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SUJ1J.!ARY 

In order to determine the forces on a structure placed upon an obstacle 

it is necessary to know as accurately as possible the velocity of the wind 

at every point of the structure. The earth 1 s boundary layer may he con-

sidered as consisting of a mean velocity together with a random variation 

about the mean, and the aim of the present work is to detennine the change 

in the mean velocity profile of the wind as it passes over an arbitrarily 

shaped obstacle. 

The first method considered was to modify the classical approach, 1<hi.ch 

calculates the flow of a unifonn stream about an obstacle, for a boundary 

layer type profile. This proved unsuitable and attention was tun1ed to 

the solution of the goven1ing equations of motion. These were solved, 

using a numerical method, to enable the flov to be calculated over an 

arbitrary shape. The flow as computed for two hill shapes is presented 

and the results agree with a qualitative consideration of the problem, 

To study the effects of separation, the flow was calculated for a family 

of shapes and a range of Reynolds numbers. Graphs of the streamlines 

and. velocity profiles are presented for some typical cases., 
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NOMBNCLATURE 

Symbol Heaning 

'I' Streamfunction 

w Vorticity 

m Strength of Source 

p Pressure 

>' Viscosity 

\} Kinematic Viscosit-y 

K Eddy Viscosity 

p Density 

X Horizontal Axis 

y Vertical Axis 

u Horizontal Velocity 

V Vertical Velocity 

u Reference Velocity 

t Reference Length 

t:.x Small Increment in x Direction 

t:.y Small Increment in y Direction 

i Index of Horizontal Grid Points 

j Index of Vertical Grid Points 

'I' 
0

, ~ 1 , '11
2

, ~3 , q,
4 

Values of Streamftmction at Nodes of Finite Difference 
mesh 

W
0

, W1, W2, w
3

, W
4 

Values of Vort.icity at Nodes of Finite Difference mesh 

R'lt 

R w 

Relaxation Parameter for Streamfunction 

Relaxation Parameter for Vort.icity 
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CHAPJ'ER l.: INTRODUCTION 

A better knowledge of the power of the natural wind has become more and 

more important as the height of man made structures has increased. More-

over t.heir susceptibility to wind damage has been fu~her increased by the 

necessity of designing them within an economic limit by keeping the safety 

factors involved to a minimum. Various natural disasters from the Old 

Brighton Pier in 1836, through the Tay Bridge and Tacoma Narrm<s failures 

to the recent collapse of the cooling towers at Ferrybridge have empha

sised that the power of the natural wind must not be underestimated. It 

is thus necessary to !mow, as accurately as possible, the velocity of the 

wind at each part of the structure. 

As the wind bl01m over level ground the velocity profile develops and then 

maintains a constant shape of the boundary layer type. However, if there 

are obstacles such as a hill, or on a smaller scale a road or railway 

embankment, the profile undergoes a change of shape. Since tall. masts 

for television transmissions tend to be sited on the tops of hills, and 

large vehicles, which may be affected by the wind, use the embankments, a 

problem of some importance is that of the change in wind speed profile over 

such an obstacle. 

The forces due to the natural wind may be thought of as consisting of two 

types: 

(1) Those due to the action of an average velocity 

(2) Those due to the variations of the velocity about this 

averageo 

The latter has obviously to be treated as a statistical problem, since the 

variations are random, while the former may be considered along determin

istic lines. 

1York has been done1 to determine the effect of the random variations on the 

structures but there seems to be no method of predicting the change in flow 

as the wind passes over an obstacle of arbitrary shape. It is the purpose 

of the present work to determine such a method. 
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A further problem which can be considered once a solution has been 

found is that of separation of the flm<, This may occur on the lee side 

of the hill and if it occurs it alters the'flow over the brow of the hill, 

The conventional method used to predict the onset of separation is that 

the skin friction becomes zero, As will be shown (Charter 2) the problem 

is not amenable to an analytic solution and no general criterion can be 

applied to find the onset of separation. However the method of solution 

enables the point of separation to be determined for particular hill shapes, 

while also determining the flow within the separation bubble, 

1,1 Previous work 

The classical method of predicting the flow of an inviscid fluid over a 

body is that due to Rankine
2

, By using a combination of sources and 

sinks together with a uniform velocity profile it is possible to calculate 

the changes of a uniform airflow over a hill shape. This method is how

ever not accurate enough as in this case the velocity of the air actually 

increases to"'n.rds the boundary of the body, rather than decreasing to zero 

as in practice. 

The first attempts at the problem were to modify this method to take into 

consideration a hotmdary layer type profile. These are presented in 

Chapter 2, and although the results were not satisfactory they did enable 

a 'feel' for the problem to be obtained, 

With the failure of this method to predict the flow near a boundary atten

tion was turned to the solution of the governing Navier-Stokes equations. 

These are difficult to solve in all but a few special problems, the main 

difficulty being that they are non-linear second order simultaneous 

differential equations. In many of the exact 

terms are identically zero (as in flow along a 

solutions the quadratic 

pipe) or the non-linear 

terms can be neglected in comparison with the viscous terms (as in Stokes 

flow past a sphere). However in the present case there will be a region 

near the solid surface where the inertia terms and viscous terms are of 

the same order of magnitude so that neither can be neglected, 
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In 1904 Prandtl initiated the concept of a boundary layer, It is bn,sed 

upon the assumption that the action of viscosity on the flow past a solid 

body is confined to a tl1in layer of fluid close to the solid houndary, 

the motion outside the boundary layer being of the inviscid flow type. 

Inside this thin layer the viscous and inertia terms are considered to be 

of the same order of magnitude and the velocity gradient perpendicular to 

the surface is very large compared with the dmmstream velocity gradient, 

These assumptions enable the equations of motion to be simplified, , 

although their solution in the general case is still very difficult, 

However the progress of aeronautics led to great interest in the flow of 

a fluid near a surface and m&ny techniques were developed for tl1eir solu

tion, or approximo.-~e solution3, Prandtl 1 s simplifying assumption is 

that the thiclrness of the boundary layer is small compa,red with the radius 

of curvature of the surface, and this is assumed in most of the work, 

The height of' the boundary layer for the natural wind extends to at lea,st 

300 metres or more depending upon the type of underlying terrain, while 

the size of the obstacles may be considerably less than this, In this 

layer neither the viscous or inertia terms may be neglected, but the verti

cal velocity gradient may be of the same order of magnitude as the down

stream velocity gradient, and thus the conventional boundary layer theory, 

as introduced by Prandtl, is not applicable to the present work, The 

velocity profile of the wind is of the boundary layer type (zero at the 

surface, increasing to the free stream velocity) and the problem may be 

referred to as being of a boundary layer type, 

Attention was turned. to the problem of wind flow over hills when glider 

pilots frequently reported what appeared to be systems of standing waves 

in the lee of the hills. In a series of papers Long (Ref.5 i, ii, iii) 

investigated, both theoretically and experimentally, the conditions under 

which lee waves may be set up, He considered steady two-dimensional in-

compressible flow, and assumed that upstream from the obstacle the density 

varied linearly with height and that u2
p = constant, where U is the velo-

city, p the density, and both are functions of y. Using these approxi-

mations the partial differential equations reduced to a linear partial 

differential equation, which was solved by analytical techniques, The 

- 7-

r 



disadvuntage of the method, however, was that the shape of the obstacle 

\fas determined from.the solution, by replacing suitable streamlines by 

solid botmdaries. Thus the direct calculation of flolf over an arbitrary 

shape was excluded, For the shapes that did result his theoretical solu

tions agreed with the practical results obtained. 

His work generated interest in the flow of a stratified fluid over 

obstacles, but it was not until 1967 ~<hen Drazin and Moore6 published 

their work that the flow over a prescribed ohstacle vas possible. They 

used the same assumptions as Long, but recognised the resulting equations 

as similar to one derived in diffraction theory, and using methods devel

oped in this field they calculated flows over a thin vertical strip. 

This vas further developed by Davi/ who used a numerical method for the 

direct integration of the equations using Green's f1mcbions. 

Wor:t vas done by Onishi8 who combined a stratified flow vith the boundary 

layer equations and obtained an approximate solu·bion for .the flow over a 

ridge, vhich was described by an analytic function, Although no lee 

waves lfere present, the flow separated on the dmmstrcam side of the ridge, 

which would be expected for the steep ridge considered.. 

The large amount of theory that has been developed for the flow of a 

stratified. fluid over an obstacle is not applicable to the problem at hand., 

The winds which generate the important forces (from a wind loading view

point) on a structure are those having a high velocity. At these high 

speeds there is so much mechanical stirring of the atmosphere that any 

density stratification that existed is destroyed, and the air may be 

thought of as having uniform d.ensi ty, 

The only available worlc found on non-stratified flow is that published by 

Imai et al9• He assumes that the flov may be thought of as consisting of 

a boundary layer adjoining the surface, and. a free atmosphere located over 

it. The flow is solved for the inviscid layer over the surface, and the 

results used as boundary conditions for the boundary layer equations, By 

assuming that the velocities just outside the boundary layer are the same 

as those just inside the boundary layer the equations are reduced to those 

of a heat conduction type. In his solution he arbitrarily limits the 
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boundary layer height to a constant value over any type of terrftin. 1'his 

approximation is difficult to justify, He shows that for obstacles with 

a gradual slope there is a drop in wind velocity behind the hill, which 

would be expected, while for obstacles with steep slopes a velocity 

greater than that obtained in the upper air was produced near the surface 

in front of the hill, and separation occurred behind it. Although these 

results are not actually impossible phenomena, they cmmot be expected 

from an equation of the heat conduction type (since for this type o£ 

equation no such changes in the value of the function can be expected 

downstream of the initial conditions, for the values of the function at 

any position depend upon those immediately before H) and indicate that 

the method is not reliable for obstacles with steep slopes. 

From the work studied it appears that all the approximations necessary in 

order to solve the Navier-Stokes equations limit the flow to areas which 

arc not applicable to the problem at hand, and attent.ion was focussed on 

the two dimensional Navier-Stokes equations for incompressible flow, 

With the advent of high speed digital computers less emphasis has been 

placed upon obtaining exact ru1alytical solutions. Numerical schemes, 

using finite difference techniques, have been developed to obtain approxi

mate. solutions to the full equations, a!ld it is upon these methods that 

the present work has been based. 

r - 9-
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CIIAPI'J<:R 2 : ANALYTICAL METHODS 

The earliest analytical approach to the problem of a two-dimensional 

incompressible flmr over an obstacle is that due to Rankine. The method 

he adopted was to superimpose a velocity field consisting of a constan·l; 

velocity parallel to the horizontal axis on that of a source, and for 

steady flm< the resulting streamlines may be considered as the trajec

tories of the fluid particles, as is shmm below. 

Milne-'l'hompson
1 0 

uses complex variable theory to calculate the flow of a 

uniform strear.1 over a circular mound or ditch, and this work has been 

fuJJther extended by Lahiri 
11 

who considers the case of wliform shearing 

motion of a fluid past a circular projection. In both cases, however, 

the flow 

tions. 

is of the inviscid type, and not that found under natural cond.i-
12 

Schubert does consider the flm; of a viscous fluid over circular 

obstacles. He too uses a complex transformation but limits the problem 

to one where the Reyoolds number becomes small and the velocity profile may 

be considered linear. 

None of these methods gives an accurate description of the flm; as it 

occurs naturally, and attempts were nnde {Chapter 2 .2) to modify Rankine's 

original method to truce into account a boundary layer t~Te profile. 

2.1 Source and a uniform stream 

2 
This is the method proposed by Rankine and has been used by Glauert to 

examine the flow of an airstream, which is assumed to be inviscid, over a 

level plane and then over an obstacle. 

The equation of continuity of an incompressible fluid is 

ou av 
- + "'· ~ 0 ox ~,y 

and this enables the stream function, ~ ' to be defined as 

v~-M 
iJy 

where x and y are mutually perpendicular axes, u is the velocity parallel 

to the x axis, and vis the velocity parallel to they axis. 
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i'hus the streumfunction for a uniform stream of velocity U P"·rallol to the 

x axis, going from left to right is given by 

(2. 1 ) 

A source is a point where fluid is created at a uniform rate, and flmrs 

uniformly in all directions along radial lines, the velocity being proper-

tional to the distance from the centre. If m is the rate at which fluid 

is being produced i.e. the strength, then the strcamfunction is given by 

The streamfunction for the combined systems is given by the sum of 

Equation (2. 1 ) and Equation (2, 2). Thus 

=- Uy + ;1T arct.an (~. 

The streamlines for this flow Qfe given in Fig.1. 

The velocity at any point can be calculated from Equation (2.3) 

(2.2) 

(2.3) 

(2.4i 

(2.5) 

The stagnation point is the point at which the velocity is zero, and it can 

be seen from Ec1uation (2.5) that this occurs on y = o, and there is no flow 

across the x axis. From Equation (2.4) the stagnation point is given by 

This is the point at which the stream velocity and the velocity due to the 

source neutralize each other and is the point A in Fig.l. The streamline 

passing through this point is called the dividing streamline, since all the 

flow contained within it is due entirely to the source and the flow outside 

is due to the uniform stream, Thus we could replace this streamline with 

a solid shape and Equation (2.3) would give the flow around this obstacle, 

' 
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From E<1uations (2.4) and (2.5) the velocity profiles may be fvund and arc 

drawn in Fig.2. This shm1s that the velocity profile only resembles a 

boundary layer type profile near the foot of the hill. On the boundary 

there are two velocity components, U, a horizontal velocity and 

2~ (x2 + y2)! a velocity due to the source. The total velocity at this 

point is then a tangent to the hill and can actually exceed U. 1Hth a 

real boundary layer type velocity profile, the total velocity on the 

obstacle must be zero. 

2.2 Source and a houndnry layer type profile 

As a uniform velocity profile does not represent the natural wind conditions 

very accurately it was thought that a velocity profile more like that 

expected in nature should be tried. 

profile given by 

Consideration of' Fig.3 shows that a 

i} = tanh (y) 

is of the boundary layer type, lying between a laminar and turbulent profile. 

Here u is the velocity at height y, and U is the mainstreal'J velocity which 

is supposed, for the sake of convenience, to be unity. If the edge of the 

boundary layer is considered to be 0.99 U then its height (o) is 2.65. 

Thus the stream~unction for this velocity profile becomes 

ojl =- log cosh (y) + f(x) s 
(2.6) 

where f(x) is an arbitrary function of integration, and at our disposal. 

Suppose initally we put 

f(x) = 0 

If a source is nm< introduced at the origin, the strcamfuncti.on for the 

combination, following the previous case, is given by 

q. = - log cosh y + 2:. arc tan ;: 

The streamlines using this equation are given in Fig.4. 

The components of velocity become 
m x 

ll.- = - tallh y + "":;; ..,,....,.-"'--""""" 
"'1r (x"' + r) 

- 12 -
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(2.9) 

Equation (2.9) shows that again there is no flo>< across the x axis, and 

from Equation (2.8) the stagnation point is seen to be at infinity. Thus 

the hill, as determined by the dividing streamline he"s a much gentler slope 

than that given by a uniform velocity profile, the height diminishing to 

zero at infinity. 

Using Equations(2.8) and (2.9) the velocity profiles may be drawn and these 

are_ shmm in Fig. 5. These profiles are closer to reality than those pre-

viously obtained, but, still do not satisfy the condition that the velocity 

component muoJt be zero on the ground i.e. the dividing streamline. 

In obtaining the streamfunction for the velocity profile used the arbitrary 

function of integration f(x) was assumed to be zero. If this is not the 

case and it is used to obtain a value such that the velocity components 

satisfy the boundary conditions, the flw pattern may go further to model

ling the real situation. 

From F..quations (2.2) and (2.6) the strcamfunction for the combined motion 

becomes 

~ =-log cosh y + ,.,~ arctan iL + f(x) 
""' X 

and the velocity components arc 

u=M=-tanhy+..!!!.. x ay 21r x2 + y2 

and 

From Equation (2.11), using 

X= 

and from Equation (2.12) 

f' (x) 

the boundary condition u = 0 

m :! Jm2 - ( 41Ty -~anh y) 
2 

4 1r~anh y 

f' (x) m 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Equation (2.13) permits the values of x and y to be found such that u = 0 

is satisfied. 

-13-
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These are plotted, for various values of m= 1, 4 1 10, 20 in Fig.6. 

Although a singularity has been introduced at the origin, a fair representa

tion may still be expected upstream from the maximum of the curves. 

It appears from Equation (2.14) that f 1 (x), and hence f(x), is a function 

of both x and y, whereas it is actually only a function of x. In theory 

it is possible to obtain, from Equation (2.13) y as a function of x, ar>.d if 

this is substituted into Equation (2.14) it becomes a function of x alone. 

Hm;cver Equation (2 .13) is not easily solved for y in terms of x, and the 

values of x have to be found at each value of y, and both values substituted 

into Eguation 2.14) to obtain f 1 (x) at each value of x. This has been done 

and the results, for the same values of m as before, are shown in Fig.7. 

The dividing streamline is obtained by letting 'I' = 0. 

condition into Eguation (2.10) one obtains 

f (x) = + log cosh y - ;IT a.rctan (~ 

Upon pu-(;ting this 

where y is given by Equation (2.13). 

Fig.8. 

The function f(x) is shown in 

Thus lmowledgc has been obtained about the arbitrary function f(x) and the 

flow may be dravn such that the conditions u = o, v = o arc satisfied upon 

the boundary, given by 'I' = o. Figure 9 shws the streamlines drawn for 

such a motion, for a value of m = 20. The streamlines group closer to-

gether as the maximwn of the streamline 'I' = o is approached, indicating an 

increase in velocity. 

From Equations (2.11), (2.12) and (2.14) the velocity profiles may be drawn, 

and these a.re shown in Fig.1 0. Although the conditions at the boundary arc 

satisfied the velocity profile becomes shallower as the brov is reached, 

i~stead of becoming steeper, as would be expected from qualitative considera-

tions of flow around an obstacle. Further if the edge of the boundary 

~ayer is regarded as the point given by u = 0.99 U, where U is the main

stream velocity, the depth of the boundary layer undergoes a remarkable 

change of height, as indicated in Fig.11, one that vould not at all be ex

pected of the real boundary layer in the earth's surface. 

By definition a source is a point. of infinite velocity, while in order to 

satisfy the bound.ary conditions it is necessary to impose zero velocity upon 
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the origin where the source is situated. This anomaly is further d.isplayed 

in that all the streamlines produced pass through the origin, this in itself 

would not be serious if the effects were negligible further away from the 

origin. Hmwver it is also shown in the height of the boundary layer, be-

coming unduly large, and the velocity profiles not becoming as steep as 

would be expected. 1'hus it appears that it. is incompatible to haYe the 

conditions u = o; v = o on 'I' = o in coexistence with a source and boundary 

layer type profile of the form u = tanh y. 

Thus it is not possible to model a boundary layer passing over an obstacle 

in this way. Although the work done on trying to extend Rankine 1 s method 

to incorporate a boundary layer type profile produced no positive results 

it did enable a fuller understanding of the problem to be obtained. 
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CHAPTER 3: A Nu'HERICAT, APP!GOACJI 

3,1 Struct.ure of the atmosphere 

The failure of the previous analytical methods to describe the chenr;e in 

velocity profile v:hich ~<ould be simil:1r to that expected for the flow of 

the natural wind ove:.." an obs-Lacle led to a closer examination of the 

nature of the atmospheric bmmdary layer, 

In discussing the details of a general air flo~<, it is convenient to con

sider the atmosphere to be divided into a munber of horizontal layers, each 

with different characteristics as shm·m in Fig.l2. In ·the upper atmos-

phere the effects of friction may be ignored and the estimation of wind 

force is based on the assumption that the speed is adjusted to maintain a 

balance involving only t.he pressure gradient and the forces arising from 

the rotation of the earth, This velocity is knmm as the geos·trophic 

velocity and occurs at heights bet~<ecn 500 and 1000 metres, 'rhe layer 

immediately below this is lmovn at the planetary bmmdary layer, vhere the 

transition from the flow near the surface to fridionless flow takes place. 

In this layer the >~ind is influenced by a combination of the surface fric

tion, any variation of density gradient which is presen-t, and the effects 

of the earth's rotation i.e., the Coriolis force, Delo~< this is a further 

layer which may extend up to lOO metres. Within this the wind structure 

is influenced by the nature of the surface and the ve:dical gradien·~ of 

temperature. This layer is referred to as the surface bou.."l.dary layer, 

In a. thin layer adjoining the surface the flow is determined by the rough

ness parameters of the underlying surface, and it is called the dynamic 

sublayer, which is several metres deep. 

These factors combine to produce 'a turbulent boundary layer which consists 

of a steady mean motion upon which is superimposed a complicated secondary, 

or eddy, motion of a random nature and. is quite unlike most turbulent 

boundary layers normally dealt with in engineering, It is impossible to 

obtain exact solutions to the equations of the motion which satisfy all of 

these conditions. However when considering the flow of the >~ind with 

reference to struc-Lural loading problems not all of these conditions exist, 

and the governing equations are much simpler in form. 
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The most severe forces arc imposed upon structures 1mder high wind condi

tions, and it is this requisite which enables some simplifications of the 

equations to be made. 1fi th this cond.i tion of high speeds the friction 

caused by the earth's surface is very large, and so much mechanical stir

ring of the atmosphere is present that any thermal or density gradients 

which exist are minimal and need not be considered in the derivation of 

the equations. The forces produced by high wind conditions near to the 

surface are much greater than ·those due to the earth's station and t-hus 

' the Coriolis forces may be net::lected when deriving t-he equations of motion. 

Also the effects o:f the compressibili.ty of the air need not be considered 

since the velocities concerned are not large enough :for any compression to 

take place, and ·the atmosphere may be regarded as incompressible, Thus 

the very complex structure of the earth's boundary layer may be reduced. to 

one where the dominating influences are those of velocity and viscosity. 

In addition experimental work (sGe DavGnport23 ) has been cttrried out to 

determine ·the height of the boundary lay0r under such conditions, :for 

varying w1derlying terrains, the shape of the velocity profile, and height_ 

of the boundary layer being determined by the f0tch (see sec-tion 4,1). 

As stated earlier the turbulent motion may be thought o:f as consisting of 

a mean mo-tion wi-th rand.om fluctuations about this mean. Much work has 

been done on the forces produced by the fluctuations, but little is avail

able on the nature of the mean motion of the wind over obstacles, This 

_mean motion may itself be susceptible to changes with time, but for the 

purposes of the present work it will be considered to be invttriant with 

timco The maximum velocities obtained do vary but over a relatively long 

period of time compared "ith the response time of the structures concerned. 

\finds may take many hours to reach their highest velocity, and this velo

city may be maintained for a period of several hours "ith the forces 

gradually imposing themselves upon the structure until a maximum is 

reached. Thus there are no sudden changes of the mean velocity which 

affect the structure and the mean motion may be thought of as being steady, 

In the physical situation the motion is three dimensional in nature, and 

equations may be derived to model this. However the full three dimension-

al equations are extremely difficult to solve and in order to obtain a 

solution to the problem the motion is considered to occur in two dimensions 
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only. In many cases, s'!ch as railway embanlunents, this may be quite an 

accurate approximation; but in others it may not be so acceptable. By 

considering the cner·gy of the system it can be seen tha·L it has one dimen

sion less through which to act in the two dimensional case, and this ,;ill 

provide a limi-ting solution of the three dimensional oneo 

Thus from the very complex description of the atmosphere first presented 

it is possible, by various approximations, to obtain a much simpler ideali-. 

zation of the airflow·, and it becomes more lil<e the bowtdary layers con-

sidered in aeronautics. As shown previously the approximations used in 

this field are not applicable to the case of wind flow over hills, and the 

two dimensional Navier-Stokes equations for an incompressible fluid are 

needed for a description of the flow, 

3,2 DerivaUon of the equations 

If u and v are the components of velocities in the x and y directions 

respectively then the Navier-Stokes equations of motion for a steady vis

cous incompressible fluid in the absence of external forces have the form 

(3,1) 

and 

p u ~ + v- = - "-"" + J.l -, + --( a" av~ aT; ( if!v. a 2v) 
ax ay ax a:<" ay2 (3.2) 

where~ and ~are the pressure gradients along the axes, p the density 

of the fluid andp the viscosity. 

Since the motion is turbulent the velocities .. u and v may be di vidcd into 

a mean value and a small fluctuation about the mean, 

Thus u = U + u' 

v=V.+V1 

(3,3) 

(3,4) 

where a bar denotes the mean value and a dash denotes the fluctuation, and 
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where the mean value u is defined over an interval of time •r (see Fig.l3) 

as 

l +j·T 
- 1 2 
u = T" u dt 

t- }T 

and 

! + .!.T 
- 1 2 
V= T V dt 

t- }T 

In steady mean flow we have 

= = u= ua.nd v=v 

and u' = f + }T 

Jt- }T 

and similarly :;. = 0 

Thus in Figo 13 the parts of the curve that lie above u = uarc equal to 

the parts· that lie belOI< it, 

The terms on the right hand side of equations (3ol) and (Jo2) are the 

stresses in the fluid and may be expressed in the.fonn 

and 

where p are the viscous stresses in the x direction, p in the direc-= ~ 
tion etc., across a plane normal to the x axiso 
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Upon substituting into Equations (3.1) and (3.2) and transforming one 

obtains 

a 0 = ax (pxx _ pu2) + ~ (pxY-p;,v) (3.5) 

and o =a! (Pxy- puv)" +_2_~ -pv' (3.6) 
ay YY . 

Now these equations are assumed valid at any time within the turbulent 

flow, and substituting Equation (3.3). and Equation (3.4Lwe get, after 

some simplification the equations of mean motion 

0 =a:( Pxx,- P ~- p -;;:'
2
) +a~ (Pxy- p uv -p u'v') 

O=_E(p -p-;;:::;-Pu'v')+_£(p -p~ 2 -Pv,2) 
ox xy ' ay yy ' 

Equations (3.7) and (3,8) have the same form as (3.5) and (3,6) if u 

replaces u, etc., and 

'-the viscous stress p is replaced byp· 
. XX XX 

the viscous stress pxy' is replaced by 1l.y 

and the other terms similarly. 

I I 
Pu u · 

) 
) 
) 
) 

(3.7) 

(3.8) 

(3.9) 

The additional stresses shown in Equation (3.9) are called Reynolds or 

eddy stresses and in turbulent motion generally outweigh in importance the 

purely viscous stresses, 

In order to proceed further with the problem it is necessary to assume some 

expression for these eddy stresses. .From the relationships in ordinary 

viscous flow that the viscous stresses are proportional to the velocity 

gradient, a similar assumption is used for the eddy stresses, Further it 

is physically reasonable since the greater the velocity gradient the 

greater the degree of turbulence, 

- 20 -

• 



Thus we have 

- vr2 = ( u + K) it 
- u'v'= .. (:i> + K) a";; 

. ily 

- v.•u' = ( u + K) il\r 
~.... Ox 

Here K is the eddy viscosity and u =~is the Kinematic viscosity, In the 

atmosphere however molecular friction is negligible compared with turbu

lent friction and the expressions for the eddy stresses become 

-1i•2 =K: ·'2 =KE-;:-:- 'i' 
iJy 

- u'v' iJu 
- v;.'u' 

_ K ilv 
= K ily - clx 

If we also neglect mean viscous stresses· like p compared with terms like 
xy 

u'v' etc., and putting 

i)p' 
. XX 

"Tx"" 
iii 

= ilx and 

the following is obtained 

.2:!!+-~=---"-"+- K-1!+- K-- 1""' a~a~ il~ill~ u Ox V ay p ax ax . ax cly aY, 
(3.10) 

a"; a'; 1 a:, a 
u -+v-=--~+-

ilx iJy p ily ax 
(3.11) 

This set of equations for the mean motion in a turbulent flow is identical 

with those for laminar flow except that molecular viscosity has been 

replaced by the eddy viscosity. 
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The continuity equation for the full turbulent motion is 

ilu + ilv _ 0 ilx ily -

and for the mean motion this becomes 

.,-;; + ~- 0 
dx ily -

(3,12) 

Since we are only concerned with the mean quantities the 'bar' indicating 

the average values will be dropped in further expressions, 

Before proceeding further and trying to solve the Equations (3.10) and 

(3,11) for the unknowns u and v either K and P must be eliminated from 

them or their values must be lmown throughout the region of interest, 

·No exact lmowledge of the·value of the eddy shearing stress is available, 

and, as we are regarding the atmosphere as a fully developed turbulent 

boundary layer, we may assume its value is constant, as is its molecular 

counterpart in laminar flow, Thus a knowledge of K has been assumed. 

However the pressure still remains to be found and no supposition can be 

made as to how it varies, Now that K is a kno'm function we have two 

equations and three unknowns. The pressure can be eliminated by corn-

bining these equations into a single one and introducing two new variables 

defined in terms of the velocities. 

The first of these is called the streamfunction, denoted by ~ , and may 

be derived from the continuity Equation (3,12), 

u= 
ilt 

v =- ilx 

and the continuity equation is satisfied, 

Thus we define 'I' by 

(3,13) 

The second is known as the vorticity, denoted by w, and is a function of 

the derivatives of u and v. It is defined by 

dv ilu w----- ilx ily 
(3.14) 

- 22 -

• 



It can be seen that the streamfunction and vorticity can be expressed in 

the one relation 
2 

V t =- w 

2 rr a2 where V = _ 2 + _ 2 ax ay 

(3.15) 

If we differentiate Equation (3,10) with respect to y and Equation (3.11) 

with respect to x and subtract, the following equation is obtained 

Thus the problem of solving Equations (3,1) and (3,2) is reduced to 

solving Equations (3.15) and (3,16), 

(3.16) 

The velocities and lengths may be put in non dimensional form as follows: 

u= .1!. v= 
,'v 

u u 
0 0 

Y= 
;y: 

x= ,;. 
t t 

If this is done the Equations (3.15) and (3,16) may be expressed in the 

following form 

2 
V t =-w 

where R is the eddy Reynolds number and is given by 

where Uo is a reference velocity 

t is a reference length 

and K the eddy viscosity. 

R _ Uat 
- K 
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3,3 BoundarY conditions 

Equations (3.17) and (3.18) are known as simultaneous non-linear elliptic 

partial differential equations, and for their solution it is necessary to 

know the boundary conditions on all four sides of a closed boundary, 

This means that for the equations to be solved the values of ~ and w, or 

their first derivatives, have to be given at all points on the boundary, 

For the flow of air over a hill there is only one natural boundary avail

able, this is the ground, We can, however, impose three other 'boundaries' 

on the motion, Although these are called boundaries they are not physi-

cal barriers but rather positions at which the values of the required 

variables are known. 

Consider Fig.l4. This shows an idealized drawing of an isolated obstacle 

of arbitrary shape, given by the line ABC, For such a configuration it 

seems reasonable to assume that the velocity profile AE, upwind of the 

obstacle, is known and also that this profile 

distance downwind of the obstacle (profile at 

is resumed after a certain 

line CD), As for the other 

two boundary conditions the lower one is that the velocity is known to be 

zero on the ground ABC. For the remaining condition it may be expected 

that at some height (line ED) above the ground the hill has minimal effect 

on the flow, Although Fig.l2 shows this height the same as the boundary 

layer height this need not be the case, it may be greater or less. 

This knowledge of the velocities, via Equations (3.17) and (3.18) enable 

the streamfunction and vorticity to be computed at the boundaries. At the 

lower boundary ABC the vorticity must be found as part of the solution, 

as at this boundary it may be produced or destroyed by the action of 

viscosity. 

3.4 Solution of the eguations 

Equations (3.17) and (3.18) are a slightly simplified version of the 

·Navier-Stokes equations given in Equation (3.1) and Equation (3.2), and 

contain all the difficulties of solution that are inherent in their 

original form. As indicated in the introduction only in a few special 

cases are analytic solutions possible, and the problem at hand does not 

fall into any of these categories and an effort must be made to solve them 

by other than analytic means, 
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With the development of high speed digital computers it is now widely 

recognised that finite difference methods are of practical value for 

solving fluid flow problems which cannot be handled by classical 

methods13•14• It supposes that the field under consideration may be 

divided into a finite number of pqints and that the equations which des-

cribe the flow are valid at each of these points. The equations are ex-

pressed in terms of these discrete points and then solved to obtain a 

solution at each point. Thus rather than a continuous solution being 

obtained valid for any position in the field, a solution is obtained which 

satisfies the equations at each of a finite number of points. 

Probably the first attempt to integrate the Navier-Stokes equations 

numerically was that of Thom15 , as far back as 1933. He managed to ob

tain a solution for the wake formed behind a cylinder placed in a uniform 

stream, by using a conformal transformation to transform the cylinder into 

a straight line. In this transformed plane central differences combined 

with an iterative relaxation technique were employed to solve two second 

order simultaneous equations, for streamfunction. and vorticity, for a 

Reynolds number of 10. The computation, which was of course perfonned by 

hand, proved to be very cumbersome, and further work was not pursued until 

the development of digital computers in the 1950's. Then new papers ap

peared on the subject, notably those associated with the names Kawaguti16 

and Alien and Southwell17• Thorn's practice of solving two simultaneous 

equations has been followed in the majority of cases ever since together 

with the central difference representation of first order derivatives 

introduced by him. All the cases that were considered dealt with low 

Reynolds numbers flow up to 100, since divergence occurred at higher values. 

However, by the use of severe under relaxation Burggraf18 applied the same 

fonnulation to obtain solutions for flows in a square cavity at Reynolds 

numbers up to 400. Large computation times of the order of 30 minutes 

were necessary, and it was further noted that the number of iterations 

increased with Reynolds number. 

No further inroads were made on the subject until work published, almost 

simultaneously, by Runchal and Wolfstein19 and Greenspan20 showed that by 

using a particular combination of forward and backward difference schemes, 
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combined with central differences it was possible to obtain solutions 

up to Reynolds numbers of 10,000 for the flow in a square cavity, and in 

the case of the former authors, for impinging jet flow, Further it was 

reported that the computations did not take an excessive amount of com

puter time, being in the case of Runchal 1 minute of IBM 7090 for 40,000 

point iterations, and for Greenspan up to 10 minutes of CDC 3600 for a 

solution to converge, 

With the success of these independent results it was decided to use their 

method of approximating the equations for the case of boundary layer flow 

over an arbitrarily shaped obstacle, 

3.5 Finite difference representations 

In order to obtain discrete points the field is divided into a mesh, 

This is achieved as follows, Suppose we have, as in Fig,l5 a field 

ABCD, Then if lines are drawn parallel to AB and to AD the area may be 

thought of as consisting of the finite number of points of nodes given 

by the intersections of these lines, In order to achieve ease of corn-

put~tion and greater accuracy in the approximations made the distance 

between each grid line parallel to AB is the same, and similarly for the 

lines parallel to AD, 

Suppose there is a function f which has to satisfy some given equation 

throughout the area of interest, then it is assumed to satisfy the 

equation at each node of the field, Suppose as in Fig.l5 one such node 

is designated by 0, and is surrounded by the four other nodes 1, 2, 3 and 

4, Further suppose that the function f may be represented at these 

points by the discrete values f
0

, f 1, f
2

, f
3 

and f
4 

respectively, In 

addition to the actual values it may also be required to know the deriva

tives of f, and a choice is available of how to obtain these derivatives, 

Suppose the distance between each grid line in the X direction is given by 

Ax and in the Y direction byt.y, then we may derive, by means of a Taylor 

Series expansion the fo!lowing approximations for the partial derivative of 

f with respect to x: 
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(a) using forward differences 

at' c:)x o 
fl- fo 

== Ax 

(b) using backward differences 

c:)f I fo - f3 
c:'lx o == Ax 

(c) using central differences 

c:)f I 
c:'lx IJ 

- f) - fJ 
-- 2(Ax) 

where -~!I 
0 

indicates the partial derivative of f with respect to x evalu

ated at the point o, 

In the case of the one sided differences (a) and (b) the 

of order Ax while in the central differences (c) they are 

error tenns are 
2 of order (Ax) , 

as Ax ~ o (see Ref,l4). Thus it can be seen that the central finite 

differences are far more accurate, and where possible should always be 

used. 

The second partial differential of f with respect to X at o may also be 

derived, again using a Taylor series expansion. 

which has an error of order (Ax) 2, 

fi - 2fo + f3 
(Ax)2 . 

Similar expressions to those above may be derived for 

. 2 J . af 1 at . · 
- and ·ay o oy.2 lo 

3.6 Application to Navier-Stokes equations 

The method used to transform Equations (3.17) and (3,18) into finite 

difference form is the following. Equation (3,17) is approximated using 

central differences throughout, and the left hand side of Equation (3.18) 
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is handled using the 

(3.18) is formulated 

same approach, The right hand side of Equation 

somewhat differently and the choice made is to 

obtain the gradients of the vorticity by a uni-directional difference 

scheme in such a way :that the finite differences always go backwards with 

reference to the direction of flow, The term of the finite difference 

equations may be put into matrix form, and for convergence it is necessary 

that the diagonal terms of this matrix dominate the others and Runchal and 

Wolfstein (Ref.l2 iii) show that the particular combination of finite 

differences used above produces the required diagonal dominance of the 

matrix. 

For example consider a node where, at any particular instant, the flow is 

in the negative x-direction and in the positive y-direction, then the . 
vorticity gradients are represented by forward differences in the 

x-direction and backward differences in they-direction, thus: 

Wl -wn 
llx 

Wo- W4 

fly 

Since we have u = o'l' and v =- .£! Equation (3,18) may be written in the ay ax 
form 

. 2 ( aw awJ v w =R u- + v-oY ax 

Using the selective finite difference approximations as indicated Equations 

(3,17) and (3,18) may be expressed, for every nodal point, as follows: 

wl- 2wa + W3 
( tx)2 

where if 

fl - 2'1'o +'~'3 '~~2 - 2'~'a· +t 4 
(llx)2 + (lly)2 =- Wo 

+ w2- 2wa + W4 = R{lul (w~- WA) + 
. (lly)2 ~ 

u >o A= 3 

u<O A=-1 

V >Q B = 4 

v<o B=2 
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and uand v are formed using central finite difference form, and are 

given by - 'i? - '1'4 
u- 211y 

'~'1- !J 
v = 2 11x 

Equation (3.19) may be used to find the value of the streamfunction at the 

position o and Equation (3,20) to find the vorticity. 

Thus (3.21) 

and w o = ~ (.::w~f1x:...,..;;,.l. .::..;I:J,.....!.,_;;,:Lj (3.22) 
2 1 1 
"R ""{li;02 + (ay l 2 

where the values of subscripts A and B are given above. 

It is thus possible to find the streamfunction and vorticity at every node 

of the mesh, 

3.7 Description of the irregular boundary 

The approximations which have been detived previously require knowledge of 

the values of the function at five points of the grid i.e. the central 

point and its four neighbours, From the description of the boundary 

conditions given in section (3.3) it is possible to arrange for the boun

dary conditions upstream and downstream of the obstacle to be placed along 

a grid line, as is the case of the upper boundary also, For the lower 

boundary, which may be completely arbitrary, the grid points will rarely 

coincide with the boundary itself, and methods are needed both to define 

the lower boundary and evaluate the vorticity on it and hence to calculate 

the vorticity and streamfunction at points adjacent to it, 

In order to obtain these requirements the following scheme was adopted, 

In Fig,l7(A) suppose CD is the boundary and the vertical grid lines are 

numbered, left to right l •••••• N1• Any mesh line i must intersect the 
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boundary at one point, The height of this point from a horizontal 

datum may be regarded as forming a component of a vector ,!!_, which may be 

referred to as a vertical distance vector, Further each horizontal grid 

line, numbered l •.•••• M
1

, intersects the boundary at two points, From 

Fig.l7(b) the distances from a vertical datum line may be expressed by 

Aij, i = 1, 2; j = l,,,,,,M1 and this may be referred to. as a horizontal 

distance matrix !•o 

Thus it is possible to define the boundary in terms of! and,!!_. We may 

however proceed one stage further and use as our datum lines the initial 

grid lines which form the edge of the mesh, and state the lengths 

Aij, i = 1, 2; j = l,,,.,,M
1 

and Bi, i = l,,,, •• N
1 

in terms of the number 

grid lines, or fractions thereof, in the horizontal or vertical direction, 

It is now possible to define whether a point is on the boundary, adjacent 

to it, or otherwise. 

Suppose the node under consideration is the one denoted by (i, j) where 

l~i ~ N
1 

and 1~ j ~ M1 then the terms 'boundary point', 'weak internal 

point' and 'strongly internal point' may be defined as follows: 

(1) The point is called a boundary point if j = Bi (which implies 

i = ~j or i = A2j) 

(2) The point is called weakly internal if j - Bi < 1 or A
1
j - i < 1 

or i - A2j < 1, 

(3) The point is called strongly internal if j- Bi2: 1 and either 

A
1
j- i2: 1 or i - A2j 2_1, 

In (2) and (j) the condition which must be considered to hold of either 

A
1

j - i or i - A2j depends upon which side of the obstacle is being con-

sidered. If, for example, the left hand side is being considered, then 

A
1

j - i is of the order of 1 while i - A2j will be much larger than unity. 

A similar comparison holds for A2j and the right hand side. 

The finite difference formulae which have been derived so far are 

obviously only applicable to points which are classed as strongly internal, 

ru1d additional approximations have to be made for points which fall into 

the other two categories. 
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3.8 Derivations of approximations· for points close to the boundary 

For points classed as weakly internal the following method was adopted, 

Suppose a node has been reached, as in Fig.l8, which lies to the left hand 

side of the hill, and may be classed as a weakly internal :point, 'which has 

two arms of the mesh shorter than the normal distance bx. or 4y • For 

complete generality suppose that the other arms are also shorter, and 

_their lengths are given by 6 1 Ax, a2Ay, a
3 

Ax and 6
4 

Ay where Ax and l:sy 

are the mesh inc_rements and 0 < 11· a 2' a3, a4 < 1 are the distances from 

t11e node under consideration to the boundary, Of course such a situation 

should never arise since the mesh would then be far too coarse for any 

meaningful results to be obtained. At most only two of e
1

, a
2

, a
3

, and 

64 should be less than unity, the others being equ:i,l to it, 

Su:ppose we may write La place!> equation as •. 
2 . 

V flo = «<>Fo + «1.h + «2F2 + «3f3 +«4.f4 
. 2 2 . • ' 

where :f .is any function and 'l f o means H + cff evaluated at the 
ox oyz . 

point o,. Using a Taylor series £1, f 2 , f
3 

and f
4 

may be. expanded 

(3.23) 

about · 

the node to obtain: ( 2 2 
fl = fo + e Ax ar I + _aJbx.> H lo. 

1 ox 0 2 ox 
2 2 

£2 = fo + e Ay ilf I + (a 2lly) ~ I 
2 Cif 0 2 iJy.!. 0 

a.~:. ar I + (6Jt.x)2 o2f I 
f3 = f o + -J x ilx o 2 ilx2 o 

(3.24) 

2 2 
f = f + a lly of I + (a4Ay) ~ I 
4 o- 4 ay o 2 ay o 

Further terms in the expansions have been neglected as these are of third 

order and higher, 

Substituting Equations (3,23) into (3,24) and equating coefficients of like 

terms one obtains 
2 

re 1 = '(6-x')..,.2 -::e:--l"'("a:--1 :-+-a""3') 
.• 

2 
IX 4 = (lly)2 a

4 
(6

2 
+6 

4
) 

4 
IX = l:c1i 

0 1 
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Thus an, expression for Laplace's equation has been obtained where the 

grid lines do not necessarily coincide with the boundary. 

Equation (3.19) may now be used to obtain the streamfunction at weakly 

internal points of the mesh. The finite difference form now becomes 

where for u >o A=3 
u <0 A=l 
V > 0 B=4 
V <0 B = 2 

with u = ~q. which in finite difference form becomes 

d 
- Y,,, . . q<. - q.l 

an v = _a_T becom1ng v = -;?''"''----;;"" ax ·( e
1 

+ e
3
)ll.x 

Thus for weakly internal points the expressions for the vorticity may be 

approximated as follows: I 
1 I u WA 

Wo "'-R ( OCJ.Wl + CX2W2 + tx3w3 + 0:4w4) + S 
A AX 

+ lvlw:e 
6BAy 

where subscripts A and B are given above, and cxi, i = 0, ..... 4 are defined 

in Equations (3.25), 

The values of 61 •••••• 9
4 

may be found as follows 

93 = i -: A2j 9 4 = Bi- j 

If one of 91 , ej or e
4 

is greater than unity then it is given the value one. 

Further if 91 = e2 = 9
3 

: o
4 

= l the~ the approximations derived above 

reduce to those given in Equations (3 0 ,21) and (3.22) for strongly internal 
- .· 

points. 

For the boundary points the value of the streamfunction remains constant 

upon the boundary and only the vorticity needs to be calculated upon the 

lower boundary as indicated in Chapter 3.3, 
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For points upstream and downstream of the hill, where the boundary may 

coincide with the initial grid line a simple approximation may be 

derived, using Equation (3.19). 

Suppose that Laplaces equation may be expressed as follows 

where the points 0, 1, 2 and 3 are as shown in Fig,l6. 

if t 1 , t2 and t
3 

are expanded in a Taylor series, substituted into the 

equations above, the coefficients of either side equated and the resulting 

simultaneous equations solved, as for the weakly internal points, one 

obtains 
(( =- 2 (~ + ___!_j 

o \llxr (fly)/ 
. 1 

":~, =~ 

2 
"2 = "(liYF 

. 1 

"3 = 16xF" 
2 

(( 4 = (fly) 

Thus an expression for vorticity at the boundary point 0 is obtained as 

follows: 

( 
1 __!_j _yJ._ ~ ljl3 2 c)ljl 

Wo =- 2\jlo (llx)2 + (fly)~}+ (llx)2 + (lly)2 + (llx)2- l>y dy (3.26) 

where the streamfunction values and its derivatives are known on the 

boundary, 

While Equation (3,26) is adequate for boundaries coinciding with a mesh 

line, the vorticity remains to be evaluated on the irregular boundary of 

the hill, This may be divided into three classes 

(i) for boundary points like A
1

j j = 1 ••••.• M
1 

(ii) for boundary points like A2j j = 1 •••••• M2 

(iii) for boundary points like Bi i = 1, ..••• N
1 
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In all three cases Equation (3.19) is expressed in finite difference 

form, and thus the vorticity is found on the boundary, 

(i) for boundary points A
1

j 

Consider Fig.l9(a). Suppose the point given by (i, j) is known to be 

weakly internal then e2 = A
1

j - i, 

Suppose Laplaces equation may be expressed as 

V
2

'l'fo = llo'l'o + 11lqol + 112'~'2 + 113 :I 0 + 114: lo 
'1'1 and ~2 are expanded in a Taylor series about the point 0 to obtain 

\ ='o + 6y: lo + {6y)
2 :;~ lo 

. o'l' I 2 a2~ I ~2 = '~'o- 626
X ox 0 + (~bx) ox2 0 

and 

where terms of the third order and higher have been neglected, 

S~bstituting into the above and equating coefficients the following is 

obtained 
2 

')_ = (6y)2 

2 
"J = ll2Ax 

4 
= '- l: a. 

1 l. 

It is known on the boundary that ~ = 0 and c)'JI 
ox 

foilowing equation is valid for vorticity 

= 0~ = 0, so that the ay 

(3,27) 

For this case point 2 coincides with a node, and hence the streamfunction 

is known at this point, but position 1 is not a node, and the stream

function remains to be evaluated at this point. 'l'
1 

is obtained by using 

linear interpolation between the values of the streamfunction at the 

nodes marked 3 and 4. If the boundary lies between these the value given 

to the e• s in Fig,l9(a) is altered to the correct value, As the nodes 

'inside' the hill are of no interest the value of the streamfunction at 

them may remain at zero throughout the calculation, and as this is the 

value of the streamfunction at the boundary, the value may be used instead 

of the boundary value, 
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Thus 

(3,28) 

A similar approach may be adopted for these points and a result similar to 

Equation (3,27) may be obtained, In this case it is of the form 

w -- 2 .,1 2 ~ 2 
0 - . (63L~,c)2 (~y )2 

where 6 
3 

is given by6
3 

= i - A2j (see Fig.l9(b)) 

In this case point 1 coincides with a node but·not point 2, Again linear 

interpolation is used to find the value of the streamfunction at this 

point. 

Thus 
q. _ !3 (63'- 63 ) + 61~4 
2- 6j 

where 63 = min ( i - ~1 j + 1 ; 1) 

(3.29) 

(iii) for boundary points Bi 

Again the same method is used to arrive at the equation for the vorticity 

in the form 2 
wo =- (6l~y}2 '¥1 

where 6
1 

= j - Bi (see.Fig.l9(c)} 

Here point 1 coincides with a node and point 2 does not, By linear 

interpolation the streamfunction at position 2 is given by 
I 

,,, _ 61 >¥4 + (61·- 61) ~ 3 
T2 - 6 T 

1 
where 6i = min ~ -;Bi _ 1 ; J 
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·Hence 

The remarks 

boundary if needed apply equally as well to the situations found in (ii) 

and (iii). 

3.9 Iteration technigue 

With the approximations for the equations derived for points away from and 

close to the boundary it remains for the equations to be solved and the 

solutions obtained, 

The finite difference equations obtained rely for their solution on a 

knowledge of the function at its neighbouring points. This is of course, 

except on the boundary, not known and some form of iteration will be 

needed in order to obtain a solution, Two methods were used, one for the 

values away from the boundary, and another though similar, for points on 

the boundary, 

The basic method which was chosen is known as a successive relaxation 

iterative technique, and is used as follows. Initially a guessed solution 

(usually zero) is given to all the values of the function throughout the 

mesh, and a new value, using Equations (3.21) and (3,22) is calculated at 

each node. This value is then assumed to be incorrect and is adjusted 

according to the following relation 

fn := (1- Rf) fn- ]_ + Rffnc 

where fn _'1 is the value of the function at the node before any new value 

is computed, fnc is the value calculated according to either Equation (3,21) or 

Equation {3,22) and fn is then given as.the latest value of the node. 
' is known as the relaxation parameter and has a value lying between 0 and 

2, For a value of Rf equal to unity, no relaxation is performed, for Rf 

> 1 the process is known as over-relaxation, and for Rf < 1 the process is 

called under-relaxation, For linear differential equations it is possible 

to find analytically, what the optimum value of Rf is in order to achieve 

the fastest convergence possible, For non-linear equations no such method 

is available and the best value has to be decided upon by trial and error. 
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A range of values of R'i' and Rw were tried and it was found that conver

gence was achieved in the least munber of iterations if the following 

values were assigned to the relaxation factors 

R'i' = 1 • 6 R = 1 • 0 
w 

The process for the main part of the mesh is thus !mown as an over

relaxation method. 

For the bounda~ values of w the best value of RwB to achieve convergence 

was found to be 0.1, and in this case the process is !mown as an under

relaxation technique. 

The measure of the error used between two values of fn and fn - 1 is 

given by 

E = fo - fn - l 
fn 

If this error is within the permissible maximum then the process is said 

to have converged. If however it is larger than necessa~ the new values 

of the variables are computed throughout the mesh until it becomes within 

the accepted range. For all the results in the following chapters a value 

of 0.005 was given to E. 
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,------------------------------------------

CHAPrER 4: INITIAL CALCULATIONS 

4.1 Choice of velocity profiles 

Before proceeding to use the approximation obtained to calculate flows over 

obstacles it is necessary to establish what form the boundary conditions 

stated in section (3.3) will take when referred to physical situations. 

The first to be determined is the shape of the velocity profile. taken by 

the earth's boundary layer, as this is needed to establish the boundary 

conditions both upstream and downstream of the obstacle. 

It is possible21 by the use of basic dimensional considerations combined 

with a mixing length hypothesis to obtain a logarithmic law for the increase 

of velocity with height. The relationship obtained is 

~ = constant x log~ 
The constant term contains factors relating to the roughness parameters of 

the underlying terrain. Further assumptions may be made which lead to 

more complicated expressions of a similar form. 

In practice, however, it has been found22 •23 that it is possible to obtain 

a good fit with experimental values of average velocity by means of a simple 

power law· of the form 

(4.1) 

where a is an exponent depending upon the type of terrain. Equation (4.1) 

relates the velocity at height y, to the velocity. at a height y2 • Usually 

the expression is standardised by allowing y2 to become a reference height, 

either the geostrophic height, or a standard height of ten metres. In 

practice the latter height is usually-taken, although in the situation being 

considered in the present work it will be more convenient to use the gee

strophic height, since this forms the upper limit of the boundary layer. 

Thus the power law becomes 

~ = (:t..)a Ug y 
g 

(4.2) 

where ug is the geostrophic velocity at height Y~· 
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23 . Davenport collected mean wind profiles measurements made by various 

workers in a wide range of countries and terrains, and these are summarised 

in Table 1. 

Table 1 

Power law Geostrophic 
Type of terrain exponent height 

Yg (metres) 

(i) Open terrain with few obstacles e.g. 0.16 300 
open grass or farmland with few trees. 

(ii) Terrain uniformly covered with obstacles 0.28 430 
10 to 15 m high e.g. woodland and shrub. 

(iii) Terrain with large and irregular objects 0.4 560 
e.g. centres of cities. 

For terrains (i) and (ii) the results have been substantiated by a wide 

range of reliable measurements, while for (iii) it has been difficult to 

obtain measurements above the urban areas, where the obstruction height may 

be up to 60 metres high. However for the purposes at hand this situation 

is highly unlikely to occur and need not be considered further. 

Besides knowledge of the velocity profile upstream and downstream of the 

obstacle it is also required to know at what distances these profiles are 

unaffected by the hill, and at what height the hill has no effect upon the 

flow at the upper edges of the boundary layer, No definite information 

was found to be available upon these topics but it seems reasonable to 

assume, in the first instance, that at a distance of-five times its height 

upstream the hill will not influence the shape of the velocity profile, and 

that it will take up to ten times its height for the profile to return to 

its original shape. In addition it has been assumed that the hill will 

·'have a minimal. effect upon the flow at above ten times its height, 

With the boundary conditions determined along the four sides of the control 

volume, two parameters remain to be chosen before the computer program can 

be used, One is the shape of the lm,er boundary, and the other the value 

of the Reynolds number, 
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. 4.2 Reynolds number 

From Equation (3.18a) the eddy Reynolds number is given by 

where 

and 

R 
_ Uot 
- K 

Uo is a reference velocity 

t a reference length 

K the eddy viscosity 

An advantage of using a power law for the velocity profile is that the 

mean wind speed.at the top of the boundary layer may be used as a reference 

velocity in the calculation of Reynolds number, as well as in the velocity 

profile itself. Also the distances used for reference lengths may be the 

same, and in order to complete the specification of the Reynolds number a 

value is needed for the eddy viscosity. 

There is no fixed standard value for the eddy viscosity, and suggestions as 

to its size range from 8.6 x 103 cm2 sec-1 (Ref.21} through 1.25x 104 cm2 

sec-1 (Ref.8) and 107 cm2 sec-1 (Ref.24} to 109 cm2 sec-1 (Ref.25). 

Obviously each of these will produce grossly different Reynolds numbers, 

and the corresponding flow pattern from each of them would be different. 

For the initial calculations a value falling in the middle of the range was 

used, and this value, together with the representative velocity and length 

used are 

3 -1 Uo = 3 x 10 cm sec 

t = 3 x 104 cm 

K = 106 cm2 sec - 1 

This gives a Reynolds number of 100, which is of the same order as the value 

used by Imai et al9 in their calculations. 

4.3 Choice of lower boundary 

A feature of the formulation of the approximations to the equation is that 

any arbitrary shape may be used for the lower boundary. The shape used 
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in the first instance is that given in Fig.20(a). This shows a smoothly 

changing surface, with no discontinuities and presents a suitable test case 

for the computer program. 

4.4 Theoretical results 

For the first calculations the vertical distance was divided into a mesh 

consisting of thirty grid points, which implies for a boundary layer height 

of 300 metres the distance between grid points corresponds to .10 metres. 

In the horizontal direction thirty grid points were also employed, which 

gives a separation of grid points of 20 metres. 

For an initial power law exponent of 0.16 the streamlines were calculated 

and are given in Fig.20. The obvious feature of the flow pattern is that 

the influence of the hill on the flo>< does not extend to the full height 

considered, but rather its effect on the streamline pattern is only apparent 

up to approximately four times its height, which is of the same order as 

that found by Onishi8• 

The distance bet><een the grid points of ten metres was imposed in order to 

keep computation time to ><ithin a .reasonable limit while still all01dng the 

flo>< patter11 to be determined to within a reasonable degree of accuracy. 

Vith the above result however it is possible to obtain a smaller distance 

bet><een the grid points without an increase in the number of grid points 

used. The program was thus rerun with the separation of the grid point 

only 2.5 metres apart in the vertical direction, ><hile the number in the 

horizontal direction was doubled allo><ing a distance between nod.es of ten 

metres. In addition to. computing the streamlines the velocity profiles 

were also calculated, and these are shown in Figs .20(b), (c). The stations 

A, B, C, D and E shown are the velocity profiles at the corresponding 

positions in Fig.20(a). 

These shou that as the hill is approached the velocity profile becomes 

gentler until the crest of the hill is reached when there is a very rapid 

increase in mean wind speed from ground level. This is followed by a 

region where there is a slight decrease in the velocity which is finally 

followed by the region where the influence of the hill is insignificant 

and the normal increase of ><ind speed with height in the boundary layer is 

resumed, These results agree with the qualitative considerations of the 

problem given by Harris22 • 
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Further calculations were performed for a power law exponent of 0.28, and 

the same general flmr pattern is exhibited as that for an exponent of 0.16. 

However, as can be expected, because of the gentler slope of the initial 

velocity profile, the increase in velocity over the brow of the hill is 

not so large, as can be seen from Fig,20(c). 

Similar calculations were performed for the streamlines and velocity pro

files over a shape similar to a moto1vay or railway embankment, and the 

results arc given in Pig~21. These show that the profile at the up>rind 

edge of the flat top is of the same pattern as that which occurs at the 

brow of the hill. At the downwind edge, however, the profile has become 

less steep, and the point of maximum wind speed has moved higher, This is 

to be expected as the velocity profile will tend to change its shape to the 

form of the initial profile as it moves across the top of the embanlunent. 

Figures 22 and 23 show in much greater detail the comparison between 

velocity profiles for the hill shapes shown in Pigs.20 and 21 respectively. 

These indicate that the rapid increase in wind speed occurs in the lower 30 

metres of the boundary layer, and in the case of an exponent of 0.16 the 

maximum velocity reached is just greater than the reference value outside 

the boundary layer, while for an exponent of 0.28 the maximum value in this 

region is only three-quarters of reference value. 

Position C in Figs.22 and 23 show that t.he maximum velocity reached in this 

region is approximately double the value of the velocity at a corresponding 

height far from the hill. This implies that when structures are being 

sited on the brow of a hill it is not sufficient to suppose that the forces 

may be calculated from the velocities upstream of the hill. 

The results have a bearing upon meteorological measurements made on site. 

Normally only two or three measurements arc taken, and a power law fitted 

to these, In hilly areas it is only possible for measurements to be taken 

in the lower part of the boundary. The above results indicate that it 

would not be a true representation of the whole of the velocity profile to 

fit a po\rer law, as the measurements are taken in the area where a large 

increase in wind velocity occurs. 
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CILU'TER 5: FLOW SEPARATION ON HILlS 

· Flow separation occurs when the air passing over a hill crest is decel

erated by an adverse pressure gradient such as occurs on the lee face of a 

hill. In the examples given in the preceding section the hills considered 

are very smoothly shaped and the pressure gradient present is not large 

enough to cause the flow to separate from the surface. In practice there 

will exist shapes where this requirement is satisfied and interest lies in 

the prediction of when separation will occur together with a description of 

the flow within the separated region. 

The relationship used in conventional boundary layer theory to determine 

the onset of separation is (Ref.3) 

(:;) =0 

y = 0 

Up to this point the equations are adequate to describe the flow, but are 

not valid within the separation bubble, and no indication can be given of 

the flow in this region by using them. 

It has been shown earlier (section (1.1»that the approximations used to 

obtain the conventional boundary layer equations are not valid for the type 

of flow being considered here. While the above relationship is satisfied 

in all types of two dimensional flow26 and is normally used to define the 

point of separation, in the present work the use of a finite grid mean that 

it is not possible to calculate accurately the point at which it occurs. 

The criterion that has been employed here is to determine when the value 

of the streamline given to the boundary of the hill divides into two, the 

area enclosed by the two parts of this streamline being the separation 

bubble. 

The use of a numerical method cannot give the general solution to the 

problem but only a solution in any one particular case. However by study-

ing several cases tentative suggestions may be advanced as to what shape of 

hill may produce separation, and what the velocities are likely to be within 

the separated region. 
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5.1 Choice of profile 

The shapes of hills which are conducive to separation are many and varied 

and it would not be possible to perform calculations upon all of them, It 

was decided it would be more appropriate to select an analytical function 

with several parameters which control its shape, and vary these parameters 

in order to produce a family of curves, It will thus be possible to notice 

how the flow changes with a gradually changing hill profile, 

The general form of the equation for the shape that was chosen is given by 

y = 2 
b + (x - a)2 

where: 

a merely determines the position of the hill relative to the origin. 

h determines the maximum height, occurring at the point x = a, 

b determines the 1peakedness 1 of the hill. 

The two parameters of interest are obviously b and h, or more particularly 

the ratio b/h. From the general expression for the hill it can be seen 

that as b increases so the sharpness of the hill decreases. 

A value of 0.3 was assigned to h, while b was allow·ed to assume the values 

0.2, 0.3, 0.4 and 0.6. The corresponding hill shapes are given in 

Figs.24-27. 

5.2 Boundary conditions 

The initial velocity profile was taken to be of the power law tJ~e given by 

Equation (4.2), an exponent of 0,16 b~ing used for all the calculations. 

The distance in which the downstream velocity profile resumed its original 

shape was taken as ten hill heights from the peak of the hill, and the up

strearJ velocity profile was located at five hill heights from the peak, 

although in the cases where the hill is less peaked these distances had to 

be increased in order that the boundary conditions were far enough removed 

from the lower slopes to allow any influence of the hill to become 

insignificant. 

From the results obtained in section (4.4) the influence of the hill was. 

taken not to extend above five times its height, 
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5.3 Reynolds number 

With such widely reported values for the eddy viscosity (see section (4.2)) 

a single value of Reynolds number could not be justified and its value was 

allowed to vary from 10 to 1000 for each of the values of b considered. 

5.4. Discussion of results 

The results for a Reynolds number of 10 are shown in Figs.24-27 for the 

values of b = 0.2, 0.3, 0.4 and 0.6 respectively. In all of the graphs 

of the streamfunction the stations A - B - C - D - E correspond to the 

same stations in the graphs of the velocity profiles. 

Point A gives, for comparison, the initial velocity profile corresponding 

to a value of the power exponent of 0.16. 

Position B shows that for all the values of b, as the hill is approached so 

the velocity profiles become gentler, until the top of the hill is reached 

(position C) when there is a very. rapid increase in mean wind speed from 

ground level. This is followed by a region where there is a slight de

crease in the velocity which is finally follo•ed by the region where the 

influence of the hill is insignificant and the normal increase of wind 

speed with height in the boundary layer is resumed. 

For points D and E downstream of the brow of the hill the difference between 

the profiles is more marked. Only in the case b = 0.2 does separation 

occur and here the maximum velocity in the reverse direction is 0.075 of the 

reference velocity. In other cases for an increase of the value of b the 

velocity profile is found to be much steeper than the velocity profile far 

upstream. In both the separated and non-separated cases the velocity does 

not exceed the reference velocity. 

The Reynolds number was increased by steps of 10, and for a value of 100 

the results are given in Figs.28-31. From the plots of the streamlines it 

can be seen that separation also occurs for the cases b = 0.3 and b = 0.4, 

while for b = 0.2 the separation bubble has grown in both length and height. 

As the hill becomes shallower the general effect is for the separated region 

behind the hill to become smaller, which is as would be expected from 

qualitative considerations. At the stations before the brow of the hill 

the velocity profiles in all cases are somewhat similar to the case for a 
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Reynolds number of 10. However, due to the onset of separation, tbe 

profiles in the lee of the hill are noticeably different. For b = 0.2 

the maximum velocity attained in the reverse direction is 0.15 of the 

reference value, while for b = 0.3 and 0.4 it is 0.09 and 0.07 respectively. · 

Another feature of these profiles is that the maximum velocity reached in 

the forward direction is greater than the reference velocity, and this 

occurs at a height greater than the height of the brow of the hill. After 

this maximum is reached the velocity falls away to a value less than the 

reference value, and then starts to increase again, until the reference 

value is attained, In the case of b = 0.6 where no separation occurs the 

velocity in the lee of the hill never exceeds that of the reference velocity 

and it can be seen from Fig.31 that the velocities near the ground are very 

much reduced as compared with their value at a corresponding height far 

away from the hill. 

The Reynolds number was then increased further, in steps of 100, up to a 

maximum value of 1000. Where separation occurred at a value of 100, the 

length of the separation bubble increased with Reynolds number, at the same 

time growing in the vertical direction, as illustrated in Fig.32 (a), (b), (c) 

for b = 0.2 and values of Reynolds .number of 200, 300 and 400, For the 

cases of b = 0.6 where no separation occurred at the lower Reynolds number, 

a region of reverse flow now appeared in the lee of the hill, first occurr-

ing at values of R = 200 for b = 0.6. In this case also as the Reynolds 

number was increased so did the separated region, and the form of the velocity 

profiles was similar to those obtained for the cases of lower values of b at 

lo>Ter values of Reynolds number, 

In order for the e~uation to be solved it was necessary (see Chapter (3.3)) 

to know the. boundary conditions on all four sides of a control volume, This 

was satisfied by assuming that the velocity profile downstream of the peak 

returned, after a suitable distance, to its upstream distribution. At the 

higher values of Reynolds number this may occur at a very large distance 

downstream, much larger than could be accommodated into the present finite 

difference scheme, in order that reasonable computation times may be achieved, 

Thus it was necessary to place the boundary at an artifically short distance 

downstream. For each value of Reynolds number the distance of this boundary 

from the peak was gradually increased and the following effects were noticed, 
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For values of b = 0.2, 0.3 and 0.4 at low values of Reynolds number when 

separation occurred, the length of the separation bubble was not changed, 

implying that the boundary was placed far enough dmmstream not to affect 

the flow. Hm<ever at the higher values of Reynolds number (commencing at 

R = 500 for b = 0.2 and increasing for increasing values of b) the length 

of the wake becomes dependent upon the distance downstream of the boundary, 

for as this increased so did the length of the region of reversed flow, or 

until the situation, shown for b = 0.2 in Fig.32(d) is reached, where the 

separation region appears to continue indefinitely. The velocity profiles 

behind the hill are similar to :those found in the separated region when it 

is of finite size. These profiles arc propagated throughout the whole of 

the separated region, as shown in Fig.32(d). 

From these results it can be seen that the peakedness of the hill and 

Reynol<ls number are the critical parameters in forming separation of the 

flow. In the present instance the parameter ~ performs the function of 

determining the pe~<edness, effectively describing the 'width' of· the hill. 

In order to form a more meaningful parameter this must be related to the 

height h. Thus the resulting describing the poakedness can be given as b/h. 

From the calculations already performed it is possible to plot b/h against 

Rcynolds number, and this is given in Fig.33. Thus once the ratio of 

width to height has been determined for a hill it is possible to find at 

what Reynolds number separation will first occur. 

5.5. Choice of Rcynolds number 

In the foregoing work a range of ReJcnolds ntunbers was chosen, since know

ledge of the exact values of the eddy viscosity is so uncertain. For the 

practising engineer, >~ho may only need the velocities for a single hill it 

would not be practicable to conduct a series of tests covering the whole 

range of Il.eynolds numbers, and he would much prefer to use first a single 

value. No definite conclusions may be drawn from the present study but it 

is suggested that a value of 100 would give reasonable results. The flm< 

produced from using this value falls between the two extreme values of 10, 

producing negligible wake, and 1000 producing a very large wake. Further 

it will be noticed that the velocities at the brow of, and just in the lee 

of the hill, for a value of Reynolds number of 100, differ very little 

from those at the higher value. Thus for a structure erected near the top 

of the hill a value of 100 uould give results of the correct order. 
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CllAPl'ER 6: CONCLUSIONS 

The classical method of determining the wind flow over a hill is to assume 

that the velocity profile of the wind is uniform. In practice this is 

not so, for the velocity on the ground is zero and the profile of the wind 

is of a boundary layer shape. Attempts were made to modify this method 

by using a profile given by the Equation 

~ = tanh (y) 

In order to satisfy the boundary conditions of zero velocity upon the 

ground a large increase in the height of the boundary layer resulted, one 

that would not be expected in a practical situation. A further defect of 

the approach is that the shape of the hill cannot be determined 'a priori', 

it being given as a .feature of the .solution. In view of this latter 

defect it was not thought worthwhile spending more time trying to modify 

the solution in order to obtain a more appropriate height of upper 

boundary. 

Attention was then turned to the equations of motion, which are valid 

throughout a region, independent of the shape of the boundary. These 

equations cannot be solved analytically ~~d a numerical approach was 

adopted. The problem of how to specify the lower boundary was overcome 

by expressing it in terms of the finite difference grid used to solve the 

equations, and approximations were obtained for grid points on, or adjacent 

to, the irregular boundary. 

A sample hill was then chosen to test the program, and the results 

obta.ined agree with a qualitative consideration of the problem. Although 

the obstacle has been termed a hill throughout it is possible for another 

shape to be used, and the flow for a shape similar to a railway embankment 

or road embankment was computed. In both cases the most striking of the 

results is that the velocity at the top of the obstacle exceeds that of 

the reference velocity, and is several times greater than the velocity at 

a corresponding height far away from the hill. 

The flow was then calculated for a family of hills and a range of Reynolds 

numbers in order to study the effects of separation. It was noted that 

when separation occurred the velocities just outside the separation bubble 

-48-



were larger than the reference velocity. For the more peaked hills at a 

higher Reynolds number the "al<e was found to continue for a very large 

distance downstream, 

It was decided that a value of Reynolds number of approximately 100 seemed 

to be most appropriate for the calculations, and the results given for 

this value around the brow of, and just in the lee of, the hill do no-t 

vary significantly from those for a much higher value. 

If it is desired to erect a structure on the top, or in the lee of, a hill, 

the .present study shows that the maximum velocity the structure will have 

to withstand is several times larger than the corresponding velocity at 

the same height from the ground of the velocity profile far from the hill. 

6,1 Further work 

Although a study of the flow· in two dimensions is in many cases sufficient 

to enable the wind speeds to be calculated in a given situation there are 

clearly other cases when three dimensional effects are marked. The basic 

equations of motion are available for three dimensional boundary layer 

flow but their general solution is at present impossible, even on the 

largest computers, and some simplifications have to be made to the 

equations to obtain solutions in a reasonable time, Imai9 , for example, 

imposed some fairly drastic simplifications to the equations including the 

assumption that the boundary layer height was constant regardless of the 

terrain {I 

Since the full three dimensional equations are, at the moment, intractable 

it is proposed that an attempt be made to evaluate the effects of a hill 

upon three dimensional flow, using the work for two dimensional flow. For 

the inviscid case the flow may be expressed by means of Laplace 1s equation, 

and this can be. solved in both two and three dimensions, For the flow 

around arbitrary shapes no general analytic flow is possible, but numerical 

techniques can be employed. to solve the equation, 

The method proposed to evaluate three dimensional effects is to calculate 

velocity profiles in inviscid flow for both two and three dimensional 

shapes, with the same centre line profile, e,g,, flow around an ellipsoid 
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witl1 a fixed cross-section in a vertical plane in the wind direction and 

variable length across wind, This will enable the reduction in wind 

speed due to three dimensional effects to be calculated, 

Having obtained the change for inviscid flow it is possible to calculate, 

using the techniques established in the present work, the velocity pro

files for a boundary layer flow over the two dimensional obstacle and find 

how the inviscid solution is modified when the flow is of a boundary layer 

type. This will involve finding correction factors for the inviscid 

velocity profiles in order that it may be modified to a boundary layer 

flow. 

Using these modifications it should be possible to correct the three di

mensional inviscid solution in order that it becomes a boundary layer type 

profile, If a suitable method can be evaluated it should be generally 

applicable and can be extended to the case of any shape of hill by obtain

ing a numerical solution for the case of inviscid flow, 
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.APPJTh'DIX: TIIB COMPUTE!?. PRCGRA!1 

As stated in Chapter 3 the calculations that are needed to solve the 

equations cannot be attempted by hand, and a computer program was written 

to perform this task. A complete list of the statements, as written :for 

the Loughborough University's I,C.L. 1904A computer, is shown in Fig.36. 

In addition to this a flow chart showing, in brief, the sequence of opera

tions, the call statements and the main funci.ions of the various sections 

is given in Fig, 34. 

From an examination of the flowchart it can be seen that the program may 

be subdivided into the :folloving :five broad sections: 

(a) Input of data 

(b) Calculation of stream:function 

(c) Calculation of vorticity 

(d) Calculation of velocities 

(e) Output of results 

Each of these sections will now be discussed in more detail, 

(a) Input of data 

The following method was :found acceptable for the organization of the 

necessary data for input to the computer, 

The :following have to be decided 

(i) The velocity at the upper edge (signified by VB). The velocity used 

is a non-dimensional reference velocity, and for flow from right to left it 

should take the form -1.0, and for flow from left to right +1,0. The 

actual value of the velocity is used to obtain the value of Reynolds number, 

as below, 

(ii) The Reynolds number, using the appropriate values of velocity, length 

and eddy viscosity. 

(iii) The distance of the upstream and downstream boundaries from the hill 

crest, and the height of the undisturbed layer. 
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(iv) A unit length in the horizontal and vertical directions, and thus 

the length of the sides of the control area formed in (iii) in terms of 

unit 1 engths • These are symbolised by IlL and VL in the horizontal and 

vertical directions respectively, For example, suppose the height of the 

boundary layer is 450 metres and a unit length is taken as 150 metres then 

the height of the control area will be 3 units. If the horizontal dis

tance between boundaries is 2700 metres and the unit is taken as 450 

metres then the length of the control area will be 6 units, 

(v) The actual length the unit represents, denoted by HUL and VUL in the 

horizontal and vertical directions. For this purpose the largest length 
e involved must be reduced to the form n.m x 10 where n, m, and e are 

integers ~) and HUL or VUL is given by the value n.m. In the above 

example the longest length. is 2700 metres and this becomes 2.7 x 103 

metres, and the other lengths become 0,45 x 10
3 and 0.15 x 103 metres. 

Thus the horizontal unit length HUL is 0.45 and VUL is 0.15, 

(vi) A suitable division of the unit length for the mesh size, denoted by 

HDUL and VDUL. In the example if 10 divisions per unit length is decided 

upon in the horizontal direction then the actual 

are apart is given by 1~ 0.45 x 103 = 45 metres. 

distance the mesh lines 

If 10 was also chosen 
1 3 for VDUL then the separation of the vertical grid lines is 

10 
0.15 x 10 = 

= 15 metres. 

(vii) The grid is drawn and the lines so obtained are numbered, commencing 

at the bottom left hand corner with the value 1, Referring to Fig.35 the 

points are numbered l •••••• Nl and l ••••• ,Ml in the horizontal and vertical 

directions respectively, Thus in the example the values would be 1 •••.• 61 

and 1 ••.... 31. The values of the grid lines which enclose the hill are 

noted, From Fig,35 these are denoted by N2, N3 and M2, 

(viii) The values of the hill are read off in terms of the vertical grid 

lines from N2 to N3, 

distance vector &· 
These are the values which comprise the vertical 

Also the values of the left and right hand side of 

the hill are noted by using the horizontal grid lines, l'hese are the 

values for the horizontal distance vectors Al and !2• The value 0.0 is 
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given to Al
1 

and A2
1 

and all other values of Al and A2 which do not inter

sect the hill, for example A\2 and A2m2• 

( ix) A value of the po;mr exponent (A) in the expression for the initial 

velocity profile, 

(x) The proportion of the boundary layer under consideration (d.enoted by 

PRO). 

The order and format of the data cards are 

(i) VB in format FO.O 

(ii) Reynolds number in format E 9.3 

(iii) N2, N3, M2 in format 3 IO 

(iv) Array B in format 10 FO.O 

(v) Array Al in format 10 FO.O 

(vi) Array A2 in format 10 FO.O 

(vii) · IlL, HUL and HDUL in format 3 FO.O 

(viii) VL, VUL and VDUL in format 3 FO,O 

(ix) A in format FO.O 

(x) PRO in format.FO,O 

{b) Calculation of streamfunction 

For the purposes of computing the streamfunction the control area is sub

divided into four compartments, as described in (a) and shown in Fig,35. 

In Sections 1, 3 and 4 the calculation is straightforward, as the. boun

daries coincide with the nodal points and Equation (3.21) may be used at 

each node. This is performed by means of the subroutine INTERIORPSI. 

In section 2 the process is not so simple as the boundary of the hill does 

not coincide with the grid lines and a test has to be made to decide 

whether the point is weakly or st>ongly internal (section{3,7». For 

strongly internal points the subroutine is used, whereas for welli<ly 

internal points the approximations given in section (3.8) are employed. 

The values of the streamfunction are stored in the two dimensional array P, 

The maximum error for the whole grid is stored in the second element of the 

area RSDU. 

-54-



(c) Calculation of vortici ty 

The vorticity has to be evaluated on the boundary, and this is performed 

first, using the approximations derived in section (3.8). The values of 

the vorticity everywhere else are computed in a similar manner to the 

streamfunction values, except that Equation (3,22) is used by means of the 

subroutine IN1'ERIOROMEGA, The values of the vorticity.are stored in the 

two dimensional array 0, The maximum error for the whole net is stored 

in the first element of the array RSDU. 

(d) Calculation of velocities 

Before the velocities are calculated a check is made on the convergence of 

the procedure, If the maximum error is outside the allowable margin then 

control is transferred to the begi>llling of the evaluation of the stream

function stage and the process repeated until convergence has been 

achievedo 

Once this has been accomplished the velocities are calculated. This is 

done by means of the streamfunction, using the approximations given by the 

expressions following Equation (3.20), For any horizontal station this 

calculation is performed for all the vertical stations above it, the hori

zontal velocities being stored in the one dimensional array UC, and the 

vertical velocities are stored also in a one dimensional array VC. Also 

computed is the total velocity at each point, and the angle this velocity 

makes with the horizontal. The results are printed out before the next 

horizontal station is reached, 

(e) Output of results 

The values of all initial data supplied are outputted, The streamfunction 

is printed at every point of the mesh, moving in a horizontal direction, 

giving all the values in the vertical direction for each horizontal 

station. In a similar mrumer the values of vorticity are printed, and 

finally values of velocity are outputted in the manner already described. 
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·Al SOME FORTRAN VARIABLES 

It would not be possible to explain all the FORTRAN symbols used in the 

program; there are too many of them. However, all the important symbols 

are included here, Symbols which have been omitted are usually dummy ones, 

or are such that their meaning is clear after inspection of the statement.s 

near to their place of origin. 

Fortran Symbol 

P(I,J) 

O(I,J) 

B(I), Al(J), A2(J) 

OMEGAAl (J), OHffiA2 (J) 

OMEGAB(I) 

UC(J), VC(J), TOT(J) 

DX 

DY 

EPSILON 

RSDU 

Significance 

An array containing the streamfunction at each 

node; I denoting the location in the horizon

tal direction, J the location in the vertical 

direction. 

An array containing the vorticity at each node. 

Arrays containing the co-ordinates of the hill, 

in terms of the grid lines. 

Arrays containing the values of vorticity on 

the hill itself. 

Arrays containing the horizontal, vertical and 

total velocity, and the angle of this total. 

,n. th the horizontal axis, at each vertical node 

above a horizontal station. 

Increment of the mesh in the horizontal direc

tion. 

Increment of the mesh in the vertical direction. 

The magnitude of the maximum allowable error. 

An array containing the maximum error for either 

variable through the whole of the mesh. 
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ITER 

RPSI 

ROMEGA 

UB 

R 

N2, N3, M2 

HL 

VL 

HUL 

VUL 

HDUL 

YDUL 

PllO 

The number of iterations taken. 

Relaxation parameter for the streamfunction. 

Relexation parameter for the vorticity. 

Relaxation parameter for the bom1dary values of 

the vorticity on the hill. 

Velocity at the free s·~ream edge of the boun

dary layer. 

Reynolds number. 

Limits of the hill in terms of the grid lines. 

Horizontal length in terms of unit lengths. 

Vertical length in terms of illlit lengths. 

Representation of horizontal unit length in 

terms of actual lengths. 

Representation of vertical illlit length in terms 

of actual lengths. 

Number divisions per unit length in horizontal 

direction. 

Number divisions per illlit length in vertical 

direction. 

Proportion of boundary la~"er under considera

tiono 

A Power law exponent in initial velocity profile. 

A2 COMPUTER TIME TAKEN 

For a mesh consisting of 1200 pts., and for 150 iterations (approximately 

the number required for convergence - this of course varies from problem to 

problem) the time taken is approximately 12 minutes on an ICL 1904A com

puter. 
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