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Abstract 

The effective reproduction number (𝑅𝑅) which signifies the number of secondary cases infected by one 
infectious individual, is an important measure of the spread of an infectious disease. Due to the dynamics of 
COVID-19 where many infected people are not showing symptoms or showing mild symptoms, and where 
different countries are employing different testing strategies, it is quite difficult to calculate the 𝑅𝑅, while the 
pandemic is still widespread. This paper presents a probabilistic methodology to evaluate the effective 
reproduction number by considering only the daily death statistics of a given country. The methodology 
utilizes a linearly constrained Quadratic Programming scheme to estimate the daily new infection cases from 
the daily death statistics, based on the probability distribution of delays associated with symptom onset and 
to reporting a death. The proposed methodology is validated in-silico by simulating an infectious disease 
through a Susceptible-Infectious-Recovered (SIR) model. The results suggest that with a reasonable estimate 
of distribution of delay to death from the onset of symptoms, the model can provide accurate estimates of 
𝑅𝑅. The proposed method is then used to estimate the R values for two countries.  

A reproduction code for all the methods used in the paper is provided through GitHub. 
https://github.com/JJJJJamie/r_estimation.  

1. Introduction 

The basic reproduction number R0, which is the mean number of secondary cases generated by a typical 
infectious individual in a fully susceptible environment [1], is an established measure within the circles of 
epidemiology.  The effective reproduction number (R), on the other hand, is the average number of 
secondary cases per infectious case in a population made up of both susceptible and non-susceptible 
(immune) hosts[2]. Meta-analysis of existing estimates of basic reproduction number for COVID-19 ranges 
from 1.9 to 6.5, with most studies agreeing of a value between 2 and 3 [3]. The knowledge of R0 or R, provides 
the basis for further inference of different dynamics such as the effects of suppression policies adapted by 
different governments. This measure is often associated with compartmental models that simulate the 
outbreaks and spread of diseases. These models are commonly referred to as Susceptible-Infectious-
Recovery (SIR) or Susceptible-Exposed-Infectious-Recovery (SEIR) models. Such models have been 
extensively used to model the current pandemic on COVID-19 [4,5]. 

Using COVID-19 data on cases in Wuhan and international cases that originated from Wuhan, Kucharski et al 
[4] estimated median daily reproduction number (R) using a stochastic transmission dynamic model (using 
SEIR compartments).  Delays from symptom onset to reporting and uncertainty in case observation were 
accounted for in the model. Disease transmission was modelled as a geometric random walk process and 
sequential Monte Carlo simulation estimated the transmission rate over time, number of cases and the time-
varying R.  Zhang et al [6] estimated R0 in the early stage of COVID-19 outbreak on the Diamond Princess 
cruise ship. The R0 distribution was attained from the Maximum Likelihood estimation using a function in R 
and a bootstrap strategy was used to get a set of plausible R0 values. A case-specific model for COVID-19 
called θ-SEIHRD was proposed by Ivorra et al [7], which is a deterministic model expanding on an existing 
SEIR model by including the additional new components: infectious but undetected; hospitalized or in 
quarantine at home that will recover; hospitalized that will die; and dead by COVID-19. The model also divides 
the recovered component into two: recovered after previously being detected as infectious and recovered 
after previously being infectious but undetected.  

https://github.com/JJJJJamie/r_estimation


There are few studies that use other mathematical approaches than SIR or SEIR to estimate R or R0. Diekmann 
et al. [8] defined R0 as the dominant eigenvalue of Next Generation Matrices (NGM) for compartmental 
systems. The paper concluded that R0 >1 if and only if the real time exponential growth rate in the early stage 
of outbreak (r) > 0 and R0=1 if r = 0.  A graph theoretic form of gaussian elimination model was proposed in 
[9] to calculate the basic reproduction number. Using mortality data to calculate R values is also an interesting 
approach, which was demonstrated in application to the 1918 influenza pandemic in [10].  

The objective of this study is to approximate the effective reproduction number (R) of an infectious disease, 
such as COVID-19 in a population, given the daily statistics released by authorities, as well as considering 
various studies that have been published on the early dynamics of COVID-19.  This paper proposes a data-
driven probabilistic method to approximate the R value of COVID-19, by utilizing the daily death statistics, 
and utilizing statistical studies on early dynamics of Covid-19.  

2. The methodology 

The objective of the proposed methodology is to approximate the effective reproduction number of any 
mortal infectious disease such as COVID-19, during the course of the pandemic, by utilizing the daily death 
statistics. The proposed model predicated on the basis that when the healthcare capacity is not reached in a 
country, the death rate (or the case-fatality ratio) from Covid-19 is a constant. 

The proposed model considers the patient journey, and different patient types who are infected by the 
COVID-19 virus as depicted in the Figure 1. A person can be infected with the virus but show no symptoms at 
all. There is a delay between some person becoming infectious till the onset of symptoms. At this point, the 
person is expected to be isolated and not infect any more people. Furthermore, there is a delay between an 
isolated person that has been reported, and the death of a person. The process that a person goes through 
from infection to recovery from Covid-19 is illustrated in Figure 1.  

 

Figure 1: Different categories of COVID-19 patients. Depending on the testing strategy of a country, only 
certain categories of patients may be tested.  

There are two main components of the proposed methodology to calculate the effective reproduction 
number. Firstly, the estimation of number of cases infected in a given day, to include those who are 
reported/confirmed with COVID-19, those who have symptoms and isolate, and those who do not have 
symptoms. Secondly, the calculation of effective reproduction number for each day from the number of 
people infected per day. The following subsections explain these components in detail. 

The proposed measure to approximate effective reproduction number, denoted as R, is explained in the 
following sections. The effective reproduction number is defined as the average number of secondary cases 



infected by one person. In the following sections we derive the formulae for calculating the R for any given 
day.  

The derivations in the proceeding subsections are based on the following definition of terms.  

𝑵𝑵(𝒕𝒕): number of newly infected cases on day t 

𝑫𝑫(𝒕𝒕): Daily reported death numbers in a country 

𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄(𝒕𝒕): number of total infected cases up to day t 

𝒅𝒅𝒊𝒊𝒊𝒊𝒊𝒊: delay from infection to isolation, represented as gamma distribution, Γ �𝛼𝛼 = 1.35, 𝛽𝛽 = 1
0.27

�, where 𝛼𝛼 
and 𝛽𝛽 are the shape, and scale parameters, respectively [11].  

𝒅𝒅𝒊𝒊𝒊𝒊𝒊𝒊−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅: delay from isolated with symptoms to death, is represented as a Gamma distribution, 

Γ �𝛼𝛼 = 4.9, 𝛽𝛽 = 1
0.26

� [11].  

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅: delay from infected to death is the total delay from infected to isolation, and from isolation to death.  

The delay to isolation (or onset of symptoms)  𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 and delay to death from isolation 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ distributions 
that are used in this study are illustrated in Figure 2.  

𝑷𝑷𝒅𝒅(𝒕𝒕): Probability that a person infected with the Covid-19 virus will die. This is commonly referred to as the 
mortality rate of the disease or the case-to-fatality rate. The mortality rate (death rate / case-fatality ratio) 
can be considered fixed when the healthcare capacity is not reached in a given region. The current values 
reported in literature varies significantly from around 0.001 to 0.12, with a bias towards lower estimates.  In 
our experiments, we used death rates (Case-fatality ratio) of 0.0025, 0.03 and 0.1.  

𝒕𝒕𝒇𝒇𝒇𝒇 : the first day that new deaths reported is >10. 

 

Figure 2: Illustration of probability density functions for 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ used in the current study. The 
parameters of the distributions are used from [11].  

2.1 Estimation of number of cases infected in a day  

Based on the delay to death distribution 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ, the minimum death delay (min[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ]) and maximum 
death delay (max[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ]) are assumed to be the 1% quantile and 95% quantile of 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ respectively. The 
expected deaths for the tth day, denoted as 𝐸𝐸[𝐷𝐷(𝑡𝑡)] for 𝑡𝑡 ≥ max[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] can be calculated by: 



𝐸𝐸[𝐷𝐷(𝑡𝑡)] =  � 𝑃𝑃𝑑𝑑(𝑖𝑖) ∙ 𝑁𝑁(𝑖𝑖) ∙ Pr(𝑡𝑡 − 𝑖𝑖 < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ ≤ 𝑡𝑡 − 𝑖𝑖 + 1)
𝑡𝑡−min[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ]

𝑖𝑖=𝑡𝑡−max[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ]+1

         𝐸𝐸𝐸𝐸. (1) 

In matrix form this corresponds to:  

𝐸𝐸�⃗ [𝐷𝐷(𝑡𝑡)] = 𝑀𝑀 ∙ 𝑁𝑁��⃗ (𝑡𝑡)                                                                                                          𝐸𝐸𝐸𝐸. (2) 

Where M is made up of Pd and Pr values of Eq. (1).  

The above equation suggests that, of those who contract the virus on a day 𝑖𝑖, a certain fraction 𝑷𝑷𝒅𝒅(𝒊𝒊), 
eventually die after a delay of several days. The delay is governed by the distribution 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅.  

To further explain the application of equation Eq. (2), we assume that min[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] = 7 , max[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] =  41, 
and the daily death data is available from 41st day to 103rd day. Using the equation above, 𝐸𝐸�⃗ [𝐷𝐷(𝑡𝑡)] is a vector 
of length 63, 𝑴𝑴 is a 63x96 matrix and 𝑁𝑁��⃗ (𝑡𝑡) is a vector of length 96. 𝐸𝐸[𝐷𝐷(𝑡𝑡)] for 𝑡𝑡 =  41, … ,103 can be 
calculated by: 

𝐸𝐸[𝐷𝐷(41)] = 𝑝𝑝𝑑𝑑(1) ∙ 𝑁𝑁(1) ∙ 𝑃𝑃(41) + 𝑝𝑝𝑑𝑑(2) ∙ 𝑁𝑁(2) ∙ 𝑃𝑃(40) +⋯+ 𝑝𝑝𝑑𝑑(34) ∙ 𝑁𝑁(34) ∙ 𝑃𝑃(8)
𝐸𝐸[𝐷𝐷(42)] = 𝑝𝑝𝑑𝑑(2) ∙ 𝑁𝑁(2) ∙ 𝑃𝑃(41) + 𝑝𝑝𝑑𝑑(3) ∙ 𝑁𝑁(3) ∙ 𝑃𝑃(40) +⋯+ 𝑝𝑝𝑑𝑑(35) ∙ 𝑁𝑁(35) ∙ 𝑃𝑃(8)

⋮
𝐸𝐸[𝐷𝐷(103)] = 𝑝𝑝𝑑𝑑(63) ∙ 𝑁𝑁(63) ∙ 𝑃𝑃(41) + 𝑝𝑝𝑑𝑑(64) ∙ 𝑁𝑁(64) ∙ 𝑃𝑃(40) + ⋯+ 𝑝𝑝𝑑𝑑(96) ∙ 𝑁𝑁(96) ∙ 𝑃𝑃(8)

 

Given deaths data 𝐷𝐷(𝑡𝑡) for 𝑡𝑡 =  𝑡𝑡1, … , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the estimation of daily new infection 𝑁𝑁�(𝑡𝑡) for 𝑡𝑡 =  𝑡𝑡1 −
max[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] + 1, … , 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − min[𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] can be found by minimizing the difference between model 
prediction 𝐸𝐸[𝐷𝐷(𝑡𝑡)] and the real daily death numbers 𝐷𝐷(𝑡𝑡): 

𝑁𝑁� = 𝑎𝑎𝑎𝑎𝑎𝑎 min
𝑁𝑁�
�𝐸𝐸[𝐷𝐷(𝑡𝑡)] − 𝐷𝐷(𝑡𝑡)�2                                                                              𝐸𝐸𝐸𝐸. (3) 

This is a quadratic optimization problem, which can be solved by using Quadratic Programming [12]. In our 
model, a linearly constrained Quadratic Programming was used to find the estimation of daily new infection. 
To get a realistic estimation, several linear constraints for 𝑁𝑁�(𝑡𝑡) were added to the model, including 
boundaries for the ratio 𝑁𝑁�(𝑡𝑡 + 1) 𝑁𝑁�(𝑡𝑡)⁄ , the ratio 𝑁𝑁�(𝑡𝑡 + 𝑚𝑚) 𝑁𝑁�(𝑡𝑡)⁄  and cumulative growth rate 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡 + 1) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)⁄  for each day.  

Ideally, adding constraints on the dynamic of growth rate could help us find 𝑁𝑁�(𝑡𝑡) with less oscillation and 
smoother in the long term. Therefore, none-convex quadratically constrained Quadratic Programming could 
potentially improve our estimation of daily new infection. 

2.2. Calculation of Effective reproduction number 

The expected value of effective reproduction number for the day t, denoted by E[R(t)], is estimated by the 
following equation:  

𝐸𝐸[𝑅𝑅(𝑡𝑡)] = 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑏𝑏𝑏𝑏 𝑁𝑁(𝑡𝑡)
𝑁𝑁(𝑡𝑡)�                                      𝐸𝐸𝐸𝐸. (4) 

The R estimation in the method is performed daily according to the Eq.(4).  The calculation of the numerator 
on Eq.(4) is not straightforward. The newly infected patients on day t, denoted by N(t) in the denominator of 
Eq.(4), will be continuously infectious on future days until they are isolated or recovered. Consequently, the 
number of newly infected cases on a given future date, would have been infected by all the people who are 
infectious on the previous days. However, the people who are infectious on the previous days, were first 
infected on different days in the past. Therefore, the method should consider the proportion of people who 
are exclusively infected by those who were first infected on a given date (N(t)).  



For this purpose, it is required to calculate the number of people infected in the previous days, and also 
account for those of whom are no longer infectious due to self-isolation/hospitalization or recovery.  

The following paragraphs explain how this is calculated.  

Assuming 𝑁𝑁(𝑡𝑡) is available for 𝑡𝑡 = 1, . . ,𝑛𝑛, we define 𝑁𝑁0����⃗ = [𝑁𝑁(1), … .𝑁𝑁(𝑛𝑛 − 1)] and 𝑁𝑁��⃗ = [𝑁𝑁(2), … .𝑁𝑁(𝑛𝑛)]. 

The cumulative Infections matrix 𝐼𝐼, is defined to collate the number of infectious cases on day 𝑖𝑖 + 1, who 
were infected on the previous days. 𝐼𝐼 is a lower triangular matrix of size 𝑛𝑛 − 1 x 𝑛𝑛 − 1, where 𝐼𝐼[𝑖𝑖, 𝑗𝑗] is the 
number of infectious cases on day 𝑖𝑖 + 1, who were first infected on day j. We assumed that each infected 
case becomes infectious on the next day. 

                                       𝐼𝐼[𝑖𝑖, 𝑖𝑖] = 𝑁𝑁(𝑖𝑖)   𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1 …𝑛𝑛 − 1                  𝐸𝐸𝐸𝐸. (5) 

The rows of column 𝑗𝑗 of the matrix 𝐼𝐼 is defined by spreading the infectious cases first infected on day 𝑗𝑗 by 
using the Gamma distribution representing the 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 .  

The process for finding the values for 𝐼𝐼[𝑖𝑖, 𝑗𝑗],𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 > 𝑗𝑗 is as follows.  

For each 𝑗𝑗 = 1, … ,𝑛𝑛 − 1, sample from 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 for 𝑁𝑁(𝑗𝑗) times. The samples from 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 are denoted by 𝑆𝑆 =
�𝑠𝑠1, 𝑠𝑠2, … . . , 𝑠𝑠𝑁𝑁(𝑗𝑗)�.  

                                   𝑠𝑠𝑘𝑘~Γ�𝛼𝛼 = 1.35,𝛽𝛽 =
1

0.27
�                              𝐸𝐸𝐸𝐸. (6) 

where 𝛼𝛼 is the shape parameter, and the 𝛽𝛽 is the scale parameter of the Gamma distribution.  

If a sample 𝑠𝑠𝑘𝑘 from S is  𝑚𝑚 − 1 < 𝑠𝑠𝑘𝑘 < 𝑚𝑚 , this indicates that it took 𝑚𝑚 days for this infected case to isolate.  

                                      𝐼𝐼[𝑖𝑖, 𝑗𝑗] = 𝐼𝐼[𝑗𝑗, 𝑗𝑗]− 𝑆𝑆𝑆𝑆𝑖𝑖−𝑗𝑗                                     𝐸𝐸𝐸𝐸. (7) 

Where 𝑆𝑆𝐶𝐶𝑟𝑟 is the number of 𝑠𝑠𝑘𝑘 ∈ 𝑆𝑆, 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑟𝑟 − 1 < 𝑠𝑠𝑘𝑘 < 𝑟𝑟  

The above sampling process is evaluated for 100 times and the average 𝐼𝐼 are considered to calculate the 
effective reproduction number.  

From the cumulative infectious matrix I, a weighting matrix 𝑊𝑊 is defined as below, where each element of 
the matrix 𝑊𝑊, 𝑊𝑊[𝑖𝑖, 𝑗𝑗] is defined as: 

𝑊𝑊[𝑖𝑖, 𝑗𝑗] = 𝐼𝐼[𝑖𝑖,𝑗𝑗]

∑ 𝐼𝐼�𝑖𝑖,𝑘𝑘�𝑛𝑛−1
𝑘𝑘=1

                     𝐸𝐸𝐸𝐸. (8) 

                                                𝐸𝐸[𝑅𝑅] =
𝑁𝑁��⃗ ∙ 𝑊𝑊
𝑁𝑁0����⃗

                                            𝐸𝐸𝑞𝑞. (9)  

The 𝐸𝐸[𝑅𝑅] is a 1 × (𝑛𝑛 − 1) array, representing the approximated effective reproduction number on days 1 to 
(𝑛𝑛 − 1). The estimated effective reproduction number is denoted as R in the proceeding discussions.  

A Python implementation of the methodology is provided through GitHub 
(https://github.com/JJJJJamie/r_estimation). 

3. Experimental Results 

The results section is mainly organised in two parts. Firstly, proposed model is validated against an SIR 
simulation and secondly, we present results for reproduction number predictions for 2 selected countries.  

https://github.com/JJJJJamie/r_estimation


 
(a) 

 
(b) 

Figure 3: Model Validation: (a) The variation of simulated R(t) value, and the R(t) value estimated from the 
proposed model, (b)  
 

3.1 Model Validation 

For the purpose of model validation, we simulate a disease outbreak with an SIR model [13], to estimate the 
number of infected populations under a varying R value over time. A certain fraction of the infected 
population is simulated to die. Those who die, will die after a certain number of days, and this number of 
days of delay to death from the moment of removed (isolation) is governed by the distribution 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ. 
The parameters of 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ are defined same as in section 2. 

The objective of this experiment is to validate the proposed probabilistic model. The proposed methodology 
utilizes the daily death data D(t), to estimate the number of infected cases N(t). Then estimates the R(t) from 
the estimated N(t).  We assume we have perfect knowledge of the delay to death distribution, hence use the 
same parameters as the simulation, for R(t) estimation. The sensitivity of this assumption is analysed in the 
proceeding subsection.  



 
(a) Different distributions used for 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 

 
(b) The predicted N(t) under different distributions 

 
(c) The R(t) estimation 

Figure 4: The variation of R(t) estimation under different 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ distributions 



The results of this experiment are illustrated in Figure 3. In Figure 3 (b), the simulated death data and the 
number of infections are illustrated. Estimation of N(t) from death data is an important part of the proposed 
method (As in the case of COVID-19 this is an unknown because not everyone in the population is tested, nor 
everyone shows symptoms when infected). The N(t) values from the model, closely agrees with the true N(t) 
values (from simulation). The R(t) estimation from N(t) is illustrated in Figure 3 (a). The estimated R(t) follows 
a similar pattern to the true R(t) that is simulated, however, there is a consistent under estimation of around 
0.25 points of R. Furthermore, the R(t) estimation, when done utilizing the true N(t) values from the 
simulation, agrees very much with overall model.  

 
(a) N(t) estimation under different mortality rates 

 
(b) The predicted R(t)  

Figure 5: The variation of R(t) estimation under different mortality rates (Pd) 
 

3.2 Sensitivity Analysis 

The sensitivity of the model is assessed across 3 attributes of the proposed model: the distribution of delay 
to death from removed (isolation), the mortality rate and the noise level on the death statistics. Furthermore, 



since the proposed model is dependent on the delay to death, we also assess the ability of the model to 
estimate the R, in the case of limited death data.  

3.2.1 Model predictions under different death delay distributions 

In section 3.1, we assumed the perfect knowledge of the 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ distribution. However, this is a very 
unlikely assumption, and the knowledge of this distribution would not be available until a country has gone 
through an adequate period of the pandemic. Therefore, this experiment analyses the sensitivity of the 
prediction from the proposed model under different 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ distributions that will be used for R(t) 
estimation. For the purpose of this experiment, we utilize the KL-Divergence to quantify the difference 
between two probability distributions. The results of this experiment are illustrated in Figure 4.  

The results illustrated in Figure 4 illustrate that the model estimates show a similar trend regardless of the 
investigated distributions. Furthermore, the estimated R value is mostly within 0.25 of the true R value, when 
the distribution is a Gamma distribution. However, when the distribution used in the model is a Gaussian 
distribution, the error is much larger compared to when using a Gamma distribution.  

 
(a) N(t) estimation 

 
(b) The predicted R(t) 

Figure 6: The variation of R(t) estimation under different noise levels on the death statistics 



 

3.2.2 Model predictions under different mortality rates and death report rates 

The mortality rate of the disease denoted by Pd is utilized for the estimation of R(t) in the proposed 
methodology. While this would not be known until the end of the pandemic, there are initial estimates of 
this important parameter. The Figure 5 illustrates the model performance under different mortality rates.  

The results indicate that, although the mortality rate affects the number of infected cases in the population 
(N(t)), it does not affect the R estimation. This is an important property to enable robust R estimations  when 
different countries under-report deaths due to variations in the counting criteria. In such a case where the 
deaths are under-reported, the R estimation from the proposed method is not affected, as long as the death 
reporting mechanism stays consistent throughout the period of R-estimation. If the death reporting 
mechanism changes over the period of the pandemic for a given country, this should be incorporated within 
the model.  

3.2.3 Model predictions under different noise on the death statistics 

Another issue associated with using the daily death statistics is that the death curve is not always smooth, 
and there are daily variations. The Figure 6 illustrate the effect of noise on the daily death statistics on the 
final R estimation. The results illustrate that unless there is a significant amount of noise on the daily death 
statistics (e.g. 20%), the R estimation is not significantly affected.  

 
Figure 7: The variation of R(t) estimation under different gaps from the most recent death data availability. 

The “true” delay from isolation to death is simulated as a Gamma distribution with mean=18.8, and 
shape=4.94, and same distribution used in the method 

 

3.2.4 On the gap between death data availability and accuracy of the R estimation 

The complete death data is available for a disease, only after the end of a pandemic. However, in the case of 
a pandemic such as COVID-19, where governments have to consistently take suppression measures during 
the pandemic, the ability to estimate R during the pandemic is extremely important as a measure of disease 
spread. The proposed model uses the daily death statistics for estimation of R(t), and due to the dynamics of 
the disease there is a delay to death of an infected person. Therefore, there is a gap when R value can be 
estimated with a reasonable accuracy, and the most recent availability of death statistics.   



We illustrate the variation of R(t) estimation under different gaps between the most recent death data 
availability and the R(t) estimation, in Figure 7. According to Figure 7 the R estimation does not change very 
much, if we have the perfect knowledge of the underlying ddeath distribution and when there is no noise on 
the death data. It should be noted that due to the lack of complete N(t) estimations from the available death 
data, the curve will always bend towards the end.  

The effect under a different distribution and under noise is illustrated in Figure 8, which suggests that R 
estimation will be affected by these changes. However, the variation of R estimation is still largely preserved, 
and the oscillations on the R estimation can easily overcome through a smoothing operation.  

 

 

 
Figure 8: The variation of R(t) estimation under different gaps from the most recent death data availability 
The delay from isolation to death is “assumed” as a Gamma distribution with mean=21.8, and shape=4.94, 

the noise level on the death data is 5%.  
 

 

 



3.3 Application of model for different countries 

In this subsection we present the R-estimation results for two different countries, using the proposed 
method. We have selected Italy and Spain, the countries which have nearly progressed through the 
pandemic. We have used the most up to date death statistics (as of writing of this paper) for this purpose. 
The results are presented in Figure 9 for Italy, and Figure 10 for Spain.  

The Figure 9(a) illustrates the estimated N(t) under different distribution of 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ, along with the 
number of confirmed cases in Italy. As illustrated, Gamma distribution with a mean of 12.8 days closely agrees 
with the shape of the number of reported cases, and also exhibits a shift of around 10 to 14 days to be in line 
with a delay associated with being reported due to intensifying symptoms. The R estimations from the 
method shows a peak R- value of 2.8 to a gradually decreasing R value. The current R value in Italy is estimated 
from the method to be between 0.5 and 1. A similar pattern is also observed for Spain.  

 
(a) Estimated N(t) under two different 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ distributions and the number of confirmed cases 

 
(b) R estimation from the proposed method and the number of deaths reported. 

Figure 9 The R Estimations for Italy from the proposed method 
 



 

 

 
(a) Estimated N(t) under two different 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ distributions and the number of confirmed cases 

 
(b) R estimation from the proposed method and the number of deaths reported. 

Figure 10 The R Estimations for Italy from the proposed method 
 

4. Discussion 

The aim of this paper is to utilize the publicly available data to measure the spread of disease by calculating 
the effective reproduction number of the disease, especially during the pandemic. During the early stages of 
a pandemic, only a limited amount of data is made available. However, knowing the reproduction number 
throughout the pandemic is of significant essence to make public health decisions. In the current pandemic 
of COVID-19, number of confirmed cases and the number of deaths is reported by most countries. However, 
the number of confirmed cases is significantly dependent on the testing strategy employed by public health 
bodies of a country, and cannot be used as a useful statistic of the underlying number of infectious people. 
Therefore, at early stages of a pandemic, the methodology uses the daily deaths as the only statistic and work 
backwards to calculate the effective reproduction number. 

 



4.1 Performance of the model 

The performance of the proposed probabilistic model is estimated through simulations for validation 
purposes. The results presented in section 3.2, suggests that the proposed method is robust against 
variations in delay to death distribution and the noise level in death statistics. It should also be noted that, 
when death data is available up to a given date, the model can accurately predict R up to around 40 days 
before depending on the accuracy of assumed death delay distribution and the noise level of death data. This 
is mostly stemming from the fact that deaths are delayed by a significant number of days from the date of 
first infection. However, as illustrated in Figure 7 and Figure 8 the R can be estimated for up to 14 days before 
the last date for which death data is available, with a reasonable accuracy. The R estimation, however, tends 
to oscillate between 40 days and 14 days, which can be overcome through smoothing as shown in Figure 8.  

Most importantly, R estimation from this method is not affected by the mortality rate (or death rate) assumed 
for the disease. This is illustrated in Figure 5. The implications of results in Figure 5, also relates to the death 
report rate variation across countries. This is because, variation in death rate simulations is synonymous with 
the different death report rates too. Different countries count the number of deaths with different logics, 
E.g. some countries may count only the deaths of those with confirmed positive test for COVID-19 who die 
only in hospitals but disregard the deaths in care homes.  However, as long as the counting logic is consistent, 
throughout the reporting period, the death report rate will be constant, and thus enabling the estimation R, 
which is not affected by the death rate (or death report rate). 

The methodology utilizes existing studies about the delay between infection and onset of symptoms and the 
delay between onset of symptoms and death. However, these studies are still emerging and show significant 
variations among the distributions used[14], but has a strong correlation on the mean values.  

4.2 Applications of the model for COVID-19 analysis in different countries 

The results in Figure 9 and Figure 10 demonstrate the model performance on real death statistics from Italy 
and Spain, respectively. A suitable delay to death distribution was found by trying to match a N(t) estimation 
that is similar in variation, but which is shifted by a certain reporting delay (Figure 9(a) and Figure 10(a)). The 
R estimation for Italy and Spain has been gradually decreasing during months of March and April and is 
currently (at the time of writing the paper) stable at a value between 0.5 and 1, with a mean estimation of 
around 0.8. The starting level of R, for both Italy and Spain was around 2.7 ( i.e. before any suppression 
measure was taken). This estimation is in consistent with the initial estimates of R provided in [15], which 
suggested for Italy the mean R value was 2.3, and for Spain it was 3.11. 

The R value is one of the most important metrics of the spread of infectious diseases. The knowledge of R 
enables public health authorities to make important decisions such as implementation of suppression 
policies, and appropriate timing of such policies. For example, in the control of COVID-19 spread, most 
countries have implemented suppression mechanisms such as school closures, travel bans and lockdowns. 
The correct timing of such measures is of utmost importance, and the knowledge of the level of spread of 
the disease is the most important criteria to implement the stringent measures, and for the subsequent 
easing of such suppression methods. The availability of an alternative model such as the proposed, will assist 
the epidemiologists and policy makers to understand the spread of the disease, as well as a sanity check 
mechanism on the estimations of R values based on SIR models.  

Another important application of the proposed methodology is the ability of it to predict number of infectious 
people in a given country (N(t)). This is particularly important for the case of COVID-19, because a significant 
proportion of those who are infected are asymptotic.  

 



4.3 Challenges of practical application of the model for COVID-19 analysis 

The proposed methodology is dependent on the number of deaths reported and made public. However, in 
the case of COVID-19 and the deaths are delayed according to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ. Therefore, to calculate the N(t) at 
current date, the number of deaths of the future day needs to be predicted. In the case of COVID-19, a person 
can die up to 42 days from the onset of symptoms (95% Confidence Interval). However, predicting the future 
deaths of a given country is a very challenging task. This is because, the number of deaths is dependent on 
many factors such as, the suppression policies employed in the country and the healthcare capacity.  
Therefore, to calculate the most up-to-date R we would need a suitable machine learning model to predict 
the deaths in the future. State-of-the-art machine learning techniques could significantly contribute to this 
task.  

The proposed methodology assumes a base mortality rate for the purpose of estimation of R. We present 
the results for three values of mortality rates, 0.0025, 0.03, (consistent with different studies[16,17]) and 0.1 
as an extreme case. However, when the pandemic causes the healthcare resources to be exhausted, the 
mortality rate can be expected to be higher, such as 0.12[18]. Therefore, the variation of mortality rate within 
the period of pandemic need to be quantified to be used within the model. This again is an important, yet 
challenging research problem that need to be solved.  

Another important consideration is, that different countries have different methods of counting the number 
of COVID-19 related deaths. For example, until 29th of April, the UK government considered COVID-19 related 
deaths that happen only in Hospitals, to then change their policy to include deaths in care homes too. Such 
a change in policy causes the number of deaths reported to significantly vary with time. While this can easily 
be adopted within the proposed model by a simple change in the death rate, calculating the dynamic death 
report rate of a country can be challenging. This is especially a problem during the early stages of a pandemic 
when the government policies are rapidly changing.  

5.Conclusions 

This paper presents a probabilistic methodology to estimate the effective reproduction number (R) of a given 
country, using the daily statistics of death. The methodology utilizes existing studies on COVID-19 related to 
the probability distributions of the delay between infection and onset of symptoms, and the delay between 
onset of symptoms and death. The proposed methodology is validated by comparing against simulated 
disease spread using a SIR simulation. The R-estimates from the proposed method was found to be robust 
against different distributions of delay to death from the onset of symptoms, and against different noise 
levels on the death statistics. The R estimates from the proposed method is shown to be constant against 
different death report rates or mortality rate of the disease, and the model can be useful up to 14 days before 
the last available death data. The R-estimates of the model for Italy and Spain shows a consistent pattern 
and agrees with estimates from emerging studies. The proposed method is useful to calculate the effective 
reproduction number. Most importantly, since scientists are still learning the dynamics of the virus, a 
methodology that is proposed here provides a useful model for informing policy decisions. Furthermore, a 
data-driven methodology can be an alternative avenue to analytical model driven approaches for estimation 
of R, thus serving as an additional analysis tool to study the spread of COVID-19. 
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