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Abstract
We classify certain integrable (both classical and quantum) generalisations of
Dirac magnetic monopole on topological sphere S2 with constant magnetic
field, completing the previous local results by Ferapontov, Sayles and Veselov.
We show that there are two integrable families of such generalisations with inte-
grals, which are quadratic in momenta. The first family corresponds to the clas-
sical Clebsch systems, which can be interpreted as Dirac magnetic monopole
in harmonic electric field. The second family is new and can be written in terms
of elliptic functions on sphere S2 with very special metrics.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The history of quantum integrable systems with magnetic fields goes back to the pioneering
work in the 1930s by Dirac [5] on the celebrated magnetic monopole and by Landau [13], who
considered the case of constant magnetic field on the plane (Landau problem). Since then this
area was of a substantial interest of the mathematical and theoretical physicists (see e.g. [9, 10,
16, 18, 23, 25, 30]).

In spite of this, the general problem of quantum integrability in two dimensions in the pres-
ence of a magnetic field is still far from complete solution. Some important results in this
direction have been found, in particular, by Winternitz and his collaborators in [2, 3, 6, 15].
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Ferapontov and Fordy [7] derived the classical integrability conditions in the case, when
the integral is quadratic in momenta. Ferapontov et al [8] considered the quantum case and
showed that the conditions of quantum integrability are different from classical case (see the
details in the next section). However, remarkably they coincide in the case when the density
of the magnetic field B is constant. This case was studied in [8], where a local classification of
such systems under some additional assumptions was found.

The final list consists of two families (see the next section). The first one contains the Dirac
magnetic monopoles in the external harmonic field (and their hyperbolic versions), which are
known to be equivalent to the classical Clebsch integrable cases of the free rigid body in infinite
ideal fluid [4].

The second family is more mysterious and is the main object of our study. We show that
under certain assumptions on the parameters the corresponding systems can be extended to
the smooth systems on the topological sphere S

2, which can be described in terms of elliptic
functions.

More precisely, we represent the sphere S2 as the quotient of a real torus T by the involution
σ : u →−u, u ∈ T.

Consider the elliptic function Q(z) defined as the inversion w = Q(z) of the elliptic
integral

z =
∫ w

β2

2dξ√
P(ξ)

,

where

P(x) = a3(x − β1)(x − β2)(x − β3)(x − β4)

is a polynomial with a3 < 0 and 4 real roots: β1 > β2 > 0 > β3 > β4, such that

β1 + β2 + β3 + β4 = 0, β1 + β4 < 0, β2 + β3 > 0.

The elliptic function Q(z) is even and has two periods: real 2K1 and pure imaginary 2iK2,
where

K1 =

∫ β1

β2

2dξ√
P(ξ)

, K2 =

∫ β3

β2

2dξ√
−P(ξ)

.

It satisfies the differential equation 4Q′2 = P(Q) and can be expressed via the standard Weier-
strass elliptic function℘(z). In the limiting case whenβ1 + β4 = β2 + β3 = 0 (so P(x) is even),
Q can be written in terms of the Jacobi’s elliptic sn-function [29] as

Q = β2 sn(α(z − β2); k), α =
√

a3β1/2, k = β2/β1.

Introduce two real-valued functions

Q1(u1) :=Q(u1), Q2(u2) :=Q(iu2)

with periods 2K1 and 2K2 respectively, and consider the torus

T
2 = R

2(u1, u2)/4K1Z⊕ 4K2Z.

2
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On this torus the corresponding classical Hamiltonian H and integral F have the following
explicit form with Q1 = Q1(u1) and Q2 = Q2(u2)

H =
1

Q2
1 − Q2

2

[
(p1 − A1)2 + (p2 − A2)2

]
+

μ

Q1 + Q2
, (1)

F =
1

Q2
1 − Q2

2

[
Q2

2(p1 − A1)2 + Q2
1(p2 − A2)2

]

+
2kQ′

2

Q1 − Q2
(p1 − A1) +

2kQ′
1

Q2 − Q1
(p2 − A2) − μQ1Q2

Q1 + Q2
− kB(Q1 + Q2)2,

(2)

where B is the density of magnetic field assumed to be constant and k = −4B/a3. The magnetic
potential A = A1du1 + A2du2 is determined by the relation

dA = B(Q2
1(u1) − Q2

2(u2))du1 ∧ du2. (3)

There is a problem with these systems on the torus, because Q1 − Q2 = 0 at the half-periods
of the torus, which creates singularities in the formulas. However, we show that on the quo-
tient S2 = T

2/σ of the torus by involution σ having exactly these points fixed, this problem
disappears and we have regular smooth systems on S

2.
In the limiting even case we do have two singularities in the potential h, but the metric

becomes the standard metric on the round sphere, so we have the new integrable electric per-
turbation of Dirac magnetic monopole (and new integrable two-centre problem) on the standard
sphere (see [28]).

The plan of the paper is following. In the next two sections we describe the classical and
quantum integrability conditions in 2D in the presence of magnetic field and prove the local
classification result in the case of non-zero constant magnetic field, mainly following unpub-
lished work of Ferapontov et al [8]. Then we show that under certain condition on the parame-
ters these systems can be extended to the regular analytic integrable systems on the topological
sphere S2 with some very special metrics.

2. Integrable magnetic fields in 2D: local classification

In two dimensions it is always possible to reduce both Hamiltonian H and integral F to a
diagonal form:

H = g11(p1 − A1)2 + g22(p2 − A2)2 + h,

F = g11v1(p1 − A1)2 + g22v2(p2 − A2)2 + φ1 (p1 − A1) + φ2 (p2 − A2) + ϕ,

(4)

in which metric gii and all the other coefficients vi, Ai, φ
i, h, ϕ are functions depending on the

coordinates (q1, q2).
Ferapontov and Fordy [7] showed that Poisson commutativity of H and F is equivalent to

the following integrability conditions

3
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(C1) ∂iv
i = 0, i = 1, 2,

(C2) ∂ jv
i =

(
v j − vi

)
∂ j ln(gii) for all i 	= j,

(C3) ∂iφ
i =

1
2gii

(
φ1∂1gii + φ2∂2gii

)
, i = 1, 2,

(C4) 2
√

g11g22(v2 − v1)B = g22∂2φ
1 + g11∂1φ

2,

(C5) ∂1ϕ− v1∂1h − φ2√
g11g22

B = 0, ∂2ϕ− v2∂2h +
φ1√
g11g22

B = 0,

(C6) φ1∂1h + φ2∂2h = 0,

(5)

where

B :=
√

g11g22(∂1A2 − ∂2A1) (6)

is the magnetic field density.
Consider now the following quantum analogue of the Hamiltonian and the integral:

Ĥ =
√

g11g22∇1
g11√
g11g22

∇1 +
√

g11g22∇2
g22√
g11g22

∇2 + h, (7)

F̂ = v1
√

g11g22∇1
g11√
g11g22

∇1 + v2
√

g11g22∇2
g22√
g11g22

∇2

+ φ1∇1 + φ2∇2 + ϕ,

where ∇ j = i∂ j − A j, j = 1, 2.
Ferapontov et al [8] derived the necessary and sufficient conditions for commutativity

[Ĥ, F̂] = 0 and showed that the first conditions (C1)–(C5) are the same, but the last condition
(C6) in quantum case is replaced by

(C6)∗ φ1∂1h + φ2∂2h +
√

g11g22
(
v2 − v1

)
×

(
∂2g11

g11
∂1B +

∂1g22

g22
∂2B − ∂1∂2B

)
= 0. (8)

In particular, we see that if the magnetic density B is constant then the extra term

∂2g11

g11
∂1B +

∂1g22

g22
∂2B − ∂1∂2B = 0

vanishes and the quantum and classical integrability conditions coincide.
Local classification of all such systems (under some additional assumptions) was done by

Ferapontov et al [8], who proved in the quantum case the following

Theorem 1. Suppose that the quantum system with the Hamiltonian Ĥ of the form (7) has
magnetic field with a constant non-zero density B, a non-constant electric potential h and
assume that the system has no integrals, which are linear in momenta.

4
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Then the system has a second order integral F̂ if and only if it can be locally reduced to
one of the forms specified below, where in each case the metric is of Stäckel form

ds2 =
q1 − q2

f (q1)
(dq1)2 +

q2 − q1

f (q2)
(dq2)2 (9)

with

(I) f (q) = a3q3 + a2q2 + a1q + a0, h = μ(q1 + q2); (10)

(II) f (q) = a3q3 + a2q2 + a1q + a0q
3
2 , h =

μ√
q1 +

√
q2

(11)

depending on real parameters a0, a1, a2, a3 	= 0 and μ. The Gaussian curvature of the metrics
respectively is

(I) K = −a3

4
and (II) K = −a3

4
+

a0

(
√

q1 +
√

q2)3
. (12)

The corresponding quantum integral F̂ can be chosen in the form (7) with v1 = q2, v2 = q1

and

(I) φ1 = k

√
− f (q1) f (q2)

(q1 − q2)2
, φ2 = −k

√
− f (q1) f (q2)

(q1 − q2)2
,

ϕ = μq1q2 − kB(q1 + q2);

(13)

(II) φ1 = k

√
− f (q1) f (q2)√

q1q2 − q2
, φ2 = k

√
− f (q1) f (q2)√

q1q2 − q1
,

ϕ = − μ
√

q1q2√
q1 +

√
q2

− kB
(√

q1 +
√

q2
)2

,

(14)

where k = −4B/a3.

The proof is rather lengthy and technical. We present it now with all the details, mainly
following the unpublished work [8].

3. Proof of the local classification

Since the classical and quantum integrability conditions coincide in our case, we will consider
for simplicity the classical case, assuming that the Hamiltonian H and integral F are reduced
to the diagonal form

H = g11(p1 − A1)2 + g22(p2 − A2)2 + h,

F = g11v1(p1 − A1)2 + g22v2(p2 − A2)2 + φ1 (p1 − A1) + φ2 (p2 − A2) + ϕ,

where all the coefficients are functions of the local coordinates (q1, q2).
We assume also that the magnetic density

B =
√

g11g22 (∂1A2 − ∂2A1) ,

5
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is a non-zero constant. As we have seen in that case the classical and quantum integrability
conditions coincide.

Without loss of generality locally we can take v1 = q2, v2 = q1. By integrability condition
(C2), we must have metric of Stäckel form

ds2 =
q1 − q2

f1(q1)
(dq1)2 +

q2 − q1

f2(q2)
(dq2)2. (15)

In order to make the metric positive definite, we require that f1(q1) and f2(q2) have different
sign. Now, we use condition (C5)

∂1ϕ− v1∂1h − φ2√
g11g22

B = 0,

∂2ϕ− v2∂2h +
φ1√
g11g22

B = 0.

The consistency condition gives

φ1∂1B + φ2∂2B +
√

g11g22
(
v2 − v1

) (
∂2g11

g11
∂1h +

∂1g22

g22
∂2h − ∂1∂2h

)
= 0.

(16)

Remark 1. Note that this condition coincides with the quantum integrability condition (C6)∗

given by (8) with the roles of h and B interchanged. Thus we see an interesting duality between
the potential h and the magnetic field density B, which holds only in the quantum case.

It is interesting that the self-duality conditions B = ±h appear as the factorisability condi-
tion for the Hamiltonian in the work by Ferapontov and Veselov [9].

Since we assumed that B is constant, this relation reduces to(
q1 − q2

)
∂1∂2h − ∂1h + ∂2h = 0,

which can be simplified to

∂1∂2
[(

q1 − q2
)

h
]
= 0. (17)

Now assume that h is not a constant. Solving (17) we get

h =
a(q1) − b(q2)

q1 − q2
, (18)

where a and b are arbitrary functions, and

φ j = − ∂ih
∂ jh

φi, i 	= j, i, j = 1, 2. (19)

From condition (C3):

∂1φ
1 =

1
2g11

(
φ1∂1g11 + φ2∂2g11

)
, ∂2φ

2 =
1

2g22

(
φ1∂1g22 + φ2∂2g22

)
,

6
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after rearranging terms and using relation (19), we have

φ1 = exp

[∫
1

2g11

(
∂1g11 − ∂1h ∂2g11

∂2h

)
dq1

]
,

φ2 = exp

[∫
1

2g22

(
∂2g22 − ∂2h ∂1g22

∂1h

)
dq2

]
.

Using the Stäckel form of the metric (15) we deduce that

φ1 = β(q2)

√
f1(q1)

a(q1) − b(q2) − (q1 − q2)b′(q2)
(20)

φ2 = α(q1)

√
f2(q2)

b(q2) − a(q1) + (q1 − q2)a′(q1)
(21)

for some arbitrary functions α and β. Substituting this back to condition (C6), we have

−α(q1)
β(q2)

=

√√√√ f1(q1)
(
−a(q1) + b(q2) + (q1 − q2)a′(q1)

)3

f2(q2)
(
a(q1) − b(q2) − (q1 − q2)b′(q2)

)3 ,

which after taking logarithm and differentiating by q1 and q2, gives

a′′(q1)(a(q1) − b(q2) − (q1 − q2)b′(q2))3 = b′′(q2)(b(q2) − a(q1) + (q1 − q2)a′(q1))3, (22)

and thus

−α(q1)
β(q2)

=

√
f1(q1)a′′(q1)
f2(q2)b′′(q2)

.

Rearranging terms and separating q1 and q2, we arrive at the final relation for α and β

− α(q1)√
f1(q1)a′′(q1)

=
β(q2)√

f2(q2)b′′(q2)
= constant. (23)

Substituting q1 = q2 = q into (22), we have(
a′′(q) + b′′(q)

)
(a(q) − b(q))3 = 0. (24)

Hence we have the following two cases:

(a) a(q) = b(q)
(b) a′′(q) = −b′′(q)

Case A: a(q) = b(q)
Denote f(q) := a(q) = b(q) and substitute this into equation (22) to have

f ′′(q1)

(
f (q1) − f (q2)

q1 − q2
− f ′(q2)

)3

= f ′′(q2)

(
− f (q1) − f (q2)

q1 − q2
+ f ′(q1)

)3

.

7
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Then we fix q2 and assume q1 is near to q2. Using Taylor expansion up to 5th order derivatives
of f, we have

f (q1) − f (q2)
q1 − q2

= f ′(q2) +
1
2

f ′′(q2)(q1 − q2) +
1
6

f ′′′(q2)(q1 − q2)2

+
1

24
f (4)(q2)(q1 − q2)3 +

1
120

f (5)(q2)(q1 − q2)4 + · · · ,

f ′(q1) = f ′(q2) + f ′′(q2)(q1 − q2) +
1
2

f ′′′(q2)(q1 − q2)2

+
1
6

f (4)(q2)(q1 − q2)3 +
1
24

f (5)(q2)(q1 − q2)4 + · · · ,

f ′′(q1) = f ′′(q2) + f ′′′(q2)(q1 − q2) +
1
2

f (4)(q2)(q1 − q2)2

+
1
6

f (5)(q2)(q1 − q2)3 + · · · .

After the substitution the first coefficients are cancelled, while the cancellation of (q1 − q2)6

term gives the following necessary condition for f:

f ′′(q)
(
40 f ′′′(q)3 − 45 f ′′(q) f ′′′(q) f (4)(q) + 9 f ′′(q)2 f (5)(q)

)
= 0. (25)

First we notice that f ′′(q) cannot be zero since this will give to a constant potential h, which
contradicts our assumption.

This means that g(q) := f ′′(q) satisfies the equation

40
9

(g′)3 − 5g g′g′′ + g2g′′′ = 0. (26)

Remarkably this happens to be n = − 2
3 case of the following solvable equation:

(n − 1)(n − 2)(y′)3 + 3(n − 1)y y′y′′ + y2y′′′ = 0 (27)

with the general solution of the form

[y(x)]n = c0 + c1x + c2x2

(see equation 27 in [22], section 3.5.3).
Thus we have

f ′′(q) = g(q) = (c0 + c1q + c2q2)−
3
2 .

Integrating this twice, we arrive at the following general formula for f :

f (q) =
4

4c0c2 − c2
1

√
c0 + c1q + c2q2 + C1q + C0,

where C0 and C1 are constants and we assumed that 4c0c2 − c2
1 	= 0. Ignoring the linear term,

which only gives a constant shift of the potential, and relabelling the constants we have

a(q) = b(q) =
√

c0 + c1q + c2q2.

8
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In the case, when 4c0c2 − c2
1 = 0, modulo linear terms we have two subcases:

a(q) = b(q) = cq2,

and

a(q) = b(q) =
c

q + d
,

where c and d are some constants.
Case B: a′′(q) = −b′′(q)
In that case we have that

a(q) = −b(q) + C1q + C0.

Denote f(q) := b(q), g(q) := 2f(q) − C1q − C0 then, similarly to the previous case, Taylor
expansion in the equation (22) leads to the following differential equation for g:

3g2g′g′′ + g3g′′′ = 0. (28)

Trivial solution g ≡ 0 leads to the constant potential, so we can divide equation (28) by g2 to
get

3g′g′′ + gg′′′ = 0,

which has the general solution

g(q) =
√

c0 + c1q + c2q2,

where c0, c1, c2 are arbitrary constants. Hence modulo linear terms

a(q) = −1
2

√
c0 + c1q + c2q2 = −b(q).

One can check that this case does not lead to any new solutions compared to case A.
Thus we have the following three different cases to analyse:

(a) a(q) = b(q) =
√

c0 + c1q + c2q2,
(b) a(q) = b(q) = cq2,
(c) a(q) = b(q) = c

q+d .

Case (1): a(q) = b(q) =
√

c0 + c1q + c2q2

Without loss of generality we can reduce this case to 2 subcases

(a) a(q) = b(q) = μ
√

q,
(b) a(q) = b(q) =

√
c0 + c2q2.

Subcase (i): a(q) = b(q) = μ
√

q
We have

a(q1) = μ
√

q1, b(q2) = μ
√

q2, h =
μ
√

q1 − μ
√

q2

q1 − q2
=

μ√
q1 +

√
q2

.

From equation (23)

α(q1) = − k̃
2

√
−(q1)−

3
2 f1(q1) , β(q2) =

k̃
2

√
−(q2)−

3
2 f2(q2),

9
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with some constant k̃. Moreover, from (20) and (21) we have

φ1 = k

√
− f1 f2√

q1q2 − q2
, φ2 = k

√
− f1 f2√

q1q2 − q1
, k = k̃/

√
μ.

Substituting them into the last unused condition (C4), we have

4B
k

(q1 − q2)
(√

q1 −
√

q2
)2

= −
(√

q1 −
√

q2
) (

f ′
1(q1)√

q1
+

f ′
2(q2)√

q2

)
−

(√
q2

q1
− 2

)
f1(q1)

q1

+

(√
q1

q2
− 2

)
f2(q2)

q2
.

Changing coordinate
√

q1 = x,
√

q2 = y and f(z2) = z3F(z), we have

8B
k

(x + y)(x − y)3 = −(x − y)
(
xF′(x) + yF′(y)

)
+ (x + y)(F(x) − F(y)).

Applying the operator ∂3

∂x2∂y to this relation yields

d
dx

(
x3F′′(x)

)
= −96B

k
x3.

Solving this ODE gives

F(x) = −4B
k

x3 + a2x +
a1

x
+ a0,

where ai are constants. Therefore we can derive the functions f1 and f2 in the metric:

f1(q) = f2(q) = −4B
k

q3 + a2q2 + a1q + a0q
3
2 . (29)

To find the potential in the integral F we use condition (C5):

∂1ϕ = v1∂1h +
φ2√
g11g22

B = q2∂1h − kB

(
1 +

√
q2

q1

)
,

∂2ϕ = v2∂2h − φ1√
g11g22

B = q1∂2h − kB

(
1 +

√
q1

q2

)
,

which now has solution

ϕ(q1, q2) = − μ
√

q1q2√
q1 +

√
q2

− kB
(√

q1 +
√

q2
)2
.

Subcase (ii): a(q) = b(q) =
√

c0 + c2q2

We assume for simplicity that c0 = c, c2 = 1, so

a(q1) =
√

c + (q1)2, b(q2) =
√

c + (q2)2, h =

√
c + (q1)2 −

√
c + (q2)2

q1 − q2
.

10
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Again from (20)–(22) we have

φ1 = k

√√√√ − f1 f2(
c + (q2)2

) (
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

) ,

φ2 =− k

√√√√ − f1 f2(
c + (q1)2

) (
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

) ,

Similarly to the previous subcase we have

4B
k

(q1 − q2)
√

c + q1q2 −
√

c + (q1)2
√

c + (q2)2

= − f ′
1(q1)√

c + (q1)2
− f ′

2(q2)√
c + (q2)2

+
c(q2 − q1) + 3q1

(
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

)
(c + (q1)2)

3
2

(
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

) f1(q1)

+
c(q1 − q2) + 3q2

(
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

)
(
c + (q2)2

) 3
2
(

c + q1q2 −
√

c + (q1)2
√

c + (q2)2
) f2(q2).

Making the substitution

f1(q1) = (c + (q1)2)F1(q1), f2(q2) = (c + (q2)2)F2(q2),

we can simplify above equation to be

4B
k

(q1 − q2)
√

c + q1q2 −
√

c + (q1)2
√

c + (q2)2

= −
√

c + (q1)2 F′
1(q1) −

√
c + (q2)2 F′

2(q2)

+
q2

√
c + (q1)2 − q1

√
c + (q2)2

c + q1q2 −
√

c + (q1)2
√

c + (q2)2
F1(q1)

+
q1

√
c + (q2)2 − q2

√
c + (q1)2

c + q1q2 −
√

c + (q1)2
√

c + (q2)2
F2(q2).

We now differentiate this with respect to q1 and q2 to have

− B
ck

(q1 − q2)
[
3c(q1 − q2)2 + 2(c + 3q1q2)

(
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

)]
√

c + q1q2 −
√

c + (q1)2
√

c + (q2)2

= −
√

c + (q1)2 F′
1(q1) −

√
c + (q2)2 F′

2(q2)

11
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+
q2

√
c + (q1)2 − q1

√
c + (q2)2

c + q1q2 −
√

c + (q1)2
√

c + (q2)2
F1(q1)

+
q1

√
c + (q2)2 − q2

√
c + (q1)2

c + q1q2 −
√

c + (q1)2
√

c + (q2)2
F2(q2).

Note that these two equations are only different in the left-hand side, so we can subtract them
to get

B
[
c(q1 − q2)2 + 2(c + q1q2)

(
c + q1q2 −

√
c + (q1)2

√
c + (q2)2

)]
= 0.

Since we assumed that B 	= 0, we have

c(q1 − q2)2 + 2(c + q1q2)
(

c + q1q2 −
√

c + (q1)2
√

c + (q2)2
)
= 0,

which after simplification reduces to

0 = c2(q1 − q2)4.

From this we have c = 0, which leads to a constant potential h.
Thus in the subcase (ii) we have no required integrable cases.
Case (2): a(q) = b(q) = cq2

Without loss of generality we can assume that c = 1, so

a(q1) = (q1)2, b(q2) = (q2)2, h = q1 + q2.

From equations (20), (21) and (23) we have

φ1 = k

√
− f1 f2

(q1 − q2)2
, φ2 = −k

√
− f1 f2

(q1 − q2)2
,

where f1 = f1(q1), f2 = f2(q2) and k is an arbitrary constant. From condition (C4), we have

B
k
=

f1(q1) − f2(q2)
2(q1 − q2)3

− f ′
1(q1) + f ′

2(q2)
4(q1 − q2)2

. (30)

Rearranging and putting q1 = q2 = q implies that f1(q) = f2(q) := f(q). Hence equation (30)
reduces to

4B
k

(q1 − q2)3 = 2
(

f (q1) − f (q2)
)
− (q1 − q2)

(
f ′(q1) + f ′(q2)

)
.

Applying ∂3

∂q12
∂q2

to the above equation gives f ′′′ = −24B/k, implying that

f1(q) = f2(q) = −4B
k

q3 + a2q2 + a1q + a0.

12
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The Gaussian curvature K in this case is a constant equals to B
K .As before, to find the integral

F we use condition (C5):

∂1ϕ = v1∂1h +
φ2√
g11g22

B = q2 − kB,

∂2ϕ = v2∂2h − φ1√
g11g22

B = q1 − kB,

so that

ϕ(q1, q2) = q1q2 − kB(q1 + q2).

Case (3): a(q) = b(q) = c
q+d

We can assume for simplicity that c = 1 and d = 0, so

a(q) = b(q) = 1/q, h = −1/q1q2.

From (20) and (21) we have

φ1 = k

√
− q1 f1 f2

q2(q1 − q2)2
, φ2 = −k

√
− q2 f1 f2

q1(q1 − q2)2
.

Applying the operator ∂4

∂q12
∂q22 to condition (C4) in this case, we have

(
5(q1)3 + (q1)2q2 − q1(q2)2 − 5(q2)3

)
B = 0,

which means that in this case magnetic field is zero.
Thus we have shown that only cases (1)(i) and (2) lead to the integrable systems with non-

zero constant magnetic field and non-constant potential. This completes the proof of theorem 1.
We should emphasize that this is a local classification and all these metrics are incomplete.

We are going to show now that under certain assumptions on the parameters these systems can
be extended to the analytic integrable systems on a topological sphere, thus presenting some
integrable generalisations of the Dirac magnetic monopole.

4. Case I: Dirac magnetic monopole in harmonic field

To understand the global geometry of the case I we should consider two major subcases, when
the cubic polynomial f(q) = a3q3 + a2q2 + a1q + a0 has

I a) three distinct real roots;
I b) one real root and two complex conjugate roots.

It is easy to check that the metric (9) is positive definite and has positive Gaussian curvature
K only in the case I a) with a3 < 0.

Let us show that in this case this metric is simply the standard metric on a round sphere S2 ⊂
R

3. Without loss of generality we can restrict ourselves to the case a3 = −4 corresponding to
the unit sphere.

Consider a sphere given in Cartesian coordinates x1, x2, x3 in R
3 by the equation

x 2
1 + x 2

2 + x 2
3 = 1,

13
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and introduce, following Neumann, the spherical elliptic coordinates as the roots q1, q2 of the
quadratic equation

φ(q) =
x 2

1

α1 − q
+

x 2
2

α2 − q
+

x 2
3

α3 − q
= 0, (31)

where α1, α2, α3 are arbitrary constants (see [17, 19]). Rewrite the quantity φ in terms of the
roots q1, q2 as follows:

φ(q) =
(q − q1)(q − q2)

(α1 − q)(α2 − q)(α3 − q)

and computing the residues we come to the following expression of the Cartesian coordinates
x1, x2, x3 and the spherical elliptic coordinates q1, q2:

x 2
1 =

(α1 − q1)(α1 − q2)
(α1 − α2)(α1 − α3)

, x 2
2 =

(α2 − q1)(α2 − q2)
(α2 − α1)(α2 − α3)

,

x 2
3 =

(α3 − q1)(α3 − q2)
(α3 − α1)(α3 − α2)

.

A simple calculation shows then that in the elliptic coordinates q1, q2 the metric takes the form

ds2 =
q1 − q2

4(α1 − q1)(α2 − q1)(α3 − q1)
(dq1)2 +

q2 − q1

4(α1 − q2)(α2 − q2)(α3 − q2)
(dq2)2,

which is of Stäckel type (9) with cubic polynomial

f (x) = 4(α1 − x)(α2 − x)(α3 − x)

having 3 real roots.
Note that if we order the roots and the elliptic coordinates by

α1 > q1 > α2 > q2 > α3,

then we have general case of metrics in class I a) with x = q1, y = q2. The degenerate case,
when two of the roots of cubic f collide, corresponds to the usual spherical coordinates on
sphere.

Let us show now that in terms of Cartesian coordinates the potential h = μ(q1 + q2) is
quadratic. We have by definition

q2 −
[
(α2 + α3)x 2

1 + (α1 + α3)x 2
2 + (α1 + α2)x 2

3

]
q

+ (α2α3x 2
1 + α1α3x 2

2 + α1α2x 2
3 ) = 0,

which implies that q1 + q2 = (α2 + α3)x 2
1 + (α1 + α3)x 2

2 + (α1 + α2)x 2
3 . Thus the potential

h = μ(q1 + q2) is a quadratic function of x1, x2, x3, which could be chosen arbitrary.

Theorem 2. Integrable systems of type I a) with a3 < 0 can be extended to the Dirac mag-
netic monopoles on the round sphere in the external harmonic field with arbitrary quadratic
potential. They are equivalent to the classical integrable Clebsch systems considered on the
co-adjoint orbits of the Euclidean group E(3).

14
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Indeed, it is well-known that the Dirac magnetic monopole in the external harmonic field
is equivalent to a special Clebsch integrable case of the rigid body motion in the infinite ideal
fluid (see [26]).

Recall that the Kirchhoff equations for such a motion are simply Euler equations on the dual
space e(3)∗ of the Lie algebra of the isometry group E(3) of Euclidean spaceR3 (see e.g. Perelo-
mov [21]). The corresponding variables Mi, xi, i = 1, 2, 3 have the canonical Lie–Poisson
brackets

{Mi, M j} = εijkMk, {Mi, x j} = εijkxk, {xi, x j} = 0. (32)

We have two Casimir functions

C1 = |x|2, C2 = (M, x).

As it was first pointed out by Novikov and Schmelzer [20], the symplectic leaf with C1 = |x|2 =
1, C2 = (M, x) = ν is symplectically isomorphic to the cotangent bundle of the unit sphere T∗S2

with additional Dirac magnetic field with density B = ν.
In the coordinates M, x the Hamiltonian and the integral of the corresponding Clebsch

system have the form

H = |M|2 − μ(α1x2
1 + α2x2

2 + α3x2
3),

F = α1M2
1 + α2M2

2 + α3M2
3 + μ(α2α3x2

1 + α1α3x2
2 + α1α2x2

3).
(33)

To get the quantum version one should simply replace M, x by M̂, x̂ with the commutation
relations

[M̂i, M̂ j] = εijkM̂k, [M̂i, x̂ j] = εijk x̂k, [x̂i, x̂ j] = 0.

Note that there is no ordering problem since both Hamiltonian and integral written only in
terms of the squares of variables.

In the remaining case I b) we have different versions of elliptic coordinates on the hyperbolic
plane in external harmonic field, see e.g. [27].

Let us consider here only the most degenerate case when f(x) = 4x3. Making change of
variables X = (q1)−1/2, Y = (q2)−1/2, we have

ds2 =

(
1

X2
+

1
Y2

)
(dX2 + dY2).

Denote w = X + iY and z = w2 = X2 − Y2 + 2iXY = u + iv, then

ds2 =
X2 + Y2

X2Y2
(dX2 + dY2) =

4ww̄
Im (w2)2

dwdw̄ =
dzdz̄

Im (z)2
=

du2 + dv2

v2
,

which is the canonical hyperbolic metric on the upper half plane. The potential h in u, v-
coordinates is

h = μ(q1 + q2) = μ
Y2 − X2

X2Y2
= −4 μu

v2
.

15
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5. Case II: new integrable generalisations of Dirac monopole

Let us first of all rewrite the formulas in more convenient variables

x1 =
√

q1, x2 =
√

q2.

Then metric (9) takes the form

ds2 = 4
x2

1 − x2
2

P(x1)
dx2

1 + 4
x2

2 − x2
1

P(x2)
dx2

2 (34)

with

P(x) = a3x4 + a2x2 + a0x + a1 (35)

(note an unusual order of the coefficients). The Gaussian curvature in the new coordinates is

K = −a3

4
+

a0

(x1 + x2)3
. (36)

The electric potential h becomes

h =
μ

x1 + x2
, (37)

while the magnetic potential A is determined by

∂1A2 − ∂2A1 = 4B
x2

1 − x2
2√

−P(x1)P(x2)
. (38)

The integral F has the form (7) with

φ1 = k

√
−P(x1)P(x2)
2(x1 − x2)

= −φ2, ϕ = − μx1x2

x1 + x2
− kB(x1 + x2)2, (39)

where as before k = −4B/a3.
To study the regularity condition we can assume without loss of generality that a3 < 0 and

a0 � 0. For the analysis of the special case a0 = 0 we refer to our paper [28], so let us assume
now that a0 < 0.

One can show that in order to define regular system on a sphere the polynomial P(x) must
have 4 real roots, which we denote βi, i = 1, 2, 3, 4:

P(x) = a3x4 + a2x2 + a0x + a1 = a3(x − β1)(x − β2)(x − β3)(x − β4).

We assume also that there are no multiple roots and that β1 > β2 > β3 > β4, such that

β1 + β2 + β3 + β4 = 0.

Simple arguments show that we have that actually β1 > β2 > 0 > β3 > β4 and that

β1 + β4 < 0, β2 + β3 > 0 (40)

(see figure 1).
The algebraic conditions on the coefficients of the quartic polynomial (35) for having 4

distinct real roots are

Δ > 0, a2a3 < 0, 4a1a3 − a2 < 0,

16
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Figure 1. Graph and zeroes of P(x).

where Δ is the discriminant of P(x) = 0:

Δ = 256a3
1a3

3 − 128a2
1a2

2a2
3 + 144a2

0a1a2a2
3 − 27a4

0a2
3 + 16a1a4

2a3 − 4a2
0a3

2a3,

or, under our assumption that a3 < 0,

a2 > 0, a3 < 0, a1 <
a2

4a3
< 0, (41)

256a3
1a2

3 − 128a2
1a2

2a3 + 144a2
0a1a2a3 − 27a4

0a3 + 16a1a4
2 − 4a2

0a3
2 < 0. (42)

Under these assumptions we can make change of variables

u1 =

∫ x1

β2

2dx√
P(x)

, u2 =

∫ x2

β2

2dx√
−P(x)

(43)

with x1 ∈ [β2, β1], x2 ∈ [β3, β2].
We can express the variables x1, x2 via u1, u2 using the elliptic function Q(z) defined as the

inversion w = Q(z) of the elliptic integral

z =
∫ w

β2

2dξ√
P(ξ)

=

∫ w

β2

2dξ√
a3ξ4 + a2ξ2 + a0ξ + a1

, (44)

as follows

x1 = Q1(u1) :=Q(u1), x2 = Q2(u2) :=Q(iu2). (45)

The elliptic function Q(z) is even, of order 2 and has two periods: real 2K1 and pure imaginary
2iK2, where

K1 =

∫ β1

β2

2dξ√
P(ξ)

, K2 =

∫ β3

β2

2dξ√
−P(ξ)

. (46)

It satisfies the differential equation

4Q′2 = P(Q) = a3Q4 + a2Q2 + a0Q+ a1

17
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Figure 2. Octahedron as a quotient of torus by involution.

and can be expressed via the standard Weierstrass elliptic function ℘(z).
In particular, when a0 = 0 we have

4Q′2 = a3(Q2 − β2
1)(Q2 − β2

2)

and Q can be written as one of the Jacobi’s elliptic functions [29]:

Q = β2 sn(α(z − β2); k), α =
√

a3β1/2, k = β2/β1.

In the new coordinates the metric (34) takes the form

ds2 = (Q2
1(u1) − Q2

2(u2))(du2
1 + du2

2), (47)

and the potential is

h =
μ

Q1(u1) + Q2(u2)
. (48)

Consider now the real torus

T
2 = R

2(u1, u2)/4K1Z⊕ 4K2Z,

identifying the points (u1, u2) and (u1 + 4K1m, u2 + 4K2n), m, n ∈ Z.
Formula (47) defines a semi-positive metric on T

2. Indeed,

Q2
1(u1) − Q2

2(u2) = x2
1 − x2

2 = (x1 + x2)(x1 − x2) � 0,

since x1 + x2 � β2 + β3 > 0 by (40) and x1 � x2. The potential h is regular everywhere on the
torus, since the denominator Q1(u1) + Q2(u2) = x1 + x2 is always positive.

Thus (47) fails to be a Riemannian metric onT2 only at the points when x1 = x2 = β2, which
correspond to (u1, u2) = (0, 0) and three half-periods (2K1, 0), (0, 2K2), (2K1, 2K2) of the torus.

Note that the functions Q1 and Q2 are even, so the metric and the potential are invariant
under the involution

σ : (u1, u2) → (−u1,−u2),

having exactly those 4 points fixed. The quotient T2/σ = S
2 is a topological sphere (see

figure 2, where we are using octahedron to represent it).

18
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We claim that the projection p : T2 → S
2 maps the semi-positive metric (47) to a proper

Riemannian metric on S
2 with induced smooth structure. Indeed, we need to check only that

this works in the vicinity of the 4 fixed points.
Let us check this at the point (0, 0). If x ≈ β2 then P(x) ≈ c(x − β2), c = P′(β2),

u1 =

∫ x1

β2

2dx√
P(x)

≈
∫ x1

β2

2dx√
c(x − β1)

=
4√
c

√
x1 − β2.

Thus near (0, 0) we have x1 ≈ β2 + Cu2
1, x2 ≈ β2 − Cu2

2, C =
√

c/4, and thus x1 + x2 ≈
2β2, x1 − x2 ≈ C(u2

1 + u2
2), x2

1 − x2
2 ≈ 2Cβ2(u2

1 + u2
2).

Thus locally metric (47) has the form ds2 ≈ 2Cβ2(u2
1 + u2

2)(du2
1 + du2

2) = 2Cβ2z̄zdzdz̄,
where we introduced complex coordinate z = u1 + iu2. The involution σ acts by z →−z, so
the complex coordinate on the quotient is w = z2 = v1 + iv2, in which metric takes regular
form ds2 ≈ 1

2 Cβ2dwdw̄ = 1
2 Cβ2(dv2

1 + dv2
2).

The situation near 3 other fixed points is similar. Thus we have proved

Theorem 3. Local integrable systems of type II given by (11) with parameters, satisfying
the conditions (41) and (42), can be extended to smooth generalisations of Dirac magnetic
monopole (1)–(3) on topological sphere S

2 with special metric given in terms of elliptic
functions by (47) and (48).

In the quantum case we should add the usual quantisation conditions for the total magnetic
flux

1
2π

B
∫
S2

dσ ∈ Z, (49)

where dσ is the area form on sphere with metric (47). Geometrically this is the integrality of
the first Chern class of the corresponding line bundle [30].

In the limiting case a0 = 0 the metric on the sphere becomes standard, but the potential
becomes singular at two points. The corresponding system can be viewed as a new integrable
version of Euler two-centre problem on sphere [1, 11, 12] and was studied in [28].

Theorem 4 [28]. The system of type II given by (11) with a0 = 0 can be written, similarly
to type I, on the dual Lie algebra e(3)∗, where the Hamiltonian and integral have the following
form

H =
1
2
|M|2 − μ

|q|√
R(q)

, (50)

F = AM2
1 + BM2

2 +
2
√

AB
|q| (M, q)M3 − 2 μ

√
AB

q3√
R(q)

, (51)

where R(q) = Aq2
2 + Bq2

1 + (A + B)q2
3 − 2

√
AB|q|q3 and μ, A, B are parameters satisfying

A > B > 0.
The corresponding electric potential has two Coulomb-like singularities, so this system

can be considered as new integrable two-centre problem on the sphere in the external Dirac
magnetic field.

Let us consider now another limiting case when β1 = β2, assuming for simplicity that
a3 = −1. The function Q(u) satisfies the equation

4Q′2 = −(Q− β1)2R(Q), R(ξ) = (ξ − β3)(ξ − β4).
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Solving this equation and putting u = iu2, we have

x2 = Q2(u2) = β1 −
4ce

1
2
√

cu2

(b + e
1
2
√

cu2 )2 − 4c
, (52)

where

b = 2β1 − β3 − β4 = 4β1 > 0, c = R(β1) = (β1 − β3)(β1 − β4) > 0.

Note that since b2 − 4c > 0 the denominator in (52) is always positive, β3 � Q2(u2) < β1 =
β2 and Q2(u2) → β1 as u2 →±∞. Since

β1 −
4ce

1
2
√

cu

(b + e
1
2
√

cu)2 − 4c
= β1 −

4c√
D cosh 1

2

√
c(u − δ) + 2b

,

where D = b2 − 4c, δ = ln D√
c , we see that Q2 has the symmetry

Q2(2δ − u) = Q2(u).

We have a problem with the first coordinate x1 though, since the second solution of the
equation is Q1(u1) ≡ β1.

To deal with this issue we consider the limit β2 → β1 more carefully. Namely, let us
introduce ε = 1

2 (β1 − β2), β̄ = 1
2 (β1 + β2), so that

−(x − β1)(x − β2) = ε2 − (x − β̄)2.

Define now coordinate u1 as the integral

u1 =

∫ x1

β̄

dx√
ε2 − (x − β̄)2

= arcsin
x1 − β̄

ε
,

so that the inversion gives

x1 = β̄ + ε sin u1. (53)

Since we have

du2
1 =

dx2
1

ε2 − (x1 − β̄)2

we see that in coordinates u1, u2 when ε→ 0 the metric (34) has the following limit on the
cylinder 0 � u1 � 2π, u2 ∈ R:

ds2 =
4(β2

1 − Q2
2(u2))

c

[
du2

1 +
c
4

du2
2

]
. (54)

where c = R(β1) = (β1 − β3)(β1 − β4).
We claim that this metric can be extended to the sphere. To show consider first the central

projection p of the cylinder x2 + y2 = 1 to the unit sphere S2 given by x2 + y2 + z2 = 1.
Parametrising the cylinder as x = cos v1, y = sin v1, z = sinh v2 after a simple calculation

we have the following form of the metric on the cylinder, induced from the standard metric on
the S2:

ds2 =
1

cosh2 v2

[
dv2

1 + dv2
2

]
. (55)
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Now let us change variables in (54) as follows

u1 = 2ũ1, u2 =
4√
c

ũ2 + δ, (56)

so that the metric takes the form

ds2 =
16(β2

1 − Q̃2
2(ũ2))

c

[
dũ2

1 + dũ2
2

]
(57)

with

Q̃2(ũ) = β1 −
4c√

D cosh 2ũ + 2b
.

Since β2
1 − Q̃2

2(ũ2) decays as Ae−2ũ2 , A = 8β1c√
D

when ũ2 →∞ (and as Ae2ũ2 when
ũ2 →−∞), we see that the asymptotic behaviour of the metric (57) is the same as the standard
metric on the unit sphere (in cylindrical version (55)).

Note that the change u1 = 2ũ1 corresponds to the double covering of the sphere by the
cylinder (which is the degeneration of the torus).

The electric potential h in the coordinates u1, u2 has the form

h =
μ

β1 + Q2(u2)
,

while the magnetic potential satisfies

∂2A1 − ∂1A2 = B
β2

1 − Q2
2(u2)

R(β1)
.

Note that since the right-hand side is independent on u1, we can choose A2 ≡ 0 and

A1 =

∫ u2

−∞
B
β2

1 − Q2
2(ξ)

R(β1)
dξ.

Since all the coefficients in the Hamiltonian

H =
R(β1)

4(β2
1 − Q2

2(u2))

[
(p1 − A1(u2))2 +

4
R(β1)

p2
2

]
+

μ

β1 + Q2(u2)

do not depend on u1, the system has an obvious linear integral F = p1, and thus is not covered
by theorem 1.

6. Concluding remarks

There are several natural questions about new integrable case II, which are still to be answered.
We have an interesting metric on topological S2 defined by (47). Can it be induced from the

Euclidean metric by a suitable embedding of S2 into R
3? If yes, is there an explicit realisation

of such a surface?
To study the orbits in the classical version of new system and especially the spectrum of the

corresponding quantum problem seems to be a very difficult problem. Part of the reasons is that
a non-zero magnetic field usually prevents the use of standard separation of variables (see, for
example, Bérubé and Winternitz [2]). A new version of this method (called quasiseparation)
was proposed by Charest et al in [3]. It worked for a special class of systems with magnetic
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field on Euclidean plane, but its applicability in our case is not clear. We should mention also
very interesting recent papers by Magri and Skrypnyk [14, 24] on separation of variables in
the Clebsch case.

The quantum situation is even more challenging and still to be understood better even in the
Clebsch case. The new case with a0 = 0 would be easier to study since in that case we have
the usual Dirac magnetic monopole with additional electric field [28].
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