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Abstract 

 

Background 

Computer vision can measure movement from video without the time and access limitations 

of hospital accelerometry / electromyography, or the requirement to hold or strap a 

smartphone accelerometer. 

 

Objective 

To compare computer vision measurement of hand tremor frequency from smartphone video 

with a gold standard measure, accelerometer. 

 

Methods 



37 smartphone videos of hands at rest and in posture, were recorded from 15 participants 

with tremor diagnoses (9 Parkinson’s, 5 Essential Tremor, 1 Functional Tremor). Video pixel 

movement was measured using the computing technique of optical flow, with 

contemporaneous accelerometer recording. Fast Fourier Transform and Bland-Altman 

analysis were applied.  Tremor amplitude was scored by two clinicians.  

 

Results 

Bland-Altman analysis of dominant tremor frequency from smartphone video compared with 

accelerometer showed excellent agreement: 95% limits of agreement -0.38 Hz to +0.35Hz. In 

36 out of 37 videos (97%) there was <0.5 Hz difference between computer vision and 

accelerometer measurement. There was no significant correlation between the level of 

agreement and tremor amplitude. 

 

Conclusion 

The study suggests a potential new, contactless ‘point and press’ measure of tremor 

frequency within standard clinical settings or telemedicine. 

 

 

Tremor disorders are common [1], but frequently misdiagnosed. In one report, 37% of 

essential tremor diagnoses were found to be incorrect [2], and another study showed up to 

20% inaccuracy in specialist clinician diagnosis of Parkinson’s from standardised videos of 

tremor patients [3]. The Movement Disorders Society consensus statement on the 

classification of tremors defines the clinical features on three axes: body distribution, 

activation condition, and tremor frequency [4]. Of these, tremor frequency is probably the 



most challenging for clinicians to determine accurately at the bedside. Gold standard 

neurophysiology with accelerometer and/or electromyography is a limited and time-

consuming resource, usually reserved for a subset of patients in specialist hospital settings 

[5]. Whilst smartphone accelerometers can measure the dominant frequency of hand 

tremors [6], the patient must hold the phone or have it strapped in place [6]; and this will 

potentially alter tremor characteristics.  

 

There remains a need for a clinical tool that provides clinicians with quick objective 

measurements of tremor frequency, analogous to other bedside measurements in medicine.  

We have recently demonstrated that computer analysis of video can measure finger tapping 

bradykinesia [REF], and in this article we propose a new approach using computer vision 

tremor analysis [7-10] of smartphone video. One advantage of this is that standard clinical 

examinations may be recorded without any equipment physically touching the patient, so 

that they are unaltered by the weight or physical restriction of a measurement tool. In 

addition to observing more ‘natural’ tremor from the patient without physical measuring 

equipment, we anticipate an increase in contactless tools in the coming years due to social 

changes related to the COVID-19 pandemic and improved infrastructure enabling 

telemedicine and home-monitoring of disease progression [11]. In this study, we evaluate 

computer vision applied to smartphone video of hands in tremor disorders and hypothesise 

that it can quantify dominant tremor frequency in good agreement with accelerometer 

results. 

 

 

Methods 

Stefan Williams
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The study was approved by the London-Fulham Research Ethics Committee of the United 

Kingdom Health Research Authority, IRAS no. 224848. 

 

A convenience sample of 16 patients from Leeds Teaching Hospitals NHS Trust (United 

Kingdom) participated in the study, with the following established diagnoses: 5 essential 

tremor, 2 functional tremor, 9 Parkinson’s disease. The diagnoses had previously been made 

in routine clinical practice by movement disorder specialist neurologists, according to 

Movement Disorder Society guidelines [4,12]. Participants were recruited in order of recent 

clinic attendance (i.e. there were no special selection criteria). All patients gave written, 

informed consent for participation.   

 

The participants were seated, and each hand was individually filmed. A resting tremor 

recording was made with the forearm on the chair arm and the hand suspended over the end, 

camera facing the dorsum of the hand.  A postural tremor recording was made with hand and 

arm extended horizontally forwards from the shoulder, with the camera in a lateral position. 

Only those videos with visible tremor were used, making a total of 40 videos.  

 

A smartphone, placed on a tripod, recorded an approximately 60 second video, at 60 frames 

per second, 1920 x 1080 pixel resolution (standard ‘full high definition’ smartphone video). 

Distance from camera to hand was not tightly controlled, but in practice was around 1m, with 

only the hand and forearm visible within the video frame.  An example video frame is shown 

in Figure 1. 

 



In accordance with standard methods of tremor accelerometry [5], a single axis 

accelerometer (‘Natus neurology tremor sensor’) was attached to the dorsum of each 

participant’s hand, aligned with the long axis of the hand. Acceleration was recorded 

contemporaneously with the video (without an exact time-lock mechanism), at a sample rate 

of 3.84 kHz. 

 

The first 2 seconds of the video and accelerometer recordings were removed to reduce any 

voluntary movement artefacts as the patient settled into position. The endings of both 

recordings were cropped at 60 seconds. 

 

The videos were processed with custom-written MATLAB code [13] that we have made freely 

available for download at this link: [https://github.com/DrStefanWilliams/tremor-optical-

flow]. It allows a bounding box to be manually drawn around the hand region for one frame 

of each video, together with a line to mark the long axis of the hand, a process that takes 

approximately 15 seconds for the user to complete. A Histograms of Optical Flow method 

[14,15] was used to measure the direction and amplitude of pixel movement within the box 

between pairs of video frames. This converts the region within the bounding box into an 

optical flow field.  Each position within the field corresponds to the vector pixel movement of 

a point object between two sequential frames.  We calculated a time series of the magnitude 

of pixel movement for two directions perpendicular to the line marking the long axis of the 

hand, and converted this to a one dimensional time series by subtracting the movement in 

one direction from that in the opposite direction (for each pair of video frames). 

 



We converted the resultant time series into the frequency domain using Fast Fourier 

Transform (FFT) (‘scipy.fftpack’) within Python [16], and then removed frequencies below 2 

Hz (low-frequency drifting movements) and above 14 Hz (higher than hand tremor) from the 

analysis. Examples of accelerometer and video signal time series and their FFT are shown in 

Figure 2. 

 

The recordings from one patient with functional tremor showed widely dispersed frequency 

distributions (on both accelerometer and video derived FFT) for the 60 second recording, 

without any obvious dominant peaks. This is consistent with the known clinical variability of 

functional tremor over time (i.e. the frequency can vary greatly over 60 seconds, so that there 

is no single, consistent, dominant frequency). These 3 recordings were removed from the final 

analysis. 

 

For the remaining 37 videos, the dominant frequency derived from video was compared with 

the dominant frequency derived from the accelerometer. We calculated the mean absolute 

error and undertook a Bland-Altman analysis [17] to provide the bias (mean difference), 95% 

limits of agreement, and associated confidence intervals. We considered ±0.5 Hz to represent 

a priori clinically acceptable 95% limits of agreement. 

 

A minority of recordings showed two distinct and prominent frequency peaks. We considered 

a frequency spectrum to have two peaks if a secondary peak was at least 70% of the dominant 

peak amplitude, and if the frequency of the secondary peak was at least 0.5 Hz from the 

primary peak, see example in Figure 3. Given that clinical assessment of tremor assumes only 

one dominant frequency, we selected the peak with highest frequency in these scenarios. 



 

To test for an inverse correlation between tremor amplitude and the accuracy of tremor 

frequency derived from video, we undertook two approximate measures of tremor amplitude. 

The first calculated an approximate measure of movement amplitude from the accelerometer 

signal. After converting the units from microvolt to cm/s2, we used Python [16] to scale the 

accelerometer data to have a mean of 0, and then used the midpoint rule to estimate the first 

integral (velocity), followed by eliminating drift by subtracting the line of best fit (using the 

ordinary least squares method). We then used the midpoint rule again to estimate the second 

integral, followed by calculating the standard deviation of mean displacement from the 

baseline. As a second measure of tremor amplitude, two neurologists (SW, JA) clinically rated 

postural and rest tremor amplitude from the videos, according to MDS-UPDRS items 3.15 and 

3.17 respectively. The median amplitude rating was MDS-UPDRS grade 2 (interquartile range 

1-3). Spearman’s correlation coefficient was calculated to test for relationships between 

these amplitude measures and video accuracy (error and absolute error, Hz). 

 

 

Results 

 

Participant and video details are given in Table 1. 

 

The dominant tremor frequencies from video (pixel optical flow) showed a mean absolute 

error of 0.10 Hz (standard deviation ±0.16 Hz)  compared with the accelerometer frequencies. 

In 36 out of 37 videos (97%) there was less than 0.5 Hz difference between the computer 

vision and accelerometer frequency measurements. Bland-Altman analysis of the dominant 



frequencies from video vs accelerometer showed a mean difference (bias) of -0.01 Hz, Figure 

4. with 95% limits of agreement -0.38 Hz to 0.35 Hz.  The 95% confidence intervals for the 

limits of agreement were -0.48 Hz to -0.31 Hz for the lower limit and 0.28 Hz to 0.46 Hz for 

the upper limit. 

 

15 of the 37 videos were rated as <1cm amplitude by both clinician raters (i.e. MDS-UPDRS 

grade 1 or 0). No significant inverse correlation was found between video accuracy (absolute 

error, Hz) and tremor amplitude, either measured by clinician amplitude rating (Rater 1: 

Spearman’s rho -0.07, p=0.70; Rater 2: Spearman’s rho -0.15, p=0.37) or accelerometer 

displacement (Spearman’s rho 0.25, p=0.14), Figure 5. Video 1 shows an example of two 

tremors with low amplitude (UPDRS grade 1) in which there was excellent agreement 

between the video and accelerometer frequencies  (6.41 vs 6.39 Hz for the first hand shown 

in the video, and 5.60 vs 5.62 for the second hand shown in the video). 

 

 

Discussion 

 

We found that computer vision could measure the dominant frequency of hand tremor from 

smartphone video, and this showed excellent agreement with a gold standard measure of 

tremor frequency, accelerometery (95% limits of agreement -0.38 Hz to +0.35 Hz).  The 

method appears to remain accurate across a range of amplitudes with no significant inverse 

correlation detected between absolute error and tremor amplitude. 

 



Frequency is an important characteristic of tremor, especially to aid diagnostic classification 

[4,5], but can be challenging to determine accurately. Unlike accelerometers (clinical or within 

smartphones), our video method is contactless, does not involve specialist equipment or 

patient interaction with an app, and simply visually records what the clinician sees during a 

standard neurological examination. The hardware required already exists in the pocket of 

most clinicians, so that our approach is an equitable one, that bypasses many of the usual 

cost and geographical barriers. In essence, our method is largely automated, without a need 

to tightly control camera distance, lighting or background. There are only three manual 

procedures that are currently inherent to our method: (1) setting the smartphone camera to 

record video, (2) drawing one bounding box around the hand, and (3) drawing one line for 

the long axis of the hand. Steps (2) and (3) involve drawing just two items (one box and one 

line) for a single frame of the video, and even this process could be automated in future work. 

We would expect our method to detect any oscillatory movement that is visible in the video, 

regardless of distance of the camera from the body part, because the technique is a measure 

of pixel movement. Purposefully, we did not tightly constrain the distance between the hand 

and camera as we recognised that flexibility in this parameter would be important in a clinical 

setting. If hand pixels are moving in an oscillatory manner, the pixel movement will be 

detected and the frequency of that oscillation measured. 

 

Contactless tremor measurement using optical flow has recently been described using the 

(markerless) Microsoft Kinect 3D camera system [18].  However, this method is limited by the 

need for specialist costly hardware, and inaccuracy in tracking smaller movements, such that 

tremor smaller than 2cm cannot be reliably detected [18]. 

 



Three previous studies reported computer processing of standard video to measure tremor. 

In 2013, Hemm-Ode et al applied an optical flow algorithm to videos of two patients with 

hand tremor during Deep Brain Stimulation (DBS) and found “similar trends” in optical flow 

and accelerometer [19]. However the authors did not report any quantitative (Hz) 

measurement of tremor frequency and no summary statistics were provided. A second study 

measured change in one-dimension, by sampling pixel colour oscillation at static points to 

give tremor frequency, and showed results comparable with ours (<0.5 Hz difference in 94% 

of samples) [9]. The advantage of our technique that tracks pixel movement in two 

dimensions is that it allows potential future measurement of direction, magnitude change, 

and movement beyond simple tremor.  The third previous publication in this area described 

measurement of tremor during superimposed large amplitude movement [10].  However, it 

used a more complex technique than ours that required human video labelling of multiple 

frames to train the computer to reliably detect hands, and agreement with accelerometer 

was considerably lower than our results (mean absolute error of 1.066 Hz for postural tremor 

and 1.253 Hz for rest tremor).  

 

Our study has several limitations. Although 37 distinct videos were used (varying by 

participant, hand, rest/posture), the participant group was small, so we cannot yet be sure 

that the findings would generalise to a wider population. Although no significant inverse 

correlation was found between error and amplitude, we cannot rule out the possibility that a 

significant correlation might emerge in a larger or more diverse sample. Measurement of 

tremor frequency is most useful when paired with electromyography [20,21], and camera-

based computer vision cannot yet measure muscle contraction.  However, determining 

frequency alone can be useful, e.g. by demonstrating variation of tremor frequency over time 



in functional tremor [5], a potential future application of our technique (combined with Short-

time Fourier Transform) [8]. A camera measurement is two dimensional and, similar to single 

axis (one dimensional) clinical accelerometer, movements exactly perpendicular to the 

camera angle potentially may not be recorded, but this could be rectified by moving the 

camera to a different angle [5]. Two dimensional video cannot measure absolute tremor 

amplitude but in principle the relative amplitude (e.g. in relation to finger width), or change 

in amplitude over time, could be derived from pixel movement in future work. We have not 

quantified the lower limits of amplitude for detection of tremor frequency using our method, 

but optical flow is known to be sensitive to small amplitude movement in standard video 

(provided there is not additional movement ‘noise’ in the background of the video frame), 

e.g. [22]. It is notable that 15 of 37 videos were rated as <1cm amplitude, and we did not find 

any significant relationship between tremor amplitude and video measure accuracy in our 

current sample. Finally, a tripod is not available in ordinary clinical settings, but smartphone 

cameras use image stabilisation software and in the future our method could include labelling 

of a static background reference point, or combination with hand tracking algorithms [23].  

 

For several recordings, the frequency distribution showed two distinct peaks of similar height 

(power), with each being slightly higher than the other in video vs accelerometer measures.  

This is consistent with the recognition that tremor can have more than one contributing 

component with distinct frequencies [19]. However, to allow simple comparison of single 

number results, we selected the highest frequency peak in these situations. A future approach 

could perhaps provide a two frequency result to provide more detailed clinical information  

 



In summary, we have described a simple method to measure hand tremor frequency from a 

60 second smartphone video that shows good agreement with accelerometer measurements 

and has the potential to provide a ‘point and press’ contactless measure of tremor frequency 

within standard clinical settings. 
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Legends 

 

Figure 1.  Example frame from smartphone video of resting tremor. 

 

Figure 2.  Examples of time series and frequency domain after fast Fourier transform, for (A) 

accelerometer (dominant frequency 4.79 Hz) and (B) video (dominant frequency 4.80 Hz). 

(Video signal derived from pixel movement via Histograms of Optical Flow method.) 

 

Figure 3.  Example of frequency distributions (Fast Fourier Transform) with two peaks.  The 

two peaks show the same frequencies in accelerometer and video, but each has a slightly 

higher power than the other in the alternative methods of measurement.  (A) Accelerometer 

shows a first dominant peak of 4.47 Hz and a second dominant peak of 5.51 Hz; (B) video 

https://github.com/victordibia/handtracking


shows a first dominant peak of 5.53 Hz and a second dominant peak of 4.49 Hz.  The 

distributions and dominant frequencies are very similar. Where a second dominant peak 

was >70% the size of the first dominant peak (and separated by >0.5 Hz), we compared the 

highest frequency peak of the two in both methods of measurement (in this case 5.51 Hz and 

5.53 Hz). 

 

Table 1.  Summary of Participant Characteristics (IQR = Interquartile Range) 

 

Figure 4.  Bland-Altman Plot showing the agreement between tremor measurements derived 

from video (pixel optical flow) and accelerometer. Dashed horizontal lines show mean 

difference (bias) and the 95% limits of agreement. Grey bands show the 95% confidence 

intervals for the limits of agreement. The relative outlier (0.89 Hz difference) was a 

Parkinson’s hand at rest. 

 

Video 1.  Two examples of smartphone video showing low amplitude tremor and excellent 

agreement between accelerometer and video (pixel optical flow) measures of tremor 

frequency 

 
 


