded in 1 M HClO4 + 1 M CH3OH at a scan rate of 50 

mV/s, (D) Chronoamperometric curves of Pt-SnO2/rGO and JM PtRu/C recorded at 0.70 V (vs. 

RHE) in 1 M HClO4 + 1 M CH3OH. 
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Figure S11. In situ ATR-SEIRAS spectra for (A) Pt/rGO in 1 M HClO4 + 1 M CH3OH with a time 

resolution of 5 s, using a single-beam spectrum at open circuit potential in 1 M HClO4 as the reference 

spectrum, (B) Corresponding CVs of (C) Pt/rGO at a scan rate of 10 mV/s with the integrated band 

intensities of COL and HCOOB. Current densities were normalized by geometric electrode area of 0.785 

cm2, and a constant catalyst loading was used for ATR-SEIRAS measurement, leading to an actual Pt 

mass loading of 0.55 mgPt/cm2 for Pt/rGO. 

 

Figure S12. (A) Simultaneously recorded CVs and MSCVs for m/z = 44 and m/z = 60 on Pt/rGO and 

Pt-SnO2/rGO in 1 M HClO4 + 1 M CH3OH at scan rate 5 mV/s; (B) the corresponding potential-

dependent plot of the relative ratio IMS,60/IMS,44 as measured from 0.60 V to 1.20 V. 
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Figure S13. (A) Top view and (B) side view of the simulated Pt-SnO2 structure. 

 

Table S1. Pt L3 edge EXAFS Fitting Results 

Sample Bond CN R / Å σ2 /(x10-3Å2) ΔE / eV R factor 
Pt foil Pt-Pt 12 2.75 - - - 

JM Pt/Ca Pt-Pt 5.08±0.95 2.71±0.027 7.3 4.8 0.47% Pt-O 2.06±0.32 1.97±0.036 3.6 6.8 
SnO2@Pt/rGOb Pt-Pt 6.46±0.94 2.72±0.02 7.5 3.2 0.23% Pt-O 1.61±0.19 2.03±0.09 9.5 9.1 
[a] k-range = 3.349 - 13.808,  [b] k-range = 3.226 – 12.449 
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Table S2. Comparison of MOR performances of Pt-SnO2/rGO, other Pt-MOx, and PtRu  
nanocatalysts from this work and recent published data. 

 

Samples 
Methanol 

concentration / 
M 

Scan rate 
/ 

mV.s-1 

Mass 
activity / 
A.mg-1 

Specific 
activity / 

A.m-2 

Peak 
Potential / V Ref. 

Pt-SnO2/rGO 1.00 50 1.31 21.76 0.85  
(vs.RHE) This work 

JM PtRu/C 1.00 50 0.43 4.32 0.79 
(vs.RHE) This work 

Pt-CeO2 0.50 50  27.5 0.90 
(vs.RHE) [1] 

m-20Pt/WO3 0.50 50 0.59  0.72 
(vs.Ag/AgCl) [2] 

7.5 wt% Pt/W2C 1.00 50 0.72 15.6 ~0.86 
(vs.Ag/AgCl)  [3] 

Pt/Ni(OH)2/rGO 1.00 50 1.07 15.0 -0.20 
(vs.SCE) [4] 

PtSnO2/C 1.00 20  0.50 0.84 
(vs.NHE) [5] 

Fe2O3/Pt-b  
(Fe:Pt = 2:1) 1.00 50 1.26 22.10 0.18 

(vs.MSE) [6] 

Pt-MoO3/RGO 
(16.5% MoO3) 0.50 50 0.61 5.65` 0.70 

(vs.SCE) [7] 

Pt/RuO2/CNTs 1.00 50 0.60 4.23 ~0.75 
(vs.Ag/AgCl) [8] 

Pt/TiO2-C 1.00 50 0.42 5.76 ~0.70 
(vs.Ag/AgCl) [9] 

PtRu c-s 1.00 50 1.29 17.80 ~0.75 
(vs.RHE) [10] 

PtRu NWs /C 0.50 50 0.82 11.60 0.70 
(vs.Ag/AgCl) [11] 

PtRu 
nanodenderites 1.00 50 1.08 27.00 ~0.70 

(vs.Ag/AgCl) [12] 

PtRu-CoP/C-40% 1.00  50 1.01  8.65  ~0.53 
 (vs.SCE) [13] 
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Table S3. IR Peak Assignments during MOR in this work 

Wavernumber (cm-1) Assignment 
~1325 symmetric COO stretching mode of formate (HCOOB)[14-17] 
~1610  δ(HOH) of interfacial water[18, 19] 
~1675 multi-bonded CO or interfacial hydronium[20] 

1790 - 1900 Bridge-bonded CO band (COB)[20-22] 
2010 - 2060 Linear-bonded CO band (COL)[20-22] 

 

 

Table S4. Calculated reaction barriers (Ea, in eV) and reaction energies (ΔE, in eV) of the 
elementary steps in methanol dehydrogenation to surface CO* and formic acid over Pt-SnO2 

Surfaces  Pt-SnO2 
Reactions Ea ΔE 
CH3OH → CH3OH* −− -0.97 
CH3OH* → CH3O* + H* 0.34 -0.48 
CH3O* → CH2O* + H* 0.33 -0.87 
CH2O* → CHO* + H* 0.44 -0.80 
CHO* + OH* → HCOOH* 0.39 -0.49 
CHO* → CO* + H* 0.62 -1.42 
Table S5. Calculated reaction barriers (Ea, in eV) and reaction energies (ΔE, in eV) of the 
elementary steps in methanol dehydrogenation to surface CO* and formic acid over Pt (111)
Surfaces  Pt (111) 
Reactions Ea ΔE 
CH3OH → CH3OH* −− -0.28 
CH3OH* → CH2OH* + H* 0.72 -0.11 
CH2OH* → CHOH* + H* 0.61 -0.17 
CHOH* → CHO* + H* 0.60 0.04 
CHO* + OH* → HCOOH* 0.49 -0.53 
CHO* → CO* + H* 0.42 -0.98 
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