This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Supplementary Information files for Insights into the structures adopted by titanocalix[6 and 8]arenes and their use in the ring opening polymerization of cyclic esters

PLEASE CITE THE PUBLISHED VERSION

LICENCE
CC BY-NC 4.0

REPOSITORY RECORD

Santoro, Orlando, Mark Elsegood, Elizabeth Bedwell, Jake Pryce, and Carl Redshaw. 2020. "Supplementary Information Files for Insights into the Structures Adopted by Titanocalix[6 and 8]arenes and Their Use in the Ring Opening Polymerization of Cyclic Esters". Loughborough University. https://doi.org/10.17028/rd.Iboro.12820484.v1.

Electronic Supplementary Information

Insights into the structures adopted by titanocalix[6 and
 8]arenes and their use in the ring opening polymerization of cyclic esters

Orlando Santoro, ${ }^{\text {a }}$ Mark R. J. Elsegood, ${ }^{\text {b* }}$ Elizabeth V. Bedwell, ${ }^{\text {b }}$ Jake A. Pryce, ${ }^{\text {b }}$ and Carl Redshaw ${ }^{\text {* }}$
${ }^{a}$ Plastics Collaboratory, Department of Chemistry and Biochemistry, The University of Hull, Cottingham Rd, Hull, HU6 7RX, U.K.
${ }^{b}$ Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

Contents

Crystallographic experimental details.
Figure S1. Chem draws of titanocalix[6 and 8]arene complexes 1, 3, 4, $\mathbf{6}$ and 7
Figure S2. Chem draws of titanocalix[8]arene complexes 8-11
Figure S3. H-bonded, zig-zag chains of $\mathbf{1}$, in the b-direction.
Figure S4. Molecular structure (a) and core (b) of $\left[\mathrm{Ti}_{4} \mathrm{Cl}_{2}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{2}(\mathrm{NCMe})_{2}(\mathrm{~L})_{2}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}\right)_{2}\right] \cdot 4 \mathrm{MeCN}(2 \cdot 4 \mathrm{MeCN})$.

Figure S5. Alternative view of $\left[(\mathrm{TiCl})_{2}(\mathrm{TiClNCMe})_{2}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mathrm{~L}^{2}\right)\right] \cdot 1.5 \mathrm{MeCN}(4 \cdot 1.5 \mathrm{MeCN})$
Figure S6. C-H $\cdots \mathrm{Cl}$ intermolecular interactions in $\mathbf{4}$ parallel to a.
Figure S7. View of the layers of molecules of 6 .
Figure S8. Molecules of 7 are arranged in an undulating layer structure in the a / c plane.
Figure S9. Alternative view of $\mathbf{8}$.
Figure S10. View of $\mathbf{8}$ perpendicular to b/c plane.
Figure S11 Alternative view of the core of $\mathbf{1 0}$.

Figure S12. Side-on view of partial calixarene stacking in $\mathbf{1 0}$.
Figure S13. Layers of molecules of $\mathbf{1 1}$ in the a / c plane.
Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the PCL synthesized in Table 1, entry 18.

Figure S15. MALDI-ToF spectrum of the PCL synthesized in Table 1, entry 16.
Figure S16. 2D J-resolved ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the PLA synthesized using [6]Ti2 Cl_{3}.

Figure $\mathbf{S 1 7}{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the CL-VL Copolymer synthesized with $\mathbf{1 0}$ ($65-63 \mathrm{ppm}$)

Equation S1 Determination of number-average sequence length for CL.
Equation S2. Determination of number-average sequence length for VL.
Equation S3. Determination of the Randomness Character (R).
Figure S18 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the CL-VL Copolymer synthesized with 11 (65-63 ppm)

Figure S19 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the CL-VL Copolymer synthesized with 12 ($65-63 \mathrm{ppm}$)

Figure $\mathbf{S 2 0}{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the crude ε-CL/r-LA copolymerization mixture synthesized with 1

Crystallographic experimental details.

The following section gives details of disorder and solvent of crystallization modelling for the individual crystal structures.

As is the case for many of the large calixarene crystal structures, diffraction data are sometimes quite weak, and the amount of solvent of crystallization should be taken as approximate. In the figures minor disorder components are omitted.

For $\mathbf{1 \cdot 4 . 5 M e C N}$: The entire ${ }^{t}$ Bu group at atoms C(7), C(40), C(51), C(62), C(7A), C(18A), $\mathrm{C}(40 \mathrm{~A})$ and $\mathrm{C}(62 \mathrm{~A})$ were modelled as disordered over two sets of positions with major occupancies $68.3(15) \%, 71.4(17) \%, 63(2) \%, 63.1(14) \%, 68(4) \%, 68(2) \%, 74.3(14) \%$ and $59(2) \%$, respectively. The chloride ion $\mathrm{Cl}(2 \mathrm{~A})$ was modelled as above with a major occupancy of $73(5) \%$. Platon squeeze recovers 47 electrons in one void of $111 \AA^{3}$, giving 2 extra MeCNs per unit cell. The MeCN at $\mathrm{N}(7)$ was refined at half weight.

For $\mathbf{2 \cdot 4 M e C N}$: Refined as a 2 -component twin with major component $54.30(10) \%$. Components $0.5431: 0.4569(10)$. Component 2 rotated by 8.1802° around $[-0.010 .980 .18]$ (reciprocal) or [0.20 0.920 .33] (direct). 4 MeCNs of crystallisation which lie exo to the complex. Two of these are unique. ${ }^{\mathrm{t}} \mathrm{Bu}$ group at $\mathrm{C}(40)$ was modelled as two-fold disordered with major component occupancy $67.0(15) \%$. The largest residual electron density peak lies near $\mathrm{Cl}(2)$ at the end of the alkyl chain, suggesting some possible unresolved disorder.

For $\mathbf{3} \cdot 6.5 \mathrm{MeCN}$: One ${ }^{\mathrm{t}} \mathrm{Bu}$ group, at $\mathrm{C}(62)$, was modelled as disordered with the methyl groups split over two sets of positions with major occupancy $52.24(9) \%$. 2.5 MeCNs were modelled as point atoms, with another 1.5 modelled as a diffuse area of electron density by the Platon Squeeze procedure. Squeeze recovered 132 electrons in 4 voids with 33 electrons per void. MeCN has 22 electrons, so 1.5 MeCN per void.

For $\mathbf{4 \cdot 1 . 5 M e C N}$: The whole tBu group at $\mathrm{C}(18)$ was modelled as disordered over two sets of positions with major occupancy $67.1(16) \%$. ${ }^{\text {t }} \mathrm{Bu}$ methyl groups at $\mathrm{C}(73)$ and $\mathrm{C}(84)$ modelled similarly with major occupancy $74.6(16)$ and $64(4) \%$ respectively. The MeCN group at $\mathrm{N}(4)$ was modelled at half weight due to apparent partial occupancy. That at $\mathrm{N}(3)$ was fully occupied, so 1.5 molecules of MeCN of crystallisation per metal complex.

For $\mathbf{5 \cdot 1 1 M e C N}$: The methyl groups on the ${ }^{t} \mathrm{Bu}$ groups at $\mathrm{C}(18), \mathrm{C}(62 \mathrm{~A})$ and $\mathrm{C}(84 \mathrm{~A})$ were modelled as disordered over two sets of positions with major occupancies $62.4(10) \%$, $55.5(10) \%$ and $51.6(19) \%$, respectively. Platon squeeze recovers 355 electrons in 4 voids, giving 16 MeCNs per unit cell or an extra 8 MeCNs per asymmetric unit. This corresponds with point atom observations. The carbon atom $\mathrm{C}(90)$, part of the MeCN at $\mathrm{N}(1)$, was modelled as disordered over two sets of positions with major occupancy $54(4) \%$. The carbon atoms $\mathrm{C}(95 \mathrm{~A})$ and $\mathrm{C}(96 \mathrm{~A})$, part of the MeCN at $\mathrm{N}(4 \mathrm{~A})$, were modelled as disordered over two sets of positions with major occupancy $59.2(12) \%$. The coordinated MeCN ligands, including $\mathrm{N}(3 \mathrm{~A})$ and $\mathrm{N}(4 \mathrm{~A})$ appear rather bent, despite the use of restraints.

For $6 \cdot 6 \mathrm{MeCN}$: The methyl groups on the ${ }^{\mathrm{t}} \mathrm{Bu}$ groups at $\mathrm{C}(8), \mathrm{C}(40)$ and $\mathrm{C}(51)$ were modelled as disordered over two sets of positions with major occupancies $91.9(5) \%$, $69.0(7) \%$ and $51.5(6) \%$, respectively.

For 7•7.5MeCN: The methyl groups on the ${ }^{t} \mathrm{Bu}$ group at $\mathrm{C}(7)$ were modelled as disordered over two sets of positions with major occupancy $67.6(13) \%$. MeCN including $\mathrm{N}(9)$ was modelled as two-fold disordered with atom $\mathrm{C}(106)$ common to both components and major site occupation factor $65.4(11) \%$; while that at $\mathrm{N}(10)$ was similarly modelled with $\mathrm{C}(108)$ common to both components and major site occupation factor also $65.4(11) \%$. Platon squeeze recovers 314 electrons in 4 large voids and 4 medium sized voids. Approx. 3 MeCNs in each large void and $1 / 2$ an MeCN in each medium void giving 14 additional MeCNs per unit cell or an extra 3.5 MeCNs per Ti_{3} complex. This corresponds with point atom observations.

For $\mathbf{8} \cdot \mathbf{1 4 M e C N}$: The methyl groups on the ${ }^{\mathrm{t}} \mathrm{Bu}$ groups at $\mathrm{C}(7), \mathrm{C}(29), \mathrm{C}(52)$ and their symmetry-related atoms, were modelled as disordered over two sets of positions with major occupancies $63(2) \%, 60(5) \%$ and $62.2(12) \%$ respectively. The entire ${ }^{\text {t }} \mathrm{Bu}$ group at atoms $\mathrm{C}(18)$ and $\mathrm{C}(85)$ was modelled as stated above with major occupancies $57.46(12) \%$ and $63.8(12) \%$, respectively. Platon squeeze recovers 291 electrons in 2 voids, giving 14 MeCNs per unit cell or an extra 7 MeCNs per Tis complex. This corresponds with point atom observations. There are 6 MeCNs coordinated to Na ions, of which that at $\mathrm{N}(5)$ was refined at half weight. There are two non-coordinated MeCNs refined as point atoms, of which that at $\mathrm{N}(7)$ was refined at half weight.

For 9.7 MeCN : The methyl groups on the ${ }^{\mathrm{t}} \mathrm{Bu}$ groups at $\mathrm{C}(73)$ and $\mathrm{C}(117)$ were modelled as disordered over two sets of positions with major occupancies $60(3) \%$ and $71.1(10) \%$, respectively. Platon squeeze recovers 332 electrons in 8 voids, giving 16 MeCNs per unit cell or an extra 4 MeCNs per Ti_{8} complex. This corresponds with point atom observations.

For $\mathbf{1 0 \cdot 1 5 . 5 M e C N}$: The entire ${ }^{\mathrm{t}} \mathrm{Bu}$ group at atom $\mathrm{C}(18)$ was modelled as disordered over two sets of positions with major occupancy $62(3) \%$. The methyl groups on the ${ }^{\text {t }} \mathrm{Bu}$ groups at $\mathrm{C}(51), \mathrm{C}(62), \mathrm{C}(84), \mathrm{C}(117), \mathrm{C}(150), \mathrm{C}(183)$ and $\mathrm{C}(293)$ were modelled as disordered over two sets of positions with major occupancies $64(1) \%, 61(1) \%, 59.8(10) \%, 69(1) \%$, $64(1) \%, 58(1) \%$ and $54(4) \%$, respectively. The carbon atoms $\mathrm{C}(363)$ and $\mathrm{C}(364)$, part of the MeCN at $\mathrm{N}(6)$, were modelled as disordered over two sets of positions with major occupancy $54(2) \%$. The carbon atoms $\mathrm{C}(367)$ and $\mathrm{C}(368)$, part of the MeCN at $\mathrm{N}(8)$, were modelled as disordered over two sets of positions with major occupancy $60(2) \%$. Platon squeeze recovers 177 electrons in 1 void, giving 8 MeCNs per unit cell. The sodium ion(s) labelled $\mathrm{Na}(2), \mathrm{Na}(3)$, and $\mathrm{Na}(4)$ were modelled as disordered over three sets of positions with occupancies $52(2) \%, 19.2(9) \%$ and $29(1) \%$, respectively, with occupancies restrained to sum to a single Na ion required for charge balance.

For $\mathbf{1 1 \cdot 7 . 2 5} \mathrm{CH}_{2} \mathrm{Cl}_{2}$: The whole ${ }^{\mathrm{t}} \mathrm{Bu}$ group at $\mathrm{C}(7)$ and $\mathrm{C}(84)$ were modelled as disordered over two sets of positions with major occupancies $55.4(19) \%$ and $50.5(17) \%$, respectively. The methyl groups on the ${ }^{\mathrm{t}} \mathrm{Bu}$ group at $\mathrm{C}(51)$ were modelled as disordered over two sets of positions with major occupancy $51.1(18) \%$. Platon squeeze recovers 222 electrons per unit cell in eight voids; DCM has 42 electrons so five extra DCMs per unit cell.

For $\mathbf{1 2}$-hexane: The ${ }^{\text {t }} \mathrm{Bu}$ group at $\mathrm{C}(11)$ was modelled as having the methyl groups disordered over two set of positions with major occupancy $81.8(8) \%$. Atoms $\mathrm{C}(19)$ and $\mathrm{C}(20)$ were modelled as 2 -fold disordered in the hexane molecule with major component occupancy $67.0(7) \%$.

$\left[\mathrm{Ti}_{2} \mathrm{Cl}_{3}(\mathrm{MeCN})_{2}\left(\mathrm{OH}_{2}\right)\left(\mathrm{L}^{1} \mathrm{H}\right)\right]\left[\mathrm{Ti}_{2} \mathrm{Cl}_{3}(\mathrm{MeCN})_{3}\left(\mathrm{~L}^{1} \mathrm{H}\right)\right] .5 \mathrm{MeCN}(14.5 \mathrm{MeCN})$

$\left[(\mathrm{TiF}) 2(\mu-\mathrm{F}) \mathrm{L}^{1} \mathrm{H}\right]_{2} \cdot 6.5 \mathrm{MeCN}(3 \cdot 6.5 \mathrm{MeCN})$

$\left[(\mathrm{TiBr})_{2}(\mathrm{TiBrNCMe})_{2}\left({ }_{3}-\mathrm{O}\right)_{2}\left(\mathrm{~L}^{2}\right)\right] 6 \mathrm{MeCN}(66 \mathrm{MeCN})$

$\left[(\text { TiCl })_{2}(\text { TiCINCMe })_{2}\left({ }^{\mu_{3}-\mathrm{O}}\right)_{2}\left(\mathrm{~L}^{2}\right)\right]^{1.5 \mathrm{MeCN}}(41.5 \mathrm{MeCN})$

$\left.\left[\mathrm{Ti}(\mathrm{NCMe})_{2} \mathrm{Br}_{2}\right]\left[\mathrm{Ti}(\mathrm{O}) \mathrm{Br}_{2}\left(\mathrm{OH}_{2}\right)(\mathrm{NCMe})\right]\left(\mathrm{L}^{2} \mathrm{H}_{2}\right)\right] 7.5 \mathrm{MeCN}(77.5 \mathrm{MeCN})$

Figure S1. Titanocalix[6 and 8]arene complexes 1, 3, 4, 6 and 7.

$\left[\left(\mathrm{Ti}_{8} \mathrm{CaF}_{20}\left(\mathrm{OH}_{2}\right) \mathrm{Na}_{2}(\mathrm{MeCN})_{4}\right)\left(\mathrm{L}^{2}\right)_{2}\right] 14 \mathrm{MeCN}\left(8{ }^{14 \mathrm{MeCN})}\right.$

$\left.\left[\mathrm{Na}(\mathrm{MeCN})_{2]}\right] \mathrm{Ti}_{8} \mathrm{CaF}_{20} \mathrm{NaO}_{16}\left(\mathrm{~L}^{2}\right)_{2]}\right] \cdot 7 \mathrm{MeCN}(97 \mathrm{MeCN})$

$[\mathrm{Na}]_{6}\left[\mathrm{Ti}_{8} \mathrm{~F}_{20} \mathrm{Na}(\mathrm{MeCN})_{2}\left(\mathrm{~L}^{2}\right)\right]\left[\mathrm{T}_{8} \mathrm{~F}_{20} \mathrm{Na}(\mathrm{MeCN})_{0.5}\left(\mathrm{~L}^{2}\right)\right] \cdot 15.5(\mathrm{MeCN})(\mathbf{1 0 . 1 5 . 5 \mathrm { MeCN })}$
Figure S2. Titanocalix[8]arene complexes 8-11.

Figure S3. H-bonded, zig-zag chains of 1, in the b-direction.

(a)

(b)

Figure S4. Molecular structure (a) and core (b) of $\left[\mathrm{Ti}_{4} \mathrm{Cl}_{2}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{O})_{2}(\mathrm{NCMe})_{2}(\mathrm{~L})_{2}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}\right)_{2}\right] \cdot 4 \mathrm{MeCN}(\mathbf{2} \cdot 4 \mathrm{MeCN})$. Solvent of crystallization and H atoms omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{Ti}(1)-\mathrm{O}(1) 2.071(2)$, $\mathrm{Ti}(1)-\mathrm{O}(2) 2.065(2)$, $\mathrm{Ti}(1)-\mathrm{O}(3) 1.848(2), \mathrm{Ti}(1)-\mathrm{O}(4) 1.826(2), \mathrm{Ti}(1)-\mathrm{O}(5) 1.840(2), \mathrm{Ti}(1)-\mathrm{N}(1) 2.221(3)$, $\mathrm{Ti}(2)-\mathrm{O}(1)$ $1.988(2), \mathrm{Ti}(2)-\mathrm{O}(2 \mathrm{~A}) 2.022(2), \mathrm{Ti}(2)-\mathrm{O}(5) 2.077(2), \mathrm{Ti}(2)-\mathrm{O}(5 \mathrm{~A}) 2.028(2), \mathrm{Ti}(2)-\mathrm{O}(6) 1.771(2)$, $\mathrm{Ti}(2)-\mathrm{Cl}(1) 2.3142(8) ; \mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{O}(2) 84.26(8), \mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{O}(3) 166.44(9), \mathrm{O}(2)-\mathrm{Ti}(1)-\mathrm{O}(4)$ $165.67(9), \quad \mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}(2 \mathrm{~A}) \quad 165.94(9), \quad \mathrm{Ti}(2)-\mathrm{O}(5)-\mathrm{Ti}(2 \mathrm{~A}) \quad 102.37(9), \quad \mathrm{O}(5 \mathrm{~A})-\mathrm{Ti}(2)-\mathrm{Cl}(1)$ 96.00(6). Symmetry operator A $=-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}$.

Figure S5. Alternative view of $\left[(\mathrm{TiCl})_{2}\left(\mathrm{TiClNCMe}_{2}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mathrm{~L}^{2}\right)\right] \cdot 1.5 \mathrm{MeCN}(4 \cdot 1.5 \mathrm{MeCN})\right.$

Figure S6. C-H $\cdots \mathrm{Cl}$ weak intermolecular interactions in 4 parallel to a.

Figure S7. View of the layers of molecules of 6 .

Figure S8: Molecules of 7 are arranged in an undulating layer structure in the a / c plane.

Figure S9: Alternative view of $\mathbf{8}$.

Figure S10: View of $\mathbf{8}$ perpendicular to b/c plane.

Figure S11: Alternative view of the core of $\mathbf{1 0}$.

Figure S12: Side-on view of partial calixarene stacking in $\mathbf{1 0}$.

Figure S13: Layers of molecules of $\mathbf{1 1}$ in the a / c plane.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the PCL synthesized in Table 1, entry 16.

Figure S15. MALDI-ToF spectrum of the PCL synthesized in Table 1, entry 16.

Figure S16: 2D J-resolved ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the PLA synthesized using 1 .

Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the CL-VL Copolymer synthesized with $\mathbf{1 0}$ (65-63 ppm).

Equation S1: Determination of number-average sequence length for CL. [1]

$$
L_{\mathrm{CL}}=\frac{\left(I_{\mathrm{CL}-\mathrm{CL}}\right)}{\left(I_{\mathrm{VL}-\mathrm{CL}}\right)}+1
$$

Where $\mathrm{I}_{\mathrm{CL}-\mathrm{CL}}$ and $\mathrm{I}_{\mathrm{VL} \text {-cL }}$ is the area of the peak belonging to the CL-CL and VL-VL dyad, respectively.
Equation S2: Determination of number-average sequence length for VL. [1]

$$
L_{\mathrm{VL}}=\frac{\left(I_{\mathrm{VL}-\mathrm{VL}}\right)}{\left(I_{\mathrm{CL}-\mathrm{VL}}\right)}+1
$$

Where $\mathrm{I}_{\mathrm{VL}-\mathrm{VL}}$ and I_{CL} vL is the area of the peak belonging to the VL-VL and CL-VL dyad, respectively.
Equation S3: Determination of the Randomness Character (R). [1]

$$
R=\frac{1}{L_{\mathrm{CL}}}+\frac{1}{L_{\mathrm{VL}}}
$$

Completely block Copolymers: $\mathrm{R}=0$
Copolymers with a "blocking" tendency: $\mathrm{R}<1$
Completely random copolymers: $\mathrm{R}=1$
Copolymers with an alternating tendency: $\mathrm{R}>1$
Completely alternating copolymers: $\mathrm{R}=2$

Figure S18: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the CL-VL Copolymer synthesized with 11 (65-63 ppm).

Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the CL-VL Copolymer synthesized with 12 ($65-63 \mathrm{ppm}$).

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the crude $\varepsilon-\mathrm{CL} / r$-LA copolymerization mixture synthesized with 1.

References

[1] (a) Q. Hu , S.-Y. Jie, P. Braunstein and B.-G. Lia Chinese J. Polym. Sci. 2020, 38, 240247; (b) M. A. Woodruff and D. W. Hutmacher Prog. Polym. Sci. 2010, 35, 1217-1256; (c) T. Wu, Z. Wei, Y. Ren, Y. Yu, X. Leng and Y. Li Polym. Degrad. Stab. 2018, 155, 173-182; (d) M. T. Hunley, N. Sari, and K. L. Beers, ACS Macro Lett. 2013, 2, 375-379.

