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LOCAL NORMAL FORMS FOR C-PROJECTIVELY EQUIVALENT METRICS

AND PROOF OF THE YANO-OBATA CONJECTURE IN ARBITRARY
SIGNATURE. PROOF OF THE PROJECTIVE LICHNEROWICZ
CONJECTURE FOR LORENTZIAN METRICS

ALEXEY V. BOLSINOV, VLADIMIR S. MATVEEV, AND STEFAN ROSEMANN

ABsTrRACT. Two Kéahler metrics on a complex manifold are called c-projectively equivalent if
their J-planar curves coincide. These curves are defined by the property that the acceleration
is complex proportional to the velocity. We give an explicit local description of all pairs of
c-projectively equivalent Kahler metrics of arbitrary signature and use this description to prove
the classical Yano-Obata conjecture: we show that on a closed connected Kahler manifold of
arbitrary signature, any c-projective vector field is an affine vector field unless the manifold is
CP™ with (a multiple of) the Fubini-Study metric. As a by-product, we prove the projective
Lichnerowicz conjecture for metrics of Lorentzian signature: we show that on a closed connected
Lorentzian manifold, any projective vector field is an affine vector field.

Formes normales locales des métriques c-projectivement équiv-
alentes et preuve de la conjecture de Yano-Obata en signature
arbitraire. Preuve de la conjecture projective de Lichnerowicz
pour les métriques lorentziennes

Deux métriques kdhlériennes sur une variété complexe sont appelées c-projectivement équiv-
alentes si leurs courbes J-planaires coincident. Ces courbes sont définies par la propriété que
Paccélération est proportionnelle (au sens complexe) a la vitesse. Nous donnons une description
locale de tous les paires de métriques kdhlériennes c-projectivement équivalentes de signature
arbitraire et utilisons cette description pour prouver la conjecture classique de Yano-Obata:
nous montrons que sur une variété kihlérienne de signature arbitraire, connexe et fermée, tout
champ de vecteurs c-projectif est un champ de vecteur affine sauf si la variété est CP™ muni
de la métrique de Fubini-Study. En tant que sous-produit, nous prouvons la conjecture de
Lichnerowicz pour les métriques de signature lorentzienne. Plus précisément, sur une variété
lorentzienne connexe fermée tout champ de vecteurs projectif est un champ de vecteurs affine.
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1. INTRODUCTION

1.1. Definitions and description of results. Let (M,g,J) be a Kihler manifold of arbitrary
signature of real dimension 2n > 4. We denote by V the Levi-Civita connection of g and let
w = g(J-,-) denote the Kahler form. All objects under consideration are assumed to be sufficiently
smooth.

A regular curve v : R D I — M is called J-planar if there exist functions «, 3 : I — R such
that

(1.1) Vi ¥(t) = a(t) + BJ(§(t)) for all t € I,

where ¥ = %'y.

From the definition we see immediately that the property of J-planarity is independent of the
parameterisation of the curve, and that geodesics are J-planar curves. We also see that J-planar
curves form a much bigger family than the family of geodesics; at every point and in every direction
there exist infinitely many geometrically different J-planar curves.

Two metrics g and § of arbitrary signature that are Kahler w.r.t the same complex structure
J are c-projectively equivalent if any J-planar curve of g is a J-planar curve of §. Actually, the
condition that the metrics are Kahler with respect to the same complex structure is not essential;
it is an easy exercise to show that if any J-planar curve of a Kéhler structure (g, J) is a J-planar
curve of another Kéhler structure (g, J ), then J==+J.

C-projective equivalence was introduced (under the name “h-projective equivalence”) by Otsuki
and Tashiro in [39, 44]. Their motivation was to generalize the notion of projective equivalence
to the Kahler situation. Since the notion of projective equivalence plays an essential role in our
paper let us recall it. Two metrics g and g of arbitrary signature are projectively equivalent, if each
g-geodesic is, up to an appropriate reparameterisation, a g-geodesic.

Otsuki and Tashiro have shown that projective equivalence is not interesting in the Ké&hler
situation, since only simple examples are possible, and suggested c-projective equivalence as an
interesting object of study instead. This suggestion appeared to be very fruitful and between the
1960s and the 1970s, the theory of c-projectively equivalent metrics and c-projective transforma-
tions was one of the main research topics in Japanese and Soviet (mostly Odessa and Kazan)
differential geometry schools. For a collection of results of these times, see for example the survey
[36] with more than 150 references. Moreover, two classical books [43, 47| contain chapters on
c-projectively equivalent metrics and connections.

Relatively recently c-projective equivalence was re-introduced, under different names and be-
cause of different motivation. In fact, c-projectively equivalent metrics are essentially the same as
Hamiltonian 2-forms, defined and investigated in Apostolov et al. [1, 2, 3, 4] for positive definite
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metrics, see also [17]. Though the definition of Hamiltonian 2-forms is visually different from
that of c-projectively equivalent metrics, the defining equation [1, equation (12)] of a Hamilton-
ian 2-form is algebraically equivalent to a reformulation (see (1.4) below) of the condition “§ is
c-projectively equivalent to ¢” into the language of PDE. The motivation of Apostolov et al. to
study Hamiltonian 2-forms is different from that of Otsuki and Tashiro. Roughly speaking, in [1, 2]
Apostolov et al. observe that many interesting problems in Kéhler geometry lead to Hamiltonian
2-forms and suggest studying them. The motivation is justified in [3, 4|, where the authors indeed
construct interesting and useful examples of Kdhler manifolds. In dimension > 6, c-projectively
equivalent metrics are also essentially the same as Hermitian conformal Killing (or twistor) (1,1)-
forms studied in [37, 41, 42], see [1, Appendix A] or [34, §1.3] for details. Finally, such metrics
are closely related to the so-called K&hler-Liouville integrable systems of type A introduced by
Kiyohara in [25], see also [26].

We also would like to mention a recent review on c-projective geometry [16] that contains many
new and old results in this area. Let us however make clear that our paper is totally independent
of [16]. The work on these two papers was carried out more or less simultaneously and the second
author of the present paper, being also one of the authors of [16], was quite careful about possible
intersections between them. The only exception is Lemma 2.2 for which we suggest an alternative
proof, for more details see discussion just after Lemma 2.2. It is worth noticing that the present
paper and paper [16] represent two rather different approaches in c-projective geometry. Our
approach is based on the reduction to the real projective setting, we explain it in §1.2, whereas
[16] studies c-projectively equivalent metrics using ideas and methods of parabolic geometry.

Our paper contains three main results. The first result is a local description (near a generic
point) of c-projectively equivalent Kahler metrics of arbitrary signature, see Example 5 and Theo-
rem 1.6. If g is positive definite, such a description follows from the local description of Hamiltonian
2-forms due to Apostolov et al. [1]. Although the precise statements are slightly lengthy, we in-
deed provide an explicit description of the components of the metrics and of the Kéhler form
w = g(J-,-). The parameters in this description are almost arbitrary numbers and functions of
one variable and, in certain cases, almost arbitrary affinely equivalent Kahler metrics of smaller
dimension (note that the description of affinely equivalent Kéhler metrics was recently obtained
by Boubel in [14]).

It is hard to overestimate the future role of a local description in the local and global theory
of c-projectively equivalent metrics. Almost all known local results can easily be proved using it.
Roughly speaking, using the local description, one can reduce any problem that can be stated using
geometric PDEs (for example, any problem involving the curvature) to the analysis of a system
of ODEs. As we mentioned above, in the positive definite case, the description of c-projectively
equivalent metrics in the language of Hamiltonian 2-forms is due to Apostolov et al. [1], and
with the help of such a description they did a lot. In particular they described possible topologies
of closed manifolds admitting c-projectively equivalent Kéhler metrics, described Bochner-flat
Kahler metrics and constructed new examples of Einstein and extremal Kéahler metrics on closed
manifolds, see [1, 2, 3, 4]. We expect similar applications of our description and some have been
already obtained, e.g. in [12] the local description of c-projectively equivalent metrics has been
used to describe all Bochner-flat (pseudo-)K&hler metrics, generalizing results of [1] and [15] to
the case of arbitrary signature. We plan to look for other applications and in particular to study
the topology of c-projectively equivalent closed Kéhler manifolds of arbitrary signature in further
papers.

A demonstration of the importance of the local description is our second main result, which is a
proof of the natural generalization of the Yano-Obata conjecture for Kéhler manifolds of arbitrary
signature. A vector field on a Kéhler manifold is called c-projective if its local flow sends J-planar
curves to J-planar curves, and affine if its local flow preserves the Levi-Civita connection.

Theorem 1.1 (Yano-Obata conjecture). Let (M, g,J) be a closed connected Kihler manifold of
arbitrary signature and of real dimension 2n > 4 such that it admits a c-projective vector field that
is not an affine vector field. Then the manifold is isometric to (CP™, ¢+ grs, Jstandard) for some
non-zero constant ¢, where gpg is the Fubini-Study metric.
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For positive definite metrics, Theorem 1.1 was proved in [35]|, where also a history including a
list of previously proven special cases can be found. Generalizations of [35] to the case of complete
positive definite metrics is in [16, Theorem 7.6] and [31, Theorem 1.2]. The 4-dimensional version
of Theorem 1.1 was proved in [10].

We see that a closed Kéhler manifold with a non-affine c-projective vector field has definite sig-
nature. This phenomenon is, of course, essentially global since locally we can construct counterex-
amples in any signature. In dimension 4, such examples are described in [10], and in Proposition 5.7
we explicitly construct Kéhler metrics of any dimension and any signature admitting non-affine c-
projective vector fields. Let us also mention (see, e.g. [35, Example 2]) that (CP™, ¢-grs, Jstandard)
admits many non-affine c-projective vector fields.

As a by-product of our proof of the Yano-Obata conjecture (we explain in the next section why
it is a by-product), we establish the possibly more popular projective Lichnerowicz conjecture for
metrics of Lorentzian signature. Recall that a vector field is projective with respect to a (arbitrary,
not necessarily Kéhler) metric g, if its local flow sends geodesics viewed as unparameterised curves
to geodesics.

Theorem 1.2 (Projective Lichnerowicz conjecture for metrics of Lorentzian signature). Let (M, g)
be a closed connected Lorentzian manifold of dimension n > 2. Then any projective vector field
on M is an affine vector field.

For Riemannian metrics, the analogue of Theorem 1.2 was proved in [28] (dimension 2) and [29]
(dimension greater that 2 — this paper also contains a historical overview and a list of previously
known special cases), see also [49]. In Japanese mathematics, this statement, at least in the
Riemannian setting, is also known as projective Obata conjecture and was published many times
as an important conjecture, see introduction to [29] for details and precise references. For 2-
dimensional Lorentzian manifolds, Theorem 1.2 was proved in [33].

We would like to emphasize here that our proofs of the Yano-Obata and Lichnerowicz conjec-
tures are not generalizations of the proofs from [16, 28, 29, 35, 49], and are based on a different
circle of ideas. In general, it is difficult to extend global statements about Riemannian metrics to
the pseudo-Riemannian setting, since many “global” methods require definiteness of the metrics.
This is also the case in our situation; the main ingredients of the proofs of [28, 29, 35, 49, 16, 31]
are the global ordering of the eigenvalues of the endomorphisms A and L (given by (1.2) and
(1.6) — these endomorphisms play an important role in our paper), and an investigation of the
behavior of curvature invariants (scalar curvature in [29], holomorphic sectional curvature in [35],
norm of the projective and c-projective Weyl tensors in [16, 31, 49]) along the orbits of the group
of projective and c-projective transformations. None of these ingredients exists in the case of
indefinite signature. Examples show that in the pseudo-Kéhler case the eigenvalues of A (resp.
L) are not globally ordered anymore, holomorphic sectional curvature is usually unbounded even
on closed manifolds, and vanishing of the norm of a tensor does not imply that the tensor is zero.
Moreover, as follows from our calculations in §5.6, in the indefinite case, all curvature invariants
along integral curves of projective and c-projective vector fields can be bounded. In Remark 5.1
we give more details on what ideas of [29, 35, 49, 16, 31] were used in our paper, and also on some
new methods developed here. Other proofs of special cases of the Yano-Obata and Lichnerowicz
conjecture (see e.g. [46, 48]) are based on the Bochner technique, which also requires that the
metric is definite.

1.2. Main idea. The local description of c-projectively equivalent metrics will be given in Theo-
rem 1.6 in §1.3 (which does not require this paragraph so a hurried reader can directly go there).
The goal of this section is to explain the main idea of our solution. We hope that this allows the
reader to see the geometry behind the formulas and also may be used in many other problems
related to c-projectively equivalent metrics.

Experts always expected that projectively equivalent metrics must have a close relation with
c-projectively equivalent metrics. The expectation is based on the following informal observation:
most mathematicians that studied c-projectively equivalent metrics and c-projective vector fields
studied projectively equivalent metrics and projective vector fields before. It appears that many
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ideas and many results in the theory of projectively equivalent metrics have their counterparts in
the c-projective setting, though most of the proofs in the c-projective setting are longer and are
more involved than their projective analogues.!

We suggest an explanation why the theories are closely related, which is simultaneously the
main idea of our description. The following observation, which we formalise (and give a self-
contained proof) in §2, is crucial: c-projectively, but not affinely equivalent metrics g and g
allow us to construct vector fields K,..., K, which preserve the complex structure and which
are Killing with respect to both metrics. For Hamiltonian 2-forms (at least for a positive definite
metric), the existence of these Killing vector fields was shown by Apostolov et al. [1], and in
the framework of Kéhler-Liouville manifolds (under certain non-degeneracy assumptions) their
existence was observed by Kiyohara and Topalov [26].

We consider the local action of these vector fields and the local quotient @ of M with respect
to this action (it will be shown that such a quotient is well-defined near a generic point). Let us
denote the quotient metrics by gg and gg. Notice that ) is not a Kéhler quotient and the metrics
go and gg are in general not Kéhler.

Main Observation. The following statements hold:

(1) go and §g are projectively equivalent;
(2) the metrics g and § can be reconstructed from gg and jg in a relatively straightforward
way.

Recently, projectively equivalent metrics have been explicitly locally described in [11]. We
obtain our description of c-projectively equivalent metrics by taking the formulas from [11] for the
quotient metrics gg and gg and then “reconstructing” g and g.

However, not every pair of projectively equivalent metrics gg, §o as considered in [11] can be
obtained from a pair g, § of c-projectively equivalent metrics: we will describe the conditions that
go and gg have to satisfy in order to arise as quotients from c-projectively equivalent metrics.
These additional conditions actually simplify the formulas for the metrics gg, go as compared to
the formulas from [11] for the general case. Moreover, we show, assuming these conditions are
satisfied, how to effectively reconstruct the initial metrics g and g. This yields our description of
c-projectively equivalent Kéhler metrics.

The relation between projectively and c-projectively equivalent metrics plays also an important
role in the proof of the Yano-Obata conjecture. We will see that under the additional assumption
that the degree of mobility is 2 (which means that the “space of c-projectively equivalent metrics”
is two-dimensional — the formal definition is in §5.1 where it is also explained why it is the most
non-trivial case in the proof of the Yano-Obata conjecture), a c-projective vector field on the initial
manifold reduces to a projective vector field on the quotient.

We expect further applications of this observation which suggests, in the metric setting, an
almost algorithmic way to produce results in c-projective geometry from results in projective
geometry and the latter is much better developed.

Unfortunately, this almost algorithmic way does not automatically work in the other (c-projective
— projective) direction. The reason is that the quotient metrics gg and §g, as already noticed,
satisfy certain additional conditions. The most important of them is as follows: for the metrics
h = gg and h = Jg the endomorphism L given by (1.6) below has no Jordan blocks with non-
constant eigenvalues. For general projectively equivalent metrics, L may have non-trivial Jordan
blocks with non-constant eigevalues. This is the only reason why we can not modify the proof
of the Yano-Obata conjecture to obtain the proof of the projective Lichnerowicz conjectures for
metrics of all signatures. For the metrics of Lorentzian signature, at most one non-trivial Jordan
block may occur and after some additional work in §6 we exclude this case in the proof of the
projective Lichnerowicz conjecture. The rest of the proof of the projective Lichnerowicz conjecture

IThis analogy between c-projective and projective geometry fails at the level of affine connections (note that the
definition of c-projective equivalence makes also sense for affine connections which are not necessarily Levi-Civita
connections): though both affine projective and affine c-projective geometries are parabolic geometries, there are
essential differences between these theories if only connections are involved, see e.g. [16].
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is a straightforward modification (actually, a simplification) of the proof of the Yano-Obata con-
jecture and when proving the projective Lichnerowicz conjecture in the “no-Jordan-blocks” case
(Theorem 5.1), we confine ourselves with a series of remarks explaining necessary amendments.

1.3. Local description of c-projectively equivalent metrics. Let (M, g, J) be a Kiéhler man-
ifold of real dimension 2n > 4 and let V and w = ¢(J+, ) denote the Levi-Civita connection and
Kahler form respectively. We do not require that g or any other Ké&hler metric that appears has
positive signature.

Instead of the pair (g, §) of c-projectively equivalent metrics it is appropriate to consider the pair
(9, A), where A: TM — TM is a Hermitian (i.e. g-selfadjoint and J-commuting) endomorphism
constructed from g and g by

1
detg 2(n+1) A—lg
det g '

(12) A= at0.9) -

In this formula, we view ¢,§ : TM — T*M as bundle isomorphisms. In tensor notation (with

summation convention in force),
det §\ TAFD
) et g\ 2t
T ~tk

det g

where g%/ denotes the inverse to gij, i.e. §**gr; = 65
Clearly, one can reconstruct g from the pair (g, A) and obtains

(1.3) §=(det A)"zg(A". ).

The endomorphism A, introduced in [20], plays an important role in the theory of c-projectively
equivalent metrics. One of the reasons for this is that the condition that g and § are c-projectively
equivalent amounts to the fact that the tensor A satisfies the linear partial differential equation

(1.4) VxA=X" @A+ N @ X+ (JX) @ JA+ (JA) ® JX,

for all X € TM, where A = 1grad(tr A) and X” = g(X,-). We say that g and A are compatible
in the c-projective sense or just c-compatible if A is a Hermitian endomorphism solving (1.4). In
particular, any Hermitian endomorphism A with nowhere vanishing determinant and c-compatible
with g gives us a c-projectively equivalent metric § by (1.3), this metric is automatically Kéhler
with respect to J.

Another reason for working with A instead of § is that in our local description, the formulas
for (g, A) are much simpler than those for (g, ).

We describe locally all Kahler structures (g, J,w) admitting solutions A to (1.4) in Theorem 1.6
below. Since the description is relatively complicated, we first consider two special cases cor-
responding to the “weakest” (Theorem 1.3) and “strongest” (Theorem 1.4) case of c-projective
equivalence.

Note that any parallel Hermitian endomorphism A (i.e., satisfying VA = 0), in particular the
identity Id : TM — TM, is a solution to (1.4). Such solutions correspond to Kéhler metrics g
which are affinely equivalent to g, i.e., which have the same Levi-Civita connection as g.

Theorem 1.3 (Well-known special case of Theorem 1.6). Let (M,g,J) be a Kdihler manifold
of arbitrary signature and A : TM — TM a parallel Hermitian endomorphism. Then locally
(M,g,J) is a direct product of Kihler manifolds (M, gy, J~), v =1,...,N, and A decomposes as
A=A+ -+Ay, where A, : TM, — TM, is a parallel Hermitian endomorphism on (M, g, J)
having either a single real eigenvalue c, or a pair of comples-conjugate eigenvalues c.,c,.

The above theorem is just the de Rham—Wu decomposition [18, 45] of the Kéahler manifold into
components corresponding to the parallel distributions given by the generalized eigenspaces of A.
This is not a complete description of pairs ((g,.J), A), where (g,.J) is K&hler and A is a parallel
Hermitian endomorphism: what is left is an explicit description of the blocks (g4, J,) and A,. In
the positive definite case, the description of these blocks is trivial since in this case A, is a constant
multiple of Id : TM, — TM,. If the signature of g, is arbitrary, the local description of (g, J5)
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and A, has recently been obtained by C. Boubel in [14]. Boubel’s description of (g, J,, A,) is
quite complicated, we will not repeat it here and refer to [14] for more details.

Remark 1.1. Let us reformulate the statement from Theorem 1.3 in matrix notation: we can
find local coordinates such that the matrices of g, J and A in these coordinates are block-diagonal
with the same structure of blocks:

91 Jl Al
(15) g = , J= , A= .
gnN JN AN

In all matrices, the components of each block only depend on the corresponding coordinates and
for each v =1,..., N the endomorphism A, is Hermitian and parallel w.r.t. the Kahler structure

(g'va“/)-

The “main idea” and “main observation” described in §1.2 become vacuous in the setting of
Theorem 1.3: the number of “canonical” Killing vector fields K1, ..., Ky is zero, hence, the quotient
of the manifold is the manifold itself. The “main observation” remains, of course, formally true
but in this case projective equivalence is affine equivalence.

A special feature of the situation described in Theorem 1.3 is that the eigenvalues of A are
constant, and may have high multiplicities. Let us now consider the “strongest” special case of
c-projective equivalence: all eigenvalues of A are non-constant (when considered as functions on
M), and their multiplicity is minimal possible.

Consider two projectively equivalent pseudo-Riemannian metrics h and h (i.e., metrics having
the same unparametrised geodesics) and define the endomorphism L by

1
n+1

det h
det h

(1.6) L= L(h,h) = ~1h.

It is well known that L satisfies the equation
(1.7) VxL=X"@A+AN ®X, foral X cTM,

where A = lgrad(tr L), X* = h(X,-) and V denotes the Levi-Civita connection of h. Moreover,
if L is h-selfadjoint and non-degenerate, then (1.7) is equivalent to the projective equivalence of h

and h given by
(1.8) h = |det L *h(L71., ")

see [43] and e.g. [8]. To emphasize both the difference and similarity with c-compatibility in-
troduced above, we will say that h and an h-selfadjoint endomorphism L satisfying (1.7) are
compatible in the projective sense or just compatible.

Example 1. Assume that on a certain domain U C R¢ we have a compatible pair i and L for
which the following conditions hold:

A1l. The eigenvalues p1,. .., pe of L are all distinct at each point of U (complex conjugate pairs
p, p with Im p # 0 are allowed too), which allows us to view them as smooth functions on
U.

A2. dp; # 0 at each point of U, 1 =1,... L.

We now explain how, starting from such a compatible pair

¢ ¢
; 0
(1.9) h = i;:l Bij(x)dz;dz; and L= igl Lida; ® Tor
one can naturally construct a c-compatible pair, i.e., a Kéhler structure (g, J,w) and a Hermitian
endomorphism A satisfying (1.4). By u1, ..., ue we denote the elementary symmetric polynomials
inpy,...,p0 (e, (T+p1)(T+pe) =78+ 71+ ..+ uf). Notice that under the assumption
that p; are all distinct and dp; # 0, the differentials of p; are linearly independent, i.e., dpy Adpa A
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-+ Adpg # 0. This follows from [8, Theorems 2, 3] and was essentially known to Levi-Civita [27].
Thus, both systems of functions p;’s and u;’s can be considered as local coordinates on U.
Consider a domain V C R? with local coordinates t1,...,t, and define g, w on V x U in the
following way
¢

4
9= Y Hap(z)dtodts + Y Bij(x)dw;da;,

(1.10) o W=
w= Z dpgg A dity,
a=1
where Hog = 3, B (x )8'%‘ Ons of the matrix inverse to B, i.e.,
8.%‘i 81‘]‘ J
>, Bix B = (517. We also set
(1.11) A—ZMﬁ dt5®i+zy )da; 0
8 ] 63:1 ’
a,pf=1 4,5=1
; Opp 0x;
where M = > L 8:1:[3 8,ui
Equivalently, in matrix form w.r.t. the coordinates t1,...,ts, x1,..., ¢, the above expressions
take the form
Ph=IPT 0 0 -P (PLP~1H)T 0
(1.12) g_( o n) “=\pm o) 47 0 I
Ot
where P = (8M ) is the Jacobi matrix of the system of functions ui,...,ue (w.r.t. the local
T
coordinates x1,...,xy).

The following theorem, which describes c-projectively equivalent metrics under the assumption
that A(g, ) has the maximal number of non-constant eigenvalues, shows that in this case the
relation between projective equivalence and c-projective equivalence is rather straightforward.

Theorem 1.4. Let (h,L) be a compatible pair on U satisfying A1 and A2. Then the above
formulas (1.10) and (1.11) (or equivalently (1.12) in matriz form) define a Kdhler structure (g,w)
and a Hermitian endomorphism A which are c-compatible, i.e., satisfy (1.4). Conversely, if a
Kahler structure (g,w) and a Hermitian endomorphism A are c-compatible and the eigenvalues of
A (as a complex endomorphism) satisfy Al and A2 in a neighbourhood of some point, then locally,
in a neighbourhood of this point, g,w and A can be written in the form (1.10) and (1.11), where
h =3, Bij(x)dzidz; and L =73, ; Lidx; ® 9, are compatible.

Example 2. The simplest example of the situation described in Theorem 1.4 is obtained by start-
ing with a 2-dimensional compatible pair (h, L) such that L has two real non-constant eigenvalues
p, o satisfying Al and A2. The description of such a pair is due to Dini [19], see also [11]: locally,
we find coordinates z,y such that p = p(z) and 0 = o(y) and

h=(p—o)(dz? £dy?), L—pdx@aa +ady®§
y

Applying Theorem 1.4 to these formulas, we obtain the formulas for the Kéhler structure (g,w)
and the c-compatible endomorphism A. These formulas can be found in [10, (3.1) and (3.2)].

We see that in the situation of Theorem 1.4, the entries of g, w and A do not depend on the
coordinates t1, ..., ty. This implies that are J-preserving Killing vector fields, and they

at 1ee at
are precisely the Kllhng vector fields K1, ..., K, Wthh we mentioned in §1.2. The quotient with
respect to the local action of these vector ﬁelds is n-dimensional with local coordinates z1, ..., xy,
and the metric g descends to the metric go = h on the quotient. As claimed in the “main

observation” of §1.2, go admits a projectively equivalent metric §g defined by the endomorphism
L which also can be treated as the quotient L = Ag of the Hermitian endomorphism A.
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In the next example and theorem, we present the most general local expression which a Kéhler
structure (g,w) together with a solution A to equation (1.4) can take. The construction below
combines the previous two cases from Theorem 1.3 and Example 1.

Example 3. We start with two ingredients:

e a compatible pair 2 and L defined on a domain U C R? and satisfying the conditions Al
and A2 as in Example 1, see (1.9);

e a Kihler structure (ge,w.) defined on some domain S with a parallel Hermitian endomor-
phism A. (notice that the eigenvalues of A. are constant).

In addition, we assume that the eigenvalues of L at each point p € U are all different from those
of A..

Consider the direct product V xU x S, where V' C R’ is a certain domain of the same dimension
¢ as U, and denote local coordinates on V', U and S by (t1,...,t¢), (z1,...,x¢) and (y1,...,Y2x)
respectively. On this product V' x U x S, we now define a pseudo-Riemannian metric g and a
2-form w:

¢

g = Z Hozﬁ 0 05 + Z Bzg dajzdxj +QC(XL(A ) )7

a,B=1 3,j=1

¢
w = Z dpta A O + WC(XL(AC)'a ')7

a=1
where x1,(t) = det(¢-Id — L) is the characteristic polynomial of L, 6; = dt; + «; and the 1-forms
a; on S are chosen in such a way that da; = (—1)'w.(A%%-,-) (which is possible since w.(A%%, ")
is a parallel 2-form on S). The other ingredients, H,s and p;, are defined as above in Example 1
and in addition we set g = 1.
Further we define the endomorphism

(1.13)

4

9 0 0
(114 A— Z Mﬁ 9B®Z+ZLZ dxj —1—2 qdyp®<ay ;aiqé)u)

a,B=1 ,j=1 p,q=1

. Opg Ox;
here MP =S, . L& et/
where MP? Zm I Dm; o
the coordinates y1, ..., yox, i.€., @; = Zq a;qdy, and A = Z%(I(Ac)g dyp, ® 0y,
Equivalently, in matrix form (w.r.t. the basis 01,...,0y,dx1,...,dzs, dy1, ..., dyak), the above

formulas take the form:

and a;q resp. (Ac)g denote the components of ay; resp. A; w.r.t.

Ph='PT 0 0 0 -P 0 (PLP~HT 0 0
g= 0 h 0 , w=|PT 0 0 , A= 0 L 0
0 0 gexr(Ae) 0 0 wexrn(Ae) 0 0 A,

0
where P = ((;M) is the Jacobi matrix of the system of functions ui,...,ue (w.r.t. the local
Ly

coordinates x1,...,xy).

Remark 1.2. Each of the 1-forms «; on S is determined by (w., A.) up to adding the differential
of a function. However, replacing 6; by the 1-forms 0, =60, +d fi in the formulas of Example 3
for functions f; on S, it is easy to construct a local transformation f : M — M identifying the
formulas in Example 3 written down w.r.t. 6; and 0, respectively, see also the discussion after
Proposition 4.3 below.

We will call a point p € M regular with respect to a solution A of (1.4), if in a neighbourhood of
this point the number of different eigenvalues of A is constant (which implies that the eigenvalues
are smooth functions in some neighbourhood of p), and for each eigenvalue p either dp # 0, or p is
constant in a neighbourhood of p. Clearly, the set MY of regular points is open and dense in M.
Further (see Lemma 2.2 (4) below) we will see that the number of non-constant eigenvalues of A
is the same near every regular point. The following theorem generalizes Theorems 1.3 and 1.4:
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Theorem 1.5. The metric g and 2-form w defined by (1.13) are a Kahler structure and A defined
by (1.14) is a Hermitian solution of (1.4).

Conversely, let (M,g,w) be a Kdihler manifold of arbitrary signature and A be a Hermitian
solution of (1.4). Then in a neighbourhood of a regular point, the Kdhler structure (g,w) and the
endomorphism A can be written in the form (1.13) and (1.14) from Ezxample 3.

Example 4. The simplest example of the situation described in Theorem 1.5 is obtained by
starting with a 1-dimensional compatible pair h = d2?, L = pdaz ® d,, for a function p = p(x) satis-
fying dp # 0 and a 2-dimensional K&hler structure (g.,w.) with parallel Hermitian endomorphism
A. = c-1d for a constant ¢. Applying Theorem 1.4 to these formulas, we obtain the formulas for
the Kahler structure (g,w) and the c-compatible endomorphism A given by [10, formulas (3.5)
and (3.6)] (up to a slight change of notation).

Theorem 1.5 gives us a description of a c-compatible pair (g,w) and A (at a generic point)
provided we know a description of compatible pairs (h, L) and also of Kéhler structures (g.,w.)
admitting a parallel Hermitian endomorphism A.. As we already mentioned above, the latter have
been described in [14]. The local normal forms for compatible pairs (h, L) have been obtained in
[11] and this combined with Theorem 1.5 implies the local normal forms for a c-compatible pair
(g,w) and A, see Example 5 and Theorem 1.6 below. We also refer to [10, Theorem 3.1] for the
formulas in the 4-dimensional case.

Example 5 (Main example). Let 2n > 4 and consider an open subset W of R?" of the form
W =V xUxS8; x---x Sy for open subsets V,U C R¢ and Sy C R2™~. Let ti,...,t; denote the
coordinates on V' and let the coordinates on U be separated into » complex coordinates zq, ..., 2,
and ¢ = ¢ — 2r real coordinates Zyq1,...,ZTr1q-

Suppose the following data is given on these open subsets:

e Kihler structures (g, J,,wy) on S, fory=1,...,N.

e For each v =1,..., N, a parallel] Hermitian endomorphism A, : T'S, — TS, for (g, J;)
having a pair of complex conjugate eigenvalues ¢, ¢, € C\R for y =1,..., R and a single
real eigenvalue ¢y, € R for v+ = R+ 1,..., N such that the algebraic multiplicity of c,
equals m,/2 fory=1,...,Rand m, fory=R+1,...,N.

e Holomorphic functions p;(z;) of z; for 1 < j < r and smooth functions p;(z;) for r+1 <

J<r+gq
Moreover, we choose 1-forms a,...,ap on S = S7 X -+ x Sy which satisfy
N
(1.15) dai = (=1)" Y w (A7),
y=1

We introduce some notation to be used throughout the paper. The function A; for 1 <i < r+4gqis
given by A; = HPGEnc\{pi}(pi - P), where By = {p17 Pls--oyPrsPryPrids--- apr+q}' The 1-forms
01,...,0;, on W are defined by 6; = dt; +«;. The function p; denotes the ith elementary symmetric
polynomial in the ¢ variables F, p;(gs) denotes the ith elementary symmetric polynomial in the
¢ — 1 variables Ey. \ {ps} and the notation “c.c” refers to the conjugate complex of the preceding
term.

Suppose that at every point of W the values of the functions p1,p1,..., pr4q are mutually
different and different from the constants ¢1, ¢y, . . ., ¢y and their differentials are non-zero (which,
as explained above, implies that they are linearly independent). Then (g,w,J) given by the
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formulas
(1.16)
1 r r+q ¢ , N ]
9=-7 Z (Aid2f +cc) + Z giAyda? + Z(—l)zui ng(Ag_”, )
i=1 i=r+1 i =1
e (a5 (O S gm0 (01
PR A, 0z, Ok 2 A, gz, ) |7
7,7=1 s=1 s=r+1
¢ ¢ N '
w = Zdﬂi NO; + Z(_l)zﬂi Zwv(Af/_z'a ')7
' i=0 =

. p _ r+q —1
(—1) 01— 8[’]‘ ' i—1 v—i [ Op;
O;0J = 1 r; 9z, dz; +cc+ (—1) :Z €jp; 92, da;

is Kéhler, where £; = 1 depending on the signature of g. Moreover, writing a; = > q Qigdyq and
A, = vaq(A,Y)g dy, ® 0y, w.r.t. local coordinates y1,...,y2r on S = H,Y Sy, we have that the
endomorphism A given by

: S 0 g
Z: Mz(slj ,(J_1)) 0; ® 873 + Szzl(psdzs ® 8728 +c. C é;lpg
(1.17) N ok p
+ZZ(Aw)Zdyp®< Z ant)
y=1p,q=1 =1

is a Hermitian solution to (1.4).

Example 5 is an explicit construction of a Kihler metric (1.16) and a solution (1.17) of (1.4).
This fact can be verified by a straightforward, though non-trivial computation. Another proof will
be given in Sections 4.2 and 4.3. The next theorem shows that in a neighbourhood of a generic
point, a Kéhler metric g (of any signature) and a solution A of (1.4) are, in a certain coordinate
system, as in Example 5.

Theorem 1.6 (Local description of c-projectively equivalent metrics). Let (M,g,J) be a Kdhler
manifold of arbitrary signature and A be a Hermitian solution of (1.4). If in a small neighbourhood
W C M° of a regular point, A has

e [ = 2r+q non-constant eigenvalues on W which separate into r pairs of complex-conjugate

eigenvalues p1, p1,...,pr, pr : W — C and q real eigenvalues pri1,...,pr4q: W = R,
e N + R constant eigenvalues which separate into R pairs of complex conjugate eigenvalues
€1,C1,...,CR,Cr and N — R real eigenvalues cry1,...,CnN,

then the Kdhler structure (g, J,w) and A are given on W by the formulas (1.16) and (1.17) from
Ezxample 5.

Remark 1.3. As stated above, the corresponding local description of a positive definite K&hler
structure (g, J,w) admitting a Hermitian solution A of (1.4) has been obtained in [1] in the
language of Hamiltonian 2-forms.

Remark 1.4. As mentioned above, Theorem 1.6 yields an “almost” explicit description (in a
neighbourhood of a regular point) of a Kéhler metric g admitting a c-projectively equivalent
metric. What is not described explicitly are the Kéhler structures (g,,w,) that admit parallel
Hermitian endomorphisms A,. The formulas for such a triple (g,,w~, A,) in local coordinates can
be found in [14].
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Remark 1.5. As explained above, for positive definite metrics the local classification was obtained
in [1]. The main reason why the proofs from [1] cannot be generalized to metrics of arbitrary
signature is rather simple. Many calculations and arguments in [1] use the frame in which both
metrics are simultaneously diagonal. This is impossible in the pseudo-Kéhler case, since self-
adjoint operators in pseudo-Hermitian vector spaces are not necessarily semisimple. The above
examples demonstrate that this phenomenon effectively shows up.

Recall that even the simplest cases of such a situation are nontrivial. Indeed, in the Riemannian
signature affinely equivalent metrics locally split into a direct product of proportional metrics (with
constant coefficient on each factor) and were completely understood by Cartan and Eisenhart 100
years ago. For arbitrary signature, affinely equivalent metrics have been described only very
recently, in [14]. Similarly, in the Riemannian signature, projectively equivalent metrics were
described already by Levi-Civita in 1896. The case of arbitrary signature is much more complicated
and has been solved only recently in [11, §].

Note that in view of the discussion in §1.2, a local description of c-projectively equivalent
metrics “includes” (i.e., essentially implies) the results of [14] and [8]. A straightforward attempt
to generalize the proofs from [1] to an arbitrary signature would make it necessary to re-obtain, in
a different language, the main results of [14] and [8]. Note also that in [15] (which in fact studies
c-projectively equivalent metrics with special properties) it was explicitly pointed out that the
case of arbitrary signature is essentially more complicated due to certain algebraic difficulties.

1.4. Structure of the paper. In §2, we recall that the existence of a c-projectively equivalent
metric g for a Kéhler metric g implies the existence of a family of independent commuting Hamil-
tonian (w.r.t. the Kéhler form w) Killing vector fields Ki,...,K,;. These vector fields are also
Killing w.r.t. g.

We can form the quotient of M w.r.t. the local Rf-action induced by these vector fields and
obtain a bundle structure M — @ with fibers being the leaves of the foliation generated by the
vector fields K;. Since g, g are invariant w.r.t. the action of the vector fields K; and the orthogonal
complements to the fibers w.r.t. g and § coincide, they descend to metrics gg, o on the quotient.
This reduction will be explained in detail in §3. As we already mentioned, in §1.2, the crucial
observation is that the metrics on the quotient are projectively equivalent. We prove this property
in §3.2. More precisely, as explained in Example 1, instead of gg we consider the endomorphism
Ag obtained from gg and g by (1.6) and check the compatibility condition for the pair gg, Ag.

The local classification of pseudo-Riemannian projectively equivalent metrics, or equivalently,
compatible pairs gg and Ag has been derived in [11]. We apply these results in §4.1 to obtain
the normal forms for gg, Ag on the quotient. These normal forms are, in fact, simpler than the
generic ones for projectively equivalent metrics: the tensor A = A(g, §) from Theorem 1.6 has non-
constant eigenvalues of (complex) algebraic multiplicity equal to one such that the corresponding
tensor Ag on the quotient has no non-trivial Jordan blocks corresponding to the non-constant
eigenvalues. This makes the formulas from [11] much easier.

The requirement that g is Kéhler and A is Hermitian implies that they are completely deter-
mined by the reduced objects gg and Ag on the quotient. In §4.1 we derive the formulas for (g,w)
and A which are in essence equivalent to (1.13) and (1.14) (Proposition 4.3). The next step is to
show that there are no further restrictions on g, w and A so that the formulas from Proposition 4.3
give us a desired local description, see §4.2.

Finally in §4.3, we complete the proof of Theorem 1.6 by deriving the explicit formulas (1.16)
and (1.17) from Example 5.

The second part of the article contains the proof of Theorems 1.1 and 1.2. As we already pointed
out, there is a close relationship between c-projective and projective equivalence. This makes the
proofs of these theorems rather similar. In Section 5 we focus on the proof of the Yano-Obata
conjecture (Theorem 1.1) and explain in a series of remarks how this proof can be adapted for the
Lichnerowicz conjecture (Theorem 1.2). This is done under one additional algebraic condition: the
endomorphism A compatible with the metric g and induced by the projective vector field v has no
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2

Jordan blocks with non-constant eigenvalues®. The latter case when A admits a “non-constant”

Jordan block is treated in Section 6.

2. CANONICAL KILLING VECTOR FIELDS FOR C-PROJECTIVELY EQUIVALENT METRICS

Let (M, g, J) be a connected Kéhler manifold of real dimension 2n > 4. Since by definition any
A which is c-compatible with (g, J) commutes with .J, we can consider A as an endomorphism of
the n-dimensional complex vector space T, M (with complex multiplication given by (a + ib)X =
aX + bJX). The determinant of A considered as complex endomorphism will be denoted by
detc A. It is a smooth function on M and since A is Hermitian, it is real valued. Up to a sign
detc A equals vdet A, though the latter is always positive and smoothness may fail at the points
where it vanishes.

Recall that a vector field is called a Killing vector field w.r.t. the metric g, if its local flow
preserves g. Similarly, a vector field is called holomorphic if its local flow preserves the complex
structure J.

Since the local flow of a holomorphic Killing vector field K preserves the symplectic form
w = g(J-,-), the vector field K is Hamiltonian in a neighbourhood of any point or, more generally,
on every simply connected open subset. Recall that a vector field K is called Hamiltonian if there
exists a function f such that

igw = —df or, equivalently, K = Jgradf.

Such a function f is called a Hamiltonian for K and it is only unique up to adding a constant.
Conversely, since every Hamiltonian vector field preserves w, it is Killing if and only if it is
holomorphic. Recall also that holomorphic vector fields are characterised by the property that
their covariant differential is complex-linear (when considered as endomorphism of T,M) and
therefore a Hamiltonian vector field K = Jgradf is holomorphic if and only if the hessian V2 f is
Hermitian.

Lemma 2.1. For any A which is c-compatible with (g,J) the function detc A is a Hamiltonian
for a Killing vector field.

We do not pretend that Lemma 2.1 is new: for positive definite metrics it is equivalent to [1,
Proposition 3] and this proof can be generalized to all signatures. We give a different and shorter
proof, which is based on the same observation as the proof given in [16, Proposition 4.10] but does
not require introducing c-projectively invariant objects.

Proof. Since the statement is local, w.l.o.g. we may assume that det A # 0, otherwise we can
locally replace A by A + const - Id. Then, as explained in §1.3, the metric § given by (1.3) is
c-projectively equivalent to g. We denote by V and V the Levi-Civita connections of g and §. It is
well known (see for example the survey [36]), and follows directly from the definition of c-projective
equivalence, that the connections V and V are related by the equation

(2.1) @XY—VXY:@(X)YJrq)(Y)X—@(JX)JY—@(JY)JX,
where @ is an exact 1-form equal to the differential of the function
det g
_ 1
(2.2) ¢ =1 I (detg) .

Combining (1.3) and (2.2), we see that
exp(—2¢) = |detc A|.

Now, it follows from straightforward calculations using (2.1) (see e.g. [36]), that the Ricci
tensors Ric and Ric of the metrics g and § are related by

Ric — Ric = —2(n + 1)(V® — 2 + (& 0 J)?).

2According to the local description given by Theorem 1.6, in the c-projective setting such blocks do not occur.
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Note that V@ is a symmetric (0, 2)-tensor. For a Kiahler metric, the Ricci tensor is Hermitian w.r.t.
the complex structure. Then the above equation implies that V® — ®2 4 (® o J)? is Hermitian.
Hence,

V2|detc A] = VZexp(—2¢) = 2exp(—2¢)(—V® 4 20?%)
= 2exp(—20)(—(V® — &2 + (D0 J)?) + &% + (P o J)?)
is Hermitian as well. This implies that Jgrad |detc A| is Killing. O

For each A which is c-compatible with (g, J), Lemma 2.1 gives us a Hamiltonian Killing vector
field with the Hamiltonian function det¢ A. If A is not parallel, this function is non-constant and
therefore the Killing vector field is non-trivial.

Since equation (1.4) is linear in A and admits Id : TM — TM as a solution, we actually have
a whole family A(¢) =t -Id — A of endomorphisms c-compatible with (g, J). For any fixed ¢, the
function det¢ A(t) is a Hamiltonian for a Killing vector field which we denote by K (t). We will
call these vector fields, and also all their linear combinations with constant coefficients, canonical
Killing vector fields corresponding to the solution A of (1.4) (or to the c-projectively equivalent
metric §), or simply canonical Killing vector fields.

Lemma 2.2. The following statements hold for any endomorphism A which is c-compatible with
(9, ]):

(1) Suppose for a smooth function p on an open subset U C M and for any point p € U the
number p(p) is an eigenvalue of A at p of algebraic multiplicity > 4. Then this function p
is a constant on U. Moreover, for any point of the manifold the constant p is an eigenvalue
of A.

(2) The vectors grad p and Jgrad p are eigenvectors of A with eigenvalue p at the points where
the eigenvalue p is a smooth function.

(3) At a generic point, the number of linearly independent canonical Killing vector fields co-
incides with the number of non-constant eigenvalues of A.

(4) At each regular point the number of eigenvalues p with dp # 0 is the same.

(5) At regular points, the restriction of g to the distribution spanned by the canonical Killing
vector fields is non-degenerate.

(6) The canonical Killing vector fields K(t), and also the vector fields JK(t) commute: for
any t1,t2 € R we have

[K(t1), K(t2)] = [K(t1), JK(t2)] = [JK(t1), JK(t2)] =0 and w(K(t1),K(t2)) =0.

(7) The local flow of every canonical Killing vector field preserves A.
(8) For any two canonical Killing vector fields K(t1), K(t2) the vector JV g, K(t2) at any
point is contained in the span of the vector fields K(t), t € R.

Most statements of the lemma can be found in [16]. More precisely, the first statement is [16,
Lemma 5.16], the second statement is [16, Corollary 5.17], the third statement follows from [16,
Theorem 5.18(1)], the fourth statement is [16, Proposition 5.12], the sixth statement is explained
in [16, §5.6] and the seventh statement follows from [16, Theorem 5.18(1)]. The proofs in the
present paper are different from those in [16], shorter and do not require introducing c-projectively
invariant objects. For g positive definite, most statements of the lemma have been obtained in the
language of Hamiltonian 2-forms in [1]. It is not possible (that is, we did not find an easy way to
do it, see also discussion in Remark 1.5) to directly generalize the proofs from [1] to metrics of all
signatures. Note also that Lemma 2.2(1), i.e., the non-existence of “non-constant” Jordan-blocks,
was shown before in [10, Lemma 2.5] for dim¢ (M) = 2.

Proof. Let A1(x),...,\x(x) be the eigenvalues of A at a point z € M. In the proof of the Ist
statement of Lemma 2.2 we will work in a neighbourhood of a generic point, which implies that we
may assume w.l.o.g. that the algebraic multiplicities of the eigenvalues are 2my, . .., 2my, they do
not change in this neighbourhood and all \; are smooth, possibly complex-valued functions. Now,
evidently f(t) = detc(t-Id — A) = (¢ — A1)™ ... (t — Ag)™*. Note that the formula for f(t) makes
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sense also if t € C\ R. Indeed, because of linearity of the Killing equation, for a Hamiltonian
function f(t) with ¢ € C\ R the Hamiltonian vector field, which is now complex-valued, is still
a holomorphic Killing vector field in the sense that its real and imaginary parts are holomorphic
Killing vector fields. To see this, note that f(¢) is a polynomial in ¢ so all of its coefficients
are Hamiltonians for holomorphic Killing vector fields. Thus, for complex-valued t the real and
imaginary parts of f(t) are still linear combinations of the coefficients.

Consider now the family df(¢) of differentials of Hamiltonians of the canonical Killing vector
fields. It is given by
(2.3)

my(t— A)™ 7t = Xo)™2 (= X)) AN ma(t — X)) (E— A)™2 (= M) ™ dAa+

e mg(t — /\1)m1 (t — )™ ... (t — )\k)mk_ld)\k.

Suppose now that a (possibly complex-valued) eigenvalue \; has algebraic multiplicity 2m; > 4.
W.lo.g. we may think that ¢ = 1. We take an arbitrary point p, set A = A;(p) and consider the
Hamiltonian f(¢) with ¢ = A. Since m; > 2, we see that df()\) = 0 at p. Then the components

of the matrix of the hessian V2f()\) at p in any coordinate system z; are simply given by the
components 9;0; f(A) of the usual hessian at p and, hence,

V2N (p) = ma(my —1)(A = A)™ 72X = A2)™2 ... (A — M) ™ dA? .

We see that if \; is actually real-valued, the hessian V2 f()) at the point p vanishes or has rank
1. But it cannot have rank 1 because it is Hermitian. Thus, V2 f(\) has to vanish.
Suppose now A\ = a + i3, where a and  are real-valued functions. Then,

d\? = da? — dB? + 2idadp.

If do and dB are linearly dependent, da? — df? and dadf have rank 1 or 0. Since rank 1
is impossible (this would imply that V2f (X)(p) has rank 1 leading us to a contradiction) they
vanish. The case when da and dS are linearly independent cannot occur because in this case the
bilinear forms da? — d3? and dadB have signature (1,1,2n — 2), which contradicts that they are
Hermitian. Finally, V2f(5\) =0 at p.

It is well known that the first jet (i.e, the vector field and its first covariant derivative) of a
Killing vector field at a point determines the Killing vector field on the whole manifold. As we
just proved, the first jet of the Killing vector field corresponding to the Hamiltonian f()\) vanishes
at p. Then it vanishes on the whole manifold which implies that the function f()) is a constant.
It is clearly zero at the point p so it is identically zero and A is an eigenvalue at every point of the
manifold. The 1st statement of Lemma 2.2 is proved.

Let us now prove the 2nd statement. Denote by X a vector field of eigenvectors corresponding
to a non-constant eigenvalue p (viewed as a function on the manifold). First observe that for any
vector Y we have

(2.4) (A—p-Id)Vy X =dp(Y)X — g(X,Y)A — g(X,N)Y — g(X, JY)JA + g(X, JA)JY.

To obtain (2.4), take the covariant derivative in the direction of Y of the equation (A—p-Id)X = 0,
substitute (1.4) and rearrange the terms.

Taking Y orthogonal to X and to JX, we see that the right hand side of (2.4) is a linear
combination of the vectors X, Y and JY. Note that since the algebraic multiplicity of p is two,
we have g(X, X) = ¢g(JX,JX) # 0 implying that X, Y and JY are linearly independent. Since
the left hand side (A — p-1d)Vy X is orthogonal to the kernel of (A — p-Id), the coefficient of X,
which is dp(Y'), is zero. Thus, the function p is constant in any direction orthogonal to X and to
JX. By the 1st statement of Lemma 2.2, the algebraic multiplicity of p is 2 and it follows that
grad p and Jgrad p are eigenvectors of A corresponding to the eigenvalue p.

To prove the 3rd statement, consider the non-constant eigenvalues of A and denote them by
P1,---,pe- We will work near a generic point so we may assume that pi,...,ps are smooth
functions with non-zero differentials. Observe that for any ¢ the function (¢ — ;)™ is a constant if
the eigenvalue \; is a constant and, in view of the proved 1st statement, if m; > 2. Then each f(t) is
proportional with a constant coefficient to (t—py) ... (t—pg). The function f(t) = (t—p1)... (t—p)
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is a polynomial of degree ¢ with leading coefficient equal to 1 and has at most £ non-constant
coeflicients. Thus, the number of linearly independent canonical Killing vector fields is at most £.

Since the gradients grad p; belong to different eigenspaces, they are linearly independent and
in view of (2.3), the differentials of f(¢;) and f(ty) are linearly independent for ¢; # ty so the
number of linearly independent canonical Killing vector fields is precisely /.

To prove the 4th statement, recall that a Killing vector field which vanishes on an open set
vanishes everywhere. Then, by the 3rd statement of the lemma, the number of non-constant
eigenvalues is the same on every open subset of regular points and the claim follows.

In order to proof the 5th statement, observe that the distribution spanned by the canonical
Killing vector fields, at regular points, coincides with the distribution spanned by the Hamiltonian
vector fields generated by the non-constant eigenvalues. By the 2nd statement, such Hamiltonian
vector fields have non-zero length at regular points and are mutually orthogonal, and the claim
follows.

Let us prove the 6th statement. By the 2nd statement, we have

(K (1), K (t2)) = g(TK (t1), K (t2)) = 0

for any real numbers t1,t5. By definition of a Poisson bracket, this equation is equivalent to
say that the Hamiltonian functions f(¢1), f(t2) corresponding to K(t1), K(t2) Poisson commute,
{f(t1), f(t2)} = 0. On the other hand, recall that [K(t1), K (t2)] is the Hamiltonian vector field
corresponding to the Hamiltonian {f(¢1), f(t2)}. We obtain [K(¢1), K (t2)] = 0. The remaining
equations follow from the fact that the vector field K (¢) is holomorphic and therefore also JK (¢)
is holomorphic.

To prove the Tth statement, assume w. 1. 0. g. that A is non-degenerate (the statement of part
(7) is local and we may change A — A + const - Id). Then we can consider the metric § from
(1.3) c-projectively equivalent to g. It is sufficient to show that the canonical Killing vector fields
for g are also canonical Killing vector fields for §. W.l.o.g. we may work in a neighbourhood of
a regular point. Let p1,..., pe denote the non-constant eigenvalues of A. If we swap the metrics

g and ¢ in the definition (1.2), the tensor constructed by the pair of metrlc&, g, g is clearly the

inverse of the initial A, therefore its non-constant eigenvalues are i . —.

We will show that the canonical Killing vector field K (t) for g, whose Hamﬂtoman is dete (¢ -
Id — A), is proportional with a non-zero constant coefficient to the canonical Killing vector field
k( ) for g, whose Hamiltonian is detc ( -Id— A~ 1)

Since the multiplicity of the non-constant eigenvalues of A is two, up to multiplication by
a constant, for any ¢, the differential of detc(t-Id — A) coincides with the differential of (¢t —

p1) .. (t — p¢) which is

(t=p2)...(t—=pe)dpr + (t = p1)(t — p3) ... (¢ = pe)dpa+ -+ (t = p1)... (¢ — pe—1)dpe.
Similarly, for any ¢ # 0, the differential of det¢ (% Id - Ail) is proportional with a constant
coefficient to the differential of (+ — L)... (1 — pi) which is, up to multiplication by a non-zero

P

constant, given by '
1 1

deto(4) ((/)2 —t) . (pe—t)o=dpr + (pr = t)(p3 — 1) ... (pe — 1) podpa + -+ (p1 = 1) .. (pe—1 — t)ﬁdpe) :

Now, the canonical vector fields K (t) and K (1) are related to the differentials of detc(t - Id — A)
and detc ( -Id — A~ )

K(t) = Jgrad,detc(t - 1d — A) and K (1) = Jgrad,detc (+-1d — A7)

Combining this with (1.3) and the 2nd statement, we conclude that K (t) is proportional to K (1)
with a constant factor.

Let us now prove the 8th statement. It is sufficient to prove it on the dense and open subset
M? of regular points. As usual, by p1,...,ps we denote the non-constant eigenvalues of A. From
the definition, it follows that the integrable distribution V spanned by the canonical Killing vector
fields K (t), t € R, coincides with the distribution spanned by the vector fields Jgradp;, i =1,...,¢.
Consider the distribution F = V@& JV. It is spanned by the family of vector fields K (t), JK(t), t €
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R, is integrable by the 6th statement and coincides with the span of gradp;, Jgradp;, 1 =1,...,¢.
From formula (2.4) combined with the 2nd statement, it follows immediately that the distribution
F is totally geodesic. By the 5th statement, the restriction g| of g to an integral leaf £ C M? of
F is nondegenerate. Then it follows that the integral leafs £ C £ of the integrable subdistribution
JV C F are totally geodesic since they are orthogonal in (£, g|z) to a distribution spanned by
Killing vector fields. This implies that V g, JK(t2) is tangent to JV, or equivalently (since
J is parallel and K (t) is holomorphic), that JV g, )K (1) is tangent to V as we claimed. This
completes the proof of Lemma 2.2. O

Let u; denote the ith elementary symmetric polynomial in pq, ..., pg, i.e., in the non-constant
eigenvalues of A c-compatible with (g, J). Note that although the p; may fail to be smooth at
certain points, the y; are globally defined smooth functions on M: clearly we have detc(¢-Id—A) =
P(t) Zfzo(—l)i,uit[_i, where P(t) is a polynomial of degree n — ¢ with constant coefficients and
we put po = 1. In what follows we will mainly work with a special set of canonical Killing vector
fields K3y, ..., Ky corresponding to A, where K; is defined to be the Hamiltonian vector field with
1; as a Hamiltonian function, i.e.,

(2.5) K; = Jgrady,.

These Killing vector fields have been considered in [1]. By Lemma 2.2, the span of these vector
fields at each point coincides with the span of the vector fields K(t), t € R, and therefore, they
share all the properties that have been proven for the vector fields K(¢) in Lemma 2.2. For
instance, w(K;, K;) = 0, hence, [K;, K;] = [JK;, K] = [JK;,JK;] =0 and K1 A--- AN K; # 0 at
each point of M?°.

3. REDUCTION TO THE REAL PROJECTIVE SETTING

We recall the description of a Kihler manifold with a local isometric Hamiltonian R-action
in §3.1. In the setting of c-projectively equivalent Kéhler metrics, this action is given by the
commuting Killing vector fields K7, ..., K; from (2.5) induced by a Hermitian solution A of (1.4).
As stated in §1.2, the quotient of the Kéhler manifold (M,g,J) w.r.t. to this action yields a
manifold (Q, gg) and gg admits a projectively equivalent metric. This will be described in detail
in §3.2.

3.1. The Kihler quotient w.r.t. a local isometric Hamiltonian Rf-action. Recall from
[1, §3.1] that a local isometric Hamiltonian R*-action on a Kihler manifold (M, g,.J) is given by
holomorphic Killing vector fields K7, ..., Ky satisfying

UJ(KZ', KJ) =0

and K1 A--- A Ky # 0 on a dense and open subset M? C M called the set of regular points.

Note that in [1], the name “/-torus action” was used instead of “Rf-action”. The point is that
the metrics in [1, 2] are positive definite so that under the additional assumption of compactness,
the isometric Rf-action described above generates a commutative subgroup of the compact group
of isometries, its closure being a torus.

Since the vector fields K71, ..., Ky are symplectic, they are also locally Hamiltonian, i.e. we have
K; = Jgrad p; for certain local functions y;, ¢ = 1,...,¢. The condition w(Kj;, K;) = 0 moreover
implies that the vector fields mutually commute.

By Lemma 2.2, the canonical Killing vector fields (2.5) coming from a solution A of (1.4) gener-
ate a local isometric Hamiltonian Rf-action, where ¢ is the number of non-constant eigenvalues of
A at a regular point. The notion of regular points as introduced above coincides with the notion
of regular points introduced in §1.3. However, for the time being, we will forget about c-projective
geometry and will first restrict to the general setting of a local isometric Hamiltonian Rf-action.

Since we are dealing with metrics of arbitrary signature, we have to take care of the non-
degeneracy of orbits of an Rf-action. A local isometric Hamiltonian Rf-action given by Killing
vector fields Ky, ..., Ky is called non-degenerate if the restriction of the metric g to the (regular)
distribution

V =span{Ky,...,K;}
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on the regular set M is non-degenerate.

As shown in Lemma 2.2 (5), the Rf-action coming from the canonical Killing vector fields
corresponding to a solution A of (1.4) is non-degenerate in the above sense.

Given a local isometric non-degenerate Hamiltonian Rf-action, we will now reduce the setting
by considering the quotient of M w.r.t. the action of the Killing vector fields. The procedure of
this reduction and the local description of Kahler metrics admitting a local isometric Hamiltonian
Rf-action can be found in [1, §3.1] and [40]. For the sake of completeness, we will recall these
results. The only difference in our case is that the metric g is allowed to have arbitrary signature
but assuming non-degeneracy, there is actually no difference to the procedure described in [1].

Consider a non-degenerate local isometric Hamiltonian Rf-action on (M, g, .J) by holomorphic
Killing vector fields K1,...,K,. Let us restrict our attention to the regular set M° and let G
denote the commutative (pseudo-)group generated by the local flows of Ky, ..., K,. Consider the
(local) quotient @ = M/G of M w.r.t. the G-action and the (local) fiber bundle

T M—Q=M/G.

The vertical distribution of this bundle coincides with the distribution ¥V and we define a (G-
invariant) horizontal distribution @ = V+. Let 0 = (0y,...,0;) : TM — R’ be the corresponding
connection 1-form on M, where the components 6; have been chosen to be dual to the Killing
vector fields K, that is, the 1-forms 6; are defined by

HZ(KJ) = (Sij and QZ(Q) =0.

As above, the local generators for the vector fields K; will be denoted by wu; (so that K; =
Jgrad u;) and we can gather these functions into a (locally defined) moment map p = (u1, ..., f) :
M — (RY* for the Hamiltonian action of G. Lemma 2.2 (6) implies that the moment map p is
G-invariant, thus it descends to a mapping p : @ — (R®)* on the quotient. The level sets S,, in
Q of this mapping are the Kéhler quotients of (M, g,J) w.r.t. the isometric Hamiltonian action
of G. We refer the reader to [23, §3] for some background on symplectic reduction and Kéhler
quotients.

On the other hand, we can also take the (local) quotient of M w.r.t. the action of the
commutative (pseudo-)group GC generated by the local flows of the commuting vector fields
Ki,...,Ky,JK1,...,JK,. The result is a manifold S = M/G® and since the tangent spaces
of the fibers of the bundle M — S are J-invariant and the action of G€ is by holomorphic trans-
formations, S inherits a canonical complex structure Jg. As a complex manifold, S can canonically
be identified with the Kéhler quotients S,. In view of this, S carries a family of Kéhler structures
(9p,wy) which are compatible with the complex structure Jg. The quotient @ may locally be
written in the form Q = S x U, where the open subset U C (RY)* parametrises the level sets of .
In this picture, the subset U can be viewed as the parameter space for the family of compatible
Kahler structures (g,,w,) on S.

Since the forms 6; o J and dyu; span the same subspace of T*M, we can define a point-wise
non-degenerate matrix of functions G;; and its inverse with components H;; by

‘ ¢
(3.1) Gi oJ = ZGijd,uj and d,ui oJ =— Z Hijej.
j=1 j=1

Note that it follows from (3.1) that
in particular, H;; and Gj; are symmetric in 1, j.

The Kéhler structure can now be written in the form

¢ ¢

9= 9u+ 25 -1 Hij0ib; + 325y Giydpadpy,
(3.2) ’ p ’
w=wy+ > du; Ab;.

In our case, the Rf-action induced by a solution A of (1.4) satisfies one additional property
called rigidity that essentially simplifies the above local formulas for g and w.
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Recall from [1, §3.2| that a local Hamiltonian Rf-action on a Kéhler manifold (M, g, J) given
by holomorphic Killing vector fields K, ..., K, is called rigid if the leaves of the distribution

F=VoJV

are totally geodesic (where V is the vertical distribution of M — Q).

There are a number of equivalent conditions to this rigidity property, see [1, Proposition 8|.
We recall this result for convenience of the reader. Note that, although it has been proven in [1]
for positive signature, the proof still works in arbitrary signature assuming non-degeneracy of the
Rf-action.

Proposition 3.1. [1] Consider a local isometric Hamiltonian R*-action given by holomorphic
Killing vector fields K1, ...,Ky. The following assumptions are equivalent:
(1) The action is rigid.
(2) The functions H;; = g(K;, K;) are constant on the level surfaces of the moment map
p: M — (RY*.
(3) Vi, K; € F foralli,j=1,... L
(4) The Kdhler quotient forms w, depend affinely on the components p; of the moment map
p:Q — (RY* and their linear part pulls back to the curvature of (01, ...,0y).

Remark 3.1. Condition (3) of the proposition can be replaced by “Vg,K; € JV for all i,j =
1,...,¢. Indeed, if this holds, F is obviously totally geodesic, hence, the action is rigid. The
converse direction follows from the same line of arguments that has been used in the proof of
Lemma 2.2 (8). We see that “JV is totally geodesic” is another condition equivalent to rigidity of
the action.

Proposition 3.1 gives rise to some simplifications in (3.2) and we come to the following local
description:

Proposition 3.2. Let (M, g, J,w) be a Kahler 2n-manifold together with a rigid non-degenerate
(local) isometric Hamiltonian R-action generated by Hamiltonian Killing vector fields K; =
Jegrad pu;, i =1,...,£. Then locally M can be presented as direct product

V(t17‘-~7t€) X U(,ulw"u,uf) XS(ylw"quk?)a

and g, w and J take the following form:

¢ ¢ ¢ ¢
(3.3) 9= Hij(w0:6; + Y Gi(w)dpidu; + Y pigi + g0, > HijGix = 6k

ij=1 =1 i=1 =
¢ ¢
(3.4) w= Z dp; N 0; + Z Hiw; + wo
i_1 i—1
and
¢ ¢
(3.5) bioJ = ZGijdﬂjv dpjoJ = — ZHiﬂj, dy; o J =dy; o Js.
=1 =1

where the ingredients in these formulas are as follows:
(2) (guz > igi + go, wu=Y; fliw; + wo, Js), is a Kahler structure on S for any p € U
(compatible with the same complex structure Js independent of p);
(3) 04,Gjrk = 0, G
Conversely, if on M =V xU x S we consider g, w, J as above, then (g,w) is a Kdhler structure
on M and the generators i, ..., ue define a rigid non-degenerate (local) isometric Hamiltonian
Rf-action. In particular, the vector fields K; = Jgrad ju; are holomorphic Killing vector fields.
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3.2. Reduction from the c-projective to the projective setting. We continue to use the
notation introduced in the preceding section but assume that the nondegenerate local isometric
Hamiltonian Rf-action is given by the Killing vector fields K7, ..., K, from (2.5) that come from
a certain solution A of (1.4). Let gg denote the metric on the local quotient Q@ = M /G obtained
from g. In the notation of Proposition 3.2, @ can locally be identified with U x S and gg can be
obtained from (3.3) by removing the first term, i.e.

¢ ‘
(3.6) 9Q = Z Gij(p)dpidp; + Z igi + go-
i,j=1 i=1
Recall that the vertical distribution V = span{Kj,..., K} coincides with the span of the
vector fields Jgrad p1, ..., Jgrad pg, where p1, ..., p¢ are the non-constant eigenvalues of A. Since

by Lemma 2.2, the vector fields Jgrad p; take values in the eigenspaces of A, the distribution
V is A-invariant and consequently, A preserves also @ = V. On the other hand, according to
Lemma 2.2 (7), A is preserved by the Killing vector fields K; and it follows that A descends to a
go-selfadjoint endomorphism Ag : TQ — T'Q.

Recall the O’Neill formula [38] for a Riemannian submersion relating the Levi-Civita connection
V€ of the quotient metric gq to the Levi-Civita connection V of g by

(3.7) VLY = pro(VxY),

where prg : TM — Q is the projection onto the horizontal distribution Q and we adopted the
convention to denote vector fields on ) and their horizontal lifts to @ by the same symbol. Note
that the vector field A in (1.4) is tangent to the horizontal distribution Q and it is invariant w.r.t.
the action of the K;’s. Thus, A is (the horizontal lift of) a vector field on Q.

Lemma 3.3. The endomorphism Ag : TQ — TQ obtained from A by reduction satisfies the
equation

(3.8) ViAo =X"@A+ AN @ X

for all X € TQ, where X® = 9o(X,-). In other words, go and Ag are compatible in the projective
sense.

Proof. From the O’Neill formula (3.7), the definition of Ag and commutativity of A with pry, it
follows that
(VRA4Q)Y = VE(4QY) — 4g(VRY) = pro(Vx A)Y).
Inserting (1.4) into this equation and using the fact that JA is tangent to V = Q*, we obtain
(VEAQ)Y = g(X,Y)A + g(A,Y)X = go(X,Y)A + go(A,Y)X

as we claimed. O

The local description of compatible pairs (gg, Ag) has been recently obtained in [11] (see also
[8]). These results, after some adaptation, will lead us to the local description of pairs (g, A).

4. LOCAL DESCRIPTION OF C-PROJECTIVELY EQUIVALENT METRICS
In this section we prove Theorems 1.5 and 1.6.

4.1. Local description of the quotients of c-projectively equivalent metrics and lift-
ing. We have shown above that by taking the quotient of M w.r.t. the action of the Killing
vector fields K7, ..., Ky, the local description of a Kéhler manifold (M, g, J) of arbitrary signature
admitting a Hermitian solution A of (1.4) is reduced to the classification of pseudo-Riemannian
manifolds (@, go) admitting a gg-selfadjoint solution Ag to (3.8). In other words, a description
of c-compatible pairs g, A is reduced to a similar problem for compatible pairs gg, Ag on the
quotient @ = M/G which has been solved in [11] and we apply this result to our situation.

Before deriving the local description for the pair (gg, Ag) in our specific situation, we briefly
recall the “splitting and gluing constructions” from [8] appropriately reformulated for our purposes,
we refer to [11, §1.2] for a more detailed summary.
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Let (@, g¢g) be a pseudo-Riemannian manifold and Ag : TQ — TQ be a gg-selfadjoint endo-
morphism compatible with gg in the projective sense, i.e., satisfying (3.8).

In a neighbourhood of a generic point, the eigenvalues of Ag are smooth (possibly complex
valued functions). Some of them, say cy,...,c,, are constant. Then the characteristic polynomial
X(t) = det(t-Id — Ag) of Ag can be written as

X(t) = Xne(t) - Xc(t)
where the roots of x. are the constant eigenvalues of Ag (with multiplicities), whereas the roots
of xnc are the non-constant eigenvalues. Assume that these polynomials xp.(t) and x.(t) are
relatively prime, i.e., the non-constant eigenvalues cannot take the values ci,...,c¢,. In other
words, we divide the spectrum of Ag(p), p € Q into the “constant” and “non-constant” parts, and
assume that these parts are disjoint for any p € Q.

Proposition 4.1. [8] Locally @ can be presented as U(xy,...,x¢) X S(y1,...,ys) so that the
endomorphism Ag and the metric gg take the following block-diagonal form

_ (L) 0 _ (M=) 0
(4.1) AQ(x,y)_< 0 Ac(y)) and gQ(%?J)-( 0 gc(y)~xnc(z4c(y))>’

where L and h are compatible (that is, satisfy (1.7)) on U, and A. is parallel on S w.r.t. gc.

Conversely, Ag(z,y) and gg(x,y) defined by (4.1) are compatible in the projective sense, i.e.,
satisfy (3.8) on U x S, whenever h and L are compatible, A. is parallel w.r.t. g. and the spectra
of L and A. are disjoint.

Notice that the formula for the metric gg can be equivalently rewritten as follows
¢

‘
(4.2) 90 = Y Bij(@)daidr; + Y mi(x)gi + 90, gi = (—1)'ge(AL,)
ij=1 i=1

which completely agrees with the formula (3.6) for the reduced metric gg. Here the first term
corresponds to the metric h and the remaining terms represent the other block, i.e., the met-
ric ge(y)  Xne(Ac(y)) which can be understood as a family g, = > pig; + go of metrics on S
parametrised by the coefficients 1, ..., pg of the characteristic polynomial x,. = xr of the “non-
constant” block L. Notice that the splitting of @ into the direct product U x S in both cases is
determined by the decomposition of T},() into two Ag-invariant subspaces corresponding to the
partition of the spectrum of Ag into two parts, “constant” and “non-constant”. Also notice that in
the both cases u; are the same: these are the elementary symmetric polynomials of non-constant
eigenvalues of L (or, which is the same, of A).

Formula (4.2) describes, however, a more general situation than (3.3). In particular, in Propo-
sition 4.1, the non-constant eigenvalues may have arbitrary multiplicities and the “constant” block
(S, ge, Ac) carries no Kéhler structure. Thus, some additional specific properties of gg and Ag
should be taken into account. In particular, we need local formulas for the metric which simulta-
neously satisfies (4.2) and (3.3).

As we know from Lemma 2.2 (1), the multiplicities of the non-constant eigenvalues p1, . .., pg of
Ag equal one and moreover dp; A---Adpe # 0 on @ by Lemma 2.2 (3). This condition guaranties
that both the eigenvalues p1, ..., p¢ and the symmetric polynomials p1, . .., te can be taken as local
coordinates on U. Also we know from (3.3) that S is endowed with a natural complex structure

Js and for each pu € U, the metric
¢

Iu = Z wigi + 9o
i=1
on S is Kéhler and A; on S is Hermitian w.r.t. (g,,Js). In addition A, is parallel w.r.t. g, =
9u(xne(Ac) ™1+, ) by Proposition 4.1. This obviously implies that the metrics g. and g,, are affinely
equivalent for each pu, i.e., their Levi-Civita connections coincide. Hence, if we introduce w. =
gc(Js+, ) = wu((x,ﬂc(AC))_1 -,+), then w, is parallel and therefore (g.,w., Jg) is a Kéhler structure
on S admitting a parallel Hermitian endomorphism A. (in other words the conclusion about the
constant block in Proposition 4.1 now holds in the Kéahler setting).
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Summarizing, we see that the pair (9o, Ag) admits the following local description.

Proposition 4.2. Using the natural decomposition Q@ = U(x1,...,x¢)xS(y1,.-.,Yy2x) as in Propo-
sition 4.1, we can write gg and Ag as follows

[ L(z) 0 _ (M=) 0
(4.3) Ag(z,y) = < 0 Ac(y)> and  go(x,y) = ( 0 g.(v) 'XL(AC))

where

e (L,h) is a compatible pair on U (in the projective sense) such that the eigenvalues py, . .., pg
of L are all distinct and dp; # 0. Moreover, x1(t) = det(t-Id—L) denotes the characteristic
polynomial of L;

e (S,9¢,Js) is a Kdhler manifold and A. is a parallel Hermitian endomorphism on S.

The metric h = Z” B;jdz;dz; can be rewritten in coordinates fiq, ..., ft
L ¢ ¢ Ot Opt
YHB
h= Z Bijdaidaz; = > Gapdpadps,  Bij= Y Gap 89: 52,
i,j=1 a,f=1 a,f=1

as in Proposition 3.2. As we know from this proposition, the components G;; must satisfy one
additional condition, namely 63(;,: = aaGﬂ ’” . It turns out (see Proposition 4.4 and Lemma 4.5 below)
that this property follows automatically from the compatibility of A and L. This means that we
have no more restrictions onto the reduced pair gg and Ag, and can now summarize the above

discussion as follows.

Proposition 4.3. Let (M, g, J,w) be a Kihler 2n-manifold and let A be a Hermitian solution to
(1.4). Then in a neighbourhood of a regular point p € MY, where A has non-constant eigenvalues
P1,- -, pe, we can introduce a local coordinate system

V(tr, ... te) x U(xy, ..., 20) X S(y1, .-, Y2k)
in which g, w and A take the following form

14

£ 4

a,B=1 ij=1 i=0

(4.5) w—Zdua/\O +Z“l Yiwe (AL )

Z 06@8(3 +ZL1 x)de; ® —|—Z dyp®< Za”&t)

a,f=1 i,5=1 p,q=1
where the ingredients in these formulas are as follows:

(1) (ge,we) is a Kdihler structure and A. =
morphism on S;

(2) h = Bjj(z)dz;dx; is a pseudo-Riemannian metric and L(x) is an endomorphism on U
forming a compatible pair (in the projective sense);

(3) the eigenvalues p1,...,pe of L are pairwise distinct and satisfy dp; # 0 on U; they are
also different from the constant eigenvalues of Ac;

(4) wp; denote the elementary symmetric polynomials in p1,...,pe, © = 1,...,¢, and we set
po =1;

(5) 0; = dt; + i, where a; = 37 aiqdyy is a 1-form on S satisfying de; = (—1 Yiwe (A );

(6) and finally Hop =3, ; B %’;“ ZZB , where BY is the inverse of B;; and M = > L; g‘;f g;;

pg(Ac)p dy, ® Oy, is a parallel Hermitian endo-
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Proof. The formulas (4.4) and (4.5) follow from the discussion above. It remains to derive formula
(4.6) for A. First of all we note that the basis dual to the coframe 6;,dx;, dy, is given by
¢

0 0 0 0

ap a0 Y Z Qjg -

8ti 8(Ej qu im1 8ti
Comparing formula (4.3) for Ag with formula (4.6) for A, we see that the reduction of A given by
(4.6) is indeed given by Ag from Proposition 4.2. It remains to show how A acts on the Killing
vector fields 0;,. Formula (4.5) shows that ig,,w = —dug, hence, Oy, = Jgrad ug. Using that A
commutes with J and that L is h-selfadjoint, we obtain

d d Ops 0, 0 d
A— = JA =JL = Y LiP Nl
at/j J (grad Mﬂ) J (gradh I'LB) 7 8’131 aﬂa ata ~ a ata

which establishes formula (4.6). O

ij,a=1

Thus, we are lead to the situation described in Example 3 and, therefore, the second part of
Theorem 1.5 is proved.

The main ingredients in the above local formulas are the pair (h,L) on U and the triple
(ge,we, Ae) on S. The 1-forms a; on S are determined by (we, Ac) only up to the transforma-
tion a; — «; + df; for arbitrary functions f; on S. However, such functions define a fiber-
preserving local transformation f : M — M, f(t,z,y) = (t1 + f1(y),...,te + fe(y),x,y), that
fulfils f*0; = 0; + df;, f*dz; = dz; and f*dy, = dy, and pulls back the objects in Proposition
4.3 written down w.r.t. ; to the corresponding objects written down w.r.t. 6, =0, + df;. All the
other ingredients appearing in the formulas of Proposition 4.3 can be uniquely reconstructed from
(h, L) and (ge,we, Ac). However, we do not know yet whether these ingredients can be arbitrarily
chosen or should, perhaps, satisfy some additional restrictions which are not mentioned in Propo-
sition 4.3. The next section shows that there are no more restrictions and (4.4), (4.5) and (4.6) can
be used for the local description of c-compatible g and A. To that end, we only need to substitute
into these formulas the local normal forms for (h, L) and (gc,we, Ac) which were previously found
in [11] and [14] respectively.

4.2. Realisation. The purpose of this section is to prove the following result which is equivalent
to the first part of Theorem 1.5.

Proposition 4.4. Let h = Zf,j:l Bij(xz)dz;dx; be a pseudo-Riemannian metric and L(z) an
endomorphism on U forming a compatible pair (in the projective sense) and let (ge,w.) be a
Kdhler structure of arbitrary signature and A. a parallel endomorphism on S. Suppose that the
eigenvalues of L and A. satisfy condition (3) from Proposition 4.3 and the 1-forms o; on S are
chosen as in condition (5). Then

e g and w given by (4.4) and (4.5) define a Kdihler structure on V- x U x S;

o A given by (4.6) is Hermitian w.r.t. (g,w) and satisfies (1.4), in other words A and (g,w)

are c-compatible.

Proof. To verify that g and w define a Kéhler structure, we use Proposition 3.2. Formulas (4.4) and
(4.5) are similar to (3.3) and (3.4) but we still need to verify some conditions. First of all, we can use
f1, - - - pie as local coordinates on U to rewrite the term h =3, Byjdzidzj as 3 -, 5 Gapgduadpus,

where B;; = > 3 Gop %‘;? % and then the matrices H,g and G,p are inverse to each other
s i J

as required in Proposition 3.2. Next we need to check that g, = Zf:o pi - (—1)'g. (A7) and
Wy, = Zf:o pi - (—1)'we(AL7% ) define a Kihler structure on S for any g, but this condition
immediately follows from the fact that (ge,w.) is Kéhler and A, is Hermitian and parallel with
respect to it. Notice that the complex structure Jg is, by construction, the same for all (g,,w,).

Less trivial is the fact that h is a Hessian metric in the coordinates 1, ..., ti, i.e., that 9, G =
0,,;Gir holds for all i, j, k (condition (3) from Proposition 3.2). To prove it, we first notice that
this condition is equivalent to the fact that the vector fields grad i1, . .., grad py commute. Indeed,
0,,Gjr = 0,,Gi. means that the 1-forms ), = > ; Girdp; are all closed. Hence, the statement
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immediately follows from the observation that the forms f3i,..., 8, are dual to the vector fields

grad pi, ..., grad pu, i.e., Br(grad ;) = 0x;.
Thus, it remains to prove the following lemma (cf. Lemma 2.2 (6) which is a c-projective
analogue of this statement).

Lemma 4.5. Let h be a pseudo-Riemannian metric on U C RY and L be an h-selfadjoint endo-
morphism compatible with h in the projective sense. Let
¢
det(t-1d — L) = > (=1)'pit"™",
i=0

where the functions p;, 1 =1,...,¢, are the elementary symmetric functions in the eigenvalues of
L and pg = 1. Then,

[grad p;, grad p1;] = 0 for all i, j.

Proof. First of all, since the vector fields grad u1, ..., grad g are constant linear combinations of
the vector fields of the form v; = grad det(t - Id — L) for ¢t € R and vice versa, it suffices to prove
that

(4.7) [vg,v5] =0
for all ¢, s € R. Moreover, it suffices to prove (4.7) for ¢,s which do not belong to the spectrum
of L locally in a neighbourhood of a point. For L : TM — TM an arbitrary non-degenerate
endomorphism and X an arbitrary vector field, recall the general formula

X(det L) = (det L)tr(L™'VxL).
In our case, L and therefore Ly = s-Id — L satisfy (1.7), i.e.
(4.8) Vx(s-Id—L)=-VxL=-X"9A-AN @ X
holds for a certain vector field A. Defining f; = det Ly and combining the previous two equations
we obtain

(4.9) X(f,) = ~2fh(X, L 'A).

or equivalently, v, = grad fs = —2f,L;'A. Note that this formula is meaningful and holds true
even if s is in the spectrum of L. We calculate
Vxvs =2fs [R(X,L7'A)L7'A — h(A, L7'A)L;'X — L'V xA].
It is a well-known statement in projective geometry that the endomorphisms L and VA commute,
see for example the discussion below Theorem 7 in [5]. Replacing X by v, in the last equation and
using [L; ', VA] = 0, we obtain
Vo vs = 4fsfe [h(Ly"A L' A) LA+ h(A, L7 A) L Ly A + LD P VAA]
Thus,
[vt; Us] = vvtvs - vvsvt
=Afofy [-h(A L7 L7 ALy = Ly DA+ h(A, (L7 — Ly DAL LA
Inserting the identity L;' — L;* = (t — s)L;'L; ! into the last equation, we obtain (4.7) as we
claimed. O

Applying this lemma to h and L from Proposition 4.4, we get condition (3) from Proposition 3.2.
Thus, now Proposition 3.2 implies that g and w given by (4.4) and (4.5) indeed define a Kéhler
structure on V' x U x S which completes the proof of the first statement of Proposition 4.4.

It is easy to see that A is Hermitian w.r.t. (g,w). It remains to show that A satisfies (1.4) and
we will proceed as follows. Consider the Hermitian metric

(4.10) G = (detc A)"tg(A™1, )

obtained from g and A by solving (1.2) w.r.t. §. First, we show that § is a Kéhler metric on
(V xU x S,J). Then we show that g and § are c-projectively equivalent. This implies that A
satisfies (1.4) and we are done.
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Proposition 4.6. The metric § is a Kdihler metric on (V x U x S, J).

Proof. We use the (local) formulas for g, w and A from Proposition 4.3 and the notation introduced
there. Since § is Hermitian w.r.t. J by construction, we only need to check that @ = g(J-,-) =
(detec A)~tw(A~L., ) is closed.

Notice that detc A = ¢ - up for some constant ¢ so that we may, without loss of generality,
replace @ by i, 'w(A™L ).

Then, by (4.5) and (4.6), we get

4 14
GJ:Z dﬂzoL Zlui )v
i=1 o He

where wy, = (—1)Fw (AL7F ).
The closeness of @ now follows from two facts

° ,uzl (d/h‘ o L‘l) = —dft¢41—;, where fi; denotes the kth elementary symmetric polynomial
in the eigenvalues of L™!, i.e. in p;17 . ,pgl. This is a general property of a compatible
pair (h L) see Lemma 4.7 below.

_ TN TN . L

. Zk 0 M wp(Agt ) = =Yg f—kwrs1 = — Yy fu+1—iw;—wey1. This relation is
straightforward.

Hence
¢ ¢

Z He+1— z/\e ZM€+1 Wi —We41

=1
and the property d& = 0 becomes obVlous7 as wy’s are all closed and d#; = w; by construction.
Thus, in order to complete the proof of Proposition 4.6 it remains to prove

Lemma 4.7. Let h and L be compatible in the projective sense. Then the following relation holds

ot L (dpio L) = —dfip1-4

fori=1,... ¢, where [i is the kth symmetric polynomial in pfl, e ,p[l

Proof. Recall that the compatibility condition (1.7) implies that the Nijenhuis torsion of L vanishes
(see for instance [6, Theorem 1]). Lemma 10 from [8] states that for such L the following formula
holds:

dxr(t)o L —t-dxr(t) = xp(t) - dtr L,
where xr,(t) = det(¢ - Id — L) is the characteristic polynomial of L. Let us multiply both sides of
this formula by L~!:
dyp(t) —t-dxp(t)o L™ = xp(t)-dtr Lo L1
Hence,

dyp(t)o L™t = dXL —xr(t)-dtrLoL™")

o+ \

Using another nice formula dtr Lo L=! = d(Indet L), we get
ldetL - dXL( ) L(t)~ddetL _
- =

dyp(t)oL7! = n (dXL(t) —xr(t)-d(Indet L)) =

det L
det L det L -dxr(t) — xo(t)-ddet L  detL d xr(t)
t det? L ot det L

or equivalently

det L

dyp(t)o L™t = ¢~ 1d(det(tL)>

which coincide with the desired relation if we take into account that xr(t) = Zfzo(—l)imt[’i
and consider ¢ as a formal parameter. O
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Remark 4.1. We can derive the formulas in Lemma 4.7 in an alternative way: by the same
arguments as used in the proof of Lemma 2.2 (7), one easily derives the formula

—1)¢
(1) arad; ;o (1/1) = U grad, o (1),

where h is the metric given by (1.8). The only thing we used to derive (4.11) is that grad,,p; is
in the p;-eigenspace of L for each eigenvalue p; of L (and, of course, that each p; is smooth with
dp; # 0). The polynomial expression (4.11) in ¢ resp. 1/t gives rise to equivalent equations on
the coefficients. These equations are given by grad,u; = —grad; figy1-; (or, what is equivalent,
grad; fi; = —grady,jte1—;) for all i. Taking into account formula (1.8) for h and the fact that L
is h-selfadjoint, one sees that the latter equations are just the gradient version of the formulas in
Lemma 4.7.

Thus, § defined by (4.10) is a Kéhler metric on (V x U x S, J). O

Consider now the Kéhler metrics g,§ on (V x U x S, J) with Levi-Civita connections Vv,V
respectively. Let T be the (1, 2)-tensor defined by

T(X,Y) =VxY — VyY.
Since V, V are both torsion-free, T is symmetric in X,Y. Moreover, since both V, v preserve J,
we have the symmetry
(4.12) T(X,JY)=T(JX,Y)=JT(X,Y).
Lemma 4.8. The tensor T satisfies
(4.13) TX,)V)=2X)Y +2Y)X - 2(JX)JY —®(JY)JX.
for a certain 1-form ® on V x U x S.

Proof. First we recall that A preserves the vertical distribution V and the horizontal distribution
Q = V' so that Q does not change if we consider § instead of g. We will use the same symbol for
a vector field on @ and its horizontal lift to M =V x U x S.

Denoting by prg : TM — Q the projection to the horizontal distribution, the O’Neill formula
(3.7) implies

pro(T(X,Y)) = VEY - VY
for vector fields X,Y € I'(TQ), where V<, V@ are the Levi-Civita connections of the horizontal
parts go and gg of g and § respectively.

From formula (4.10) we see that gg = ¢ (det Ag) g0 (Aél~, -) for some constant ¢, where Ag
is the quotient of A and we used that detcA equals det Ag up to multiplying with a constant.
Comparing this formula for go with (1.8) and noting that, by construction, go and Ag are
compatible on @), we see that g is projectively equivalent to go. Thus, we have that

(4.14) VY - VLY = 3(X)Y + ®(Y)X
is satisfied for all X|Y € I'(T'Q) for a 1-form ® on Q. Indeed, the fact that (4.14) is equivalent to

90, §o being projectively equivalent is a classical statement in projective geometry, see [27].
Using (4.14), we obtain that the horizontal part of T is given by

pro(T(X,Y)) =o(X)Y + (V) X.
However, since V is spanned by the Killing vector fields K;, any g- or g-geodesic v(t) in M being
initially tangent to Q remains tangent to it for all values of ¢. It follows that Vx X, VxX € Q

whenever X € Q. Then T(X,X) in Q for all X € Q and by polarisation (recall that T is
symmetric) we have T(X,Y) € Q for all X, Y € Q. Thus, we obtain

(4.15) T(X,Y)=9(X)Y + oY) X.
for all X,Y € Q. Since the form ® in (4.14) is explicitly given by the formula

1
= —5d In(det L),
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(which is a classical formula that can be obtained from (4.14) by contraction), we see that it
vanishes upon insertion of vector fields that are contained in the generalized eigenspaces of A
corresponding to constant eigenvalues. Thus, (4.15) establishes formula (4.13) for vector fields
tangent to Q.

It remains to verify equation (4.13) upon insertion of vertical vector fields JX, JY, where
X,Y € JV C Q. Using (4.12), we obtain

T(JX,JY) = -T(X,Y) "2 —o(x)y — o(v)X

= B(JX)JY + (JY)JX —O(JIX)JIY — ®(JIY)JIX
=0

which establishes (4.13) evaluated on JX, JY. Further, for arbitrary Z tangent to Q, we obtain

7(2,0X) = JT(Z,X) "2 &(2)JX + &(X)JZ

=0(2)JX+P(JX)Z-D(JZ)JJX —®(JIX)JZ
~—— N——
=0 =0
establishing (4.13) when evaluated on Z, JX. Thus, we verified (4.13) on all possible combinations
of tangent vectors and the claim follows. O

It is a classical statement in c-projective geometry, see for example [36, 44|, and we used this
fact already in the proof of Lemma 2.1 that two complex torsion-free connections V,V on a
complex manifold (M, J) are c-projectively equivalent (i.e. their J-planar curves coincide) if and
only if (4.13) is satisfied for a certain 1-form ®. Lemma 4.8 then shows that g, § are c-projectively
equivalent. This implies that A = A(g, g) is a solution of equation (1.4) and completes the proof
of the second part of Proposition 4.4. O

4.3. Explicit formulas. In the preceding sections, we have proved Theorem 1.5 (see Proposi-
tions 4.3 and 4.4) which can be understood as an invariant version of Theorem 1.6. We are now
going to derive the formulas from Example 5. Our starting point is Proposition 4.3. We will
derive explicit formulas for all the objects that have been introduced there and thereby prove
Theorem 1.6.

The compatible pair h, L can be described explicitly by using the results from [11]. The
latter article contains explicit formulas for a compatible pair in the general pseudo-Riemannian
case. In our case, there are no Jordan blocks (with non-constant eigenvalues) and the formulas
become similar to the classical Levi-Civita theorem — the only modification being signs ; = +1
for each non-constant real eigenvalue p; (which allow us to “produce” an arbitrary signature) and
the occurrence of complex eigenvalues. Let

Ey = {p1>pla co s Pry Py Prgly - - 7p7“+q}

denote the set of (non-constant) eigenvalues of L (r pairs of complex-conjugate eigenvalues and
g real eigenvalues). Recall that the “gluing data” in [11, Theorem 1.3] takes the form of a 1-
dimensional block

hi =eida?, L; = pi(2;)0,, ® dz;,
for a real eigenvalue p; and (as follows from [11, Theorem 5] or [7, Theorem 2|) the form of a
2-dimensional block
1

h; = 1(@(5@‘) —pi(2:))(dz} — dz7), L; = pi(2:)0s, @ dz; + p(%:)0z, @ dz;,

if p;, p; is a pair of complex conjugate eigenvalues, where z; is a complex coordinate w.r.t. which
pj is a holomorphic function.
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Thus, by [11, Theorem 1.3], we find local coordinates 21, ..., 2, Tyi1,. .., Triq° (Where the 2;
are complex coordinates and the x; are real coordinates) such that
1 r ) r+q )
h = ~1 Z (Aidzi + c.c.) + Z Ase;dxy,
(4.16) o i
L= Z(piazi ®dz; + c.c.) + Z 00z, @ dz;,
i=1 i=r+1

where for 1 < ¢ < r, p;(2;) is a holomorphic function of z;, for r + 1 < i < r 4 ¢, p;(z;) only
depends on x;, “c.c.” denotes the complex conjugate of the preceding term and

A= I (ei—».
pEEnC\{pi}
The parts of g,w and A in (1.16) and (1.17), which correspond to the “constant” block, are
obtained from the expressions

¢
Z’“’ )ege( A[ i Z,ul wc A[ . ) and Z qdyp (E)ayq —Zaiq{i)
p,q=1 i=1
in the formulas (4.4), (4.5) and (4.6) by decomposing (g.,w.) in the sense of de Rham-Wu [18,
45] according to the parallel distributions belonging to the generalized eigenspaces of A.. Each
component (g-,w~, A,) of this decomposition, as we have already mentioned, can be described
explicitly using the results of Boubel [14].

To establish the formulas (1.16) and (1.17) for g,w and A, it remains to find the formulas for
the parts of g,w and A in the direction tangent to the Killing vector fields. We will specialise
the general coordinate system 1, ...,z in formula (4.4) by choosing p1, ..., us as coordinates,
compare also the formulas (3.3)—(3.5) in Proposition 3.2. With this choice of coordinates, the
matrix H;; (inverse to G;; defined by h = G;;dp;dpu;) is just given by

(4.17) H;j = g(Ki, K;) = g(gradgp;, grad p;) = h(grady,p, gradyp;).-

Let 11;(p) denote the ith elementary symmetric polynomial in the £ —1 variables Ey.\ {p}. Writing
dpi =3 e g, Hi—1(p)dp in the coordinates from formula (4.16) we have

r r+q
0

(4.18) du; = Z (,Uz 1(Bs )6p dzs—|—cc) Z wi—1( d

s=1 s=r+1
Using the formula (4.16) for h together with (4.18), we obtain

r+q
Hij—1 ps ape 0 Hj— 1 aps 0

4.1 i =—4 .C. .
(4.19) grady Z < A, 07,05 ¢ C) 2 R AS 9z, Oz,

s=r+1
From (4.17), (4.18) and (4.19), we obtain

(4.20)
4Z<uz 1 9#] 1(fs) (gps) +CC>+ § pi—1(ps) uj 1(Ps )(gpg>

s=r+1

Inserting the formulas (4.16) and (4.20) into (4.4), we obtain the formula (1.16) for g. It remains
to find the formula for A and the formulas for J acting on ¢; and dp; respectively.
Taking the differential of the identity

4

[T =0 = > (-1t

pPEEL: s=0

3These coordinates should note be confused with the general coordinate system x1, ..., xy used, for instance, in
Proposition 4.3.
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and inserting t = p;, we obtain
1<
dp; = A E (—1) -

ts=1

1,05_3(1/13.

By (3.5), we have
‘

1 —s
d/% oJ = *K Z (*1)871[15 ‘Hstﬁt.

v ost=1
Inserting (4.20) into this and applying standard Vandermonde identities (see the Appendix of [1]),
we obtain

dz;oJ = Eazlz’” 1(0:)8; for 1 <i<r
and
e; Op;
dxloJ——Kg—z?Zuj 1(p:)f for r+1<i<r+gq.

Inverting these formulas by using Vandermonde identities shows the formula for 6; o J expressed
as a linear combination of the dz; and da;. This establishes the formula for .J in (1.16).
Let us derive the remaining part of the formula (1.17) for A. We have to show that Aé)iti =

ui% — % (where we put 3 L = 0). The formula for w in Proposition 4.3 shows that the
Killing vector fields 7 comc1de Wlth K; = Jgrad p;. Thus, we need to show that

(421) AKZ = ,UfzKl — Kﬁ,l for all i = ]., N ,f

(where we put Kpi1 = 0) which immediately implies (1.17). As soon as (4.21) is derived, all
formulas from Example 5 are established and Theorem 1.6 is proven.

Formula (4.21) is in fact the reformulation to our setting of [1, formula (58)] and it can be proven
in the same way: let v; = grad; x(t), where as usual y(t) = det(t-Id — L) = Zfzo(—l)iuite_i
denotes the characteristic polynomial of L (in the terminology of Proposition 4.3). For abbreviation
define v; = grad, u; such that K; = Jv; and 2A = v;. Recall that, using the compatibility of L
and the metric h, we have derived the identity

¢
(4.22) (t-Id — L)vy = —det(t - 1d — L)vy, = — Z(—l)iuite_ivl
i=0
in the proof of Lemma 4.5. Inserting v; = Zle(—l)ité_ivi into the left-hand side of (4.22) and

setting veyy = 0, we obtain 0 = 3¢ (=1)"(vi41 + Lvi — pgv)t*~7, hence, Lv; = p;vy — vi1. OFf

course, this holds also with L replaced by A and (4.21) follows after multiplying with J and using
that A commutes with J.

5. PROOF OF THE YANO-OBATA CONJECTURE (THEOREM 1.1)

The main goal of this section is to prove Theorem 1.1. Simultaneously, we will give a proof of an
important special case of the projective Lichnerowicz conjecture (Theorem 1.2), see Theorem 5.1.

Recall that the existence of a projective vector field v for a (pseudo)-Riemannian metric g
implies the existence of an endomorphism A compatible with g. According to Proposition 4.1, in
a neighbourhood of a regular point, A naturally splits into two blocks A, and L with constant and
non-constant eigenvalues respectively.

If the non-constant block L (see Proposition 4.1) is diagonalisable?, i.e. contains no Jordan
blocks, then the proofs of Theorems 1.1 and 1.2 are almost identical. For that reason, parallel
to the proof of the Yano-Obata conjecture, we will prove the following version of the (pseudo-
Riemannian) projective Lichnerowicz conjecture:

4Recall that in the c-projective setting this condition is fulfilled automatically (see Lemma 2.2 (1)), whereas in
the projective setting non-constant Jordan blocks are allowed.
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Theorem 5.1. Let M be a closed connected manifold with an indefinite metric g on it. Assume
that (M, g) admits a projective vector field v and let A be an endomorphism compatible with g in
the projective sense, A # c-1d. If there exists a reqular point p € MO at which the non-constant
block of A is diagonalisable, then v is affine.

In other words, this theorem says that in the absence of Jordan blocks with non-constant
eigenvalues, the (pseudo-Riemannian) projective Lichnerowicz conjecture holds true, i.e., non-
affine projective vector fields do not exist on compact manifolds with indefinite metrics. To
complete the proof of this conjecture in full generality, it remains to show that Jordan blocks
with non-constant eigenvalues are also “forbidden”. For Lorentzian metrics, this will be done in
Section 6 which is the final step of the proof of Theorem 1.2.

The proof of Theorem 5.1 is organised as a series of remarks: at any step of the proof of
Theorem 1.1 we put a remark explaining how to change, if necessary, the proof in order to obtain
a proof of an analogous step of Theorem 5.1. In particular, we use similar notations for the
projective and c-projective cases.

5.1. Conventions and degree of mobility. Within the whole §5 (except Remarks 1-9 for
Theorem 5.1 where we use similar notation in the projective setting) we assume that (M, g, J)
is a closed connected Kéhler manifold of (a priori) arbitrary signature and of dimension 2n > 4
(though the case 2n = 4 has been settled in [10]), and that v is a c-projective vector field which
is not an affine vector field. We denote by ®} its flow, by definition the pullback of g w.r.t. ®} is
a metric which is c-projectively equivalent to g.

We define the degree of (c-projective) mobility D(g,J) of (g,J) as the dimension of the space
of Hermitian solutions of equation (1.4). We always have 1 < D(g,J) < oo (cf. [16, 22]|). If
D(g,J) = 1, the flow of v acts by homotheties, since otherwise ®;¢ is non-proportional to g and
hence D(g,J) > 2. Thus, this case is impossible since we assumed that v is not an affine vector
field.

Now, in the case D(g, J) > 3, Theorem 1.1 follows from [22, Theorem 1], where it is proved that
a closed connected Kéhler manifold of arbitrary signature with D(g, J) > 3 is either (CP(n),c-
JFs, Jstandard) for some ¢ € R\ {0} or any metric which is c-projectively equivalent to g is affinely
equivalent to g. Thus, if D(g,J) > 3, we are done. In the remaining part of this section, we shall
treat the case D(g,J) = 2.

Here is our first remark related to the proof of Theorem 5.1.

Remark 1 for Theorem 5.1. For a (pseudo)-Riemannian metric g, the degree of (projective)
mobility D(g) is the dimension of the vector space of g-selfadjoint solutions of (1.7). If D(g) =1,
every projective transformation is a homothety and is an affine transformation. If D(g) > 3 and
g has indefinite signature, then by [30, Corollary 5.2] (which plays here the role analogous to
the role of [22] in the Kéhler setting) each projective transformation is an affine transformation.
Therefore, in the rest of the proof of Theorem 1.1 we may (and will) assume that D(g) = 2.

5.2. Scheme of the proof. Let us outline the steps of the proof of Theorem 1.1 under the
assumption D(g,J) = 2. In §5.3, we will derive the PDE’s that describe the evolution of the
c-compatible pair g and A along a projective vector field v.

In §5.4 we show that the equation for A can be reduced to one of three a priori possible canonical
forms. By using these forms we show that A cannot have non-constant complex eigenvalues
and moreover, the real eigenvalues are bounded only for one particular canonical form, namely
L,A = A(Id — A). This equation will automatically imply that the constant eigenvalues of A, if
they exist, are 0 and 1.

This simplifies the formulas in Theorem 1.6 considerably. In the local classification, g and
A are in block-diagonal form. In §5.5, we will obtain a partial solution to the PDE system by
only considering the part that corresponds to the block spanned by the gradients of the non-
constant eigenvalues p1, ..., pg of A (that is the L-block from Theorem 1.5 and Example 3). The
PDE system restricted to this block reduces to ordinary differential equations on a certain set of
functions Fy(p1),- .., Fe(pe) and on the eigenvalues p;. Thus, we obtain quite explicit formulas for
A, g and v involving some yet unknown constants ag, . ..,a, and C as parameters.
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In §5.6, we will use these formulas to analyse the asymptotic properties of the scalar products
9(K;, K;) of the Killing vector fields and the eigenvalues of the curvature operator. We will con-
clude from this analysis that there cannot be more than one non-constant eigenvalue p (otherwise
the eigenvalues of the curvature operator are unbounded for ¢ — 400 (which is impossible on a
closed manifold) or g(K;, K;) does not tend to zero for t — £oo (as it should)).

Now we are left with a very specific form of the formulas in Theorem 1.6: there is only one
non-constant eigenvalue p and at most two constant eigenvalues 0 and 1. In §5.7 we complete the
proof of Theorem 1.1. We do this by deriving further restrictions on the constant C from above
that appears as a parameter in the metric. Using results of [22] we are then able to conclude that
the metric, up to a sign, is positive definite. This traces back the proof of Theorem 1.1 to the
corresponding result [35] for positive signature.

Remark 5.1. As recalled in Introduction, a Riemannian version of Theorem 1.1 and its gener-
alizations for complete manifolds and for discrete groups of transformations were proved before,
in [35, 49, 16, 31]. However, the proofs in all these papers are visually very different from ours.
Indeed, the papers [35, 49, 16, 31] do not use local description of c-projectively equivalent metrics
or calculations in local coordinates at all. Instead, one studies the evolution of the sectional cur-
vature or the norm of the c-projective Weyl curvature along the orbits of the c-projective group.
One observes that they are either unbounded, which may not happen on a closed manifold M,
or the metrics satisfy an additional equation which in view of results [22] implies that M is CP"
with the Fubini-Study metric on it.

This circle of ideas cannot be generalized for metrics of indefinite signature as in this case
sectional curvature is usually unbounded even on closed manifolds, and vanishing of the norm of
a tensor does not imply that the tensor is zero.

Of course, in our proof we do use certain ideas and results that have been developed and
obtained before. As we explained in §5.1 above, a crucial role in our proof belongs to [22, Theorem
1]. Also the results and ideas of [35] related to c-projectively invariant form of (1.4) and special
features of the degree of mobility 2 case, see §5.3, are very important for our proof; combining
them with local description of c-projectively equivalent metrics we obtain a local description
of (pseudo)Kéhler metrics admitting essential c-projective vector fields, see §5.5. But then the
analysis of such metrics requires completely new methods since those which were effective in the
Riemannian situation simply do not work.

We would like to point out some of them, namely those which can be (and have been already)
used for solving other problems in differential geometry, see e.g. [12] and [13]):

e Reduction from the c-projective to the projective setting that relates c-projectively equiva-
lent (pseudo)-Kéhler metrics with projectively equivalent metrics (with some special prop-
erties) and vice versa (Section 3).

e Analysis of the evolution of the eigenvalues of the Hermitian operator A associated with
a pair of c-projectively equivalent metrics by (1.2) along a c-projective vector field in the
complex domain which finally shows that A admits no complex eigenvalues in the case
when the degree of mobility equals two (Section 5.4).

e Studying asymptotic properties of the scalar products g(K;, K;) of the Killing vector fields
(Section 5.6).

e Interpretation of the curvature tensor R of a Kahler metric as a linear operator acting
on the unitary Lie algebra u(g,J) and studying its algebraic properties in the case of
c-projectively equivalent Kéhler metrics. In particular, we show that R belongs to a very
special class of the so-called sectional operators well-known and playing an important role
in the theory of integrable systems on semisimple Lie algebras (see Appendix).

e Analysis of the eigenvalues of the curvature operator R : u(g,J) — u(g,J) based on the
latter observation (Proposition A.2).

5.3. C-projectively invariant form of equation (1.4) and special features of D(g,J) =
2. Consider the canonical line bundle & = A?"T*M over the Kihler manifold (M, g,J) (where
2n = dimg M). For a real number w, we define the line bundle £(w) whose transition functions
are given by the transition functions of £ to the power w. Note that M, as a complex manifold,
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has a canonical orientation and we can assume positivity of the transition functions of £. For an
arbitrary tensor bundle E over M, we can then define the “weighted version” E(w) = E®E(w). Let
S2TM denote the bundle of Hermitian contravariant 2-tensors and denote by V the Levi-Civita
connection of g. In the Appendix of [35] it was shown that the PDE

(5.1) Vxo=X0A +JX®JA,, XETM

on sections o of S2TM (n%rl), is c-projectively invariant, that is, it does not depend on the choice
of connection V in the class [V] of c-projectively equivalent connections. The weighted vector field
A, € F(TM(%H)) in (5.1) is the V-divergence of o divided by 2n and X oY =X Y +Y ® X
denotes the symmetric product. For details we refer the reader to the Appendix of [35]. Let us
denote by A([g], J)C S%TM(%H) the space of solutions of (5.1). There is an isomorphism between
the space A(g, J) of Hermitian solutions to (1.4) (i.e., the space of Hermitian endomorphism c-

compatible with (g, J)) and A([g], J) given by
@ : A(lgl, J) — Alg,J), ¢(o) =00,
where )

g = g ' ®@volgtt
and vol, is the volume form of g. Note that o' € S?}T*M(*%—H% s0 in @(0) = oo, ! the weight
cancels out and we obtain an ordinary field of endomorphisms. As described in more detail in
the appendix of [35], taking the Lie derivative £,0 of a solution ¢ to (5.1) w.r.t. the c-projective
vector field v yields again a solution to (5.1). Thus, we obtain a linear mapping

Ly 2 Allgl, J) — A(lg], J).
Under the assumption D(g, J) = 2, we can chose a basis o, 6 of A([g], J) and find the equations
L,0 = ao + 36,
(5.2) . o .
L,6 =0+ 5

for certain real numbers «, 3,7, d.
Using (5.2) we can easily derive the Lie derivatives of A € A(g,J) and g along v.

Proposition 5.2. Let v be a c-projective vector field for g and A € A(g,J), A # ¢-1d. Then we
have the equations

(5.3) L,A=—BA* + (6 —a)A +41d.
and
(5.4) Lyg = (—gtrA —(n+ l)a) g — BgA,

for some constants «, 8,v,5 € R. Moreover, the restriction p(t) = p(®}(p)) of every eigenvalue p
of A to an integral curve of v satisfies the ODE

(5.5) p=—Bp"+ (@6 —a)p+1.
Proof. Take 0 = 0, and 6 = ¢~ !(A) = Ao, as a basis of A([g], J). Then by using (5.2), we get
L,A= £U(60;1) = (yoq + 5&)0;1 - &ng(aag + 5&)0;1
— 7Id + 6A — aA — BA2.
This yields (5.3). Moreover, a straightforward calculation yields

1 _ 1 _ -
L,g=L, ((det )" o, 1) = mtr(g 1L.9)g — g(aoy + Bo)o, 1
1 -1
= ——=t vg) — — BgA.
(2(n+ 0 (g Luvg) a) 9— By
Left-multiplying by ¢~! and taking the trace of this equation gives us
1 B

- -1 e —
2(n_~_1)t1”(g] Ly9) an 2trA
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and inserting this back into the equation for the Lie derivative of g, we obtain (5.4).
The remaining formula (5.5) immediately follows from (5.3). O

Remark 2 for Theorem 5.1. The projective (and projectively invariant) analogue of (5.1) was
obtained in [21]. Arguing as above we obtain the following version of Proposition 5.2:

Let v be a projective vector field for g and let A be compatible to g in the projective sense,
A # c-1d. Then we have (5.3) and (5.5) and the Lie derivative of g satisfies

L,g= (—ﬁtrA —(n+ 1)a)g — BgA, n=dimM,
i.e., in the first term on the right-hand side of (5.4) we simply need to replace g by B.

5.4. Properties of the eigenvalues of A. The equation (5.5) allows us to make several impor-
tant conclusions about the eigenvalues of A € A(g, J).

First of all we notice that the coefficient 8 in equation (5.5) does not vanish. Indeed, otherwise
this equation takes the form p = (§ — a)p + v and its non-constant solutions are unbounded
which is impossible due to compactness of M. Hence the eigenvalues of A are all constant which
contradicts the assumption that v is not affine. Thus, g # 0.

Next, we see that the constant eigenvalues of A are solutions to the quadratic equation 0 =
—B2% + (0 — a)x + . Hence, there are at most two constant eigenvalues.

To simplify the further discussion, without loss of generality we may assume that the evolution
of a non-constant eigenvalue p of A along v is given by one of the ODEs

(5.6) ﬁ:PQ"Fl,p':p(l—p)or/):pQ.
Indeed, the equations (5.5) can be reduced to one of these canonical forms by rescaling v and

replacing A by ¢ A + c21d for an appropriate choice of constants ¢; # 0, co € R.
We now show that the eigenvalues of A cannot be complex.

Proposition 5.3. Let (M,g,J) be a closed connected Kdahler manifold of degree of mobility
D(g,J) = 2 and let v be a c-projective vector field which is not affine. Then all non-constant
eigenvalues of A € A(g,J) are real-valued.

Proof. If we allow p to be complex-valued, each of the above ODEs (5.6) should be considered as
a system of two ODEs on the real and imaginary part of p. The phase portraits corresponding
to these systems are shown in Figure 1. It can be seen from the pictures or shown directly using
the ODEs (5.6), that a non-constant solution to one of these equations with imaginary part not
identically zero is given by a circle in the complex plane.

FIGURE 1. The phase portraits for the ODEs p = p?> + 1, p = p(1 — p), p = p?
(from left to right).

As we see from Figure 1, the maximal value of an imaginary part of a complex eigenvalue,
taken over all points of the manifold and all eigenvalues, is not equal to the imaginary part of a
constant eigenvalue (for each case in (5.6), the constant eigenvalues are +4, 0 and 1 or 0 resp.).
In particular, the derivative of this eigenvalue in the direction of the c-projective vector field is
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well-defined and non-zero. More precisely, the derivative of the imaginary part of p is zero whereas
the derivative of the real part is not. We now show that for complex eigenvalues such a situation
is impossible.

Basically this fact follows from our local description of c-projectively equivalent metrics (The-
orem 1.6) which states that the complex eigenvalues are holomorphic in an appropriate local
coordinate system. However, such a coordinate system exists only at generic points, so we need
to modify this idea and in particular to take into account the fact that the eigenvalues cannot
be considered as smooth functions at “collision” points where the multiplicities of the eigenvalues
change.

Assume that at a point p € M, a complex eigenvalue p of A, Im p(p) # 0, has multiplicity k.
It follows from standard facts that for small neighbourhoods U(p) C M of p and U(p(p)) C C
of p(p), A has precisely k eigenvalues p1,...,pr at each point of U(p) contained in U(p(p)) and
that the elementary symmetric functions in the variables p1,..., pg are smooth complex-valued
functions on U(p). In particular, the function p; + - - + pg is smooth in U(p).

Lemma 5.4. Let the differential of the imaginary part of p1 + - - - + pr vanishes at p. Then
d(p1 + -+ pr) =0.
Proof. By contradiction, assume that d(p; + - -+ + pg) # 0. Consider the smooth endomorphism

A=(A—-p-1d)...(A—pr-1d) : TEU(p) = TEU (p),

where T:U (p) denotes the complexified cotangent bundle of U(p). The kernel of A defines a smooth
complex k-dimensional distribution D in T¢U(p) whose value D(p) at the point p coincides with
the kernel of (A — p(p)-1d)*. The subspace D(p) is therefore the generalized p(p)-eigenspace of A.

The differential of the smooth function p; + - - - + pi at a generic point of U(p) is dpy +- - -+ dpg
and since dp; o A = p;dp; (because, by Lemma 2.2, grad p; is an eigenvector with eigenvalue p; of
the g-selfadjoint endomorphism A), we obtain that d(py +- - -+ pg) is contained in D at every point
of U(p). In particular we have that at p, d(p1+- - -+px) is contained in D(p), i.e., it is a generalized
eigenvector of A corresponding to p(p). On the other hand, since d(Im(p1 4+t p;c))(p) =0,
d(p1 + -+ + px) is a real 1-form at p. This contradicts to the following simple fact from Linear
Algebra: if p is a complex eigenvalue of a real linear endomorphism A, then the generalized
p(p)-eigenspace of A contains no real vectors. O

Now take a point p € M such that the imaginary part of an eigenvalue p of multiplicity &
at p takes its maximum in the sense that it is greater or equal than the imaginary parts of all
eigenvalues at all points of M and apply Lemma 5.4. The imaginary part of p; +- - - 4+ pi obviously
satisfies d (Im " p;(p)) = 0. On the other hand, the Lie derivative of Y p; along v at the point
pis k- p # 0, where p is defined by one of the equations (5.6). Thus, d(p; + -+ + pr) # 0 in
contradiction with Lemma 5.4. This completes the proof. O

In fact, only the second equation of (5.6) is allowed. Indeed, since v is not affine, A must have
at least one non-constant eigenvalue and, moreover, this eigenvalue has to be real according to
Proposition 5.3. But it is easy to see that the equations p = p? + 1 and p = p? have no bounded
real-valued non-constant solutions whereas p(¢) must be bounded due to compactness of M.

Thus, we are left with the case when the eigenvalues of A satisfy

(5.7) v(p) = p(1 —p).
and we may summarize the above discussion in the following

Proposition 5.5. Let (M,g,J) be a closed connected Kdihler manifold of real dimension 2n > 4
such that D(g,J) = 2 and let v be a c-projective vector field that is not affine. Then, after an
appropriate rescaling of v, we can find A € A(g,J) such that

(1) the eigenvalues of A satisfy (5.7);
(2) the eigenvalues of A are all real;
(3) A has at most two constant eigenvalues 0 and 1.
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Remark 3 for Theorem 5.1. The reduction of (5.5) to one of the canonical forms (5.6) is a
simple general fact from the theory of ODE’s. The statement of Proposition 5.3 was proved in |11,
Theorem 1.11] even under more general assumptions: on a compact manifold M, each non-real
eigenvalue of an endomorphism A compatible with g is necessarily constant.

The first and third canonical forms from (5.6) are impossible for the same reason: in these two
cases non-constant real eigenvalues are not bounded (along v). Thus, the eigenvalues of A satisfy
(5.7) and the statement of Proposition 5.5 remains true without any changes.

5.5. Explicit formulas for the non-constant block. In what follows, we will work with A €
A(g,J) and a c-projective vector field v as in Proposition 5.5. In particular, we assume that the
non-constant eigenvalues pq,....,p¢ of A are real-valued and the constant eigenvalues, 0 and 1,
have multiplicities my > 0 and m; > 0 respectively.

Under these assumptions, the PDE systems (5.3) and (5.4) take the form

L,A = A(Id — A),
L,g=—gA— (Zle pi + C) g

where C is some constant (yet unknown and playing the role of an additional parameter).

We are going to evaluate the PDE system (5.8) component-wise. To make this more transparent,
we notice that on the set of regular points M? there is a natural structure of two mutually orthog-
onal foliations. Recall that F denotes the integrable and totally geodesic distribution spanned
by the commuting vector fields given by the Killing vector fields K7, ..., K, and the vector fields
JK1,...,JK;. Now let U be the distribution generated by grad py, ..., grad py (or, equivalently,
by JKi,...,JKy) so that F = U &V, where V is the distribution generated by Kj,..., K, and
defined in the first part of the article. The leaves of the other distribution U/, orthogonal to
U, are just common level surfaces of the eigenvalues p1,..., p¢. Note that both distributions are
integrable: for &+ this holds by definition and for I/ it follows from the fact that I/ is generated
by the commuting vector fields JK;, ..., JK,.

The next statement summarizes some general properties of & which hold true for any metric g
from Theorem 1.6.

(5.8)

Proposition 5.6. Let MY C M be the set of reqular points (in particular, the non-constant
eigenvalues p1,...,py of A are all distinct and independent on MP). Then on M° there is a
structure of the integrable distribution U generated by gradp; (i = 1,...,0) with the following
properties:

(1) The leaves of U are totally geodesic.

(2) The leaves of U are common level surfaces of pi,. .., pe.

(3) Let L C M° be a leaf of U, then g|z and Al are compatible in the projective sense.
(4) The non-constant eigenvalues p1, ..., pe can be considered as local coordinates on L.
(5) Locally the metric g can be written as

4
9=">_6:(Pdp} +>_ bas(p,y)dyadys,

i=1 o,

where Zle gi(p)dp? is g|r.

(6) The wvector fields grad p; on M and on L coincide (no matter which metric, g or glc,
is used to take the gradient) and therefore the quantities g(grad f1(p), grad fo(p)) do not
depend on how we compute them (on M or on L).

(7) The vector field A = jgrad (tr A) is the same on L and M. The tangent space of L is
invariant with respect to the endomorphism VA, moreover, the restriction of VA on L
coincides with V |z A computed on L. This implies in particular that the eigenvalues of
VicA are some of the eigenvalues of VA.

(8) The leaves of U are (locally) isometric.

Proof. In view of VJ = 0 and the fact that K;, JK; are holomorphic, (1) follows immediately
from Lemma 2.2 (8).
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(2) is clear from the definition.

(3) follows immediately from (1) combined with equation (1.4) (compare also Lemma 3.3).

(4) follows from the assumption that p1,..., ps are independent.

(5) is immediate from the local classification Theorem 1.6 and (6) follows directly from (5).
The first statement of (7) follows from (6) and the formula A = %Zle grad p;. The remaining
statements of (7) then follow directly from (1).

The last statement (8) can be seen from the formula for g in (5). O

Remark 4 for Theorem 5.1. In the projective setting, the definition of the set M of regular
points remains essentially the same. We say that p € M is regular if: 1) the algebraic type of
A does not change in a (sufficiently small) neighbourhood U of p, 2) each eigenvalue p is either
constant on U (and then p equals either 0 or 1) or, if p is not constant on U, then dp(p) # 0.
Recall that in view of (5.7):

p(p) #0or1 = dp(p) #0.

Clearly, M° is open and everywhere dense on M. However, a priori M° might contain several
components related to different algebraic types. In particular, the number ¢ of non-constant
eigenvalues may be different for different components of M°. We continue to work with one of
the components of M (for simplicity, we will still denote this component by M?). Since we want
to prove Theorem 5.1 by contradiction, we assume from now on that there is a regular point (or,
which is the same, one of the connected components of M) where the non-constant part of A is
diagonalisable (over R), i.e. with no Jordan blocks. Recall from the formulas in [11, Theorems 1.3
and 1.5] that in this case each non-constant eigenvalue has multiplicity one.
Summarizing we have an open subset M° C M with the following properties:

(1) at each point p € MY, the endomorphism A has £ non-constant real eigenvalues p; < - -+ <
pe, each of multiplicity one;

(2) dp; # 0 everywhere on MY,

(3) the “constant part” of A has some fixed algebraic type with at most two eigenvalues 0 and
1 of multiplicity mo and m respectively.

In particular, according to [11], locally in a neighbourhood of every point p € M°, we can
choose a coordinate system p1,...,pg, y1,.-.,ys (cf. Proposition 4.1) in which both g and A split:

g:(h(op) gc(y>-x2(Ac<y>)> and A:(Lép) Af@))

Here L = diag(p1, ..., pe), the metric h and the endomorphism L are compatible in the projective
sense, A, is parallel w.r.t. g. and x(t) = (t—p1)(t—p2) ... (t—p¢) is the characteristic polynomial
of L. This decomposition into “constant” and “non-constant” blocks can naturally be reformulated
in terms of two orthogonal foliations ¢ and U~. Proposition 5.6 remains true without any changes.

Also notice that (5.8) holds without any change in spite of the fact that in (5.4) we should replace
g by . This happens because % is compensated by the factor 2 in the formula for the trace in the
c-projective setting where tr A =23 p; + const (whereas in the real case tr A =) p; + const).

The further analysis deals with the restrictions of g and v to leaves of U. These restrictions are
exactly the same for the projective and c-projective cases and, until §5.7, the proof for both cases
will be the same. The difference which appears in §5.7 will be clearly described.

We now want to derive explicit formulas for the restrictions of g and v to leaves of U. This
is sufficient for many discussions since some of the globally defined objects derived from ¢ and A
only depend on the level sets of the non-constant eigenvalues, see §5.6 below.

We first notice that according to Theorem 1.6, at regular points p € M° we have p; = p;(z;)
and moreover g;’  # (. This means, in particular, that we can use p; as local coordinates instead
of x;. This Chanée of variables will simplify further computations.
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Let v = vy + vy be the decomposition of the c-projective vector field v w.r.t. TM = U © UL,
According to Proposition 5.6, there are certain functions v} such that v can be written as

4
(59) ’U:;’Ulaipi‘i”vg

Since each eigenvalue p; satisfies (5.7) and is constant in the direction of U, we immediately
see that

o(pe) = v} 52 = il = o),

that is, vi = p;(1 — p;).
From Theorem 1.6, we know that in our simplified situation (no complex non-constant eigen-
values), g and gA can be written in the form (after the above change of variables x; <> p;)

Z Z 9 9 + ge ch(Ac) ")a

¢
(5.10) =1 hi=1

14
gA = sz dpz+2 30:0; + ge(xne (Ae) Ac-, ),

1,j=1

, 2 ~
where A; = Hj#(pi —pj) Fi = ¢ (gg?) , the functions H;j, H;; only depend on py,..., p¢ and
¢
ch(t) = Hi:1(t - pi)'

Proposition 5.7. Locally, the metric g and the c-projective vector field v in the coordinates
P1y- .., pe are given by the formulas

¢
A;
(5.11) gzzfdp?—i—..., ’U—Zpl Pi) p4+'“’
i=1 " ‘
where A; = [[;;(pi — p;) and
(5.12) Fi(t) = a;(1 — )~ e,

for some real constants a; and C.

Note that the term g — Zle IA,?' dp? in formula (5.11), which is not written down explicitly, co-
incides with 3° , 5 bi;(p, y)dyadys from part (5) of Proposition 5.6. The expression v — Zf:l pi(1—
pi)a%. is just the projection of v onto U~.

Proof. 1t easily follows from the explicit form of g given by (5.10) that the second equation of
(5.8) implies

¢ A 4 ¢ A
(5.13) Ly, (Z Ffdp?> == | Pt dptC)| Fdp

i=1 i=1 j=1 g

where v = ) p;(1 — pj)%. In other words, the first part of g can be differentiated along v
independently of the remaining terms.

From this equation we can easily derive the explicit formulas for F;. To that end, we compute
the left hand side of (5.13):
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Ze: pi(1—pj) 8( )dpﬂer zai< ) +Z Lo, (dp?) =

i pi) JIWAY
PJ /’J ) —dpl + ZZ pi( . dﬂz Zp’ — pi) g F2d P
i=1 j#i i=1 j#i

¢
i 0
+2) T o (pi(1 = p;))dp? =
=1

2

0
pi(L—p;) | pil—pi) 8F A;
Z (] 2 sz pza ng +2Z F — 2p;)dp}

i1 i Pi — Pi Pi — Py
14
Oln F; A
> (= pi=pj) = pi(l = pi)——+2(1 = 2p;) | =-dp} =
; -y Op; F;
i=1 \ j#i
14
81nF1 Az 2
2 (—1—(—2 ij pill = pi) =5 = +2(1 = 2p1) | Fdpi =
14
OlnF; \ A
(+1—(+2)p pi( i) ——— | =tdp?
+ - Zm — )= | F

Comparing this expression with the right hand side of (5.13), we obtain a simple ODE on Fj:

4

Oln F;
(+1—(L+2)p Zpy pill = pi) =5 = =~ pi+ Y pi+C
j=1

which after simplification becomes
Ipi pi(1— pi) 1—pi pi

and we get
Fi — az(l o pz) C,O»L1+6+c

as required. O

)

In the proof of Proposition 5.7, we have actually shown that for D(g,J) = 2, not only g and A
restricted to integral leaves £ of U are compatible in the projective sense, but also the projection
vy of v to L is a projective vector field for h = g|,. Indeed, the second equation of (5.8) we
used in the construction implies the second equation of (5.14) which is equivalent to the property
of v1 to be a projective vector field for h. Moreover, we already know that v; = v1(p) depends
only on p which is equivalent to the fact that v preserves the distribution Z/*. Similarly, we have
that vy = va(y) (in the notation of Proposition 5.6) for the component of v tangent to U+ or
equivalently, that v preserves U. To see this, note that we have [v, K;](p;) =0forallé,j =1,...,¢
(since K;(p;) = 0 and v(p;) = p;(1 — p;)), hence, [v, K;] € U*. Since v is holomorphic and, by
the first equation in (5.8), preserves the generalized eigenspaces of A, we obtain that [v, JK;] € U
forall e =1,...,7, hence, v preserves Y. We summarize this discussion in the following

Corollary 5.8. Let v be a c-projective vector field and D(g,J) = 2. Consider the natural decom-
position of v associated with the distributions U and U+ :

v =101 +V2, U1 EZ/[,UQEZ/[J'.
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Let L denote an integral leaf of U and denote by h = g|z and L = A|. the restrictions of g resp.
A to L. Then

(1) The wvector field v preserves the both distributions U and UL, that is, vi = vi(p) and
ve = v2(y) (in the notation of Proposition 5.6).

(2) The projection vy of v onto L is a projective vector field for h and the equations (5.8) can
be naturally restricted onto L, namely we have

L, L=L(d - L),

14
Ly h=—hL— (Zpi +c> h.
=1

5.6. There is only one non-constant eigenvalue. The goal of this subsection is to prove

(5.14)

Proposition 5.9. Let A € A(g,J) and the assumptions be as in Proposition 5.5. Then A cannot
have more than one non-constant eigenvalue.

The idea of the proof is based on the analysis of geometric properties of the metric g given by
(5.11) or, more precisely, of the restriction h = g|z. By construction these explicit formulas for g
are local, but we will show that they make sense for all admissible values of p;.

Proposition 5.10. Consider the domain U = {0 < p; < --- < p; < 1} with the metric
¢
A;
Z Edp?
=1
(compare (5.11)). There is a natural isometric embedding of ¢ : U — M (as a maximal leaf of the
totally geodesic foliation U ).

Proof. Locally, ¢ is defined in a very natural way. We choose a particular leaf £ with p; as local
coordinates and say that ¢(p1,. .., p¢) is the point on £ with the same coordinates p1, ..., ps. We
start with a certain point ay € U and then extend this map as long as we can. The map ¢ so
obtained is obviously an isometry. We need to show that such a prolongation can be made to any
point of U.

The argument is standard. Consider a smooth curve a(t) with a(0) = ag € U and a(1) = a1 € U,
and choose Ty € [0,1] to be the supremum of those T' € [0, 1] for which the extension along the
curve a(t), t € [0,T], is well defined. Take the image ¢(a(t)), t € [0,Tp). Since M is compact,
we can find a limit point p of ¢(a(t)) as t — Ty. By continuity, the eigenvalues of A(p) coincide
with the coordinates of a(Tp) in U, i.e. 0 < p; < --- < pp < 1. But this condition guarantees that
p € MY, i.e. in a neighbourhood of p, the foliation ¢/ is defined. This obviously implies that p € L,
moreover p = ¢(a(Tp)) and we can extend ¢ to some neighbourhood of a(Ty) € U. In particular,
Tp cannot be an interior point of [0,1]. In other words, the prolongation of ¢ along a(t) is well
defined for all ¢ € [0, 1]. O

Consider the function f: U — R:

4 4
(5.15) F(7) = h(grad Y pi,grad Y pi),
i=1 i=1

where h is the metric on U defined explicitly by (the first term of g in) (5.11).

According to Proposition 5.10, we can naturally identify the domain U = {0 < p; < -+ < py <
1} with a leaf £ of U. Moreover, the function f can be considered (up to a constant multiple) as
the restriction to £ of the function g(grad tr A, grad tr A) which is globally defined and smooth on
M (see part (6) of Proposition 5.6). This immediately implies certain conditions on f(p).

Proposition 5.11. The function f(p) must be bounded on U. Moreover, we have f(p) — 0 as
(p1y---ype) = (0,...,0) or (p1,...,pe) = (1,...,1).
Proof. The first claim follows from the compactness of M. Since tr A takes its minimum resp.

maximum value at the limit points (0,...,0) resp. (1,...,1), we obtain that gradtr A tends to
zero if (p1,...,pe) tends to (0,...,0) or (1,...,1). The proves the proposition. O
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These conditions will give us some further restrictions on ¢. It is straightforward to compute
the function f(7) explicitly using (5.11):
—C 144+C
i)~

4 £
(5.16) 7(7) :Z Zaz (1= pi)~"p;
=1

i=1 J?éi(pl Pi)

To study the limiting behaviour of such functions we use the following

Lemma 5.12. (1) Let k1,...,ke be functions of one variable. Then the function

fZH

defined on the domain p; < --- < pg, is equal to the quotient of determinants

j;éz(pl p])

—1

1 1 ... 1 1 1 e 1
1 P2 Pe P1 Pz .- Pe
det : : : det : :
Pt ,05 2 p§_2 p;%—z pg—z
ki(pr)  ka(pa) o ke(pe) L S
(2) If f is bounded on the domain p1 < --- < pg, then ky = --- = ky.

(3) We have f(p1,-..,pe) =0 if and only if ki(p;) = p(p;), where p(p;) is a polynomial in p;
(independent of i) of degree < — 2.

Proof. The proof of (1) follows from standard manipulations for calculating determinants and by
applying the formula for the determinant of the Vandermonde matrix.

To prove (2), consider for instance the limit p; — p2 under which the Vandermonde determinant
in the denominator of the expression for f tends to zero. Since f is bounded, the determinant in
the numerator must also tend to zero which implies that k1 and ko are equal.

Part (3) follows immediately from the formula in part (1) and the vanishing of the determinant
in the numerator. (]

We apply part (2) of Lemma 5.12 to the function f(p) from (5.15) written in the form (5.16)
to obtain

Corollary 5.13. The parameters a;’s in (5.11), (5.12) are all equal. In other words, the functions
F; from (5.11) coincide and take the form

Fi(t) = F(t) = a(1 — t)~C¢1+0H¢

To find restrictions on the constant C and the number ¢ of non-constant eigenvalues we use
another interesting property of functions of the form (5.16).

Lemma 5.14. Let

ZH

j;éz(pl )
where g = (p1,...,pe). If k is smooth in a neighbourhood of x € R, then
1
i - (e=1)
where we define T = (x,...,x).

Proof. In a neighbourhood of =, we can write k in the form
1

ORI,

E9) (2)(t — 2) + O((t — 2)").
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Inserting this into the formula for f, we obtain

1
119 - & ZH

Jj=0

L O((pi —x))

r#i pl T) i—1 H];éz(p’b - p]) '

Applying Lemma 5.12 (3) to the functions k;(p;) of the form (p; — x)?, we obtain

(0— 1) Pz—x)z)
= )’“ +ZH )

J#z(pl

f(p) =

The claim now follows by taking the limit g — . O

The function F(¢) from Corollary 5.13 is clearly smooth at each point ¢t € (0,1). Applying
Lemma 5.14, we obtain that lim; ;f(p) = FU=1U(t)/(¢ — 1)! holds for the function f(p) =

Zi:l F(p;)/A; from (5.15). The hmltlng behaviour lim 7 f(p) — 0 for t — 1 and ¢t — 0 (see
Proposition 5.11) then implies the inequalities
—C>f—1land 1+/¢+C>{¢—1.
Equivalently we have
-2<C<1l-4
This inequality is not fulfilled for £ > 3. Thus, we have

Corollary 5.15. The number £ of non-constant eigenvalues is either 1 or 2. Moreover, we have
—-2<C< -1 fort=2 and —2<C<0 fort=1.

Now let us show that also ¢ = 2 contradicts our assumptions. If ¢ = 2, then the metric h = g
(see Proposition 5.7) takes the form

dp? dp3
(5.17) (1 =p2) (F(pl) - F(Pz))

where F(t) = a(1 —t)~#3*C and —2 < C < —1. Without loss of generality we may assume that
a=1.

Let us compute one special eigenvalue of the curvature operator of the metric g on M by using
Proposition A.2, see Appendix. We know that each eigenvector of A (e.g., grad p;) is at the same
time an eigenvector of VA (Lemma A.1 and Remark A.1). In particular, we must have

Verad p, A = mugrad p; for i =1,2,

where the functions mq,ms are the eigenvalues of the endomorphism VA (of course, this obser-
vation is not limited to the case £ = 2). Then according to Proposition A.2 and Remark A.2, the
function

my — Mz

P1 — P2

A =
is an eigenvalue of the curvature operator.

Proposition 5.16. The eigenvalue A of the curvature operator is given (up to multiplication with
a non-zero constant) by the formula

(p1 = p2)(F"(p1) + F'(p2)) + 2(F(p2) — F(p1))
4(p1 — p2)? ’

(5.18) A=

where F(t) = (1 —t)~C3+C,

Proof. We have A = %(grad p1 + grad p2), hence,

1
3 (mqgrad p; + maograd ps).
Dualizing this (and using that VA is g-selfadjoint), we obtain

dg(A, A) = mydpr + madps.

1 1
vAA = ivgrad plA + §vgrad pgA =

Thus, to find the formulas for m; and ms it remains to calculate the differential of g(A, A).
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By (5.17) we have

1 1 Fi(p1) — Fa(p2)
A, A) = —(|gradp;|? dps|?) = - “ 2R
98 3) = § (Jgradon P+ gradpa]?) = 7L
The functions F;(t) are given by formula (5.12) (with £ = 2) and by Corollary 5.13, they are all
equal. Then,

A9(08) = o [((or = P2 (1) + Flp2) = Flpn)dn
~((pr = p2) F'(p2) + F(p2) = Fl(p1))dlps
and we obtain
_ (o1 = p2) F"(p1) + F(p2) — Fp1)
4(p1 — p2)?
and
iy — P P2)F"(p2) + F(p2) = Fp1)
’ 4(p1 — p2)? '
Thus, A = (m1 —ma)/(p1 — p2) is given by formula (5.18) as we claimed. O

From Proposition 5.6, we also know that this number A can be computed for the restriction
h of g to the totally geodesic leaves of the distribution U, i.e. for the metric (5.17). Notice that
(5.18) coincides with the usual formula for the scalar curvature of h. Being an eigenvalue of the
curvature operator of g, the function A must be bounded on U = {0 < p1 < pa < 1}.

Lemma 5.17. If F is smooth at x € R, then the function X(p1, p2) given by (5.18) is bounded in
a neighbourhood of the point (x,x). Moreover,

1
lim Ap1, = —F"(2).
i AP p2) = S ()

Conversely, if limy_,, F""'(t) = oo, then X is not bounded as (p1, p2) — (z,x).

Proof. Setting y = p; and = po in formula (5.18) for A and inserting the Taylor expansion at
the point  of F(y) considered as a function of y, we obtain

. o ) (' (y) + F(x) +2(F(x) — F(y))
Jim Ay, ) = lim iy — )

= tim o (D) @F (@) + F' @)y — ) + 3 (@) (y — 2)?)

3G~
~2F @)y — ) + 5 F @)y — 2 + g F" @)y~ 2)) + O(y — 2)"))
. lF,l/(x)(y_l‘)?’ +O((y—$)4> 1 "
B 3}1&; ; 4(y — x)3 B ﬂF ().

O

Now it is easy to see that the condition that F'(t) is bounded as ¢ — 0 and t — 1 for
F(t) = (1 —t)=C#3*C can only be fulfilled for C = 0,—1,—2,—3 (by the way, in this case \ is
constant). But in our case, —2 < C < —1 so that A goes to infinity either for (p1, p2) — (1,1) or
(p1,p2) = (0,0).

Thus, we conclude that £ = 2 is forbidden and the only remaining case is £ = 1. This completes

the proof of Proposition 5.9.
Remark 5 for Theorem 5.1. In the proof of Proposition 5.16, we used Proposition A.2 to derive
a formula for one of the eigenvalues of the curvature operator. An analogue of Proposition A.2
holds in the non-Kéhler case too (see [13, Proposition 6]) and the proof remains essentially the
same. Thus, Proposition 5.16 and Lemma 5.17 remain unchanged and we obtain that the number
of non-constant eigenvalues ¢ is 1 (in a neighbourhood of a regular point).
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5.7. Proof of Theorem 1.1 when there is only one non-constant eigenvalue. We deal
with the PDE system (5.8) which, in the case one single non-constant eigenvalue p of A, takes the
form

L,A=A(1d - A),
Lyg=—9gA—(p+C)g.

Recall from Proposition 5.6 that we have two mutually orthogonal integrable distributions i/
and U+ on M, the first one U being 1-dimensional and totally geodesic and the metric takes the

following matrix form
g= (gl(ﬂ) 0 )
0 92(p,y)

w.r.t. the orthogonal decomposition TM = U & U~. We also have a c-projective vector field v
preserving both ¢/ and U=, so that v = v1(p) + v2(y), where v; and v, are the components of v
w.r.t. U resp. UL (see also Corollary 5.8). Hence

‘Cv g1 0
5.20 L,9 = N )
( ) g ( 0 £v292 + D’ulg2>

where D,, means that we differentiate each term of the matrix g, along v;.

Our goal is to analyse how the volume form of the metric g, defined on the leaves of U*, is
changing under the flow generated by vs. In other words, we want to compute the coefficient
f(p,y) in the formula £,,volyg, = f(p,y) - volg,. We will show that this coefficient is constant.
Namely,

(5.19)

Proposition 5.18. We have L,,vol,, = (—C — 1)(mq + mg + 1)volg, .

Proof. By (5.19), we have L,g = —g- (A+ (p+C)Id). Since A admits a natural splitting <’8 12 >
2

w.r.t. U and UL, we get (using (5.11))
_1
Log= (" F (2p+0C) 0
0 —g2(Az + (p+C)Id)
Hence, comparing with (5.20), we obtain L,,g2 = —g2(42 + (p + C)Id) — Dy, ga.

We now use the following general formula that explains the relation between £, g2 and £,,volg,:

1
Ly,volg, = f-voly,, where f= §tr (95 " Loy o).

Hence in our case )
f=—gtr (A2 + (p+C)d + g5 ' Dy, g2).

Let us compute tr (g5 ' Dy, g2). In our case v; = p(1 — p)% and the metric go has the form

hence, D, g2 = p(1—p)F'(p)0? —p(1—p)gec(-, -). We may think of g5 as a block diagonal form, then
D,, g2 is block-diagonal too so that we can write it as D,,, g2 = goC, where C' is an endomorphism

with the matrix
c= (f"(l ~ 0V rs 0 >

0 —p(1 = p)(Ac —p)~*
Therefore we have the following formula:

_ OlnF B
trg3" Duyga = 1€ = plL— ) 5= — p(1 = p)tr (Ae = )"
The first term can be easily computed from the explicit formula for F'. The second term is easy to
find as we know that the eigenvalues of A, are 0 and 1 with multiplicities 2m¢ and 2m; respectively.

We get
tr gy ' Do, g2 = (24+C—2p) — p(1—p) (—2mop~ " +2ma (1 —p) ) = 2+C+2mo — p(2mo +2m4 +2)
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The matrix of As is known, namely Ay = ( ) So trAs = p+trAc = p+ 2myq. Thus,

p 0
0 A
finally

1
f=—§(p+2m1+(p+C)(2m1+2m0+1)+2+C+2m0—p(2m0+2m1—|—2)) =

(*C — 1)(m0 +mi + 1),
as claimed. (]
This proposition immediately implies that C = —1. Indeed, consider M, = {p = c} where
c € (0,1). Then M, is a compact smooth submanifold of M which entirely belongs to the set of
regular points M? and, therefore, the formula from Proposition 5.18 holds for the volume form
on M, as a whole. However, due to compactness of M,, this is impossible unless —C — 1 = 0.

Thus, we have completely reconstructed the “non-constant” block of the metric ¢ and now we can
rewrite g as follows:

(5.21) g=F(p)"'dp” + F(p)6” + ge((Ac — p1d)-,-),

where F(p) = —4B(1 —p)p and B # 0 is some constant (the notation —4B for the constant factor
is chosen to emphasize the relationship with some formulas from [22]| that are used at the final
stage of our proof).

Remark 6 for Theorem 5.1. The proof of and the formula in Proposition 5.18 slightly changes
because now the terms with 6 do not appear. Here is the modified version in the projective setting:

Proposition 5.19. We have L,,vol,, = +(—C — 1)(my + mg)vol,.

Proof. By (5.19), we have L,g = —g- (A+ (p+C)Id). Since A admits a natural splitting (8 12 )
2
w.r.t. U and U, we get

(—%(2p+0) 0
£vg( " 0 —92<A2+(P+C)Id)>

Hence, comparing with (5.20), we obtain L,,92 = —g2(A42 + (p + C)Id) — Dy, g2. Using

1
Ly,volg, = f-voly,, where f = gtr (g;lﬁvzgg),

we obtain in our case
f= —% tr (Ag + (p+ C)Id + g5 ' Dy, go).

Let us compute tr(g; Dy, g2). In our case v; = p(1 — p)a% and the metric go has the form
92(,7) = go((Ac — p-1d)-, ), hence,

Dy,g2 = =p(1 = p)ge(-°)
Thus we can write D,, g2 as D,, g2 = ¢2C, where C' is an endomorphism with the matrix

C=—p(l=p)(Ac—p)"
Therefore we have the following formula:

tr gy ' Dy, g2 = tr C = —p(1 — p)tr (Ac — p) .

This quantity is easy to find as we know the eigenvalues of A. are 0 and 1 with multiplicities mg
and m; respectively. We get

tr g5 Do, g2 = —p(1 = p)(=mop™" +ma(1—p)~") = mo(1 - p) —mup
The matrix of A, coincides with A, so that tr Ay = tr Ac = my. Thus, finally
1 1
f==5(ma+(p+C)(mi+mo) +mo(l = p) =mip) = 5(=C = 1)(mo +m),
as claimed. O
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The conclusion from this proposition remains unchanged: C = —1 as required. We use the
fact that the leaves of U+ are smooth closed submanifolds of the form {p = ¢} which are entirely
located in the set of regular points. Since the leaves of U are common levels of non-constant
eigenvalues, the latter follows from the fact (used already several times) that 0 < p < 1 implies
dp(p) # 0. Hence we have the following formula for the metric (this is (5.21) with the term with
6 removed):

(5.22) 9= F(p)~"dp* + ge((Ac — p1d)-,-),
where F(p) = —4B(1 — p)p, B # 0 is some constant and A. is parallel w.r.t. g..

Denote by Ey resp. FE; the generalized eigenspaces of A corresponding to the eigenvalues 0
resp. 1. Let Lo = A|g, and L = A|g, denote the restrictions of A to these subspaces. We start
with describing VA restricted to Ey resp. E; explicitly as a matrix function of Lg resp. L;. In
fact, it is a general statement (see Remark A.1 in the appendix), that VA and A commute and,
moreover, at each point VA can be written as a function (or even polynomial) of A.

Lemma 5.20. At each regular point, we have

(5.23) VAlgar, = —9(A,A) (A~ pld) " pyer, = B(1 - p)p(A — pld) ek, -
Proof. In the special case of only one non-constant eigenvalue p, A = % grad p itself is an eigenvector
field of A corresponding to the eigenvalue p. Hence, we can apply (2.4) with X replaced by A.
Then (2.4) becomes

(A= pld)VyA = —g(A, A)Y,
for any tangent vector Y € Ey & F4, or equivalently, if we take into account that Ey & FE; is
invariant under A — p-Id and (A — p - 1d)|g,eE, is invertible:

vA|E069E1 = —g(A, A)(A - pId)_1|E0@E1'
It remains to notice that (5.21) implies g(A, A) = g(grad p, grad p) = B(1 — p)p, as stated. O

Lemma 5.21. At each regular point, we have A|g, = Lo =0 and A|g, = L1 =1d.

Proof. Our statement is equivalent to the absence of non-trivial Jordan blocks corresponding to
the constant eigenvalues 0 and 1. By contradiction, assume that non-trivial Jordan blocks exist
and apply Proposition A.2 to compute the eigenvalues of the curvature operator of g related to
these blocks.

Formula (5.23) expresses VA|g,g¢p, (pointwise) as a matrix function f(A|g,qg, ), where f(t) =
B(1 — p)p(t — p)~. Then according to Proposition A.2 and Remark A.2 from Appendix, we
conclude that if Ly (resp. L) has a non-trivial Jordan block, then

4f'(0) = —431_7” (resp. 4f'(1) = _4311))

is an eigenvalue of the curvature operator R of (M,g,J). When restricted to a non-constant
integral curve of v, this eigenvalue goes to infinity for ¢ — —oo resp. ¢ — 400 which contradicts
to the boundedness of the eigenvalues of R. Thus, we conclude Ly = 0 and L; = Id. O

Remark 7 for Theorem 5.1. Lemma 5.20 uses formula (2.4) which, in the pseudo-Riemannian
case takes the form:
(A= pld)Vy X =dp(Y)X — g(X,Y)A - g(X,A)Y

where A = %grad trA = %grad p, X is a vector field satisfying (A—pId)X = 0, i.e., a p-eigenvector
field and Y is an arbitrary vector field.

Notice that in this case A satisfies the condition for X, so in this formula we may set X = A.
Then we get

(A~ pld)VyA = 2g(A, Y)A - g(A, A)Y — g(Y, A)A = g(A, Y)A — g(A, A)Y,

and if we assume that Y € FEy @ E; and take into account that A is orthogonal to Eg ® E7, we
obtain the same formula as in the Kahler case:

(A—pIld)VyA = —g(A,A)Y.
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The rest of the proof does not change and therefore, in the projective setting, Lemmas 5.20 and 5.21
remain unchanged.

Lemma 5.22. At every point, we have

(5.24) VA = uld + BA.
for the constant B and a function p = B(p — 1). Moreover,
(5.25) Vi = 2BA.

Proof. We will first prove the lemma near a regular point. We know that the eigenspaces of A are
invariant under VA and from Lemma 5.20, we know the formula for the restriction of VA onto
FEy & E;. Taking into account Lemma 5.21 we obtain

VAlg, = B(1 = p)p(=pld)~" = B(p = 1)Id = (u1d + BA)|,,

and
VAl|g, = B(1 = p)p(Id — pld) ™" = Bpld = (uld + BA)|g,,

Thus, it remains to verify the formula for the restriction of VA onto the two-dimensional p-
eigenspace E,,.

Notice that A € E, and moreover A is the tangent vector to the one-dimensional totally geodesic
distribution &. In other words, we can consider A as a tangent vector to a geodesic y(t). Hence,

(VA)A = VaA = fA where f — LAGGAAD,

Using A = 1grad p and the explicit formula (5.21) for g, we obtain
f=DB(2p-1).
The other p-eigenvector is JA. Since A and JA commute, we get
(VA)JA = VAN = VAJA = JV A = J(B(2p — 1)A) = B(2p — 1)JA.

Thus,
VA|EP = B(2p—1)Id = (pId + BA)\Ep.

Since at regular points TM decomposes as TM = E, © Ey @ Ei, we have verified equation
(5.24) in a neighbourhood of every point of a dense and open subset of M for a local constant
B and a locally defined function = B(p — 1). Taking the derivative of this function (and using
dp = 2A°) shows that it satisfies (5.25). It was proven in [22, §2.5] that having the equations (5.24)
and (5.25) satisfied in a neighbourhood of almost every point for locally defined constant B and
function p, the constant B is the same for each such neighbourhood, hence, is globally defined,
and therefore also y is globally defined. This completes the proof of the lemma. O

Remark 8 for Theorem 5.1. The statement of Lemma 5.22 remains unchanged. The proof of
Lemma 5.22 changes slightly, as the p-eigenspace is one-dimensional (not two-dimensional as it
was in the c-projective setting). This makes the proof shorter as we do not need to consider the
second eigenvector JA. The projective analogue of [22, §2.5] is [24, §2.3.4].

Now we can prove Theorem 1.1. We have shown that the existence of a non-affine c-projective
vector field on a closed connected Kéhler manifold (M, g, J) of arbitrary signature implies the
existence of a solution (A, A, u) of the system

VxA=X"@A+ N @ X+ (JX) ® JA+ (JA) ®@ JX,
VA = puld + BA,
Vi = 2BA°
for a certain constant B. This solution is non-trivial in the sense that A is not identically zero.

By [22, Remark 12], for a certain constant ¢ # 0, (M, c¢- g, J) is isometric to (CP™, grs, Jstandard)
as we claimed. Theorem 1.1 is proved.
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Remark 9 for Theorem 5.1. The existence of (L, A, p) satisfying (1.7) and (5.24) immediately
implies that the (non-constant) function a = tr(L) satisfies the equation

(5.26) Via(X,Y,Z)-B- (2(Va®g)(X,Y,Z2)+ (Va®g)(Y, X, Z)+(Va®g)(Z,X,Y)) =0,

see e.g. [24, Corollary 4]. By [30, Theorem 1], the metric —Bg is positive definite. This contra-
diction proves Theorem 5.1.

6. FINAL STEP OF THE PROOF OF THEOREM 1.2: THE CASE OF A NON-CONSTANT JORDAN
BLOCK

In §5, the Lichnerowicz conjecture was proved under the additional assumption that the non-
constant part of A is diagonalisable.

In the case when the endomorphism A has a non-trivial Jordan block with a non-constant
eigenvalue, the scheme of the proof remains essentially the same but we need to modify some steps
accordingly. In fact, the proof becomes much easier because of the presence of a Jordan block, as
we shall see below, immediately leads to unboundedness of one special eigenvalue of the curvature
operator.

The first steps of the proof do not use the algebraic type of A and, therefore, they remain the
same as in Sections 5.3 and 5.4. Namely, we may assume that the degree of mobility of g equals
2 and g, A and v satisfy the equations

L,A=—A?+ A,

(6.1) ,
Ly,g=—gA—(trA+C)g.

These equations coincide with (5.8) though we need to replace > p; by tr A as some non-constant
eigenvalues may now have multiplicity > 1, see also our comment on (5.8) in Remark 4 for
Theorem 5.1.

All the eigenvalues of A are real and satisfy the equation £,p = —p? + p, in particular, there
are at most two constant eigenvalues, 0 and 1, and, due to boundedness of the non-constant
eigenvalues, they satisfy 0 < p; < 1.

The definition of the set M? of regular points also remains the same but the algebraic type of
A changes. Recall that in general M° may consist of several connected components with different
algebraic types, so we continue working with one of them (we still denote it by M° and refer to
it as the set of regular points). In the Lorentzian case, two sizes of Jordan blocks for g-selfadjoint
endomorphisms are allowed, 2 x 2 and 3 x 3. Thus, to complete the proof of Theorem 1.2 we need
to consider two additional types of regular points p € MP.

Namely, below we assume that the endomorphism A has £ non-constant distinct real eigenvalues
p1,-- -, pe and, possibly, two constant eigenvalues 0 and 1 of multiplicity my and m; respectively.
The first eigenvalue p; has multiplicity 2 or 3, and the endomorphism A “contains” a single 2 x 2
or resp. 3 x 3 Jordan p;-block. On M?, the eigenvalues p;’s are ordered:

(6.2) 0<pe<---<pp<1l and p; belongs to one of the intervals (0, p2), (p2,p3),- .., (ps, 1).

Due to the existence of the projective vector field v, the above conditions automatically imply
that dp; # 0 on MP°.

In a neighbourhood of any point p € M° we can now, following [11], find a canonical coordinate
system and reduce g and A to a normal form. In general, this normal form contains arbitrary
functions F;(p;). The existence of a projective vector field v on MY, satisfying (6.1) allows us to
reconstruct these functions (as well as the components of v) almost uniquely, i.e. up to a finite
number of arbitrary constants of integration (cf. Proposition 5.7). This “reconstruction” can be
done by a straightforward computation as in Proposition 5.7, but since now we deal with a more
complicated situation involving Jordan blocks, we prefer to use the following general statement
which explains how to split (6.1) in a block-wise manner. This statement is a direct corollary of
the splitting construction from |[8].
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Theorem 6.1. Let (h,L) be a compatible pair on M which splits into two blocks in the sense of
[8, 11], i.e., there exist a local coordinate system x,y with x = (x1,...,2n,) and y = (Y1, -, Yn,)
and compatible pairs (hi(z), L1(x)) and (ha(y), L2(y)) such that

_ (h(@)xL,(Li(x)) 0 _(Li(z) O
W’y)( 0 h2<y>xL1<L2<y>>)’ L“”’y)( 0 L2<y>>

where xr, () and x1,(:) denote the characteristic polynomials of the blocks L1 and Lo respectively.
Let v be a projective vector field for g satisfying the equations

L,L=—-L?+1L,
Lyh=—hL — (tr L4 C)h.
Then the vector field v and equations (6.3) also split as follows:

(6.3)

v(z,y) = v1(z) + va(y),
where v; denote the natural projections of v on the x— and y-subspaces and (6.3) is equivalent to
Lo L1 =—L?+ Ly, Ly h=(ny—1)h Ly — (trLi +C +ny)hy,
Lo,Lo=—L3+ Ly, Ly,ha = (n1 —1)haLy — (tr Ly + C + n1)ha.
Proof. The first part v(z,y) = v1(z) + v2(y) follows from the fact that v preserves the invariant
2- and y-subspaces of L (see also [8, Lemma 3]). The latter can be seen from the equation

L,L = —L? + L. The formulas for £,,L; and L,,Lo are straightforward. After this we can
differentiate h as follows:

BixiaL) 0\ (Lo (hrxia (L) b (Ponxia) (L) 0
Lo (M0, ) = (Er BB D)

where D, xr, means that we differentiate each coefficient of the characteristic polynomial xr,
along v; in the usual sense. We can rewrite the right-hand side as®

‘Cm (hlez (Ll)) + hl(szxLz)(Ll) =

(Loyh)xza(L1) + haxe, (L) Lo, (In(X2,(L1))) + hiXra (L1) Do, (In(x1,(L1)))-
On the other hand, from (6.3) we know that this expression equals hyxr,(L1)(—L; —tr L-Id—C-Id).
Multiplying by xr,(L1)~! we get

Loyl = =hy (L, (0025 (L1)) + Doy (02 (L1))) + Ly + tr L1 + C1d).

To evaluate this further, let A, ..., A, denote the eigenvalues of Lo, i.e. the roots of xr, (some
of them may coincide). Then,

Lo, (In(xr;(L1))) = Lo, (Z In(Ly — /\Z-.Id)> =3 (Li=X1d) 'Ly, Ly = Y (Li—Ai1d) ™ (=Li+Ly)
i=1 =1 =1
Dy, (In(x1,(L1))) = Dy, (Z In(L; — /\7;~Id)> ==Y (Li=NiId) "Dy, Ay = =Y (Li—Ai-Id) T (A7 4))
=1 =1 =1
Hence,
£v1 (IH(XLz (Ll))) + sz (IH(XLQ (Ll))) = Z(Ll - /\z . Id)_l (—L? + L1 + Azz -1d — /\1 . Id)) =
=1

no
= (Id =X -Id—Ly) =ny - Id = tr Ly - Id — npLy.
=1

Finally, we obtain
ﬁfulhl = —hl (ngId — tr LQId - TL2L1 + Ll + tr L-Id + CId) = —hl ((1—TL2)L1+(U‘ L1+C+7’L2)Id)
5To make some expressions shorter, we are using the formula £,(In B) = B~1£, B which, in the matrix case,

holds true if B and £, B commute. In our case this condition is fulfilled for B = L; and, consequently, for
B = x1,(L1) since Ly; L1 = 7L% + L.
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as we claimed. The calculations for £,,hs are analogous. O
Let us apply the theorem by specifying the blocks into which we want to split:

Corollary 6.2. Let (h,L) be a compatible pair that splits into two blocks of compatible pairs
(h1, L1), (he, L) of dimensions n1 and ny respectively as in Theorem 6.1. Suppose v is a projective
vector field such that h, L and v satisfy (6.3).

(1) Case of a trivial 1 x 1 Jordan p-block. Let (hy, L1) be given by

1 0
hy = ——dp?, L1 =p-— ®dp,
F(p) dp
w.r.t. a coordinate p. Then vy = p(1 — p)a% and
(6.4) F =a(l1—p)~Cpntite,
(2) Case of a 2 x 2 Jordan p-block. Let (hy,L1) be given by
_ 0 F(p) += _(p Flp)+z

w.r.t. coordinates x,p. Then vi = G(x, p)% +p(1 — p)a%, where

1
G(z,p) = 5((n2 = 1)p =1 =C —na)z + Gi(p)
and F(p),G1(p) satisfy the ODE system
F/ :ﬁ(%((ng—l)p—l—c—ng)F—Gl),
Gy =3(ny—1)F.
(3) Case of a 3 x 3 Jordan p-block. Let (hy,L1) be given by

0 0 F(p)+ 2z, p 1 1
(6.7) h = 0 1 1 and L1 = 0 p F(p)+ 2z

in coordinates x1,x2,p. Then,

0 0 0
v1 = G(z1,22,p) 5 — + H(x%P)aTCQ +p(1 - P)afﬂ

0x1
where ) )
G(z1,2,p) = —5((3 +ng +2—ngp)z + gnata + G1(p)
and )
H(za,p) = —5((:' +ng + (4 —n2)p)xe + Hi(p)

and F(p), H1(p), G1(p) satisfy the ODE system

Flo= o3t (3(C+n2 + (4 = n2)p)F + 2Hy)

(6.8) Hi = 35(n2—2)F -Gy,
G, =0.

Remark 6.1. Formulas (6.5) and (6.7) are exactly the normal forms obtained in [11] for com-
patible pairs h and L in the case when L is conjugate to a 2 x 2 resp. 3 x 3 Jordan block with
a non-constant eigenvalue. Notice that these formulas are only meaningful at those points where
F+x#0 (resp. F +2x9 #0).

Remark 6.2. In part (1) of Corollary 6.2, we actually re-derived the formulas (5.12) for the
components of v and the functions F; parametrizing the metric
¢

A
h=gle=)_ 7o

i=1 "

obtained from the metric g by restricting it to leaves £ of the distribution U.
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Proof of Corollary 6.2. Theorem 6.1 shows that hy, L; and v, have to satisfy the equations
(6.9) Lo Ly =—L3+ Ly and L, hy = (ng — 1)hy Ly — (tr Ly +C + na)hy,
where ny = n — ny is the dimension of the block (ha, Lo) of (h, L) complementary to (hq, L1).

(1) From the first equation in (6.9), it follows immediately that v = p(1 — p)d,. This solves the
first equation identically. It is straightforward to check that the second equation in (6.9) with noy
replaced by n — 1 is equivalent to the ODE

dFF _n+1+C—(n+1)p
F p(1—p)
The solution to this ODE is (6.4) as we claimed.

dp.

(2) Since the first equation in (6.9) implies that v; preserves invariant subspaces of L, we can
suppose that
v1 = G(x,p)0z + p(1 — p)0,
for a certain function G(z, p). Using this, together with the explicit formulas for h; and L, we
see that the first equation in (6.9) is equivalent to

(6.10) p(1=p)F' +G — (F +1)0,G =0

whilst the second equation in (6.9) is equivalent to the equations

(6.11) p(L=p)F' + G+ (F+2)(0,G+14+C+ns+ (1 —n3)p) =0
and

(6.12) 20,G = (ng — 1)(F + ).

Substracting (6.10) from (6.11) and dividing by F' + x yields

(6.13) 20,G+14+C+na+ (1 —ng)p=0.

This shows that G must be of the form

1
G(z,p) = 5((n2 =1)p =1 -C —nz)z + Gi(p)
as we claimed. Inserting this into (6.10) (now equivalent to (6.11)) and (6.12), we obtain (6.6)
after rearranging terms.

(3) Again, since v preserves invariant subspaces of Ly, we have

0 0 0
vy = G($17$27p)6731 +H($2»P)3732 + p(1 —0)67)

for certain functions G(x1,x2,p) and H(z2,p). A straightforward calculation gives that the first
equation in (6.9) is equivalent to the equations

(6.14) 1420+ 0., H—0,,G=0,

(6.15) 200+ F+ G+ 0,H — (F +229)07,G — 210;,G =0

and

(6.16) 2H + p(1 — p)F' — (F + 222)0,,H =0

whilst the second equation in (6.9) is equivalent to the equations

(6.17) 2H + p(1 — p)F' + (F 4 222)(1+ C+na + (2 — na2)p + 8,,G) = 0,
(6.18) CH+na+ (4 —mn2)p+20,,H =0,

(6.19) 1+CH+ne+(2—n2)p+ 0, H)x1 + G+ 0,H — (F 4 222)(ng — 1 — 0,,G) =0
and

(6.20) (2 4+ C 4 ng — nap)a? +2(G + 9,H)xy — 2(F + 229)((n2 — )y — 9,G) = 0.
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Subtracting (6.16) from (6.17) and dividing by F' + 2x2, we obtain
1+C+ne+(2—n2)p+ 0,G+ 0, H =0.
Hence, using (6.14),

1 1
05, G = §(n2p —2—-C—ng) and 0,,H = 5((712 —4)p—C —ng)
or, in other words,

1 ~ 1
G(z1,22,p) = §(n2ﬂ —2—C—ng)r1 + G(22,p) and H(zz,p) = 5((712 —4)p —C —na)z2 + Hi(p)

for certain functions G(x2,p), Hi(p). Inserting this back into our PDE system (6.14)-(6.20) we
obtain that (6.9) is equivalent to the equations

1 ~ ~
(6.22) (C+no+ (4 —n2)p)F +4Hy +2p(1 — p)F' =0,
3 ~ ~
(623) —577/2$2 + G + Hi + (F + 2%2)8‘1’26} + (]. — TLQ)F =0
and
(6.24) (—naxy — (na — 2)F + 2G + 2H{)x1 + 2(F + 222)9,G = 0.

Substracting (6.21) from (6.23) and dividing by F + 2z gives —ng + 28,,G = 0 and we see that

1
G(x2,p) = 5naz2 + Gi(p)-
Inserting this formula for G into (6.21)—(6.24), we obtain that (6.9) is equivalent to the equations
1
5(2 - Tlg)F—F G1 —|—H{ = O,

(C+no+ (4—n2)p)F +4H, +2p(1 — p)F' =0,
429G + (2 — na)z1 + 2GY)F + 221 (G + HY) = 0.
The first two of these equations give the first two equations in (6.8). Multiplying the first equation
by 2z; and subtracting it from the third gives 2(F 4 2xz4)G} = 0, hence, G} = 0 as we claimed. O

Now we are ready to describe the local structure of g, A and v in the case when A “contains”
a2 x 2 or 3 x 3 Jordan block.

Proposition 6.3. (1) Let p € M° be a regular point and A contain a 2 x 2 Jordan block
with a non-constant eigenvalue p = p1. Then in a neighbourhood of p there exists a local

coordinate system T, p1,...,pe, Yi,---,YnN, N = mgy + mq, in which g and A take the
following form:
L(z, p) 0 > (h(a: ) 0 )
6.25 A= ’ and g = ’
(6:25) ("5 alo 700 ) (A
where
(6.26)
Li(z,p1) 0 0 hi(z, p1) - A1(L) 0 0
0 p 0 0 E;M(p2) - Ag 0
L= , h= ,
0 0 ... p¢ 0 0 ...F[l(pg)-Ag

and the ingredients in these matrices are as follows:
e Ly and hy are defined by (6.5) with p=p1,
A1(+) is the polynomial of the form Aq(t) = H?zQ(t —Pj)s
Fi(pi)=a;(1 — p;)~Cpit?*C,
Al:(pl - p1)2H§:2,j¢i(pi - p]); i = 27 s a£7
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o A.(y) is selfadjoint and parallel w.r.t. g.(y).
Furthermore,

v = -1',01 +sz z p+

?

with G(z, p1) as in Corollary 6.2 (2), with ng =€ —1, py = p.

(2) Similarly, let p € M° be a regular point and A contain a 3 x 3 Jordan block with a non-
constant eigenvalue p = p1. Then in a neighbourhood of p € M° we can choose local
coordinates xi,Ta, P1,-..,pe, Y1-..,Yn such that A and g are given by (6.25), (6.26)
where x = (x1,22) and the other ingredients are as follows:

o the 3 x 3 blocks Ly (1,22, p1) and hy(x1,xa, p1) are defined by (6.7) with p1 = p,
e Aq(:) is the polynomial of the form Aq(t) = H§ ot —pj),

b Fi(pz) az(l — Pi ) Cp€+3+C} i=2,...,0,

i Az_( Pl) H] 2];&1(/01 pj); i:27"-7€7

o A.(y) is selfadjoint and parallel w.r.t. g.(y).

Furthermore,

0
U:G($17$2,P1)5731+H($2701 +ZPZ pi) o ot

with G(x1, T2, p1) and H(xa, p) as in Corollary 6.2 (3), withny ={—1, p1 = p.

Proof. The formulas (6.25) and (6.26) (with F(p), F2(p2), ..., Fy(pe) being arbitrary functional
parameters) are just a reformulation of the main result of [11] in the case when A has the algebraic
type described above.

In our situation we have, in addition, a projective vector field v satisfying (6.1). Consider the
natural decomposition of v that corresponds to the splitting (6.25) of g, A into “constant” and
“non-constant” blocks: v = vnc(x, §) + ve(y).

It is easy to see (cf. (5.13), (5.14)) that (6.1) can be rewritten for the non-constant block
without any change, i.e.,

L, L=—-L?>+L, L, h=—hL— (trL+C)h.

Unc Unc

Here tr A4+C' = tr L+ C and C = C' + m; where m; is the multiplicity of the constant eigenvalue
1 or, which is the same, m; = tr A..

After this remark, Proposition 6.3 follows immediately by applying Theorem 6.1 and Corol-
lary 6.2 (for h, L and vy but not v!) to reconstruct the functions F(p), Fa(p2), ..., Fi(pe) as well
as the components of v, (the components of v.(y) are not important for our purposes and we
ignore them, in Proposition 6.3 they are denoted by ...). O

Partitioning local coordinates into two groups z, p1,...,p¢ and y1,...,yn determines two nat-
ural integrable distributions ¢ and U+ on M similar to those from §5.5. All geometric properties
of the corresponding foliations listed in Proposition 5.6 still hold with one little amendment that
dimU = £+ 1 or £+ 2 (but not ¢ as before) so that now we should think of z as an additional
coordinate to p;’s

The next statement is an analogue of Proposition 5.10. Consider the domain U C R (z, py, ..., p¢)
in the case of a 2 x 2 Jordan block (resp. U C R“‘z(:tl, Za,pP1,---,pe) in the case of a 3 x 3 Jordan
block) on which the above local formulas (6.26) for h are naturally defined. More precisely, U
is defined by the inequalities (6.2) for the p;’s and the additional coordinates x and xo satisfy
F(p1) +x # 0 for a 2 x 2-block and resp. Fy(p1) + 2z2 # 0 for a 3 x 3 block, see Remark 6.1.

Proposition 6.4. There is a natural isometric immersion ¢ : U — M (as a leaf of the totally
geodesic foliation determined by U). In other words, the above formulas (6.25) and (6.26) have
global meaning on M for all admissible values of coordinates.
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Proof. The idea of the proof is similar to that of Proposition 5.10. We start with a certain point
p € M and locally identify the leaf of & through p with U by using a canonical coordinate system
in its neighbourhood constructed in Proposition 6.3.

After this we use prolongation along a path as in the proof of Proposition 5.10. We need to
justify several facts which guarantee that such a prolongation is always possible, namely, that the
limit point of the curve ¢(a(t)) as t — Ty (we use the same notation as in Proposition 5.10) exists,
is unique and lies in MY, the set of regular points. First, we will ensure that for any sequence
t <ty < ...<t.. =5 T, such that ¢(a(t;)) converges, we have lim;_,o ¢(a(t;)) € M°. This will
follow from Lemma 6.5 below.

Since ¢ preserves the eigenvalues of L, the multiplicities of the eigenvalues remain unchanged
and the inequalities (6.2) hold at the limit point. The condition dp;#0 is fulfilled automatically
and we only need to check that the Jordan block “survives” at the limit point. A priori under
continuous deformations the Jordan block may split into smaller blocks and we need to show that
this event may not happen under our assumptions.

To prove this fact we use the following algebraic lemma.

Lemma 6.5. Let h be a non-degenerate bilinear form of Lorentzian signature and L be an h-
selfadjoint endomorphism. Assume that L has a single real eigenvalue p and ey is a p-eigenvector
of L. Then in dimension 2 and 3 we have respectively:
, , ) 1 )
(1) For any canonical basis ey, es (i.e., such that h = ((1) O) or, equivalently, h(e;,e;) =
di3—j), the matriz of L has the form

=)

Moreover, a does not depend on the choice of ea, and can be computed from the following
formula o = voly, (62, (L - pld)€2).

0 0 1
(2) For any canonical basis ey, e, e3 (i.e., suchthath = |0 1 0| or, equivalently, h(e;,e;) =
100
dia—j), the matriz of L has the form
p a f
L=10 p «
0 0 p

Moreover, a does not depend on the choice of ea and ez, and can be computed from the
1
following formula o = voly, (eg7 (L —pld)es, (L — pId)2eg) 3,

Proof. The proof is straightforward and we only give some comments for dim = 3. The first
statement follows immediately from two facts:

(1) L is h-selfadjoint and therefore the matrices of L and h satisfy L™h = hL;
(2) the first column of L is (p,0,0) .

The formula for « is obvious in the basis ej,es,e3. We now check that this formula is in-
dependent on the choice of e; and e3. Let eg, e, €4 be another canonical basis. Then e} =
ajer + agzes + ases, but h(er,esz) = h(ey,ey) = 1 immediately implies that ag = 1. Hence, using
the explicit formula for L, we can easily conclude that the additional terms aje; + ases do not
contribute. Indeed,

voly, (e5,(L — pId)el, (L — pId)?e}) =
voly (es + are; + ages, (L — pId)es + ao(L — pld)es, (L — pId)2es) =

voly,(es + arer + ageq, Ber + aea, a261) = a3volg(63, €9,€1) = as.
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This lemma gives us a simple method to recognise if L has a Jordan block of maximal size or
not.
Let us return to the proof of Proposition 6.4. Since M is closed, any sequence has a convergent

subsequence. We take a sequence t; < to < ... < t;... "22° T, and assume without loss of generality
that ¢(a(t;)) converges to a certain point which we denote by p. Let us show that p is regular,
i.e., the Jordan block “survives”. We know that the eigenvalue p; of the Jordan block is a smooth
function on M°. Moreover, the vector field e; = grad p; does not vanish and is an eigenvector of
the pi-block. Notice that these conditions hold not only on M 0. but also on a slightly bigger set MO
(M° c M?) which can be characterised by the property that the multiplicities of eigenvalues are
fixed but the algebraic type of L is allowed to change, namely, the Jordan p;-block may split into
smaller p;-blocks. Notice that the natural splitting into blocks corresponding to the eigenvalues of
¢ makes sense on M?, so we can work with each block separately. An important additional fact,
we are going to use, is that ¢, by construction, preserves grad p;.

We use Lemma 6.5 to verify that the parameter « in the matrix of L(p) does not vanish. Since
both L and e; are smooth, we have by continuity « = lim;, 7, a(t;), where «(t;) is computed at
the point ¢(a(t;)) (w.r.t. to e; = grad p). But since ¢ is an isometry whenever it is well defined,
then the limit can be computed on U. Since all the points of U are regular by construction, we
have limy, 1, a(t;) # 0 as required. Thus, the limit point p of the sequence ¢(a(t;)) is regular.

We continue the proof for U C R?**¢, ie., in the case of 3 x 3 Jordan block; the case of
2 x 2 block is similar. In some neighbourhood V' (p) C MY, we can choose a canonical coordinate
system (x1,x2, p1, P2, .-, P2, Y1, ---, Y~ as in Proposition 6.3 adapted to the orthogonal integrable
distributions ¢ and Y. A similar canonical coordinate system xi, 2, p1, p2, ..., p¢ can be chosen
on U in a neighbourhood U(a(Ty)) of a(Tp).

In both cases, p; are defined intrinsically being eigenvalues of L. According to [11, Remark 1.8],
the other two coordinates x1,xs are defined up to shift x; — x; + ¢;(p1) (with ¢;(p1) explicitly
given in [11, Remark 1.8]) so that they become unique if we “fix the origin” by setting z1(¢) = 0,
x2(q) = 0 for a chosen point q.

Now choose t' = t;, such that a(t’) € U(a(Tp)) and ¢(a(t')) € V(p) and “shift” the coordinate
systems introduced in V (p) and U (a(Tp)) to make them centred at ¢ (a(t')) and a(t') respectively
as just explained. In terms of these coordinate systems, the prolongation of ¢ along a(t) is defined
simply by

a(t) = (:Ul(t),mg(t),pl(t), ...,pg(t)) — d)(a(t)) = (xl(t),xz(t),pl(t),...,pg(t),yl, ...,g)N),
where g; are constant, i.e., qb(a(t)) always remains on the same U-leaf. This formula makes sense
as long as a(t)|;y 7,] remains within the coordinate neighbourhood U (a(Ty)) and ¢(a(t)|j 1))
remains within the coordinate neighbourhood V' (p). We can easily guarantee these conditions by
an appropriate choice of ¢’ = t;, making a(t') very close to a(Ty) and ¢(a(t)) very close to p.

Thus, the prolongation along a(t) from ¢t = ¢ up to ¢t = Ty (and even a bit further if Ty < 1)
is well defined by the above formula. In particular, lim; 7, ¢(a(t)) exists and therefore coincides
with p = gf)(a(TO)) so that p belongs to the same U-leaf as the one we started with. This completes
the proof. O

Now to prove that Jordan blocks with non-constant eigenvalues cannot appear on compact
manifolds, we compute one special eigenvalue of the curvature operator of the metric g given by
the formulas from Proposition 6.3. For this computation we use the following real analogue of
Proposition A.2, which can be proved in a similar way.

Proposition 6.6 ([13]). Let g and L be compatible in the projective sense and A be as in (1.7).
Let VA = f(L) at some point p € M, where f(-) is a polynomial (or, more generally, an analytic
function) and suppose L(p) has a non-trivial Jordan p-block. Then one of the eigenvalues of the
curvature operator of g at the point p takes the form

f(p).

This number can be computed for our metric g (equivalently, for h given by (6.26)) A straight-
forward calculation shows the following;:
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Proposition 6.7. (1) For a 2 x 2 Jordan p;-block, we have

oo Fi(p) Fip)
f'(p1) = (F1(p1) + 2)* TT,20(p1 — 24 =) g (oi — i)

(2) For a 3 x 3 Jordan py-block, we have

) - 3 Fi(pi)
f'(p1) = A(F1(p1) + 222)2 T];55(p ; Api = p1)° Tljgqray (pi = pi)

These formulas immediately imply that the quantity f’(p1) (which is some special eigenvalue of
the curvature operator of g) is unbounded on M°. Indeed, x and x may vary independently of the
other coordinates and, in particular, we may fix the values of all p;’s and then vary z (resp. x2)
so that Fy(p1) + = (resp. Fi(p1) + 2z2) tends to 0 and therefore f’(p;) — oo, which is impossible
due to compactness of M. Thus, Jordan blocks with non-constant eigenvalues may not occur in
our situation and this conclusion completes the proof of Theorem 1.2.

APPENDIX A. EIGENVALUES OF THE CURVATURE OPERATOR

In what follows, we consider a real vector space V with a complex structure J and an inner
product g (not necessarily positive definite) such that g(Ju, Jv) = g(u,v). Such a triple (V,g,J)
will be referred to as a pseudo-Hermitian vector space. We use the symbol

u(g,J)={X egl(V):[X,J] =0 and g(Xu,v) = —g(u, Xv)}

to denote the space (Lie algebra) of skew-Hermitian endomorphisms on V.

Let us first reformulate the integrability condition for equation (1.4) in a way adapted to the
Lie theory. Recall that the Riemann curvature operator (at a point € M) can be understood as
amap R:T,M ®T,M — so(g), R(u,v) = V4V, — V,Vy — V[, .. Taking into account the fact
that we are dealing with a Kéhler manifold and using the symmetries of the curvature tensor of a
Kéhler metric, we can also think of R as an operator defined on the unitary Lie algebra (we still
use the same notation)

R:u(g,J) = ulg,J)
by setting R(u,v) = 1 R(u Ay v), where
(A1) uhjv =1 @v—1" @u+ (Ju)’ @ Jv— (Jv)’ @ Ju € u(g, J)
and u” = g(u,-) denotes the metric dual of w.

Lemma A.1. Let (M,g,J) be a Kihler manifold of arbitrary signature, A € A(g,J) be a Her-
mitian solution of (1.4) and A = fgrad(tr A). Then the curvature operator R : u(g, J) — u(g, J)
satisfies the relation

(A.2) [R(X), A] = 4[X,VA] for all X € u(g, J).
Proof. The Ricci identity applied to an arbitrary field of endomorphisms A reads
VuVeA =V, VA=V, A= [R(u,v), Al

for any vector fields w,v. Let now A € A(g,J) be a Hermitian solution of (1.4). Since VA is
g-selfadjoint and J-linear, i.e., Hermitian too, we have

VuVeA =V, VA — Vi, A
=0" @ VA + (VuA)’ @0 —u° @ VoA — (VoA @ u
+(Jv)’ @ Vyul + (VA @ Jv — (Ju)’ @ VoA — (VoA @ Ju

= [X,VA],

where X = u Ay v. This proves formula (A.2) for elements X € u(g, J) of the form u A ;v and the
claim follows from the fact that all skew-Hermitian endomorphisms are sums of such elements. [
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Remark A.1. If formula (A.2) holds for an operator R : u(g,J) — u(g,J) and Hermitian en-
domorphisms A and VA then, in fact, VA can be presented in the form VA = p(A) for some
polynomial p(-) with real coefficients. To show this, take an arbitrary J-complex matrix ¥ and
consider the following algebraic relations:

tr (X [VA,Y]) = tr (¥ - [X, VA]) = itr (V- [R(X), A]) = itr (R(X) - [A,Y]),

where X € u(g,J) and tr denotes the complex trace. Since u(g,J) spans gl(T,M,J) in the
complex sense, we conclude that [VA,Y] = 0 for any ¥ commuting with A. It is a well-known
algebraic fact that in this case VA can be written as a polynomial of A. Moreover, as both A and
VA are Hermitian, this polynomial must be real, i.e. with real coefficients.

Proposition A.2 below together with formula (A.2) allows us to calculate eigenvalues of the
curvature operator in terms of the eigenvalues of A and VA. For the main concepts of the proof
of this proposition and for the relation to sectional operators in the theory of integrable systems
compare also with [5, §3] and [13, 9].

Proposition A.2. Let (V,g,J) be a pseudo-Hermitian vector space and let A :' V. — V be a
Hermitian endomorphism. Suppose an operator R : u(g,J) — u(g, J) satisfies

(A.3) [R(X),A] = [X, B] for all X € u(g, J),
where B = p(A) and p(-) is a polynomial with real coefficients. Then we have the following:
(1) For all real eigenvalues A; # A; of A,

p(Ai) —p(X)
Xi —Aj
is an eigenvalue of R.
(2) If A has a non-trivial A\;-Jordan block, \; € R, then p'()\;) is an eigenvalue of R.

Remark A.2. The first item of Proposition A.2 can be understood in a slightly different way.
Notice that B = p(A) implies that each eigenvector of A with an eigenvalue \; is, at the same
time, an eigenvector of B with the eigenvalue m; = p()\;). Hence the formula for the eigenvalue of
R from item (1) can be rewritten as m)\’:;:’ so that we do not actually need to find p(-) explicitly;
it is sufficient to know the eigenvalues m; of B corresponding to \;.

The second item of Proposition A.2 can also be modified by using the following simple fact
from Linear Algebra. Let A be an eigenvalue of an endomorphism A having a non-trivial A-Jordan
block. Let p(-) and g(-) be two polynomials (or even more generally, analytic functions) such
that p(A) = ¢(A), then p(A) = ¢(A) and p'(\) = ¢(N). Tt follows from this statement that
the polynomial p in the second item of Proposition A.2 can be replaced by any other function ¢

satisfying p(Alv,,) = q(Alv,, ), where V), denotes the generalized \;-eigenspace of A.

Proof of Proposition A.2. We start with some general considerations regarding formula (A.3). We
view this formula as an equation on R for fixed A and B = p(A). Suppose Ri, Rz : u(g,J) —
u(g, J) are two solutions of (A.3). Then,

[R1(X) — R2(X), Al =0 for all X € u(g,J),
that is, R; — Ry takes values in the Lie algebra
ga ={X €u(g,J): [X, A] = 0},
the centraliser of A in u(g, J). Thus, any solution R of (A.3) is unique up to adding an operator
u(g,J) — ga. Moreover, an operator R satisfying (A.3) preserves the centraliser g4. Indeed,
since B = p(A) is a polynomial in A, we have [X,B] = 0 for all X € ga. Then (A.3) implies
[R(X),A] =0 for X € ga, showing
R(ga) € ga
as we claimed. For any solution R of (A.3), we may therefore consider the induced operator

R:u(g, J)/ga — u(g, J)/ga
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on the quotient space. It is a general fact that eigenvalues of the quotient operator R are eigenvalues
of the original operator R. On the other hand, we have just seen that the quotient map R is the
same for all solutions R of (A.3). We will use these facts by working with the quotient map Ry
coming from a special solution Ry of (A.3) defined by

d
A+tX

a? P(A + tX)]i=o.

This is indeed a solution of (A.3) as follows immediately from differentiating the identity [p(A +

X), A+ tX] =0 at t = 0. By definition, if p(t) = Y-, axt®, then

:iak Z APX A1,

k=1 p+q=k—1

Ry =

Hence for a generating element u Ay v, we obtain

(A4) o(uAyo) Zak Z APy Ay Av.
k=1 p+q=k—1
We are now in the position to prove Proposition A.2. First, we show that Ry has eigenvalues as
given in part (1) and (2) of the proposition:
(1) Suppose u and v are eigenvectors of A for real eigenvalues \; and A; respectively, A; # A;.
Then (A.4) becomes equal to

m )\k )\7’3 ) )
Ro(uAjv) = (ZakZAr)\k1T)u/\JU—<Zak;)\_)\)U/\J’UZWUAJU.
k=1 ¢ J

k=1 r=0

Hence,
p(Ai) —p(A))
Ai — A

is an eigenvalue of Ry with eigenvector u Ay v.

(2) Let us first argue, that without loss of generality we can suppose that a fixed real eigenvalue
\; of A is equal to zero. Indeed, using A = A — \;-Id instead of A in (A.3), the equation (A.3)
holds for Ry, A and the same B = j(A) for another polynomial j(t) = S e, ath that is equal to
p(t + A;). Since p'(0) = p/()\;), we may assume that the fixed eigenvalue A; under consideration
is equal to zero. Suppose A has a non-trivial A;-Jordan block and denote by V), the generalized
A;i-eigenspace. Let u € V), be an eigenvector of 4, i.e. Au =0, and v € V), satisfy Av = u. Then
(A.4) becomes

m
Ro(uAyv) = Zak(u Ay AR ) = aqu Ag v
k=1
Thus, a; is an eigenvalue of Ry with eigenvector u Ay v. Since a; = p’(0), the eigenvalue is as in
part (2) of Proposition A.2.

To summarize, we have shown that Ry has eigenvalues as given in part (1) and (2) of the
proposition. It remains to show that these eigenvalues are also eigenvalues for the quotient map
Ro Since for an arbitrary operator R solving (A.3) we have R= Ro, we then obtain that R and
hence R, has eigenvalues as in part (1) and (2) of the proposition.

It is straightforward to show that for any operator ¢ : V. — V with a -invariant subspace
U C V, an eigenvalue A of ¢ is also an eigenvalue of the quotient map

$:V/U = VU

if and only if the generalized A-eigenspace of ¢ is not contained in U (although, it may have a
non-trivial intersection with U).

To complete the proof of Proposition A.2, it therefore suffices to show the following statements,
each of which proves one of the parts of the proposition:

(1) unjv ¢ ga for eigenvectors u and v of A corresponding to real eigenvalues A; and A;
respectively, A; # A;.
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(2) uAjv ¢ ga for an eigenvector u of A corresponding to a real eigenvalue \; and a vector

v € V), such that Av = u + \;v.
Introducing the notation

wuoyv=1 Qv+ @u+ (Ju)’ @ Jv+ (Jv) @ Ju,

we have [u Ajv, Al = Au ©y v —u @  Av. Thus, for case (1) we obtain

[unsv, Al =N — X)u® v

which is non-zero, hence, u Ay v ¢ ga. For case (2) we obtain

[un;jv, Al = uOrjv—u®s(u+Av)=—-u® u

which is non-zero, hence, u Ay v ¢ g4. This finishes the proof of the proposition. O
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