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Abstract

The relative motion control for the unmanned quadrotors autonomous shipboard landings is investigated in this study. The shipboard
landing missions are divided into two phases including the position approaching phase and the vertical landing phase. Relative
pose kinematics and dynamics are modeled in the quadrotor’s body-fixed frame, where the kinematic couplings resulted from
the difference between ship’s centre of mass and desired landing site and the unknown external disturbances of two vehicles
are considered in the modeling and control design. In the position approaching phase, because of the under-actuated property of
quadrotors, the adaptive backstepping technique is combined with an auxiliary system and a command filter to develop the guidance
and control laws. Subsequently, the relative altitude-attitude controller is designed for the vertical landing phase. Stability analysis
shows that the position approaching errors in the first phase and the landing errors in the second phase ultimately converge to small
neighborhoods of zero, and numerical simulation validates the effectiveness of the proposed strategy.
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1. Introduction

In recent decades, many studies have been performed on the
design, analysis, and operation of autonomous unmanned heli-
copters [1, 2]. In fact, quad-rotor helicopters with strong abil-
ities of maneuvers and tracking are very suitable for maritime
missions [3, 4], such as for autonomous shipboard landing op-
erations [5]. However, shipboard landing is one of the most
challenging missions for the helicopters due to the natural com-
plexity involving ships and quadrotors in relative motion, wind
blowing from any direction, and strong ocean current interac-
tion on the ship [6]. Quadrotors can achieve low-dynamic track-
ing missions and operate in a ship deck, but the ship deck is al-
ways shaking due to the rough disturbances generated from the
uncertain wind and ocean current. Furthermore, the controller
design for autonomous shipboard landings is very challenging
since relative pose motion model between two vehicles is high-
ly nonlinear and coupled. In particular, the active quadrotor is
a typical under-actuated system because of smaller number of
control inputs than the number of generalized coordinates [7].
Moreover, the desired landing site of the quadrotor is general-
ly not located at the centre of the mass of the ship. Then, the
relative pose dynamics between landing site and the quadrotor
and the model-based controller design for the shipboard landing
mission are very complicated. Therefore, it is very necessary to
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study the advanced relative pose controller design for the au-
tonomous high-precision shipboard landing operations.

As a hot topic in control engineering, a number of studies
on autonomous shipboard helicopter landing have been stud-
ied in recent years. The robust controller for helicopters was
studied in [8]. This controller takes into consideration unex-
pected disturbances and turbulence over the sea. To achieve a
practical model and system, a mathematical model of the on-
deck helicopter/ship dynamic interface was developed by [9].
Then, the study in [7] allowed precise controlled landing in d-
ifficult situations by connecting the moving shipboard and the
aircraft with a physical tether. Based on the image features as
references while filtering its movements to get a smooth he-
licopter trajectory compared to the targeted ship, a method to
set two controllers based on a translational rate command law
and a common advanced speed control law for modern heli-
copters were presented by [10]. Furthermore, to improve the
landing precision of the helicopter, a vision-based auto landing
system was proposed in [11] for unmanned helicopter on a ship.
Based on fuzzy recognition, Kalman filter and proportional in-
tegral controller in [11], the unmanned helicopter can track the
moving target and land on it. Moreover, a monocular vision
system was developed in [12] for an unmanned aerial vehicle
landing on a ship’s deck, and the four-degrees-of-freedom pose
of the vehicle with respect to the ship was estimated. Besides,
the guidance law of the helicopter is also important for the
high-precision landing missions, then visual/inertial guidance
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strategy [13] and vision/radar/INS integrated guidance strategy
[14] were developed respectively to improve the hardware per-
formance of autonomous shipboard landings. The two-phases
planning method for the carrier landing missions was devel-
oped in [15], where the pigeon inspired optimization algorithm
was used to reduce the terminal position errors and adapt to
the different environment. The autonomous landing operation
proceeds in three phases: the search phase, the homing phase,
and the landing phase [16], where a downward-looking single
camera was used for determining helicopter’s position relative
to the moving platform. A method to assessment of mission
success for helicopter landing on a ship was developed in [17].

The aforementioned studies mainly focus on the navigation
and planning system designs for the helicopter shipboard land-
ings. Various studies on robust landing controller design to
suppress the model uncertainty of the helicopter and the distur-
bances involved in over sea operations were also reported re-
cently. The application of the neural networks and fuzzy logic-
based robust intelligent controller on the automated landing of
unmanned helicopters was studied by [18] to compensate the
model uncertainties. Then, the study in [19] focused on the un-
certainty compensation of the autonomous shipboard landing
control strategy, where a disturbance estimator was develope-
d to design the robust backstepping controller. Meanwhile, a
control architecture that consists of a motion estimation mod-
ule, a trajectory generation module and a tracking control mod-
ule was proposed in [20] to achieve the high-performance au-
to landing missions. In particular, the time-optimal trajectory
tracking controller was developed for quadrotors landing on a
moving platform. A dynamic image-based visual servo con-
trol strategy was proposed for a helicopter landing on a moving
vehicle by [21], so that the control performance is improved
clearly based on the visual measurement. A disturbance attenu-
ation controller for horizontal position stabilization was devel-
oped in [22] for hover and automatic landings of a helicopter
approaching to the landing deck. An invariant ellipsoid-based
method for the controller design and gain synthesis of a low-
cost quadrotor autonomous landing system subjected to wind
disturbance and measurement noise was proposed by [23]-[25].
Then, a class of relative motion model was developed for the
shipboard landing missions by [26]-[28], and the adaptive non-
linear controllers were presented to ensure the success of the
helicopter landing on the deck in rough sea. However, the dy-
namic couplings between the relative position and relative atti-
tude motions were ignored, while the under-actuated property
of the aeronautical vehicles was also insufficiently considered
in the previous works.

This study mainly focuses on the relative pose control prob-
lem between the quadrotor and ship for the shipboard landing
missions. Enlightened by the previous studies in [26] and [27],
the shipboard landing mission is also divided into two phases
including the autonomous position approaching phase and the
autonomous vertical landing phase in this study. The main con-
tributions of this work are stated as follows.

• The novel relative pose kinematics and dynamics are mod-
eled in the quadrotor’s body-fixed frame, where the atti-

tude motion of two vehicles are described by the mod-
ified Rodrigues parameter because of its non-singularity
and non-redundant properties. In particular, the landing
site on the deck is considered into the modelling of relative
position dynamics to describe the relative motion precise-
ly, and the bounded external disturbances generated from
the changing environment are also considered in the rela-
tive motion of two vehicles.

• Based on the different state information, two controller-
s are developed respectively for the position approaching
phase and the vertical landing phase in view of the under-
actuated property of the quadrotor. Specifically, in the
position approaching phase, the control singularity of the
quadrotor is avoided by using the saturated force inputs
and the bounded auxiliary system, while the second-order
command filter is also employed to avoid the complicat-
ed time-derivative calculations in the relative motion con-
troller design.

• It is proved in the Lyapunov framework that the posi-
tion tracking errors in autonomous position approaching
phase and the terminal landing altitude-attitude errors in
autonomous vertical landing phase uniformly ultimately
converge to the small neighborhoods of zero by tuning
suitable designing parameters. Simulation results validate
the effectiveness of the proposed approach.

This paper is organized as follows. Section 2 presents the math-
ematical modeling and control mission for autonomous quadro-
tor shipboard landing operations. Section 3 provides explic-
it controller design procedures, and the stability result of the
closed-loop system is also rigorously analyzed. Numerical sim-
ulations are performed in Section 4 to verify the theoretic de-
velopments. Finally, conclusions are shown in Section 5.

Throughout the paper, the skew-symmetric matrix S (a) ∈
R3×3 derived from any vector a = [a1, a2, a3]T ∈ R3 is de-
fined by S (a) = [0,−a3, a2; a3, 0,−a1;−a2, a1, 0]. It satis-
fies aTS (a) = 0, ∥S (a)∥ = ∥a∥, and S (a)b = −S (b)a,
bTS (a)b = 0 for any b ∈ R3. ∥a∥ denotes vector 2-norm
of a, ∥A∥ represents the induced matrix 2-norm of A. In and
On are n × n unit and zero matrices, respectively. More-
over, tanh(c) = [tanh(c1), tanh(c2), · · · , tanh(cn)]T for any vec-
tor c = [c1, c2, · · · , cn]T.

2. Problem Description

We investigate the control problem of an autonomous
quadrotor landing on the deck of a ship in the rough sea. Due
to the complicated relative motion model between the under-
actuated quadrotor and the uncontrolled ship, the quadrotor’s
landing mission in this study is divided into two coherent phas-
es, such as the autonomous position approaching phase shown
in Figure 1 and the autonomous vertical landing phase shown
in Figure 2. In Figures 1 and 2, Fi , {Oxiyizi} is the Earth
reference frame with its origin O locating at a fixed point. The
zi axis points upright vertically, xi points to the north, and yi

2



completes the triad by right-hand rule. Fh , {Hxyz} is quadro-
tor’s body-fixed frame, where origin H locates at the centre of
the mass of fuselage, x points to the fuselage head, z axis is
perpendicular to x axis and points upright, and y axis is deter-
mined by right-hand rule. Fs , {Sxtytzt} is ship’s body-fixed
frame, where origin S is the centre of mass of ship, xs axis
points to the front of the ship, zs axis is perpendicular to xs axis
and points upright, and ys axis completes the triad by right-hand
rule. P and P′ are fixed points with respect to S, where point P
is the desired position of the quadrotor with only small height
with respect to the final landing site P′ on the deck; {r, re, r′e}
and {rs, rps , ps, r′ps

, p′s} are related position vectors expressed in
frames Fh and Fs, respectively. Specifically, as shown in Figure
1, the objective of the controller design in autonomous position
approaching phase is to control the quadrotor so that its cen-
tre of mass H tracks point P to get ready for the consequently
vertical landing phase. Then, as shown in Figure 2, after the
quadrotor’s centre of mass H arriving at point P, namely H co-
inciding with P, the control objective of the autonomous ver-
tical landing phase is to control the quadrotor’s height so that
relative altitude between the centre of mass H and point P′ is
zero, while the frame Fh tracks the frame Fs.
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Figure 1: Autonomous position approaching phase in shipboard landings.
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Figure 2: Autonomous vertical landing phase in shipboard landings.

Remark 1. Since the autonomous landing missions are gener-
ally performed when the quadrotor is far from the ship deck,
so the trajectory tracking should be firstly achieved, then the
quadrotor could perform the final landing operations when the
quadrotor is very near the ship deck. The most important rea-
son for dividing the landing missions into two phases is the
under-actuated control property of the autonomous quadrotor.
Since the position tracking phase should ensure that the quadro-
tor completely track the three-dimensional position of the ship
deck, so that the attitude trajectory of the quadrotor cannot be
synchronized with the ship in real time. Furthermore, after
completing the tracjecotry tracking phase, the quadrotor is very
near the final landing site of the ship in the second phase, so that
the landing operations mainly focus on the relative altitude reg-
ulation and attitude synchronization of two vehicles in a short
time. Thus the quadrotor should switch its autonomous control
modes from the trajectory tracking to the altitude-attitude syn-
chronization, so that the autonomous landing mission is divided
into two successive phases to facilitate control system design of
the quadrotor.

2.1. Nonlinear Dynamics of Quadrotors and Ships
The position motion of centre of mass H and the attitude mo-

tion of Fh with respect to Fi for a quadrotor are described by
following kinematics and dynamics expressed in frame Fh, if
the modified Rodrigues parameters(MRP) are used for attitude
parametrization [29].

ṙ = v − S (ω)r
mv̇ + mS (ω)v + mgRTe3 = Te3 + dh

σ̇ = G(σ)ω
Jω̇ + S (ω)Jω = τ + wh

(1)

where G(σ) = 1
4 [(1 − σTσ)I3 + 2S (σ) + 2σσT], g is gravity

acceleration, e3 = [0, 0, 1]T; r ∈ R3 is the position and σ is
the MRP attitude; v,ω ∈ R3 are linear and angular velocities,
respectively; T ∈ R is the control thrust, and τ ∈ R3 is the
three-axes torque vector; m ∈ R and J ∈ R3×3 are the mass and
the positive definite symmetric inertia matrix of the helicopter,
respectively; R is the rotation matrix from Fh to Fi; dh,wh ∈ R3

are the unmodeled disturbances.
The kinematics and dynamics of an uncontrolled ship in

rough sea can be simply described in frame Fs as [27, 30]
ṙs = vs − S (ωs)rs

msv̇s + msS (ωs)vs = ds

σ̇s = G(σs)ωs

Jsω̇s + S (ωs)Jsωs = ws

(2)

where G(σs) = 1
4 [(1−σT

sσs)I3+2S (σs)+2σsσ
T
s ], rs ∈ R3 and

σs are position and attitude of the ship, respectively; vs,ωs ∈
R3 are linear and angular velocities of the ship, respectively;
ds,ws ∈ R3 are the external force and torque, respectively; ms ∈
R and Js ∈ R3×3 are mass and inertial matrix of the target,
respectively.

Remark 2. The unmodeled disturbances dh and wh in (1) are
generated from the aerodynamic effect of the main rotor and
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the fuselage. The external force ds and external torque ws in (2)
mainly include the influence of gravity, buoyancy, atmospher-
ic drag, hydrodynamic damping effect, added mass and inertia
forces. The ship’s six-degrees-of-freedom motion is modeled as
(2) with simplified form, since this study mainly focus on the
unmanned quadrotor’s control system design, and this ship’s
model (2) is almost enough to reflect the motion feature of the
ship in the autonomous landing missions. In fact, the explicitly
six-degrees-of-freedom motion model of the ship can be found
in [30]. Moreover, according to the statement in [29], the shad-
ow MRP set can be exploited to yield a globally non-singular
attitude description with a minimal three-parameter coordinate
set at the expense of a discontinuity. To avoid the singularity,
the MRP set is switched to the shadow set before reaching the
singularity. A convenient switching condition is the unit magni-
tude surface ∥σ∥ = 1, such that the composite MRP description
always satisfies ∥σ∥ ≤ 1.

2.2. Relative Rotational and Translational Dynamics for Au-
tonomous Shipboard Landings

Let the MRP relative attitude σe be [29]

σe =
σs(σTσ − 1) + σ(1 − σT

sσs) − 2S (σs)σ
1 + σT

sσsσTσ + 2σT
sσ

(3)

and the rotation matrix from Fs to Fh is defined by

Re = I3 −
4(1 − σT

eσe)
(1 + σT

eσe)2 S (σe) +
8S 2(σe)

(1 + σT
eσe)2 (4)

According to Figure 1, the position and velocity of point P
represented in frame Fs are given by

rps = rs + ps, vps = vs + S (ωs)ps (5)

where ps ∈ R3 is a constant vector in frame Fs. The relative
position, relative velocity, and relative angular velocity are de-
fined in frame Fh as

ωe = ω − Reωs, re = r − Rerps , ve = v − Revps . (6)

Substituting (6) into (1) and using identities Ṙe = −S (ωe)Re,
ṙps = vps − S (ωs)rps and R−1

e = RT
e yield the relative motion

equations in frame Fh as

ṙe =ve − S (ω)re

v̇e =−[S (ω)v+gRTe3+Rev̇ps−S (ωe)(v−ve)]+
T
m

e3+
1
m

dh

σ̇e =G(σe)ωe

Jω̇e = − S (ω)Jω − J[Reω̇s + S (ω)ωe] + τ + wh
(7)

where kinematic Jacobian matrix G(σe) = 1
4 [(1 − σT

eσe)I3 +

2S (σe) + 2σeσ
T
e ] is nonsingular [29]; Rev̇ps is calculated from

(5), (2), (6) and ReS (a) = S (Rea)Re for any a ∈ R3 as
Rev̇ps = Re[v̇s+S (ω̇s)ps] = −ReS (ωs)vs+

1
ms

Reds−ReS (ps)ω̇s =

−S (Reωs)[Revps −ReS (ωs)ps]+ 1
ms

Reds−ReS (ps)ω̇s = −S (ω−

ωe)[v − ve − S (ω − ωe)Re ps] + 1
ms

Reds − ReS (ps)ω̇s, and ω̇s is
calculated by

ω̇s = − J−1
s S (ωs)Jsωs + J−1

s ws

= − J−1
s S (RT

e (ω − ωe))JsRT
e (ω − ωe) + J−1

s ws
(8)

Thus, equation (7) can be rewritten as

ṙe = ve − S (ω)re (9)

v̇e = −h − gRTe3 + d1 + n1 +
T
m

e3 (10)

σ̇e = G(σe)ωe (11)

Jω̇e = −S (ω)Jω − JS (ω)ωe + n2 + d2 + τ (12)

where h = S (ω)ve + S 2(ω − ωe)Re ps, d1 =
dh
m −

Re ds
ms
+

ReS (ps)J−1
s ws, d2 = wh−ReJ−1

s ws, n1 = −ReS (ps)J−1
s S (RT

e (ω−
ωe))JsRT

e (ω − ωe), n2 = JReJ−1
s S (RT

e (ω − ωe))JsRT
e (ω − ωe).

Similarly, the relative position model between points H and
P′ shown in Figure 2 can be easily derived by

ṙ′e = v′e − S (ω)r′e (13)

v̇′e = −h′ − gRTe3 + d′1 + n′1 +
T
m

e3 (14)

where r′e = r − Rer′ps
, v′e = v − Rev′ps

, r′ps
= rs + p′s, v′ps

=

vs + S (ωs)p′s, h′ = S (ω)v′e + S 2(ω −ωe)Re p′s, d′1 =
dh
m −

Re ds
mms
+

1
m ReS (p′s)J−1

s ws, n′1 = −ReS (p′s)J−1
s S (RT

e (ω−ωe))JsRT
e (ω−ωe).

Remark 3. Since the classical quadrotor tracking controller de-
sign only focuses on the dynamics of quadrotor, and the de-
sired motion trajectory is generally simplified as the known d-
ifferentiable functions, so that the tracking error system ignores
the dynamical property of the target systems, so the modeling
and control are not suitable for the two vehicles coordinated
control missions, such as the shipboard landing operations in
this study. From the equations (9)-(14), the mathematical mod-
el of the landing missions is strongly coupled and still under-
actuated. Specifically, the error model of pose motion is related
with the inertia parameters of two vehicles, such that the dy-
namical model is very complicated with respect to the classical
quadrotor tracking model, and the relative translational motion
is coupled with the relative rotational motion.

Remark 4. Since the shipboard landing mission of the quadro-
tor is considered as autonomous task in this study, so that the
motion information of the quadrotor and relative motion infor-
mation between two vehicles could be measured directly by the
different sensors mounted on the quadrotor. Then, the mea-
sured information is easily represented in the body-fixed frame
of the quadrotor. Thus, the relative model is described in the
body fixed frame of the quadrotor to facilitate the measurement
and calculations. Moreover, if the relative motion model is de-
scribed in other frames, such as the Earth-centered inertial coor-
dinate frame, then the control inputs should be transformed into
the body-fixed frame of the quadrotor, thus the coordinate trans-
formation of the control inputs for the quadrotor can be avoided
when the relative motion model is described in the body-fixed
frame of the quadrotor.

4



Assumption 1. The mass and inertial matrices of the quadro-
tor and the ship are all known. The external disturbances are
unknown bounded vectors so that ∥dh∥ ≤ d̄h, ∥wh∥ ≤ w̄h,
∥ds∥ ≤ d̄s, and ∥ws∥ ≤ w̄s with known constants d̄h, w̄h, d̄s, w̄s.

Assumption 2. The pose motion information of the quadro-
tor r, v,σ,ω and the relative pose information re, ve,σe,ωe be-
tween two vehicles are measured exactly by the measurement
devices mounted on the bodies of quadrotor [10]-[14].

The control objective of the autonomous position approach-
ing phase is to design the quadrotor’s control inputs T and τ
so that position tracking error re ultimately converges to the s-
mall neighborhood of zero. Then, the control objective of the
autonomous vertical landing phase is to design the quadrotor’s
control inputs T and τ so that relative height r′e3 and relative
attitude σe ultimately converge to the small neighborhood of
zero, where r′e3 is the third entry of vector r′e. Thus the quadro-
tor shipboard landing missions can be achieved successfully.

3. Controller Design

3.1. Controller Design for Position Approaching Phase
Based on the model of (1), (9), and (10), the control inputs T

and τ of the quadrotor can be derived based on under-actuated
control system design. Thus the outer-loop position controller
design and inner-loop attitude controller are developed in the
autonomous position approaching phase, so that the quadrotor
tracks the desired position P in Figure 1 to achieve the position
approaching mission, when the initial position of the quadrotor
is far away from the ship deck.

Consider the relative position model in (9) and (10). Define
the virtual position error r̄e = Rre − η and virtual velocity error
v̄e = Rve − α − η̇ with an auxiliary state η and virtual control
input α. Then,

˙̄re = RS (ω)re + Rve − RS (ω)re − η̇ = v̄e + α (15)

Choose a Lyapunov function candidate V1 =
1
2 r̄T

e r̄e. Then the
time derivative of V1 based on (15) is V̇1 = r̄T

e (v̄e + α). Design
the virtual control input

α = −k1 r̄e (16)

where k1 > 0. Substituting (16) into (15) yields

˙̄re = −k1 r̄e + v̄e (17)

Moreover, the time derivative of V1 satisfies

V̇1 = −k1 r̄T
e r̄e + r̄T

e v̄e (18)

Furthermore, from (10), one has

˙̄ve =RS (ω)ve − Rh − ge3 + Rd1

+ Rn1 +
T
m

Re3 − α̇ − η̈
(19)

Choose a Lyapunov function candidate

V2 = V1 +
1
2

v̄T
e v̄e (20)

Then the time derivative of V2 based on (19) is

V̇2 = − k1 r̄T
e r̄e + v̄T

e (r̄e + RS (ω)ve − Rh

− ge3 + Rd1 + Rn1 +
T
m

Re3 − α̇ − η̈)
(21)

Since v̄T
e Rd1 ≤ d̄1∥R∥∥v̄e∥ ≤

∑3
i=1 d̄1|v̄ei| ≤

∑3
i=1 d̄1[v̄ei tanh( v̄ei

ϵ
)+

κϵ] = d̄1v̄T
e tanh( v̄e

ϵ
) + 3κϵ, where d̄1 = d̄h +

d̄s
ms
+ w̄s∥ps∥∥J−1

s ∥,
ϵ > 0, κ = 0.2785. Then,

V̇2 ≤ − k1 r̄T
e r̄e + v̄T

e [r̄e + RS (ω)ve − Rh − ge3

+ d̄1 tanh(
v̄e

ϵ
) + Rn1 +

T
m

Re3 − α̇ − η̈] + 3κϵ
(22)

Introduce an auxiliary system

η̈ = −β1 tanh(l1η + l2η̇) − β2 tanh(l2η̇) + αη (23)

where αη = k2v̄e − α̇ + r̄e + RS (ω)ve − Rh + Rn1, k2 > 0,
βi > 0, li > 0(i = 1, 2), and η(0) = η̇(0) = 0.

Remark 5. In the auxiliary system (23), the signal α̇ is difficult
to directly calculate the time derivative of α from (16), since
the ω̇ is unknown. However, as shown in [31], a second-order
command filter ÿ = −2ξωn ẏ−ω2

n(y−α) with input α and output
ẏ under the initial conditions y(0) = α(0) and ẏ(0) = 0 can be
employed in practice to achieve high-precision estimation of α̇
by setting the suitable filter parameters ξ and ωn.

Design the control input

u =
T
m

Rde3 = − β1 tanh(l1η + l2η̇) − β2 tanh(l2η̇)

+ ge3 − d̄1 tanh(
v̄e

ϵ
)

(24)

where Rd is the desired attitude for inner-loop attitude motion
of the quadrotors. Then the desired thrust force is

T = m∥u∥ (25)

Thus, from (22), one has

V̇2 ≤ −k1∥r̄e∥2 − k2∥v̄e∥2 + v̄T
e

T
m

R̄ee3 + 3κϵ (26)

where R̄e = Rd − R.
From the system model in (1), we find that the transition ma-

trix R and control thrust T will affect the translational motion of
the quadrotors. Notice from (1) that the transition matrix R in
terms of MRP can also be regarded as the output of the rotation-
al subsystem. This can be considered as the cascade property of
the quadrotors. A hierarchical design strategy is introduced to
implement the control system. Consequently, translational and
rotational controllers can be designed separately. The transla-
tional controller is firstly designed to extract the desired thrust
force T and attitude matrix Rd. The desired attitude information
can enable a quadrotor to track the desired position trajectory.
Thereafter, the desired torque vector τ is determined by the ro-
tational controller with the desired attitude matrix. At last, T
and τ can be treated as the input for the actuators to implement
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the whole control system. Then from (24), the desired MRP
attitude for the inner-loop attitude motion of the quadrotor can
be extracted by [32]

σd =
1

2Ttσt(1 + σt)
[u2,−u1, 0]T (27)

where Tt =
T
m , σt =

√
u3
2Tt
+ 1

2 , and ui(i = 1, 2, 3) is the ith entry
of the vector u. To avoid the singularities of the thrust force and
desired attitude, the following constraint must hold

√
3(β1 + β2 +

d̄1

m
) < g (28)

Remark 6. Since the thrust force T should satisfy T ≥ 0, thus
the hyperbolic tangent function and conditions (28) are em-
ployed to guarantee the bounded property of thrust force such
that g −

√
3(β1 + β2 +

d̄1
m ) ≤ ∥u∥ ≤ g +

√
3(β1 + β2 +

d̄1
m ) al-

ways holds. According to (25), (28), and m > 0, we can obtain
u , 0 and T > 0 instead of T ≥ 0, thus the singularity of the
thrust force T can be avoided and the singularity of the desired
attitude σd is also avoided from (27).

Since the first and second time-derivatives of desired attitude
σd cannot be derived analytically, a stable second-order com-
mand filter is employed by

ẋ1 = x2, ẋ2 = −2ξωnx2 − ω2
n(x1 − σd) (29)

with states x1, x2, and inputσd, where ξ andωn are the damping
ratio and frequency, respectively. The initial conditions for (29)
are set as x1(0) = σd(0) and x2(0) = 0, and the output of the
command filter (29) is defined as

σc , x1, σ̇c , x2, σ̈c , −2ξωnx2 − ω2
n(x1 − σd) (30)

Remark 7. It should be pointed out that the command attitude
trajectory σc is generated by command filter to approximate
the desired attitude σd, and the errors between σc and σd can
be reduced by choosing larger parameters ωn in (29), but its
robustness for high-frequency disturbances would be reduced
significantly.

Instead of tracking σd directly, we let the attitude subsystem
track σc. By using σc, σ̇c and σ̈c in (30), we can derive the
command angular velocity ωc and the command angular accel-
eration ω̇c as [33, 34]

ωc = G−1(σc)σ̇c, ω̇c = Ġ−1(σc)σ̇c +G(σc)σ̈c (31)

where Ġ−1(σc) = −G−1(σc)Ġ(σc)G−1(σc), G(σc) = 1
4 [(1 −

σT
cσc)I3 + 2S (σc) + 2σcσ

T
c ], and Ġ(σc) = 8

(1+σT
cσc)2 [σ̇cσ

T
c +

σcσ̇
T
c − σ̇T

cσcI3 − S (σ̇c)] − 16σT
c σ̇c

(1+σT
cσc)3 [(1 − σT

cσc)I3 − 2S (σc) +
2σcσ

T
c ].

As long as command attitude trajectories σc, ωc, and ω̇c are
obtained, the attitude error and angular velocity error expressed
in Fh can be obtained as [35] σ̄e =

(1−σT
cσc)σ−(1−σTσ)σc−2S (σc)σ

1+σTσσT
cσc+2σT

cσ

ω̄e = ω − Reωc
(32)

where R̄e = I3 − 4(1−σ̄T
e σ̄e)S (σ̄e)

(1+σ̄T
e σ̄e)2 +

8S 2(σ̄e)
(1+σ̄T

e σ̄e)2 .
From (1) and (32), the attitude tracking error kinematics and

dynamics are{
˙̄σe = G(σ̄e)ω̄e

J ˙̄ωe= JS (ω̄e)R̄eωc−S (ω)Jω−JReω̇c+τ+wh
(33)

with G(σ̄e) = 1
4 [(1 − σ̄T

e σ̄e)I3 + 2S (σ̄e) + 2σ̄eσ̄
T
e ].

Define a variable ω̃e = ω̄e − ζ, where ζ is the virtual control
input designed later. Then, from attitude kinematics in (33),
one has

˙̄σe = G(σ̄e)(ω̃e + ζ) (34)

Design the virtual controller ζ = −k3σ̄e and choose a Lyapunov
function candidate V3 =

1
2 σ̄

T
e σ̄e. Then (34) and the time deriva-

tive of V3 are rewritten as

˙̄σe = G(σ̄e)(ω̃e − k3σ̄e) (35)

V̇3 = −k3σ̄
T
e G(σ̄e)σ̄e + σ̄

T
e G(σ̄e)ω̃e (36)

where k3 > 0. Considering the attitude tracking dynamics in
(33) and virtual controller ζ yields

J ˙̃ωe =JS (ω̄e)R̄eωc − S (ω)Jω

− JReω̇c + τ + wh − k3J ˙̄σe
(37)

Choose the Lyapunov function candidate

V4 = V3 +
1
2
ω̃T

e Jω̃e (38)

Then, based on the fact ω̃T
e wh ≤

∑3
i=1 w̄h[ω̃ei tanh( ω̃ei

ϵ
) + κϵ] =

w̄hω̃
T
e tanh( ω̃e

ϵ
) + 3κϵ, the time derivative of V4 is

V̇4 ≤ − k3σ̄
T
e G(σ̄e)σ̄e + ω̃

T
e [GT(σ̄e)σ̄e

+ JS (ω̄e)R̄eωc − S (ω)Jω − JReω̇c

+ τ + w̄h tanh(
ω̃e

ϵ
) − k3J ˙̄σe] + 3κϵ

(39)

Then design the inner-loop attitude tracking controller of the
quadrotor is

τ = − k4ω̃e −GT(σ̄e)σ̄e − JS (ω̄e)R̄eωc + S (ω)Jω

+ JReω̇c + k3J ˙̄σe − w̄h tanh(
ω̃e

ϵ
)

(40)

where k4 > 0. Thus, from the fact 1
4 ≤ ∥G(σ̄e)∥ ≤ 1

2 , (39) can
be written as

V̇4 ≤ −
k3

4
∥σ̄e∥2 − k4∥ω̃e∥2 + 3κϵ (41)

3.2. Controller Design for Vertical Landing Phase
Based on the relative height model in (13) and (14), and the

relative attitude model in (11) and (12), the control inputs T and
τ of the quadrotor can be derived based on the fully-actuated
control system design approach. When the initial position of
the quadrotor locates at point P shown in Figure 2, the con-
troller design task is to propose control inputs T and τ so that
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the height of the quadrotor is driven to the height of the terminal
landing site P′ shown in Figure 2, while the attitude of the ship
and the quadrotor are synchronized to successfully achieve the
autonomous landing mission.

According to the structure of the relative position controller
(24) with the auxiliary system (23), the height controller of the
quadrotor in the autonomous vertical landing phase can be eas-
ily derived by

T =
∣∣∣∣mγ1 tanh(l′1η

′ + l′2η̇
′) − mγ2 tanh(l′2η̇

′)

+ mg − d̄1 tanh(
v̄′e3

ϵ
)
∣∣∣∣ (42)

with the following auxiliary system

η̈′ = −γ1 tanh(l′1η
′ + l′2η̇

′) − γ2 tanh(l′2η̇
′) + α′η (43)

and expressions α′η = k6v̄′e3 − α̇′ + r̄′e3 + f3, r̄′e3 = rm3 − η′,
v̄′e3 = vm3 − α′ − η̇′, and α′ = −k5r̄′e3, where r̄′e3, v̄′e3, f3, rm3, and
vm3 are the third entries of the vectors r̄′e, v̄′e, RS (ω)v′e − Rh′ +
Rn′1, Rr′e, and Rv′e, respectively; r′e, v′e, h′, and n′1 are derived
from (13) and (14); the designing parameters k5 > 0, k6 > 0,
γi > 0, l′i > 0(i = 1, 2), and η′(0) = η̇′(0) = 0.

The attitude synchronization controller in the autonomous
vertical landing phase can be designed based on backstepping
technique from (11) and (12). Define variable ωm = ωe − χ,
where the virtual control input is χ = −k7σe. Then the time
derivative of σe is σ̇e = G(σe)(ωm − k7σe). Choose the Lya-
punov function candidate V5 =

1
2σ

T
eσe. Then the time deriva-

tive of V5 is V̇5 = −k7σ
T
e G(σe)σe + σ

T
e G(σe)ωm. The time

derivative of ωm is Jω̇m = −S (ω)Jω − JS (ωe)ωe + n2 + τ +
d2 − k7Jσ̇e. Define the Lyapunov function candidate

V6 = V5 +
1
2
ωT

mJωm (44)

Then, based on the fact ωT
md2 ≤

∑3
i=1 d̄2[ωmi tanh(ωmi

ϵ
) + κϵ] =

d̄2ω
T
m tanh(ωm

ϵ
) + 3κϵ, the time derivative of V6 is

V̇6 ≤ − k7σ
T
e G(σe)σe + ω

T
m[GT(σe)σe − S (ω)Jω

− JS (ωe)ωe + n2 + τ + d̄2 tanh(
ωm

ϵ
) − k7Jσ̇e] + 3κϵ

Then design the attitude synchronization controller as

τ = − k8ωm −GT(σe)σe + S (ω)Jω + JS (ωe)ωe

− n2 + k7Jσ̇e − w̄h tanh(
ωm

ϵ
)

(45)

where k8 > 0. From the fact 1
4 ≤ ∥G(σe)∥ ≤ 1

2 , V̇6 satisfies

V̇6 ≤ −
k7

4
∥σe∥2 − k8∥ωm∥2 + 3κϵ (46)

Remark 8. For the dynamical model of relative position ap-
proaching phase including (9), (10), and the attitude dynamic-
s in (1), the proposed relative position approaching controller
is constructed by the thrust input (25), torque input (40), aux-
iliary system (23), and command filter (29) with the positive
tunable parameters k1, k2, k3, k4, β1, β2, l1, l2, ξ, ωn. Similarly,

for the dynamical model of vertical landing phase including
(11), (12), (13), and (14), the proposed vertical landing con-
troller is constructed by the thrust input (42), torque input (45),
and auxiliary system (43) with the positive tunable parameters
k5, k6, k7, k8, γ1, γ2, l′1, l

′
2. Two controllers for two phases have

the same structure with similar designing parameters, so that
the tuning strategies of the designing parameters for two con-
trollers are unified.

The structure of the control system is shown in Figure 3.

Figure 3: Block diagram of the closed-loop system for relative motion.

4. Stability Analysis of Overall Systems

Before the stability results, a significant lemma used in the
stability analysis is shown firstly [36, 37].

Lemma 1. Consider the following nonlinear system

z̈ + a1 tanh(a3 z + a4 ż) + a2 tanh(a4 ż) − w(t) = 0

where z ∈ Rn, w(t) : R+ → Rn is a time-varying vector, and
ai(i = 1, 2, 3, 4) are positive constants. Denote s = [a3 zT +

a4 żT, a4 żT]T, if there exist w̄ > 0 and t̄ > 0 such that ∥w(t)∥ < w̄
for all t ≥ t̄, and the parameters a5 =

a3

a2
4
, a2 and a1 are set

in sequence based on the rules a5 > 2w̄, a2 >
2a5w̄

a5−2w̄ ,
√

a5a2 ≤
a1 ≤ 1

2 (a2+a5), then z and ż ultimately converge to the bounded
set Z = {[zT, żT]T ∈ R2n|∥s∥ < s̄}, where s̄ satisfies a2+a5

a2a5w̄ <
tanh2(s̄)

s̄ < 1
2 .

Theorem 1. Consider the relative position dynamics (9), (10)
and the quadrotor’s attitude dynamics shown in the last two
subequations of (1) under the Assumptions 1 and 2. Design the
auxiliary system (23), control thrust (25), and control torque
(40) for the quadrotor under the condition (28). Then the rela-
tive position re ultimately converges to the small neighborhood
of zero by choosing suitable designing parameters.

Proof: Consider the Lyapunov function V = V2 + V4.
From (26) and (41), then the time derivative of V satisfies
V̇ ≤ −k1∥r̄e∥2 − k2∥v̄e∥2 − k3

4 ∥σ̄e∥2 − k4∥ω̃e∥2 + v̄T
e

T
m R̄ee3 + 6κϵ.

Since ∥ T
m R̄ee3∥ ≤ ∥u∥∥Rd−R∥ ≤ 2(β1+β2+g+ d̄1

m ) , ρ from (24)

and (25), then V̇ ≤ −keV + ϖ, where ke =
min{k1,

k2
2 ,

k3
4 ,k4}

1
2 max{1,λ̄} , ϖ =

ρ2

2k2
+ 6κϵ, λ̄ is the maximum eigenvalue of matrix J. Then, it

is easily shown that r̄e, v̄e, σ̄e, ω̃e ultimately converge to the fol-

lowing bounded sets, Ω1 = {r̄e|∥r̄e∥ ≤
√

2ϖ
ke
}, Ω2 = {v̄e|∥v̄e∥ ≤

7



√
2ϖ
ke
}, Ω3 = {σ̄e|∥σ̄e∥ ≤

√
2ϖ
ke
}, Ω4 = {ω̃e|∥ω̃e∥ ≤

√
2ϖ
λke
}, where

λ is the minimum eigenvalue of matrix J. Furthermore, from
(16), and the definitions of the virtual position error r̄e = Rre−η
and virtual velocity error v̄e = Rve − α − η̇, one has[

re

ve

]
= Ā
[

r̄e

v̄e

]
+ B̄
[
η
η̇

]

where Ā =
[

RT O3
−k1RT RT

]
and B̄ = diag{RT,RT}. Then,

from (23) and Lemma 1, η and η̇ ultimately converge to the
bounded set Zη = {[ηT, η̇T]T ∈ R2n|∥sη∥ < s̄η}, where sη =
[l1ηT + l2η̇T, l2η̇T]T, and s̄η satisfies β2+l3

β2l3ᾱη
<

tanh2(s̄η)
s̄η

< 1
2

with l3 = l1
l22

and ∥αη(t)∥ ≤ ᾱη for all t ≥ t̄. Therefore,

from ∥RT∥ = 1, ∥Ā∥ ≤
√

6 + 3k2
1, and ∥B̄∥ ≤

√
6, one has

∥[rT
e , vT

e ]T∥ ≤
√

6 + 3k2
1(∥r̄e∥ + ∥v̄e∥) +

√
6∥[ηT, η̇T]T∥. Thus rel-

ative position re and relative velocity ve ultimately converge to
the bounded set

Ω =

[rT
e , v

T
e ]T

∣∣∣∣∣∣∣∣∥[rT
e , v

T
e ]T∥ < 2

√
2(6 + 3k2

1)ϖ
ke

+
√

6s̄η

 .
This means that the ultimate bound of the relative position and
relative velocity can be regulated to the small neighborhood of
zero by choosing suitable designing parameters ke and s̄η.

Theorem 2. Consider the relative altitude dynamics in (13)
and (14), and the relative attitude dynamics (11) and (12) un-
der the Assumptions 1 and 2. Design the auxiliary system (43),
control thrust (42), and control torque (45) for the quadrotor
under the condition (28). Then the relative altitude r′e3 and rela-
tive attitude σe ultimately converge to the small neighborhoods
of zero by choosing suitable designing parameters.

Proof: Consider the Lyapunov function V ′ = 1
2 [(r̄′e3)2 +

(v̄′e3)2] + V6. Then the time derivative of V ′ is V̇ ′ = r̄′e3
˙̄r′e3 +

v̄′e3
˙̄v′e3 + σ

T
e σ̇e + ω

T
mJω̇m. From r̄′e3 = rm3 − η′ and v̄′e3 =

vm3 − α′ − η̇′, one has ˙̄r′e3 = v̄′e3 + α
′ = −k5r̄′e3 + v̄′e3 and

˙̄v′e3 = − f3−g+d′+ T
m − α̇′− η̈′, where d′ denotes the third entry

of the term Rd1. Then, from |d′| ≤ d̄1, (42), (43), and (46), one

also has V̇ ′ ≤ −kmV ′+ς, where km =
min{k5,

k6
2 ,

k7
4 ,k8}

1
2 max{1,λ̄} and ς = ρ2

2k6
+

6κϵ. Thus r̄e3, v̄e3,σe,ωm ultimately converge to the following

bounded sets, Ω5 = {r̄e3||r̄e3| ≤
√

2ς
km
}, Ω6 = {v̄e3||v̄e3| ≤

√
2ς
km
},

Ω7 = {σe|∥σe∥ ≤
√

2ς
km
}, Ω8 = {ωm|∥ωm∥ ≤

√
2ς
λkm
}. Thus, from

r̄′e3 = rm3 − η′ and v̄′e3 = vm3 − α′ − η̇′, one has

ρm ,


rm3
vm3
σe

ωe

 = Ā′


r̄e3
v̄e3
σe

ωm

 + B̄′


η′

η̇′

0
0


where Ā′ = diag{A′1, A′2}, B̄′ = diag{I2, A′2}, A′1 =[

1 0
−k5 1

]
, A′2 =

[
I3 O3
−k7I3 I3

]
. Then, one has ∥ρm∥ ≤

√
8 + k2

5 + 3k2
7(|r̄e3|+ |v̄e3|+ ∥σe∥+ ∥ωm∥)+

√
8 + 3k2

7∥[η′, η̇′]T∥.
Since rm3 = [R31,R32,R33]r′e and vm3 = [R31,R32,R33]v′e, where
R31,R32,R33 denote three elements of the third row in the rota-
tion matrix R, then it is concluded from Lemma 1 that

Ω′ =

ρ′m
∣∣∣∣∣∣∣∣∥ρ′m∥ < 4

√
2(8 + k2

5 + 3k2
7)ς

min{1, λ}km
+

√
8 + 3k2

7 s̄′η


based on ∥[R31,R32,R33]∥ = 1, where ρ′m , [r′e3, v

′
e3,σ

T
e ,ω

T
e ]T,

s′η = [l′1η
T + l′2η̇

T, l′2η̇
T]T, and s̄′η satisfies γ2+l′3

γ2l′3ᾱ
′
η
<

tanh2(s̄′η)
s̄′η

< 1
2

with l′3 =
l′1

(l′2)2 and ∥α′η(t)∥ ≤ ᾱ′η for all t ≥ t̄′. Thus relative
altitude r′e3 and relative attitude σe ultimately converges to the
small neighborhood of zero by choosing suitable designing pa-
rameters km and s̄η.

Remark 9. Because of the under-actuated property of the
drones, the completed mission is divided into two phases, so
the switching condition is critical for the tracking and land-
ing. Because the tracking and landing phases mainly related
with the relative distance between two vehicles, so the land-
ing phase is viewed as the relative disturbance should be rel-
atively small from the tests in simulations. When the relative
height of the drone and the ship deck is very small, the rela-
tive horizontal position errors of the vertical landing phase are
acceptable in practical situation. If the relative height is rela-
tively overlarge, then the relative horizontal position errors in
landing phase will be quickly increased in the short time so that
the landing phase is unsafe. Therefore the switching condition
should be set based on the precisely relative-height measure-
ment and the safety requirements of the relative horizontal po-
sition errors in final landing phase. This switching condition
design and stability analysis of the overall system should be
further studied in future.

5. Simulations

For validating the proposed control strategy, the small-
scaled quadrotor and ship are employed in simulations. The
parameters of the quadrotor and ship are listed here. The
mass and inertia matrix of quadrotor are m = 7.4(kg) and
J = diag(0.16, 0.3, 0.31)(kgm2), respectively. The mass
and inertia matrix of ship are ms = 50(kg) and Js =

diag(30, 20, 30)(kgm2), respectively. The external force and
torque of ship are assumed as ds = [1, 0.01, 0.06 sin(t)]T (N),
ws = [0.1 sin(5t), 0.1 cos(1.5t), 0.1 sin(5t)]T (Nm).

In the relative position approaching phase, the external dis-
turbances of the quadrotor are assumed as

dh =

 0.2 sin(0.5t) + 0.25 cos(0.5t)
0.25 sin(0.5t) − 0.2 cos(0.5t)
0.15 sin(0.5t) + 0.15 cos(0.5t)

 (N),

wh = 0.1dh(Nm). The initial states of the quadrotor are set
as r(0) = [10, 10, 8]T (m), σ(0) = [−0.002, 0.002, 0]T , v(0) =
0(m/s), ω(0) = 0(rad/s), ps = [−1.5, 0, 1]T (m), and the initial
states of the ship are set as zeros. The controller parameters
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are set as k1 = 1.2, k2 = 3, k3 = 0.5, k4 = 15, β1 = 0.6, β2 =

0.9, l1 = 1.8, l2 = 1, ωn = 19, ζ = 1.2, ϵ = 0.05, d̄ = 0.5, w̄ =
0.2, and η(0) = η̇(0) = 0.

In the vertical landing phase, to simulate the randomness of
landing environment, the external disturbances of the quadrotor
are assumed as

dh = 0.01

 0.2 sin(0.5t) + 0.25 cos(0.5t)
0.25 sin(0.5t) − 0.2 cos(0.5t)
0.15 sin(0.5t) + 0.15 cos(0.5t)

 + 0.5Rand(N),

wh = 0.1dh(Nm), and Rand denotes the three-dimensional nor-
mal distribution random function with zero mean and 0.05 vari-
ance to simulate the random disturbances. The vector p′s is
set as [−1.5, 0, 0.5]T (m). The initial pose of the quadrotor
and ship are set the same as the final pose of relative posi-
tion approaching phase: r(0) = [34.43, 0.75, 0.86]T (m), σ(0) =
[2.16,−8.4,−1.25]T × 10−4, rs(0) = [35.98,−0.6, 0.15]T (m),
σs(0) = [0.01, 0.0012, 0.01]T , and the initial linear and angu-
lar velocities of two vehicles are set as zeros. The controller
parameters are set as k5 = 2, k6 = 1, k7 = k8 = 15, γ1 =

25, γ2 = 5, l′1 = 0.5, l′2 = 0.7, ϵ = 0.2, d̄ = 0.2, w̄ = 0.1, and
η′(0) = η̇′(0) = 0.

Figures 3–9 show the simulation results of the relative posi-
tion approaching phase using the proposed controller. The rela-
tive motion shown in Figure 3 illustrates that the quadrotor can
approach directly above the ship and track the arbitrary three-
dimensional trajectory of the ship. This result also implies that
the proposed controller can be applied on collaborative task s-
cenarios. Figure 4 displays position trajectories of two vehicles,
where the difference between two vehicles in x axis and z axis is
owing to the distance between the origin S and the target point
P. It can be seen in Figure 5 that relative position errors con-
verge to zero within 20(s). Figure 6 and Figure 7 illustrate that
the attitude motion of the quadrotor can track the desired MRP
attitude of the inner-loop. Figure 8 and Figure 9 show control
inputs of the quadrotor and external disturbances, respectively.

To highlight the advantage and effectiveness of the pro-
posed method, we compared the proposed method with the non-
adaptation version, because overcoming the impact of complex
marine environments is one of keys for shipboard landing con-
trol. From the comparative simulation result in Figure 10, it
is obvious that the adaptation law is beneficial to compensate
for the impact of external disturbances. Figures 11–15 show
the simulation results of the vertical landing phase based on the
proposed controller. From Figure 11 and Figure 12, it can be
observed that the vertical landing phase is completed after 1(s).
At the landing time 1(s), the altitude and attitude of two vehi-
cles are synchronized, and the relative horizontal position errors
(refers to red hexagonal stars in Figure 13) are re1 = −0.062(m),
re2 = 0.102(m), which are inevitable and acceptable. Further-
more, as shown in Figure 13, we can conclude that the quadro-
tor should stop the engines before the time of 1(s) to achieve
the final high-precision and safe landing mission, since the rel-
ative horizontal position errors would be largely increased if the
quadrotors is still horizontally moving. Figures 14-16 show an-
gular velocity of the quadrotor, control inputs of the quadrotor
and external disturbances, respectively.

In order to satisfy the generality, we evaluated the control
performance with different desired horizontal landing sites. The
result shown in Figure 17 indicates that the proposed controller-
s can guarantee the successful and relatively precise shipboard
landings. Therefore, it’s reasonable to conclude that the pro-
posed controllers are efficient enough to accomplish the au-
tonomous shipboard landing operations despite the horizontal
position errors between the final landing site and desired land-
ing site. Furthermore, based on above theoretical analysis and
simulation results, it can be claimed that the proposed two-
phases control system designing approach for the quadrotor
shipboard landing missions is effective with acceptable control
effort and transient response performance, while the stability
and safety of shipboard landing operations are guaranteed.
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Figure 4: Three-dimensional relative motion of the position approaching phase.
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Figure 5: Position trajectory of two vehicles in the position approaching phase.
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Figure 7: Attitude trajectory of the position approaching phase.
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Figure 8: Angular velocity of the quadrotor in the position approaching phase.
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Figure 9: Control inputs of the quadrotor in the position approaching phase.
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Figure 10: External disturbances in the position approaching phase.
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Figure 12: Attitude-altitude of two vehicles in the vertical landing phase.
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Figure 13: Relative attitude-altitude errors of the vertical landing phase.
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Figure 14: Relative horizontal position errors of the vertical landing phase.
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Figure 15: Angular velocity of the quadrotor in the vertical landing phase.
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Figure 16: Control inputs of the quadrotor in the vertical landing phase.
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Figure 17: External disturbances in the vertical landing phase.
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6. Conclusion

A novel two-phases control designing approach including the
autonomous position approaching phase and the autonomous
vertical landing phase for the shipboard landing mission is pro-
posed in this study, where the dynamical model of relative mo-
tion between a quadrotor and a ship is derived with consider-
ing model uncertainties and the effect of landing site on the
deck misaligned with the centre of mass of the ship. In particu-
lar, control singularity of the quadrotor is avoided by using the
saturated force inputs and the bounded auxiliary system, while
the second-order command filter is employed to avoid the com-
plicated time derivative calculations. Theoretical analysis and
simulation results verify that the proposed controller can ensure
the ultimately uniformly convergence of tracking errors under
suitable tuning parameters. Future works will focus on the con-
trol design and performance analysis for uncertain autonomous
quadrotors working in dynamical transition process from au-
tonomous position approaching phase to the autonomous ver-
tical landing phase. Meanwhile, in order to ensure the safe
maneuver of quadrotors, the pitch and roll angles of quadro-
tor should be constrained in prescribed values, thus the corre-
sponding attitude constrained control problem will be further
considered in future. Furthermore, the experiment tested on re-
al quadrotor will be also the future works.
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