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Abstract

[Summary] LSM-trie-based Key-Value (KV) store is often used to manage an ultra-large data set in
reality by introducing a number of sub-levels at each level, its linear growth pattern can fairly reduce
the write amplification in store operations. Although this design is effective for the write operation, the
last level holds a large proportion of KV items, leading to the extreme imbalance of data distribution.
Therefore, to support efficient read, we need to carefully consider this imbalance. On the other hand, to
ensure that acquired data is latest, the LSM-trie needs to search the data set at different levels one by one,
and this search method may take a lot of unnecessary time. When the number of items is ultra-large,
the random lookup performance may be poor due to the imbalance data distribution. To address this
issue, we improve the read performance of the LSM-trie by changing its serial search to parallel search,
using two threads to simultaneously search at the last level and other levels, respectively. Our experiment
results show that the read performance of the LSM-trie can be improved up to 98.35% and on average
71.55%.
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1 Introduction
Key-Value (KV) store has become an important part of NoSQL databases, and made many important
achievements in the field of scientific research and various application areas in recent years. For example,
Google’s BigTable [10] and LevelDB [12] are often used in web indexing, MongoDB [26] and SkimpyS-
tash [14] in online gaming, FlashStore [13] in data deduplication. Other examples include Dynamo [15]
Amazon uses to solve the large amount of redundant data produced in e-commerce, LinkBench [4] and
RocksDB [8] Facebook adopts to maintain social networking, and Atlas [18] Baidu leverages to store
cloud data.

For I/O-intensive workloads, the KV stores based on Log-Structured Merge-Trees (LSM-trees) [23]
have been extensively research and widely deployed [12, 27, 29, 8, 17, 16, 5]. The main advantage of
the LSM-trees over other indexing structures (such as B-trees) is that they can deliver high performance
for sequential (batch KV pairs) write access patterns on either Solid-State Drives (SSDs) or Hard-Disk
Drives (HDDs) [20] by maintaining the ordered keys and values for compaction at different levels in
background. Since the same data could be read and written multiple times, the I/O amplification in a
typical LSM-tree can reach a factor of 50× or higher throughout its life-time [30, 20].

Both WiscKey [20] and LSM-trie [30] focus on minimizing the I/O amplification and the disk-level
improvement [5].WiscKey minimizes the I/O amplification on SSDs by separating keys from values,
keeping only the keys in the LSM-tree and the values in a separate log file on SSD devices. With this
design, the LSM-Tree generated by WiscKey is much smaller than that of LevelDB when the number of
KV key pairs is fixed. Thus, WiscKey can substantially reduce the write amplification. However, this
merit is greatly compromised when storing massive small data since the size of values relative to the
keys in the proportion is not that large. What more serious is that the large number of pointers (to value)
occupy most of the storage space.

For the storage of large volume of small data, LSM-trie is advocated, which exploits a trie structure
and a “sub-level” linear growth pattern in compaction to greatly alleviate its write amplification problem.
LSM-trie exploits only linear growth pattern at the fifth level (i.e., Level4), most of the KV-items are
stored at this last level for a large store, especially for many terabytes. However, LSM-trie uses a serial
mode to search data from the first four levels (i.e., Level0-Levle3) to the last level (i.e., Level4), as such
there is still a lot of rooms for further improvements in terms of random read performance. We show a
more detailed analysis later (see Section 2.2).
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To improve the random read performance of the LSM-trie, we change its search process by intro-
ducing parallel search among Level0-Level3 and Level4. Our experiments show that the random read
performance can be improved up to 98.35% (71.55% on average), compared with the original LSM-
trie. As Section 4.1 shows, the improved LSM-trie can obtain better read performance than its original
across a wide range of workloads. Nonetheless, this optimization does come at a cost–we serve one
read request by using two threads. Although our test results (Section 4.2) demonstrate that the effects
are small and acceptable, a large number of intensive reads may consume most of CPU resources. As
such, our optimization might be more practical on multi-core platform and beneficial to the applications
of LSM-tree-based KV in various latency sensitive services such as those in location-based services
(LBS) [25, 22] and online gaming [21], where the efficient processing of spatial-temporal workloads and
fast generating of suitable game scenarios are highly desired.

The remainder of the paper is organized as follows: Section 2 overviews LSM-trie, our motivation,
and the related work. Section 3 describes the overall design of the improved LSM-trie. Section 4 presents
the evaluation results, and Section 5 concludes the paper.

2 Background and Motivation

2.1 LSM-trie
An LSM-tree (Log-Struct Merge-tree) is a persistent structure capable of efficient indexing for Key-
Value store with a high rate of inserts and deletes [23]. To this end, it defers and batches data writes
into large chunks in memory, fully using the characteristics of higher sequential write bandwidth than
random writes on hard disk. When reaching a specified threshold, the data blocks will be written to disk
sequentially. Comparing with the traditional B-Tree, the LSM-tree can make greater improvements on
data writes. However, there still exist challenges in reducing the write amplification during the LSM-tree
compaction [30].

LSM-trie [30] uses trie structure to organize the keys and reduces the write amplification by an order
of magnitude for LSM-tree-based KV systems. Since trie is not a balanced structure, the LSM-trie-
based KV store uses a SHA1-generated 160 bit hashkey, which determines the location of the KV item,
to guarantee a uniform distribution of the KV items at each (sub)-level, regardless of the distribution of
the original keys. LSM-trie usually has 5 levels (e.g., Level0-Level4). The Bloom Filter [7] for Level0-
Level3 are all in memory, while for Level4, the Bloom Filter and the data are stored in SSD. All the
Table-Containers of the same depth in trie constitute a level in the trie structure, which is equivalent to a
level in LevelDB. Each container has a pile of HTables, a hash-based KV-item organization. A trie level
consists of a number of HTable piles. All Htables at the same position of the piles of a trie level constitute
a sub-level (total 8 sub-levels in each level) of the trie, which corresponds to a sub-level in LevelDB. As
each KV item is also identified by a binary (i.e., hashkey), its location at a certain level is determined by
matching the hashkey’s prefix to the identity of a node at that level (see Fig. 1). This matching exhibits a
linear (for a new sub-level at each level) or an exponential (for a new level) growth pattern, which avoids
the lower level data involved in the compaction operation, so the LSM-trie solves the write amplification
problem. Suppose a hashkey of a KV item is 101011100010..., each 3 bits determines a Table-Container,
then the KV item will be stored in the Level1 6th Table-Container, according to the initial 3 bits ’101’.
Similarly, when the data is merged into Level2, the KV item will be located in a new Table-Container,
according to the next 3 bits ’011’.

2.2 Motivation
Since the LSM-tree divides all the data into many small data sets, and each random lookup operation has
to query the data sets in order, the read speed of the LSM-tree-based KV stores is in general far lower
than the write speed. Thus, the random lookup performance will be poor when the number of items are
ultra-large. LSM-trie also has the same problem. In order to ensure that the acquired data is the latest
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Figure 1: Architecture of LSM-trie.

version, LSM-trie needs to search the data set at different levels one by one, which might take a lot of
unnecessary time. For example, suppose the target data is located at Level4, the search for Level0-Level3
will spend a lot of unnecessary time. Fig. 2 and 3 show the comparisons between the average time to
complete a search at Level0-Level3, and the average time to complete a search at Level4 in two different
memory conditions (32GB and 4GB). EUNI denotes the data is subject to uniform distribution and EZIP
to Zipfian distribution, respectively. The value size of the KV items is 100 bytes and the key size is 16
bytes. It is worthwhile to point out that the red dotted line indicates that Level4 begins to store data when
the volume of data of the KV pairs reach 1.2 billion.
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Figure 2: Level0-Level3 and Level4 search time with 32GB memory.

As shown in Fig. 2, when the memory size is 32GB, the average time to complete a search at Level0-
Level3 and at Level4 with the Zipfian distribution is similar, and when the data is subject to the uniform
distribution, the average time to complete a Level4 search is higher than that at Level0-Level3.
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Figure 3: Level0-Level3 and Level4 search time with 4GB memory.

As shown in Fig. 3, when the memory size is 4GB, the average time to complete a search at Level0-
Level3 is longer than the other three cases (these three cases spend almost similar time).

As shown from the above two test results, whether the memory size is 4GB or 32GB, when the data
is subject to the Zipfian distribution, they spend almost the same amount of time to complete a search
at Level0-Level3 and at Level4. In contrast, when the data is uniformly distributed, in the case of 32GB
memory, the search time at Level4 is slightly longer than that at Level0-Level3, while in the case of
4GB memory, the search time for Level0-Level3 is much longer than that at Level4. The main reason
of this phenomenon is the Bloom Filters for Level0-Level3 are centrally stored in memory, so when the
memory is sufficient, it requires only an SSD read operation (for the target); otherwise, when the Bloom
Filters for Level0-Level3 cannot be completely stored in the memory, the data query time is longer jitter
phenomenon (given the data is subject to uniform distribution). But the lookup operation at Level4 is
always two SSD reads, so its time is relatively stable.

The prototyped LSM-trie has just 5 levels, and uses 32MB HTables with an amplification factor of 8.
For the first four levels, the LSM-trie uses both linear and exponential growth patterns, that is, suppose
each level consists of 8 sub-levels, then 256MB for Level0, 2, 048MB for Level1, 16, 384MB for Level2,
and 131, 072MB for Level3, the total data size of the first four levels is around 146.5GB. However, when
the amount of data at Level4 reaches 1TB with one sub-level (total 8 such sub-levels) that has a capacity
of 128GB, it can reach up to 10TB with 80 such sub-levels, according to the linear growth pattern of
LSM-trie. So most of the KV items (10TB) are stored at the LSM-trie Level4 (in contrast to 146.5GB at
the first four levels). The large probability of search operation falls at Level4 due to the serious imbalance
in the data distribution. The LSM-trie serial searches (every search operation starts at the first four levels
and ends at the fifth level) spend unnecessary time on searching Level0-Level3 if the KV item is not at
Level0-Level3.

2.3 Related Work
In order to improve the performance of random read, previous research focuses on how to build the index
to facilitate the data access. For example, LevelDB [12] adds index and Bloom Filter. By adding the
index and combining with the ordered arrangement of datasets, LevelDB can quickly locate a block, to
which the lookup key belongs, avoiding the accesses to the dataset one by one. And the use of Bloom
Filter can judge if a query key exists in a block on the basis of the located block. SILT [19] optimizes
the read performance by reducing the amount of metadata, it reduces the number of levels, and uses only
two levels of the structure to store the data, and thus, has fairly high read performance. However, the
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Table 1: Related studies on the performance of random reads
Method Storage system Advantages Disadvantages
Internal index LevelDB [12] Reduce disk access times Internal metadata is ver-

bose
Hash index FAWN [3],

FlashStore [13],
BufferHash [2],
SkimpyStash [14]

Reduce disk access times Require a large amount of
memory space

fractaltree index TokuDB [9] [6] Fast index merging Require a large amount of
memory space

HB+-trie ForestDB [1] Small overhead of storage
space

Only index longer key

Reduce the amount
of metadata

SILT [19], bLSM
[27]

High speed & Small space
cost

Serious write amplifica-
tion

Using hardware
features

WiscKey [20],
DIDACache [28],
FloDB [5]

Make full use of the underly-
ing hardware features

Require hardware techni-
cal support

number of levels is too small, making it particularly serious for write amplification problems. In contrast,
WiscKey [20] adopts another idea on this issue, which uses the multi-channel features of SSD to speed
up the LSM-Tree lookups by means of parallel lookups.

There are many other types of KV storage systems to improve the read performance [3, 13, 14, 2].
FAWN [3] stores the KV pairs in a log file in SSD, which can only be appended, and the system maintains
a hash table in memory to enhance the speed of data lookups. FlashStore [13] and SkimpyStash [14]
also adopt the the idea of FAWN, but both perform some optimization on the hash table in memory.
Specifically, FlashStore leverages the Cuckoo [24] hash for memory managements while SkimpyStash
transfers part of index in memory to SSD. Unlike the discussed systems, BufferHash [2] uses multiple
memory hash tables and establishes Bloom Filter for each hash table to facilitate the searches. TokuDB
[9, 6] is based on the fractaltree index, which updates the data in the internal nodes, the data in node is
unordered, and the system requires to maintain the large index in memory.

Again, SILT [19] is a partial in-memory key-value store system, which is organized by a three-tier
indexing model: LogStore, HashStore, and Sorted-Store. The average size of the memory footprints per
document increases from LogStore to HashStore, and then to SortedStore, while the capacity increases in
reverse order. When the number of entries in HashStore exceeds a pre-defined threshold, the entries are
merged into SortedStore, a trie-based structure. Note that it is impossible to partially update an entry in
SortedStore, thus the merge operation from HashStore to SortedStore always involves a full revision of
the entire index. bLSM [27] improves the overall read performance of LSM-trees by adopting Bloom fil-
ters and suggests a new compaction scheduler called Spring and Gear, to bound the write latency without
impacting the overall throughput. ForestDB [1] uses HB+-trie to index long keys, effectively improv-
ing the read performance and reducing the space overhead. Table 1 summarizes the above mentioned
systems and methods, as well as their advantages and disadvantages.

In contrast to the previous studies, we improved the read performance of the LSM-trie by changing
its serial search to parallel search, employing two threads to simultaneously search at the last level and
other levels, respectively.
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3 Design and Implementation
As discussed in Section 2.2, the searches at Level0-Level3 and at Level4 roughly spent the same amount
of time for random lookup operation. In this section, we propose to use parallel search in the LSM-trie
to improve the random lookup performance.

3.1 Design space
We propose a solution that creates two threads for a random lookup, one for Level0-Level3 and the other
for Level4. The rationale behind this choice that we only use two threads, instead of three or more,
is that the amount of search time spent at Level0 to Level3 and at Level4 are almost the same, and in
the meanwhile, the probability of target data at Level4 is fairly high. On the other hand, the proposed
parallel search is sequential, which is different from the multi-threads random search in the original
LSM-trie where each thread services a separate random search request, rather than the same request as
in our case. As such, compared to two threads, using more search threads will only waste more resources
without obvious performance gains. To validate our choice, we first analyze why multiple threads are
not effective and then show two search threads are sufficient for one request.

Multiple threads are ineffective for one request: Intuitively, we can employ multiple threads, one
for each level, to speedup the search process serve a request. As the test results shown in Fig. 2 and 3
in Section 2.2, the searches at Level0-Level3 and at Level4 spend roughly the same amount of time in a
random lookup operation. If the target data is at Level4, LSM-trie needs two SSD read operations, one
is for the Bloom Filter at Level4, and the other for the target data page. Otherwise, if the target data is
at Level0-Level3 and the memory size is assumed to fully meet the demands of all the Bloom Filters at
Level0-Level3, the completion of a random search requires only one SSD read operation. Since LSM-trie
has only 5 levels, it can use up to 5 lookup threads to serve a random lookup request, that is, each thread
will service a lookup for a corresponding level. The Bloom Filters for Level0-Level3 are centrally stored
in memory, there are three solutions if each level needs a thread for searching at the first four levels:

Solution1: When the target key for a random search request is at Level0-Level3, only one thread
executes a SSD read operation, the other three (search) threads, if available, execute the judge operation
of Bloom Filter in memory. In the memory, a judge operation of Bloom Filter is shorter than that of read
operation in SSD, so the three threads will be finished in a quite short period of time. Compared to only
one thread search for Level0-Level3, the above mentioned method cannot reduce the search time, rather
it could spend more time due to the preemption of system resources. This solution is low cost-effective.

Solution2: When the target key for a random search request is at Level4, because the log-appending
in the LSM-trie, a search thread for Level0-Level3 only needs 4 judge operations for the Bloom Filters
for Level0-Level3 in memory. Fig. 2 and Fig. 3 in Section 2.2 show the time spent in the 4 judge
operations is almost the same to that of a read operation in SSD. However, the system needs two read
operations in SSD for Level4, required a long time, so in this case, a single thread is sufficient for the
search at Level0-Level3, which needs less system resources.

Solution3: Finally, when the target of a random lookup request does not exist, a read operation in
SSD is also required to read the Bloom Filter at Level4, so this case is the same as Solution2.

Two search threads is sufficient for one request: Considering the above three solutions, it is clear
that using only one thread for Level0-Level3 is most reasonable. In the following, we analyze why the
proposed system uses another search thread for Level4. There are three cases.

Case1: When the target of a random search request is at Level0-Level3, the search thread for Level0-
Level3 needs to judge for the Bloom Filter in memory, and then executes a read operation in SSD,
while the search thread for Level4 requires only a read operation from SSD to obtain the Bloom Filter
for Level4. The former is longer than the latter in the search time. In this case, the search thread for
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Level4 does not elongate the search time, but in the meantime, the system does not gain any performance
optimization.

Case2: When the target of random search request is made at Level4, the required time could be
significantly longer than that for Level0-Level3 because the search thread for Level4 needs two read
operations from the SSD. The proposed system adopts one search thread for Level4, which skips the
searches for Level0-Level3, saving the time of 4 judges from the Bloom Filter for Level0-Level3. Fig.
2 and 3 in Section 2.2 show that we save time about a read operation from the SSD. In this case, the
method can greatly improve the system performance for random reads.

Case3: When the target of random lookup request does not exist, a read operation in SSD is also
required to read the Bloom Filter for Level4, so the performance will be improved in the same way as
Case2. Given the above three cases, the proposed system adopts an additional search thread for Level4,
which improves the system’s random lookup performance, and with the increasing amount of data at
Level4, the performance optimization effects should be more obvious.

3.2 Parallel search algorithms
Based on the above description, in this section, we present our improved search process (compared with
the LSM-trie) as shown in Fig. 4. In the search, there are two search threads, one for the first four levels
(Level0-Level3) and the other for the last level (Level4).

Level0-Level3 search

Start

 Key may exist in 
Leveli(0,1,2,3) by   

using BF?

End

No

Yes

Search in 
Leveli(0,1,2,3)

Exist key

Level0-Level3 search 
is finished?

Level4 search

 Key may exist in 
Level4  by  using 

BF?

Search in Level4

Exist key

Select the 
new vesion

No Yes    

Yes

No 

No

Yes
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Figure 4: Parallel search process.

LSM-trie adopts a log-appending mode, it does not support in-place-update. Specifically, the data
update is directly performed as new data is written—the old version of the data is replaced by a new
version during the compact operation. Therefore, there may be multiple KV item versions of the same
key in the LSM-trie, and the latest version always exists at the lower level. This results in that the
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system cannot end up with the search thread for Level0-Level3 when the search thread for Level4 finishes
quickly. We thus design three different choices for the parallel searches at Level0-Level3 and at Level4
as they usually finish at different times.

The lookup result is returned directly when the search for Level0-Level3 is finished with a non-null
result prior to the search for Level4. This is because the version of data at Level0-Level3 is always newer
than that at Level4, regardless of whether the result from Leve4 is NULL or not.

If the search result from Level0-Level3 is first arrived, but having a value of NULL, the system needs
to wait for the search result from Level4, and determines the required return value, according to the
results of the search thread.

When the search thread at Level4 is completed first, the system has to wait for the completion of the
search thread for Level0-Level3, regardless of whether or not the result of the search thread for Level4 is
NULL. As the data version at Level0-Level3 is newer than that at Level4, there may be a new version of
the data in Level0-Level3.

In our implementation, we create the two search threads from the main thread, and the property of
the two searches is set to PTHREAD_CREATE_JOINABLE as shown in Algorithm1, where func1 is a
function pointer pointing to the read_th1 function, which is designed to search at Level0-Level3, and
func2 is a function pointer to a function read_th2, which is responsible for the search for Level4.

pthread_t ths[2];
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
pthread_create(&(ths[1]), &attr, func2, arg);
pthread_create(&(ths[0]), &attr, func1, arg);
for (uint64_t j ← 0; j < 2; j ++) do
pthread_join(ths[j], NULL);

end for
Algorithm 1: conc_fork_reduce

The proposed system serves a random read request in the following steps:

Step1: thread read_th1 generates a random search request search_key, wake-ups thread read_th2 and
calls function db_lookup_Level0_Level3 to lookup level by level from Level0 to Level3;

Step2: after thread read_th2 is awakened, call db_lookup_Level4 to lookup at Level4;
Step3: thread read_th1 completes its lookup, and then returns result KV1;
Step4: thread read_th2 finishes its lookup, and then returns result KV2;
Step5: to determine whether the test time is used up: If yes then jump out of the random lookup test,

otherwise, jump to (Step1) to perform the next search.
The search algorithms of read_th1() for Level0-Level3 and read_th2() for Level4 are shown in Algo-

rithm2 and Algorithm3, respectively, where db_lookup_Level0_Level3(search_key) and db_lookup_Level4(search_key)
are two internal subroutines to lookup search_key from Level0-Level3 and Level4, according to the pro-
cedure implemented in LSM-Trie.
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Algorithm2 read_th1
repeat
search_key ← generate_search_key();
read_th2_start← true;
pthread_mutex_lock(&mutex);
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);
KV_L03← db_lookup_Level0_Level3(search_key);
t← debug_time_usec();
search_num++;

until t ≥ time_finish
pthread_exit(NULL);

Algorithm3 read_th2
repeat
pthread_mutex_lock(&mutex);
whileread_th2_start do
pthread_cond_wait(&cond,&mutex);

end while
pthread_mutex_unlock(&mutex);
KV_L4← db_lookup_Level4(search_key);
t← debug_time_usec();

until t ≥ time_finish
pthread_exit(NULL);
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4 Experiments and Evaluation
In this section, we present and analyze our experimental results on the random lookups of the improved
LSM-trie. We also make some additional testing to demonstrate that our optimization does not bring
serious adverse effects.

We used Yahoo’s YCSB [11] benchmark suite to generate read and write requests. The average value
size of the KV items is 100 bytes and the key size is 64 bits. In order to facilitate the description, we used
“LSM-trie-opt” and “LSM-trie-ori” to represent the improved LSM-trie system and the original LSM-
trie, respectively, in the rest of the section. As with the original LSM-trie experiments, we still used
the keys that are randomly generated in a uniform form as it represents the least locality and minimal
overwrites in the workloads. For the access pattern (i.e., read/write), we tested the uniform (EUNI) and
Zipfian key distribution (EZIP), respectively. The software and hardware configurations are shown in
Table 2:

Table 2: Software and hardware configurations
CPU Intel Xeon E5-2620
Memory DDR3 4/32GB
Operating system Ubuntu 16.04.1
Kernel version Linux-3.6.11
Solid-state disk Intel SSDSC2BP480G4
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Figure 5: Random lookup performance with 4GB memory.

The proposed system adopts the parallel search to avoid the longer search latency from Level0-Level3
to Level4. In these random read tests for both LSM-trie-opt and LSM-trie-ori, the data sets are subject to
the uniform distribution (EUNI) and the Zipfian distribution (EZIP), respectively. During these random
read tests, a random read test is launched for every added 20 million items and recorded the success (to
return result) times in 30 seconds, and then calculate the average value. In Fig. 5, the red dotted line
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Figure 6: Random lookup performance with 32GB memory.

represents the beginning amount of 1.2 billion KV items, and when that amount is reached, Level4 begins
to store the data. According to the proposed parallel search, LSM-trie-opt outperforms LSM-trie-ori in
random reads for both distributions.

Fig. 5 shows the comparison results between the performance of random reads by the LSM-trie-opt
and by the LSM-trie-ori when the memory is 4GB. As shown in the figure, the random read performance
decreases sharply at the earlier stage when the data are uniform distribution, the reason is that memory
size is too small to store all the Level0-Level3 Bloom Filters. Also, for these random reads, a large
number of pages are swapped between disk and memory, causing jittering overhead. The read perfor-
mance is relatively stable after the rapid decline. And moreover, after 1.2 billion items, the random read
performance of LSM-trie-opt has been improved over LSM-trie-ori, and this performance is improved
gradually after 2 billion items.

In comparison, when the data are subject to the Zipfian distribution, in the early stage, the random
read performance of LSM-trie-ori and LSM-trie-opt do not exhibit a sharp decline as in the uniform
test. The main reason is part of front and back data are the same for the Zipfian distribution, these
search data are confined to a small portion of the data, as such the number of page replacement between
disk and memory with respect to the uniform distribution is greatly reduced. At the same time, the test
shows the LSM-trie-opt performance improvement relative to the uniform distribution is obvious, but
the performance is not stable, the random read performance after optimization are volatile, mainly due
to the background compaction operations, which consume a large amount of CPU and IO resources.

As shown in Fig. 6, in the earlier period, two kinds of data distribution show a downward trend.
For uniform distribution, the declining degree of the random read performance is significantly lower
than that of 4GB memory, which confirms our earlier analysis about the sharp decline of the random
read performance for 4GB memory. In our experiments, 1.2 billion items can be looked as a fluctuation
threshold. Before this fluctuation threshold, the test results of the two data distributions show a down-
ward trend and reached a minimum at the fluctuation threshold, and the performance of LSM-trie-opt is
not improved relative to LSM-trie-ori. The reason is that at this fluctuation threshold, the amount of data
in the Level0-Level3 and the memory associated Bloom Filter are saturated. And after this fluctuation
threshold, Level4 begin to store data, the thread responsible for the search at Level4 begin to work, and
the optimization is obvious, and the random read performance is improved up to 98.35% (71.55% in av-
erage), compared with the original LSM-trie. Similarly, when the test data obeys the Zipfian distribution,
the random read performance of LSM-trie-opt is not smooth, and the reason is the same as the case of
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4GB memory, which is caused by the compaction operation in the background.
In summary, the proposed parallel search greatly improves the random lookup performance of LSM-

trie regardless of the memory size. Apart from the above measured throughput, we also tested the latency
of operations. In Section 2.2, Fig. 2 and 3 use the average latency metric. But here, we adopted another
metric, high latency searches are measured at the 95th, 99th, and 99.9th percentiles, respectively (i.e.,
the observed latency is worse than 95%, 99%, or 99.9% of all the latencies), and we tried to show the
worst random read performance.

To this end, we list the 95th percentile for the different distributions in Fig. 7 and 8. Fig. 7 shows
the time required with 4GB memory when 95% of the data searches are completed. No matter how
the data is distributed, either uniform distribution or Zipfian distribution, the LSM-trie-opt needs shorter
time than the LSM-trie-ori for the data searching when 1.2 billion items are reached. When the data
items reach 2 billions, the random search time required for the LSM-trie-opt is more obviously shorter
than that of the LSM-trie-ori. Moreover, the performance of Zipfian distribution is more obvious than
that of uniform distribution in data searching. Also, Fig. 7 shows both the LSM-trie-opt and the LSM-
trie-ori have larger fluctuations of search time for the two data distributions. This phenomenon is mainly
due to the limited memory space. If the random read is executed simultaneously with the compaction
operations in background at the same time, the memory limitation would obviously become a constraint
for the read performance.
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Figure 7: Read latencies with 4GB memory (95th percentile).

In Fig. 8, when the number of items is around 0.5 billion, the (95%) search completion time of both
the LSM-trie-opt and the LSM-trie-ori for the two kinds of data distributions are longer than that of the
fluctuation threshold, the main reason is the compaction operations at the background, that is, Level2
data are merged to Level3, which affects the random read performance. This phenomenon also confirms
the results of the sequential read tests in Section 2.2, where the performance of sequential read for 0.5
billion items is lower than that of 1 billion items. After the number of items reaches 2.5 billions, the
search time required for the LSM-trie-opt is significantly lower than that of the LSM-trie-ori. This is
also consistent with the test results shown in Fig. 6. Fig. 8 also reveals that the time fluctuation degree
is much lower because, compared to Fig. 7, the 32GB memory space is sufficient for this test scenario.
And as storage capacity continues to increase, the time required to search is further shortened.

Also, we tested the random read latency of 99th percentile and 99.9th percentile, respectively. Table
3 briefly describes the test results when the memory is 32GB and storage capacity is 5 billions. In
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Figure 8: Read latencies with 32GB memory (95th percentile).

summary, these experiments show that the improved LSM-trie ensures a consistently optimized and
low-latency performance.

Table 3: Random read latency
99% 99% 99.9% 99.9%
(EUNI) (EZIP) (EUNI) (EZIP)

LSM-trie-opt 644us 460us 1667us 655us
LSM-trie-ori 803us 588us 2298us 941us
Speedup 1.25 1.28 1.38 1.44

4.2 Impact on CPU Workload
We used multi-threads to improve the read performance of the LSM-trie, so it brings additional work-
loads to both CPU and I/O. To understand their performance effects on the CPU and I/O workloads,
we showed the related experimental results in Table 4. When testing the I/O workloads, the worst case
should be taken into account, namely all the data of Level0-Level4 stored in SSD, rather than the sepa-
rated data at Level0-Level3 and Level4.

In the evaluation, we tested the LSM-trie-opt and the LSM-trie-ori systems with real-time monitoring
by using iostat command. Table 4 lists the experimental results of 40 time points, including the average
values. In order to have the accurate experimental results on the I/O read workloads, the experimental
results should completely avoid the impact of writes on the I/O workloads, so the data of w/s and wKB/s
options have to be approached to zero or even equal to zero. As with the I/O case, the experimental
results on CPU workloads are listed for 40 time points, these results are the average value of samples.
In the test, 32 thread lookups are performed, each of 2 threads serving as a group. Not surprisingly, both
the I/O workloads and the CPU workloads are acceptable with the introduction of multi-threads in the
process of read operations.

In Table 4, r/s is the number of read requests issued to device per second while avgqu-sz is the
average queue length of the requests issued to device. Obviously, the smaller the value of avgqu-sz, the
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Table 4: Experimental results of different I/O workloads
iostat -d -x -k 2 > IO_test.txt

Items r/s avgqu-sz await r_await svctm %util
Results 26483 5.88 0.232ms 0.232ms 0.0364ms 89.8

better the performance is. In this test, the value is 5.88, indicating that the I/O requests are processed
quickly. await is the average time for the I/O requests issued to the device to be served, which includes
the time spent by the requests in the queue and the time spent to service the requests. If the value of await
is greater than 5ms, the performance of the whole system could be noticely low. In our test, the value
is less than 5ms, indicating extremely fast response time. r_await is the average time for the I/O read
requests and svctm is the average service time for the I/O requests issued to device. In our experiments,
the value of svctm approaches to the value of await, implying there is almost no waiting overhead and
good SSD performance. %util is the percentage of CPU time during which the I/O requests are issued
to device (bandwidth utilization for the device). This format indicates the busyness level of SSD, whose
saturation occurs when this value is close to 100%. Our test results reveal that the SSD is not fully
running in the experiments.

Table 5: Experimental results of CPU workloads
mpstat 2 > CPU_test.txt

Items %usr %sys %iowait %irq %idle
Results 11.23 8.81 25.88 1.33 52.75

Apart from the above I/O workload tests, we also tested the workloads of CPU using mpstat com-
mand. This test is made to show that the parallel search scheme does not consume lots of the CPU
resources, which implies that the CPU resources are unlikely a performance bottleneck of the system.

The experiments are run on a server with two 6-core processors. As with the previous experiments,
we selected 40 time points and calculated their average value in the test whose results are shown in Table
5. The parameters in the table indicate the percentage of CPU occupied over a period of time where
%iowait and %idle shows the percentage of time that the CPUs are idle during which the system has or
does not have the outstanding SSD I/O requests. In our test, the value of %idle is 52.75, indicating that
the parallel lookups do not take up lots of the CPU resources.

The test results of the above two groups of tests and analysis show that for the read process, the
change from the original single thread processing to the improved 2-thread processing does not take up
serious I/O and CPU resources, and the parallel search scheme does not occupy lots of I/O and CPU
resources, preventing them from becoming the system performance bottleneck.

5 Conclusion
Key-Value store has become a fundamental platform for the storage of big data. The linear and ex-
ponential growth patterns of LSM-trie reduces the write amplification, but introduces a huge number of
sub-levels at the last level, so the last level holds a large proportion of KV items, leading to imbalance for
read efficiency. To address this problem, we focused squarely on the improvements of LSM-trie for ran-
dom read operations by using a parallel search in two threads, We observed that the improved LSM-trie
achieves significantly faster throughput, compared to the original LSM-trie over most workloads.

Since it uses hashed key to guarantee a uniform distribution of KV items, LSM-trie can enable
distinct key ranges in compaction, but it fails to support range scan. On the other hand, given that
a trie is not a typical balanced structure, LSM-trie could be unnecessarily skewed under specific key
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patterns. To address these issues, we plan to propose a new key organization scheme, instead of using
the hashedkey, so that the range scan is possible.
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