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Abstract

Social distancing is a matter of individuals’ choices as well as of regulation, and

regulation arguably responds to those choices. We analyse weekly panel data on such

behaviour for English Upper Tier Local Authorities (UTLAs) from March to July 2020,

paying attention to the influence of poverty, as measured by free school meals provision.

Panel regressions suggest that, although more stringent regulation and slightly lagged

local cases of infection increase social distancing, both effects are weaker in UTLAs with

higher levels of poverty. Thus motivated, we develop a two-class (rich/poor) model, in

which a Nash non-cooperative equilibrium arises from individual choices in a regulatory

regime with penalties for non-compliance. The model yields results in keeping with the

empirical findings, indicating the desirability of generous measures to furlough workers

in low-paid jobs as a complement to the stringency of general regulation.
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1 Introduction

It is now well known that Covid-19 infections and fatalities can be lowered by social

distancing. Different countries have adopted different measures. In a majority, there

is mandatory social distancing (including lockdowns), while in a few, such as Sweden,

Japan and in some US states, social distancing is left to people’s choices. A number of

studies have already indicated that social distancing is partly endogenous, in the sense

that it responds, not just to policy – whether advisory or by diktat – but also voluntarily

to the perceived threat (e.g. Toxvaerd (2020), Chudik et al. (2020)).

We address three questions, paying particular attention to inequality: (i) What are

the private incentives for voluntary social distancing when people worry about infection

and the loss of income? If people gauge their own private costs and benefits, what dic-

tates their privately optimal choice of social distance? (ii) If the government comes up

with distancing rules, with credible means of enforcement, what effect will they have

on people’s social distancing behaviour? Who are likely to respond more to these mea-

sures, poor or rich? (iii) If their responses differ, how do the aggregate benefits of other

measures to reduce the ensuing costs of infection depend on the share of the poor in the

whole population and their costs of voluntary distancing?

There is a rapidly growing literature on modelling Covid economies. Many of these

models integrate epidemiological SIR models with DSGE, focusing on the dynamics

of infection (see Section 2 for a brief survey). Our study is motivated by some recent

evidence on infections and social distancing in England. We have daily COVID test

statistics disaggregated by Upper Tier Local Authority (UTLA), which we are able to

combine with data on social distancing from Google and regional poverty, as measured

by free school meals. Our panel regression results indicate that greater stringency is

associated with stronger social distancing; but the poor still distance less than the rich.

Motivated by these empirical results, we develop a simple static microeconomic

model of social distancing in a two-class society of rich and poor, who differ in their
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respective costs of social distancing. A Nash equilibrium is analyzed, wherein agents

may, in effect, free ride on others’ choices when deciding on their own social distanc-

ing behaviour. Agents choose social distancing by minimizing the voluntary cost of

distancing plus the expected costs of infection. Two scenarios are considered: (i) no

legal enforcement of minimum social distancing, and (ii) a minimum is enforced, with a

penalty for non-compliance. Our main results are, first, that the poor distance less than

the rich, and second, that aggregate distancing falls not only with the voluntary costs of

distancing faced by the poor, but also with the share of the poor in the population, de-

spite the endogenous choices of the rich. The overall effect of this distancing behaviour

is a higher incidence of infections. Thirdly, if a mandated minimum social distancing

is imposed with a credible penalty, all agents respond by distancing more, but the poor

relatively less. These results are consistent with the chief empirical findings for England.

Other measures to combat the pandemic include the development of a fairly effica-

cious vaccine and improved treatment of those infected. If social distancing is endoge-

nous, the benefits yielded by any package of such measures may well depend on the cost

of social distancing faced by the poor and their share in the population. The model yields

the expected result that the benefits yielded by a given improvement in the package of

measures employed rise with the said distancing cost. The same result holds for the pop-

ulation share, provided the value of a parameter reflecting the costs of infection for the

rich is sufficiently close to that of the poor.

The paper is organized as follows. In the next section, Section 2, we summarise

some of the developing literature on the Covid crisis and the relevant implications. In

Section 3 we report our key empirical findings. Section 4 lays out the theoretical model,

followed by the derivation of the main results. These are then simulated numerically in

Section 5. Finally, we conclude the paper with a brief discussion.

2 Literature on social distancing, poverty and the pandemic

To place our paper in context: while a number of economists have always had an interest

in the economics of communicable disease in poor communities (Malaney et al., 2004),

the COVID-19 pandemic has spurred a good deal of research, and undoubtedly led to the
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development of much wider and deeper understanding of the issues (albeit much not yet

published at journal level). We identify certain important strands.

First, a number of studies have started from the S-I-R (Susceptible-Infected-Resistant)

model, central to the epidemiological approach to disease spread, adapting it to take ac-

count of behavioural changes in response to the pandemic - we can essentially term

this ‘endogenous social distancing’. Critical theoretical studies on this include Toxvaerd

(2020). Eichenbaum et al. (2020) , Farboodi et al. (2020). Getachew (2020) uses a

model of endogenous social distancing to integrate a SIR model into a DSGE frame-

work. Crucially, empirical evidence has also been emerging of the relevance of treating

social distancing as endogenous: A central study being Chudik et al. (2020)’s study of

social distancing in China in the early stages of the epidemic there, which indicates that

people do indeed respond to disease prevalence, albeit only once the disease has become

widespread.

In contrast to this first strand of dynamic modelling, we need to consider a second

strand of papers, which deals with the link between the vulnerability to disease and

poverty. This is not novel to COVID: it has been well-known in the case of malaria

(Malaney et al., 2004; Russel, 2004). In the early stages of COVID-19, studies sug-

gested that wealthier areas were harder hit (Mukherji and Mukherji, 2020), although

even at this stage greater inequality (Gini coefficient) implied more disease incidence

and deaths. Preliminary U.S. county level analysis suggested existing rates of poverty,

disease and the presence of ethnic minorities were all associated with higher infection

rates (Abedi et al., 2020). Against this, enforced social distancing also has very strong

differential effects upon the poor compared to the rich (Palomino et al., 2020; Bonac-

corsi et al., 2020). Glover et al. (2020) also stress the important interaction between

virus containment policy and differential impact on poorer social groups. Chan (2020)

examines the the geography of social distancing in Canada using Facebook data and

finds that people living closely together in apartment buildings find it difficult to stay

home and maintain a safe social distance. This finding also tallies with Papageorge et al.

(2006), who find that people living in these conditions are unlikely to engage in safe

social distancing.

Our paper is of interest because it aims at combining the two strands mentioned
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above: endogenous social distancing (albeit with less emphasis in this case on the dy-

namics) and the interaction of the disease with, and implications for poverty and inequal-

ity. Our results provide policy implications about the stringency of social distancing

measures, and as such can be seen as complementing studies such as Dergiades et al.

(2020), who use cross-country data to investigate the effectiveness of government pol-

icy stringency. In this regard, we are suggesting that, since poor and rich may respond

differently, policy needs also to take this into account.

As such, our work can be seen as of interest to the United Nations’ concerns on

COVID-19, as summarised by the Secretary General: "We must come to the aid of the

ultra-vulnerable millions upon millions of people who are least able to protect them-

selves. This is a matter of basic human solidarity. It is also crucial for combating the

virus. This is the moment to step up for the vulnerable." - U.N. Secretary General Anto-

nio Guterres, 23 March 2020.1

Since the thrust of the paper is to understand the differential effects of social distanc-

ing policies on the rich and the poor, an important qualification is needed concerning

how the costs of infection are treated in the analysis. When life-and-death matters are

involved, difficult ethical problems arise when formulating policy. Covid-19 fatality

rates are under 1 per cent. This suggests that it is defensible to appeal to the statistical

value of a life, as, for example, in the closing discussion in Goldstein and Lee (2020)

and more centrally in Holden (2020). If we place the same monetary value on pain and

suffering by rich or poor during a bout of infection, fatal or otherwise, then the remaining

difference between the ensuing costs facing rich and poor will arise from differences in

the cost of treatment and the loss of income resulting from a non-fatal bout. The sum

of these components of the so-called cost-of-illness (COI) measure2 is arguably larger

1From the UN DESA’s page on the social impact of COVID.
https://www.un.org /development/desa/dspd/everyone-included-covid-19.html. See also UN (2020)

2Commonly used in calculating the economic burden of a disease, the measure is defined as follows (see,
for example, Malaney et al. [2004]):

COI ≡ Private Medical Costs + Non-Private Medical Costs + Foregone Income + Pain and Suffering.

Medical costs include expenditures on prevention, diagnosis, treatment, transport to medical facilities and, for
the public sector alone, health facilities, medical education and research. These are termed the ‘direct costs’, the
remaining two items, the ‘indirect costs’. ‘Foregone Income’ includes the losses caused by premature mortality.
To give examples for communicable diseases, Malaney et al. (2004), citing studies of Burkino Faso, Chad, the
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for the rich than for the poor, even in a health system such as the UK’s; for the state’s

income replacement programme is proportional up to a cut-off.3 Yet the difference is

likely to be rather small.

3 COVID in England: stylized facts and empirical analysis.

A number of studies cited in Section 2 have already indicated that social distancing is

partly endogenous, in the sense that it responds, not just to policy - whether advisory or

by diktat - but that people also socially distance voluntarily in response to virus threats.

We investigate certain questions empirically: namely, how do the poor differ in terms of

measurable social distancing, and in terms of their responses both to virus threats, and to

central policy stringency. It is already known that death rates are higher among poorer

people, but this may reflect the greater prevalence of other medical conditions among

the poor. Even evidence of greater disease spread among poor communities may reflect

the effects of crowding rather than necessarily of a failure to change behaviour.4 When

it comes to measuring behavioural changes, however, extensive daily data are available

from Google, which are differentiated regionally for some countries. It is these which

we use.

We focus on the case of England, partly because it represents a single regulatory

regime at any one time5, but that regime in fact changed dramatically in mid-March,

as policymakers revised their assessment of the situation. For England (rather than the

whole UK) we have daily COVID test statistics disaggregated by Upper Tier Local Au-

Republic of the Congo and Rwanda in the late 1980s, put the COI of a case of malaria at $9.84, of which only
$1.83 took the form of direct costs. (That elusive item ‘pain and suffering’ was apparently not estimated.) For
seasonal influenza in Germany in the years 2012-2014, Scholz et al. (2019) estimate direct costs at 82.90 Euros
with 576.54 Euros for ‘sick leave’, the latter varying strongly over age groups. Neither premature mortality nor
pain and suffering is mentioned.

3The UK government’s Coronavirus Job Retention Scheme is summarised on
https://www.gov.uk/guidance/claim-for-wages-through-the-coronavirus-job-retention-scheme. Workers
may be furloughed, with the government paying 80% of salary, up to a maximum of £2500 per month.
Employers may or may not make up the difference. Workers on furlough retain normal rights (statutory sick
pay, pensions etc). There is a similar scheme for the self-employed; the government pays up to 80% of the
average monthly profits for the last 3 years, again up to a maximum of £2500 per month. These schemes are
currently expected to end in October.

4The US study by Papageorge et al. (2006) is a useful contribution, however.
5Or rather, did until the government imposed local lockdowns in July, starting in Leicester
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thority (UTLA), which we are able to combine, in particular, with social distancing data

from Google.

3.1 Data sources

Daily and cumulative data on diagnosed cases are presented by English UTLA on the

UK governent’s coronavirus dashboard, 6 along with daily total and cumulative deaths,

although only for England as a whole. We concentrate on data for the period 5 March-25

July, and in fact, since we aggregate local cases weekly (to reduce zeroes) we effectively

start on 12 March.

Figure 1 shows a clear pattern in the initial wave of the infection: taking off in the

middle of March and peaking in early April (the lockdown from 23 March halting and

reversing the growth of the disease with roughly a 3 week delay), and then declining

gradually. Importantly, it also shows considerable heterogeneity across the 83 local au-

thorities at any one time. We drop Leicester from our sample as an outlier, also partly

because it had a local lockdown in July. Figure 1 also shows an outlier in the earlier

stages of the disease - this was Devon, and is also dropped.7

The Blavatnik School at Oxford8 has compiled daily indices of policy stringency for

many countries: we show the UK in Figure 2, alongside a series of French stringency

data from the same source, for comparison.

Google publish daily data on several measures of social distancing, based upon lo-

gins with mobile phones. These have been available online since April 2020 as the

Google Community Mobility Reports.9 In the UK, these are distinguished by Upper

Tier Local Authority (UTLA), although data are aggregate for metropolitan counties.

We concentrate on four of their six series: RESIDENTIAL logins (which increase with

social distancing), WORK logins and TRANSIT logins (which decline with social dis-

tancing) and retail and recreational (RETREC) logins. Although there are clear trends

in social distancing over time across England, there are also significant differences by

6on https://coronavirus.data.gov.uk/category=utlasmap=rate
7Incidentally, despite its salubrious image, Devon has the highest rate of poverty in England, measured by

free school meals. Leicester is 13th out of 83 UTLAs.
8https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
9https://www.google.com/covid19/mobility/
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Figure 1: England:New diagnosed cases per week by local authority. Leicester in red. Devon
in green.

local authority: something which cannot be attributed to differences in national policy

stringency. Hence, as with the UTLA COVID data, we have cross-sectional variation, as

well as variation over time (see Figures 7 and 8 in the Appendix).

3.2 Panel Regression analysis of social distancing

In this section, we estimate behavioural equations for social distancing, focusing on its

response to policy stringency and to disease rates, and the role of local poverty variations

in accounting for differences in the behavioural responses.

We define Xi,j,t as an index of social distancing variable i across UTLA, j, and

time, t. There are four social distancing variables, which we index i = [RESIDENTIAL,

WORK, TRANSIT and RETREC (Retail/Recreational) logins]. We should note that for

RESIDENTIAL logins, an increase (+) indicates increasing social distancing, while for
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Figure 2: Oxford Index of Policy Stringency for the UK in red. France is in blue for compar-
ison.

the other three variables a decrease (-) in the variable indicates greater social distancing.

We wish to estimate these four social distancing variables as functions of national

policy stringency, St, local weekly cases of covid Ij,t, and indices, Pk,j , of local time-

invariant features, k, such as poverty rates (which we proxy by the proportion of children

receiving free school meals) and population density. In addition, we need to incorporate

day of the week and bank holiday dummies, which we denote as Dd,t, where d is the

type of dummy (e.g. bank holiday). Hence we formulate

Xi,j,t = X {St, Ij,t, Pk,j , Dd,t} . (1)

Since the social distancing variables, Xi,j,t can take positive or negative values, it is

not appropriate to use a logarithmic formulation - for simplicity we apply a linear for-

mulation, such as the following, which can be estimated either by ordinary least squares
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or as a random effects (RE) model:

Xi,j,t = αi+βi,1St+βi,2Ij,t+
∑
k

γi,kPk,j+
∑
k

{δi,1,kPkSt + δi,2,kPk,jIj,t}+
∑
d

θi,dDd,t+ui,j,t.

(2)

The day type variables, Dd,t are essentially included as controls. We also interact

these with the other variables (St, Ij,t etc), but again just as controls.

It is also possible to estimate the corresponding fixed effects (FE) model. In the first

instance, this incorporates UTLA-specific errors, εi,j , which imply that time-invariant

UTLA-specific data, such as population density and free school meal uptake have to be

dropped due to multicollinearity. In addition, one can incorporate time-specific fixed

effects or dummies, ηi,t. Note that, if we include these, then we can no longer take

advantage of the variation in time in national policy stringency (since changes in this

were common, over time, to all UTLAs, until the local lockdown in Leicester in July),

or indeed in common (national) time trends in infection rates, although local variations

in infection rates and the interaction terms with UTLA-level socioeconomic variables

remain. Hence the equivalent fixed effects model to Equation 2 is:

Xi,j,t = αi + βi,2Ij,t +
∑
k

{δi,1,kPk,jSt + δi,2,kPk,jIj,t}+ εi,j + ηi,t + ui,j,t. (3)

In general, while statistical tests (Hausman or Sargan-Hansen) often favour the use of

fixed effects, dependent upon the data, these may end up proxying most of the variation

in variables such as disease rates, in which case an OLS or random effects model may

be more informative.

Our tentative hypothesis is not only that greater stringency should raise social dis-

tancing, but also that the effect of this policy would depend on various local fixed effects.

Among these fixed effects, we focus on poverty, which is proxied by free school meals

(fsm). This motivates us to add interaction terms with fsm. We also include interaction

terms with population density as a control. We find that in both RE and FE regressions,

greater stringency has a direct positive effect on social distancing, but this effect is weak-

ened where poverty, as measured by fsm, is more widespread: that is to say, βi1 and δi1
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in Equation 2 have opposite signs, at least for RESIDENTIAL and WORK variables

in Table 1 below. These findings are in keeping with the theoretical results derived in

Section 4.

To review this evidence in some more detail, we examine the data series for social

distancing, focusing on the RESIDENTIAL variable. Figure 7 in the Appendix shows

the scatterplot of UTLA-level data across time: series for the 10 poorest UTLAs (in

terms of free school meals) are shown as lines within the scatterplot. These congregate

towards the lower end of the cross-sectional range at most points during the wave of the

virus: as these values are changes compared to ‘normal’, the indication is that the poorer

districts responded with relatively less change in behaviour. The difference between

the poorest 11 UTLAs (residentialmean7), the 10 least poor (residentialmean1) and a

middle group of 10 can be seen in figure 3a below. This shows the overall pattern of

social distancing, increasing and then falling back, but also that the poorest UTLAs

increased social distancing less than the others. Figure 3b shows the differences between

these lines, indicating that the differences between the richest and middle groupings

was relatively small, but that the poorest grouping socially distanced much less than the

others in April, with this gap narrowing in May and June, as disease rates fell and there

was a slight easing of the lockdown. The differential behaviour of the two differences in

3b should be taken as an indication that relationships between poverty rates and social

distancing may not be linear, an issue which may perhaps merit further investigation.
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Notwithstanding the last point, we start with a linear (rather than loglinear) formu-

lation for tractibility: hence, it makes sense to normalise all RHS variables, by dividing

by their mean values. This means that estimated coefficients are marginal effects at the

mean values of the RHS variables.

Table 1: Panel random and fixed effects regression analysis of the RESIDENTIAL and
WORK variables.

(1) (2) (3) (4) (5) (6)
DEPENDENT VARIABLE RESIDENTIAL RESIDENTIAL RESIDENTIAL WORK WORK WORK
MODEL RE UTLA FEs UTLA and time FE RE UTLA FEs UTLA and time FE
stringency 17.51*** 17.48*** 15.45*** -46.02*** -45.95*** -54.09***

(0.616) (0.614) (0.589) (1.188) (1.187) (0.950)
Weekly cases per capita 4.304*** 4.327*** 0.197 -9.295*** -9.359*** -0.134

(0.313) (0.316) (0.171) (0.793) (0.804) (0.184)
pop density -0.0695 -0.275

(0.123) (0.385)
free school meals share -0.837*** 2.718***

(0.324) (0.888)
Pop density ∗ stringency 0.508*** 0.508*** 0.131 -0.997*** -0.999*** -0.158

(0.167) (0.169) (0.0857) (0.283) (0.288) (0.209)
Pop density ∗ weekly cases pc 0.330*** 0.334*** 0.0961 -0.412* -0.420* 0.112

(0.115) (0.116) (0.0632) (0.215) (0.219) (0.0840)
Free school meals ∗ stringency -1.715*** -1.707*** -0.983** 1.895* 1.894* 0.274

(0.619) (0.615) (0.448) (1.126) (1.116) (0.529)
Free school meals ∗ weekly cases pc -1.425*** -1.438*** -0.255* 2.539*** 2.565*** -0.0751

(0.279) (0.283) (0.151) (0.667) (0.681) (0.142)
Saturday, Sunday and Bank Holiday variables omitted
Date fixed effects omitted
Constant 1.273*** 0.394* -0.926*** -2.347** 0.0522 8.042***

(0.359) (0.206) (0.268) (0.997) (0.430) (0.556)
Observations 10,773 10,773 10,773 10,773 10,773 10,773
Number of lacode1 81 81 81 81 81 81
R-sqd within 0.7244 0.7244 0.9001 0.8188 0.8178 0.9814
R-sqd between 0.0671 0.0387 0.1702 0.0199 0.0004 0.0912
R-sqd overall 0.6380 0.6345 0.8125 0.7558 0.7521 0.9249

Note: Robust Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Leicester and Devon
are dropped as outliers. Sargan-Hansen χ2 for random effects=1624.716 (5) for RESIDENTIAL .
Sargan-Hansen χ2 for random effects 4392.154 (5) for WORK.

Table 1 summarises the initial results of this analysis. Starting with the first three

columns, which refer to the social distancing variable RESIDENTIAL: as discussed

above, an increase in this variable can be considered an increase in social distancing.

Column (1) is a panel random effects regression across all 81 UTLAs (excluding Devon

and Leicester), without any instrumentation or time or UTLA dummies. In column (2)

we include fixed effects for UTLAs only, while in column (3), time dummies (fixed ef-

fects) are also included. It is worth noting that estimated coefficients are almost identical

across the first two models. Tentatively, we therefore discuss the equation in panel (1) as

our preferred choice.
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We can note that the estimated coefficient on stringency for RESIDENTIAL logins is

+17.51, indicating that increased policy stringency (lockdown) increases social distanc-

ing. This variable is modestly but significantly increased by population density (marginal

effect of the interaction +0.508), and reduced (-1.715 mean marginal effect) by the free

school meals variable (the poor respond less to policy, on this measure).

Our model also provides evidence of endogenous social distancing: local weekly

cases per capita10 have a positive effect (+4.304 at the mean) on RESIDENTIAL logins.

This is only about 1/4 of the effect of stringency (although at the peak weekly cases

went well above their mean level, so implying a stronger effect). Greater population

density significantly increases this endogenous social distancing (by +0.330), but the

endogenous social distancing effect is reduced (by -1.425 or about 1/3 at the mean) by

poverty, as measured by free school meals.11

For comparison, the Fixed Effects model with time dummies in column (3) shows

much smaller and less significant coefficients (except on stringency), although the in-

teraction between weekly cases and free school meals remains negative and significant

at the 10 % level. In general, the fixed effects model with time dummies/fixed effects

provides a stronger statistical fit (as indicated by the Sargan-Hansen test)12, but is less

behaviourally informative. This indicates that the most useful information on social dis-

tancing comes from the longitutinal (time-varying) dimension of the model, which is lost

when time fixed effects are included.

Moving to WORK logins in columns (4)-(6), many of the same comments apply as

with RESIDENTIAL logins, except that the signs on estimated coefficients are reversed

(since lower work logins imply more social distancing). Stringency is clearly strongly

significant: -46.02 in column (4), with marginal effects also of -0.997 from the interac-

tion with population density, but +1.895 from the interaction with free school meals. It

seems poverty weakens the reaction to policy stringency, Regarding endogenous social

distancing, there is a strong negative effect (-9.295) from weekly cases, but reduced sig-

nificantly (+2.539) by the interaction with free school meals. Hence, poverty reduces

10Cases diagnosed in the previous 7 days
11Weekly cases respond to social distancing measures only with 2-3 week lags, so we judge endogeneity not

to be a major issue with this variable.
12We use Sargan-Hansen rather than the Hausman test due to the use of robust standard errors.
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endogenous social distancing. Again, free school meals have a significant intercept, so

there may be some nonlinearity of functional form not being picked up in this model.

The model with UTLA fixed effects in column (5) is virtually identical to the random

effects model while once time fixed effects are included (column (6)), significance is lost

on almost all variables except policy stringency.

Columns (4)-(6) are equivalent regressions with WORK logins as the dependent vari-

able. Note that, in this case, lower WORK indicates greater social distancing. Again,

the three specifications produce very similar results, and we focus on the instrumental

variables RE model in (5). The intercept terms on population density and free school

meals are insignificant here. Greater poverty (measured by free school meals) reduces

the effect of weekly cases per capita, and also weakens the effects of policy stringency

(it seems that the poor were more likely to keep working during the lockdown).

In Table 5 in the Appendix, we carry out equivalent panel regressions for the TRAN-

SIT and RETREC (retail/recreational) login data. There is again a strong overlap with

the results for the RECREATIONAL and WORK variables.

3.3 Robustness tests of the modelling

In this section, we focus mainly on the robustness of modelling RESIDENTIAL logins,

focusing on the issues of possible endogeneity and of making the relationship with free

school meals less linear.

In Table 2 we carry out some checks on alternative specifications. We start by consid-

ering the potential endogeneity of the right hand side variables in equation 2. Since there

are lags of 2-3 weeks in the response of recorded disease cases to social distancing13, we

are less concerned with endogeneity of weekly cases, and more concerned about policy

stringency, which could be seen as responding to cases.

Column (1) in Table 2 modifies the regression (1) in Table 1 by replacing the Ox-

ford stringency variable with two dummies, for the lockdown (starting 23 March) and

pre-lockdown (starting one week earlier). This is supported by the argument that the

UK, which responded later than most of its neighbours, underwent a dramatic rethink in

13This is confirmed empirically, results available from authors, but also makes sense given a 1-2 week incu-
bation period and a further lag until diagnosis
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Table 2: Robustness checks for RESIDENTIAL variable.

(1) (2) (3) (4)
VARIABLES LOCKDOWN RES IV RES ENGLANDCASES RES wkcas*stringency RES
prelockdown 7.602*** 7.341***

(0.385) (0.664)
lockdown 9.523*** 9.118***

(0.430) (0.428)
weekly cases per capita 5.528*** 4.309*** 4.222*** -0.467

(0.377) (0.118) (0.134) (2.553)
pop density -0.182* -0.0679 -0.0907 0.254

(0.110) (0.259) (0.289) (0.217)
pop density ∗ prelockdown 0.180* 0.197

(0.0945) (0.229)
pop density ∗ lockdown 0.488*** 0.335**

(0.179) (0.144)
pop density ∗ weekly cases pc 0.391*** 0.331*** 0.313*** 0.358***

(0.136) (0.0469) (0.0538) (0.115)
fsm -0.320* -0.873 -0.432 -1.103***

(0.189) (0.780) (0.848) (0.417)
free school meals ∗ prelockdown -0.0943*** -0.0939**

(0.0231) (0.0461)
free school meals ∗ lockdown -0.0670** -0.0501*

(0.0335) (0.0293)
free school meals ∗ weekly cases pc -1.799*** -1.430*** -1.376*** -1.450***

(0.334) (0.116) (0.133) (0.277)
stringency 17.46*** 16.83***

(0.483) (0.693)
pop density ∗ stringency 0.506*** 0.178

(0.139) (0.255)
free school meals ∗ stringency -1.675*** -1.398**

(0.464) (0.633)
(0.00672) (0.00979)

england weekly cases 1.547***
(0.110)

pop density ∗ england weekly cases 0.0340
(0.0358)

free school meals ∗ england weekly cases -0.111
(0.113)

weekly cases pc ∗ stringency 4.686*
(2.446)

Constant 1.596*** 1.317* 1.611* 2.055***
(0.182) (0.781) (0.844) (0.502)

Saturday, Sunday and Bank Holiday variables omitted

Observations 11,016 10,773 11,016 10,773
Number of lacode1 81 81 81 81
R-sqd within 0.6751 0.7244 0.7256 0.7033
R-sqd between 0.0468 0.0670 0.0685 0.0721
R-sqd overall 0.5824 0.6380 0.6208 0.6414

Note: Robust Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Leicester and Devon
are dropped as outliers. Sargan-Hansen χ2 for instrumentation in 4961.423 (2).

the middle of March, shifting from a mild policy of recommended social distancing to a

fairly strong lockdown in the space of a few days. Comparison with Table 1 column (1)

indicates that this rather simpler representation of stringency does not make a great deal
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of difference to the estimated equation, but somewhat increases the proportion of the

variance of RESIDENTIAL logins attributed to weekly cases. In column (2) we extend

this line by instrumenting stringency with a combination of lockdown and prelockdown

dummies, and the series for French policy stringency shown in 2. This instrumenta-

tion produces a regression almost identical to Table 1 Column (1), indicating that the

instruments are strong: however, a Sargan-Hansen test questions the statistical validity

(they are correlated with English weekly cases, even if not directly caused by them). In

Column (3), we modify column (1) by adding a series for national weekly cases for Eng-

land: the regression suggests that endogenous social distancing is responding partly to

national, and partly to local cases, although the combined effect is not greatly changed.

In Column (4), we modify Column (1) of 1 by introducing an interaction term for weekly

cases and stringency. This is strongly significant, while the term for weekly cases per

capita becomes insignificant (since the two are highly correlated). One possibility is

that this implies that endogenous and mandated social distancing are complementary (or

that official support made endogenous social distancing decisions more viable): how-

ever, alternatively, it may simply be that, as in Chudik et al. (2020), there was a delay in

endogenous social distancing, until the public became more aware of the problem.

Table 3: Regressions for RESIDENTIAL variable run separately on 7 groups ranked accord-
ing to free school meals.

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Fsm group 1 Fsm group 2 Fsm group 3 Fsm group 4 Fsm group 5 Fsm group 6 Fsm group 7
stringency 15.29*** 15.81*** 12.30*** 14.99*** 14.33*** 14.65*** 13.50***

(0.929) (0.707) (0.467) (0.697) (0.972) (0.603) (0.511)
weekly cases per cap 3.133*** 3.731*** 3.838*** 3.535*** 2.874*** 2.824*** 2.410***

(0.294) (0.402) (0.371) (1.021) (0.498) (0.491) (0.257)
sat -5.130*** -4.968*** -6.951*** -4.951*** -3.856*** -6.537*** -4.506***

(0.992) (0.873) (0.602) (1.071) (1.143) (1.007) (0.986)
sun -7.149*** -6.288*** -9.957*** -6.830*** -5.167** -9.077*** -6.551***

(1.413) (1.258) (0.593) (1.442) (1.583) (1.232) (1.395)
bank holiday 5.154*** 3.890*** 5.370*** 5.004*** 5.255*** 5.258*** 4.651***

(0.587) (0.842) (0.374) (0.781) (0.651) (0.612) (0.593)
Constant 2.280* 2.246* 3.718*** 1.460* 0.531 2.468*** 1.655**

(1.171) (1.030) (0.315) (0.753) (0.917) (0.605) (0.588)
Observations 1,330 1,330 1,330 1,330 1,197 1,330 1,596
R-squared 0.708 0.693 0.839 0.654 0.664 0.752 0.727
Number of lacode1 10 10 10 10 9 10 12

Note: Robust Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All models are
estimated with UTLA fixed effects (but no time fixed effects).

Table 3 examines the response of the RESIDENTIAL social distancing variable, by
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splitting UTLAs into 7 groups according to free school meal uptake, from 1 = lowest

(least poverty) to 7=highest. This confirms the hints in the previous section that the

relationship between free school meals uptake and social distancing is not strictly linear:

in particular, there is an indication that the size of both the stringency and weekly cases

variables begins a significant decline with respect to free school meals only in the last 3

groups. This is worthy of further investigation.

4 Social Distancing: Individual and Aggregate

The population’s members form a continuum, with individuals i, j ∈ [0, 1]. Individual i

has an endowment ωi and chooses – or is subject to – a social distance xi. His or her net

pay off is

yi = ωi − ci(xi)− `i − ti, (4)

where the function ci(xi) is increasing in xi and strictly convex, the loss arising from the

chance of infection is

`i = max[0, (B − xi)Ii(X)], (5)

Ii(X) = Ii0 − λ
1∫

0

xjdj ≡ Ii0 − λX, λ > 0, (6)

Ii0 > 0 is a constant, and ti is a lump sum tax. The loss index Ii has a fixed component

specific to individual i and a common component that is decreasing in the aggregate

social distance X , thus reflecting the nature of a communicable disease as a common

property ‘bad’. The termB−xi reflects i’s ability to reduce Ii, even to zero, by choosing

a personal level of social distancing closer to the common environmental parameter B.

The term B − xi depends directly only on i’s choice, not his or her characteristics.

Individuals i and j who choose the same x (< B) will suffer different losses if Ii0 6= Ij0.

We consider a two-class society, the poor, P , and the rich, R, whose members are

indexed such that P = {i ∈ [0, n]} and R = {i ∈ (n, 1]}, with individual endowments

ωp and ωr, respectively. The distancing cost functions ci(xi) and the infection cost

parameters Ip0 and Ir0 may differ by class. It is arguable that the functions ci depend
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directly on the respective endowments. The poor live in more crowded conditions than

the rich, which make social distancing inherently more difficult, and having very limited

means, they are under strong pressure to work, whereby their jobs are not usually the

sort whose tasks can be performed at home.

The cost function is assumed to be quadratic:

Assumption 1. ci(xi) = aix
2
i /2, i ∈ P,R.

Any difference between ap and ar arises from, and reflects, inequality in the distribution

of the aggregate endowment, whereby it is assumed that ai is non-increasing in ωi. A

central element of the analysis that follows involves increasing ap holding ar constant.

Given any population share n, this stems from reducing ωp, with ωr fixed.

Given any choice xi and the aggregate X , the size of the loss `i depends on the pa-

rameters Ii0 and λ, the latter being a common, environmental parameter. The discussion

of the cost-of-illness measure in Section 1 indicates that the difference between Ip0 and

Ir0 is likely to be small, but with Ir0 at least as large as Ip0. Where differences in the

two forms of costs are concerned, we make the following assumption:

Assumption 2. The cost factors are such that ap ≥ ar and Ir0 ≥ Ip0, with at least one

holding as a strict inequality.

4.1 The policy problem

The public measures available to improve on outcomes in the above setting are broadly

of two kinds. First, and directly, the government can impose binding restrictions on

individuals’ choices, with penalties for violations. Secondly, it can attempt to reduce the

level of B, and thus the losses {`i} for any given pattern of distancing {xi}, by making

suitable expenditures.

In order to analyse choices among policies, a social welfare function is needed. Let

W =

∫ 1

0
yjdj =

∫ 1

0
[ωj − cj(xj)− `j ]dj − C(B), (7)

where C(B) is the cost of the measures taken, if any, to reduce B. The function W

exhibits no aversion to inequality, but the tax profile {tj} can be chosen so that taxes

do not change the ranking of net endowments, ωj − tj . The total revenues
∫ 1
0 tjdj (≤
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∫ 1
0 ωjdj ≡ Ω) just finance C(B) at some chosen, feasible B.

The policy problem is to maximise W , employing whatever instruments are actually

available. Motivated by the findings in Section 3, we first analyse measures of enforced

distancing, treating B as exogenous. The benefits of reductions in B are analysed in

Section 4.3.

4.2 A minimum social distance rule

Bearing Figure 2 in mind, let individual choices {xi}, at some point in time, be suddenly

subject to a uniform restriction. The government announces a minimum social distance

xs, with a fixed penalty θ for a violation. In practice, enforcement may not be complete,

and the probability of getting caught will depend on, inter alia, how gross the violation

is, as measured by xs − xi. To be specific, let it take the following form:

Assumption 3. The probability of paying the penalty is p(xi;xs) = max(0, 1− xi/xs).

Faced with this risk when choosing xi, individual i’s expected net pay-off is

yi = ωi − ci(xi)− `i − ti − θ · [max(0, 1− xi/xs)]. (8)

Individuals are assumed to make Nash conjectures concerning their fellow citizens’

choices of x when deciding on their own. Suppose, to start with, that θ is sufficiently

modest that xs is always violated to some degree. This state will be called the limited-

compliance regime.

Noting that yi is strictly concave in xi, individual i’s f.o.c. is, provided `i > 0,

− aixi + (Ii0 + θ/xs)− λX ≤ 0, xi ≥ 0, i ∈ P,R, (9)

Observe that individuals’ choices are independent of the environmental parameter B if,

and only if, B > maxi(xi).

It is assumed that there is symmetric behaviour within each group. Let (x∗p, x
∗
r) solve

(9). Then, assuming (x∗p, x
∗
r) >> 0,

x∗p(x
s) =

(Ip0 + θ/xs)ar − λ(1− n)(Ir0 − Ip0)
apar + (arn+ ap(1− n))λ

, (10)

20



x∗r(x
s) =

(Ir0 + θ/xs)ap + λn(Ir0 − Ip0)
apar + (arn+ ap(1− n))λ

, (11)

X∗(xs) =
n(Ip0 + θ/xs)ar + (1− n)(Ir0 + θ/xs)ap

apar + (arn+ ap(1− n))λ
. (12)

If individuals are unrestrained by any public measures to enforce social distancing,

their choices in equilibrium are obtained from the above by setting θ/xs = 0. The

absence of any minimum distancing rule provides a benchmark.

The said closed forms yield the following proposition under assumptions 1, 2 and 3.

Proposition 1. If (xs, θ, B, λ) are such that `i > 0 (i ∈ P,R), then:

(i) x∗r > x∗p;

(ii) x∗p > 0 if (ar + (1− n)λ)(Ip0 + θ/xs) > (1− n)λIr0;

(iii) x∗p is decreasing in the own cost parameter ap and x∗r/x
∗
p is increasing in ap; and

(iv) the aggregate distance X∗ is decreasing in ap and n.

Proof. Parts (i) - (iii): obvious. Part (iv): see appendix.

Remark. As n increases, individuals who distance less replace those who distance more;

but in equilibrium, individuals of both types also respond to n in their distancing be-

haviour. Inspection of (10) and (11) in the light of assumption 2 reveals that both x∗p(x
s)

and x∗r(x
s) are increasing in n. Part (iv) establishes, however, that the replacement effect

dominates the individual adjustment effect. This result is consistent with the findings in

section 3 that social distancing is less in UTLAs with high takeup of free school meals.

Part (iv) is a key result. By inducing reductions in the aggregate distance X∗, in-

creases in ap and n result in heavier losses by increasing the (infection) index Ii0 for rich

and poor alike. This endogenous response lends importance to B when that parameter

can be influenced by policy, as in Section 4.3.

It remains to check that B > maxi(xi). In view of part (i), the required condition is

B >
(Ir0 + θ/xs)ap + λn(Ir0 − Ip0)
apar + (arn+ ap(1− n))λ

. (13)

In what follows, it is assumed that this condition is satisfied.

There is also the possibility that θ is so draconian that all comply with xs. Since

x∗p < x∗r , the limiting value of θ which induces full compliance with xs is such that
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x∗p(x
s) = xs. In order that (11) hold in equilibrium, however, no rich individual’s best

response to xp = xs may be an xi ∈ [xs, x∗r(x
s)), thus still avoiding any penalty. It is

seen from the analogue of (9), when xi must be at least as large as xs that a necessary and

sufficient condition to rule out such a deviation is Ir0 < (ar + λn)xs + (1− n)x∗r(x
s).

It follows from (10) that the limiting value of θ is

θ∗ = (xs/ar) {[apar + (arn+ ap(1− n))λ]xs + λ(1− n)(Ir0 − Ip0)− arIp0} .

No fines are collected, and it is clear that given xs, it is never optimal to impose a penalty

exceeding θ∗, though it may be optimal to impose a smaller one.

Part (iv) of proposition 1 concerning n also holds in the full-compliance regime,

again in keeping with the empirical findings.

Proposition 2. If `i > 0 (i ∈ P,R), then X∗ is decreasing in n in both regimes.

Proof. See appendix.

A second, salient empirical finding is that the effect of stringency on X∗(xs) is

weaker when n is large. This result is supported by the signs of the interaction term

for free school meals ∗ stringency for RESIDENTIAL and WORK in Table 1 ( although

these are insignificant for the TRANSIT and RETREC variables in Appendix Table 5).

In the light of Figure 2 we therefore compare X∗(xs) with X∗, noting that (12) holds

for all θ ≤ θ∗. We have

X∗(xs)−X∗ =
(nar + (1− n)ap)(θ/x

s)

apar + λ(nar + (1− n)ap)
=

θ/xs

λ+ apar/(nar + (1− n)ap)
.

If, plausibly, ap > ar, it follows that X∗(xs) − X∗ is decreasing in n. Although it is

increasing in the ratio θ/xs, that effect also weakens as n increases. To summarise:

Proposition 3. If `i > 0 (i ∈ P,R), then the effect of the introduction of the policy

(xs, θ) on the aggregate X∗(xs) weakens with n, as does the effect of an increase in

θ/xs.
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4.3 The benefits of reductions in B

Distancing rules may be accompanied by public expenditures or regulation aimed at

reducing the parameter B. Development of a vaccine followed up by a mass vaccina-

tion campaign is one measure. Improvements in the whole health system’s capacity and

specific treatments of infection also commend themselves. In view of the fact that devel-

oping at least one efficacious vaccine will be an international undertaking in the broad

sense, we examine the benefit generated by a reduction in B, without going into how

much it costs and how it is financed.

Under the distancing rules of Section 4.2 and given the hypothesis that B remains

such that `i > 0 (i ∈ P,R), the benefit generated by a small reduction in B is

∆B = (nIp0 + (1− n)Ir0 + θ/xs)− λX∗(xs). (14)

The cost parameter ap and the population share n influence this marginal benefit as

follows:

Proposition 4. If B > x∗r(x
s), then ∆B is increasing in ap, and also in n if Ir0 − Ip0 is

sufficiently small.

Proof. Differentiate partially and apply part (iv) of proposition 1.

Remark. In virtue of part (iv) of proposition 1, increases in ap and n each induce reduc-

tions in the aggregate distance X∗(xs) and hence, cet. par., larger losses `i. Any given

reduction in B will temper these losses, and will do so the more strongly, the larger they

are; for the term (B − xi) multiplies the index (Ii0 − λX). It should be noted from (14)

that the result holds in the limiting case Ip0 = Ir0.

5 Illustrative simulations

We report here some simulation results for our model. We focus on the scenario of partial

compliance. The baseline parameter values are: ap = 1, ar = 0.5, Ip0 = 0.5, Ir0 =

0.6, n = 0.5, θ = 0.1, λ = 0.1. The value of B is fixed at 5.0 to ensure interior solutions

for social distancing for both poor and rich in all environments. The minimum distancing
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xs is set at 1.35 although compliance is imperfect. Figure 4 summarizes the results. In

response to a higher cost of distancing (ap), the poor sharply distance less and the rich

more, although the latter response is quantitatively insignificant. The ratio of their social

distancing, xp/xr, falls. The aggregate distance also falls, which lowers the aggregate

social cost of distancing, but contributes to higher aggregate infection. Poor flagrantly

violate minimum social distancing as their cost of social distancing rises. Rich increase

their distancing although they are still below the mandated minimum distancing for the

entire range of ap. These results exemplify propositions 1 and 2.

Figure 4: Effect of an increase in the poor’s cost of social distancing

Figure 5 shows the effect of a higher proportion of the poor (n) on the relevant social

distancing variables. Here both poor and rich minutely increase their social distancing.

The ratio xp/xr rises. Since the poor outnumber the rich, the aggregate social distancing

falls, which lowers aggregate infection as per our proposition 2. The aggregate social

distancing cost, however, rises with the population share of the poor.

Figure 6 illustrates the effect of an increase in the size of the penalty (θ). Quite

intuitively, both poor and rich increase their social distancing. Although the response

of the poor is greater, they are still far below the minimum social distancing even for

the highest level of penalty. The aggregate distance rises, which contributes to lower
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Figure 5: Effect of an increase in the proportion of poor in the population

infections. The aggregate social distancing cost rises.

Figure 6: Effect of an increase in the size of the penalty
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6 Policy Implications

Rich and poor alike will benefit from the provision of an efficacious vaccine. In the

meantime, while awaiting its arrival, policy-makers are confronted by problems of con-

taining the epidemic that arise from poverty. Although the poor live in cramped condi-

tions, home still poses lower chances of infection than the workplace and the associated

roundtrip there, usually by public transport. If, as is plausible, the poor have limited op-

tions of working remotely, then a subsidy to these types of workers can take the form of a

furlough payment, with a job retention scheme in case of job losses. The UK government

has already made some progress on this front by changing the Coronavirus job retention

scheme from 1 July14. This relatively selective subsidy goes some way towards address-

ing our salient finding that higher levels of poverty weaken the effect of stringency on

the level of social distancing in the aggregate. It could be strengthened, and made more

selective, through provisions that treat more generously those subsectors of the economy

and categories of jobs that pay low wages.
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A Descriptive statistics of data in the empirical section.

Table 4: Descriptive Statistics of key variables

Variable Obs Mean Std. Dev. Min Max
All 83 UTLAs
weekcasespercap 11,288 .0002412 .0002398 0 .0019095
popdensity 11,288 1853.575 2718.248 64 16237
fsm 11,288 14.60226 6.746104 4.288068 33.60141
stringency 11,039 67.32564 15.2776 11.11 75.93
TRANSIT 11,288 -47.44835 20.85276 -92 65
WORK 11,288 -46.552 19.02245 -90 5
RESIDENTIAL 11,288 17.93568 7.570169 0 38
RETREC 11,288 -56.30351 21.08143 -95 27
LOW POVERTY UTLAs
weekcasespercap 1,360 .0001745 .0001659 0 .0007041
popdensity 1,360 473.9 243.7461 169 956
fsm 1,360 6.310654 .8651854 4.288068 7.359261
stringency 1,330 67.32564 15.28265 11.11 75.93
TRANSIT 1,360 -46.225 19.46876 -85 31
WORK 1,360 -48.02574 20.02923 -90 5
RESIDENTIAL 1,360 19.40882 7.923043 0 35
RETREC 1,360 -56.97206 21.23319 -91 10
HIGH POVERTY UTLAs
weekcasespercap 1,360 .0003229 .0002875 0 .0011856
popdensity 1,360 2624.864 2731.434 74 9696
fsm 1,360 27.49061 2.36961 24.96368 33.60141
stringency 1,330 67.32564 15.28265 11.11 75.93
TRANSIT 1,360 -46.23824 20.73862 -85 55
WORK 1,360 -44.40882 18.24921 -85 4
RESIDENTIAL 1,360 16.65515 6.756528 0 33
RETREC 1,360 -56.25588 21.09952 -94 15

B Estimated models for the TRANSIT and RETAIL/RECREATION

variables

We start by discussing columns (1)-(3) of Table 5 below, which cover TRANSIT (public

transport logins). As in Table 1, the first two formulations make very little difference.

Again, we focus on column (1), the random effects regression. Policy stringency has a

29



strong negative (i.e. social distance increasing) effect on this measure, with a basic co-

efficient of -35.16, plus a significant marginal effect of -1.485 from the interaction with

population density (and an insignificant interaction with free school meals). Weekly

cases show a strong negative effect (-11.55), which is increased somewhat by the inter-

action with population density (marginal effect -0.713), but strongly and significantly

reduced by the interaction with free school meals (+4.241). Hence, again, endogenous

social distancing exists, but is weakened where there is high inequality.

The intercept terms on population density and free school meals are insignificant.

The model in column (2) is almost identical to column (1), but the introduction of time

fixed effects in column (3) renders all coefficients except stringency insignificant. For

retail and recreational (RETREC) logins, again we have a very similar message. Focus-

ing on the random effects model in column (4), there is a strongly significant negative

(i.e. social distance increasing) coefficient on stringency, and likewise (though again be-

tween 1/3 and 1/4 of the marginal effect) for weekly cases, indicating endogenous social

distancing. The significant positive interaction of weekly cases and free school meals

indicates that the poor have less endogenous social distancing, while other coefficients

are insignificant. UTLA fixed effects in column (5) make virtually no difference, while

time fixed effects in column (6) again sadly wipe out most significant effects.
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Table 5: Panel random and fixed effects regression analysis of the TRANSIT and RETREC
variables.

(1) (2) (3) (4) (5) (6)
DEPENDENT VARIABLE TRANSIT TRANSIT TRANSIT RETREC RETREC RETREC
MODEL RE UTLA FEs UTLA and time FE RE UTLA FEs UTLA and time FE
stringency -35.16*** -35.18*** -35.91*** -54.73*** -54.51*** -29.33***

(2.520) (2.527) (2.804) (1.578) (1.586) (1.682)
weekly cases per capita -11.55*** -11.54*** -0.0919 -12.28*** -12.47*** -0.509

(1.325) (1.330) (1.069) (1.054) (1.080) (0.470)
pop density -1.155 -0.540

(1.220) (0.745)
free school meals share 2.516 0.462

(2.827) (1.530)
pop density ∗ stringency -1.485*** -1.486*** -0.579 -0.716 -0.714 0.426

(0.464) (0.467) (0.516) (0.677) (0.698) (0.353)
pop density ∗ weekly cases pc -0.713* -0.715 0.0972 -0.475 -0.504 0.138

(0.428) (0.432) (0.385) (0.332) (0.348) (0.207)
free school meals ∗ stringency 0.303 0.333 -1.339 1.065 1.026 -1.252

(2.123) (2.123) (2.080) (1.520) (1.534) (0.890)
free school meals ∗ weekly cases pc 4.241*** 4.227*** 0.730 3.648*** 3.742*** 0.417

(1.108) (1.113) (0.841) (0.910) (0.940) (0.466)
Saturday, Sunday and Bank Holiday variables omitted
Constant -5.805** -4.382*** 1.667 9.517*** 9.412*** 5.256***

(2.720) (0.802) (1.248) (1.442) (0.591) (0.569)
Observations 10,773 10,773 10,773 10,773 10,773 10,773
Number of lacode1 81 81 81 81 81 81
R-sqd within 0.5704 0.5704 0.8701 0.7337 0.7337 0.9695
R-sqd between 0.0865 0.0667 0.0506 0.0280 0.0893
R-sqd overall 0.4147 0.4096 0.6016 0.6685 0.7521 0.9224

Note: Robust Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Leicester and Devon
are dropped as outliers. Sargan-Hansen χ2 for random effects=620.377 (5) for TRANSIT . Sargan-
Hansen χ2 for random effects 2142.540 (5) for RETREC.

C Proofs

Proof of part (iv) of Proposition 1. We have

∂X∗(xs)

∂ap
=

(1− n)[(Ir0 + θ/xs)− λX∗(xs)− arx∗r ]− arnx∗p
apar + λ(arn+ ap(1− n))

.

From (9), the numerator reduces to −arnx∗p, so that X∗(xs) is decreasing in ap.

Likewise,

∂X∗(xs)

∂n
=

(Ip0 + θ/xs)ar − (Ir0 + θ/xs)ap + λ(ap − ar)X∗

apar + λ(arn+ ap(1− n))
. (15)

Since x∗i > 0, we obtain from (9),

−aparx∗p+(Ip0+θ/xs)ar−λarX∗(xs) = −aparx∗r+(Ir0ap+θ/xs))−λapX∗(xs) = 0.
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Rearranging, it is seen that the numerator in (15),

(Ip0 + θ/xs)ar − (Ir0 + θ/xs)ap + λ(ap − ar)X∗(xs) = −apar(x∗r − x∗p) < 0,

where the inequality follows from part (i).

Proof of Proposition 2: full-compliance regime. Given xp = xs, (11) yields

x∗r =
Ir0 + θ/xs − λnxs

ar + (1− n)λ
,

and

X∗ =
arnx

s + (1− n)(Ir0 + θ/xs)

ar + (1− n)λ
.

Hence,
∂X∗

∂n
=
arx

s − (Ir0 + θ/xs) + λX∗

ar + (1− n)λ
.

It follows that X∗ is decreasing in n if, and only if, arxs + λX∗ < Ir0 + θ/xs, which

indeed holds in virtue of the f.o.c. (9) for i ∈ R and xs < x∗r .
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Figure 7: Scatterplots of Google social distancing measures for English UTLAs, based on
RESIDENTIAL and WORK logins. The 11 UTLAs with highest poverty rates (including
Devon) are shown.
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Figure 8: Scatterplots of Google social distancing measures for English UTLAs, based on
TRANSIT and Retail/Recreational logins. The 11 UTLAs with highest poverty rates (includ-
ing Devon) are shown.
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