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Abstract 

Digital twins (DTs) have demonstrated their abilities to integrate sensor data, current state information, and the information 
about the environment in virtual models. While previous approaches have focused on creating DTs for mainly machines and 
workstations, a small number of studies have considered human performance when designing the DT system, which leads to 
a deficiency in overall system performance. The absence of the human integrated-DT framework may decelerate human 
integration in industrial DT, and thus, disregards the crucial role of the human in the industry of the future. This paper presents 
a framework for digital human representation in an industrial DT to continuously monitor and to analyse the human operational 
state and behaviour. Thereby, the DT enables decision-makers to allocate tasks on the shop floor taking into account the human 
physical and mental status. A sample case showed how a human muscle activity monitoring system could be integrated with 
the DT based on the developed framework to account for the operator’s muscular fatigue or physical exhaustion for decision-
making. This included the use of Artificial Intelligence (AI) to interpret the human activity related data using wearable sensors, 
such as electromyography (EMG). Future research is proposed to harness human data from a richer variety of sensors as control 
parameters for production operation and improved decision-making. 
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 Introduction 

In the era of digital technology, data have 
revolutionised several aspects of our lives, including 
manufacturing sectors. Hence, the Industry 4.0 
initiative has received great attention from the 
business and research community [1]. Even though 
the concept is not new and it was within the interest 
of research for several years under various terms 
such as, “Industrial Internet” in the USA or “Internet 
+” in China [2], the term “Industry 4.0” is now well 
established in different fields including academia 
and industry. Some of the key elements of Industry 
4.0 are automatic data collection, real-time data 
monitoring and optimisation [3]. These are 
important enablers for the creation of cyber-physical 
systems (CPS) which brings together the physical 
world and its digital representation to allow more 
insightful decision-making on the basis of data [4]. 
The digital representation that reflects the real-time 
operating conditions of a physical system is 
generally defined as a Digital Twin (DT) [5]. The 
elementary concept of DTs is that an object can be 
represented in a physical and a virtual system. The 
physical system embodies the real existence of the 
object, while a virtual system depicts the object 

using information and models that describe the 
physical state of the object. Simply put, the virtual 
systems mirror the state of the equipment through 
the available information [6]. The bi-directional 
association of physical equipment with virtual 
representations can facilitate effective product 
design, dynamic scheduling of maintenance, 
decision support systems and systems validations 
throughout the system's life cycle [7]. 

The DT concept becomes a critical tool in 
manufacturing, due to the dynamic change in 
demand and supply [8]. One of the hot topics in this 
field is the combination of intelligent sensing 
systems, Internet of Things (IoT) and DT, as it 
makes the production of products more efficient and 
intelligent [4]. As such, DT can enable the transition 
into Industry 4.0 by supporting the design, 
development and control of complex systems in 
manufacturing. Thus, DT can play a significant role 
in preventive maintenance, task scheduling, 
resources allocation and decision-support. Even 
though the human has an essential role within 
processes such as assembly, maintenance, 
packaging and many others, existing DT systems 
rely on the sensor data from equipment without 
considering the human data. 
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Therefore, this paper proposes the DT framework 
that takes the digital human representation which is 
the collection of human data and models (e.g. data-
driven or mathematical models) to predict human 
cognitive and physical status, perception, and 
behaviours. The framework takes advantage of the 
emergence of technologies such as intelligent 
sensors, wearable sensors, Artificial Intelligence 
(AI), communications and computations, as these 
technologies provide the possibility to monitor the 
operators’ physical and psychological activity on the 
shop floor. Consequently, the framework integrates 
the real-time representation of the human state 
within the DT, so that decision-makers can have a 
deeper insight into the available resources and 
human status before allocating tasks. Furthermore, 
the human integrated DT framework offers the 
potential to make the workspace more comfortable 
for the human, since dangerous and distressing 
situations can be detected, and mitigation in the form 
of additional resource or different task allocation can 
be provided. Moreover, the neglected human data as 
feedback to the DT system hinders the exploitation 
of human-machine partnership that takes human 
intelligence and flexibility into account. In seeing 
the necessity for human integration, there is a need 
for understanding of human roles in the future 
industrial context and how the advancement in 
digital manufacturing technology will change the 
way humans interact and exchange information with 
the production system. 

The remainder of this paper is structured as 
follows: In Section 2, a literature review on the 
topics of DT and human representation are 
presented. The proposed digital human 
representation in DT systems is outlined in Section 
3. An illustrative example of DT depicting the 
proposed framework is described in Section 4. 
Finally, Section 5 presents conclusions and future 
work. 
 
Nomenclature 

AI              Artificial Intelligence  
ANN         Artificial Neural Network 
CPS           Cyber-Physical System 
DT             Digital Twin  
EMG         Electromyography 
HRC          Human-Robot Collaboration 
IoT            Internet of Things 
IT              Information Technology 
ROS          Robot Operating System 
SVM         Support Vector Machine 

 Literature Review 

2.1. The Role of the Human in the Future Industrial 
Context 

Industry in the future aspires a smart ecosystem 
in which humans, machines, and organisation 
management systems exchange information and 
synergise to achieve operational excellence. The 
strategic initiative, so-called Industry 4.0, which was 
put forward almost a decade ago foresees IoT and 
Cyber-Physical System (CPS) as key technologies 
for the realisation of Smart Factories [10]. In the 
CPS, all the IoT-enabled devices/machines are 
interconnected within a networked production 
system in which intelligent computer algorithms are 
employed to automatically control the information 
exchange and to monitor the physical processes. 
This new generation of ‘smart system’ enabled by 
CPS is believed to facilitate the achievement of the 
fundamental improvements in the industrial 
processes related to manufacturing, engineering, 
material usage, supply chain, and lifecycle 
management [10]. Nevertheless, before fully 
harnessing the power of CPS, the implementation of 
the CPS needs to resolve the integration issues 
related to legacy systems and the ethical aspect 
regarding the human role [11]. In the context of 
human integration, the trend of the future industry is 
foreseen to fall in between two extremes; ‘techno-
centric’ or ‘anthropo-centric’, following the 
diffusion of CPS [12]. The former implies that 
industrial operations, human roles, and decisions 
would be governed by Information Technology (IT), 
allowing the human to intervene only in the case of 
malfunction or any other erroneous processing in the 
system. The latter sees IT as a decision support 
system to assist a human whose responsibility is to 
optimise and intervene in the industrial processes. 
The likelihood or the degree of CPS development 
route considering the aforementioned scenarios will 
depend on the companies’ choice of the design of the 
technology and work organisation [11]. The 
observed tendency from the literature seems to 
project the exploitation of ‘interconnected systems’ 
for enhancing human skills in dealing with a range 
of problems and complexities rather than controlling 
and allocating human resources for various demands 
in the factory [13,14]  

In Smart Factories, one study showed that the 
access of structured information from the CPS 
within production systems significantly supports 
manufacturing employees in performing daily tasks, 
which leads to incremental improvement of 
industrial benefits in terms of time, cost, and process 
quality [15]. Another example of augmented human 
capability supported by intelligent personal digital 
assistance was demonstrated in [16]. In relation to 
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the CPS architecture, the other study proposed the 
SOPHOS-MS framework to design a personal 
digital assistant system that provides real-time data 
and Augmented Reality contents as well as the 
interactive knowledge of manufacturing system in 
the form of Question & Answer. The utilisation of 
this system significantly improves the learning time 
of training of manufacturing tasks which is much 
needed especially with the increasing complexity of 
the manufacturing landscape. Ultimately, the goal of 
connecting human with CPS is to provide 
comprehensively understandable information that is 
easily accessible when in need to avoid any 
ineffective activities and to enable effective and 
efficient problem-solving skills [17]. Although 
many researchers tend to favour CPS as a decision 
support system for a human task, the propensity 
toward the other extreme where the human task is 
communicated and coordinated by the production 
system is necessary to improve the working 
environment [18,19]  

2.2. The Role of Digital Twin in CPS-based 
Production System 

In Smart Factories, all elements in the CPS-based 
production system continuously communicate and 
exchange the information to improve the overall 
production system performance. Two main entities 
on which CPS is built are [20]: (1) the advanced 
connectivity that ensures accurate data acquisition 
from the physical world and information feedback 
from cyberspace; and (2) intelligent data 
management, analytics, and computational 
capabilities that constructs the cyberspace. As 
highlighted, the CPS relies on real-world data and 
information analytics to extract insight from the 
network. For example, self-comparison ability 
which enables the performance of a single machine 
to be compared to the fleet [20]. This, in turn, 
provides the benefits for monitoring and optimising 
the operation of an individual machine. 

 At this point, however, the CPS is somewhat 
limited to the prediction capability in terms of 
examining what-if scenarios. Since the CPS relies on 
past and present data to predict the future, it cannot 
examine novel situations or explore a new 
possibility that provides new value. Another concept 
of physical-cyber integration that can complement 
CPS is the DT. DT is a virtual representation of a 
physical system or a process that relies on the field 
data and models to simulate the behaviour and 
provide feedback. Since the DT emulates the 
physical object in virtual space through the models, 
various behaviours of its physical counterpart can be 
captured and simulated to improve decision-making.  

Meanwhile, the research trends on determining 
human involvement in CPS often consider the 

human as an expert whose task is to make a decision 
or perform operations based on the acquired 
knowledge from the cyberspace [20]. Although the 
decision-making skills and problem-solving 
capabilities of the employee are potentially 
improved by the CPS-based support system, there 
are drawbacks in sustaining the overall system 
performance. The reason is this paradigm essentially 
ignores that the overall system performance that 
involves the human in their operation will degrade 
when human resources do not match the required 
task demand. In the light of human integration with 
CPS, a digital representation of the human enabled 
by DT can serve as a participant in a CPS-based 
production system where human capacity (e.g., 
cognitive and physical) is incorporated in the 
decision-making to achieve sustainable 
productivity. By virtually connecting the human into 
the CPS, every performance aspect of the production 
system can now be achieved through the interaction 
of its components by sharing the relevant locally 
generated information and individual system 
capabilities. The result is that each participant in the 
CPS is intelligently enriched and functionally 
empowered to perform its specified task. The next 
sub-section describes how capturing human data can 
be beneficial in adjusting or modifying the human 
task to maintain the high-level system performance  

2.3. Human Data Collection to complement the DT 

Despite different levels of automation within the 
manufacturing domain, human performance is still 
considered to have a significant impact on the 
overall system performance. Subsequently, it is 
desirable to monitor factors that affect human task 
performance and subsequent error potentials [21]. 
This would allow for maximising human 
capabilities. 

Substantial research into human physiological 
measures has indicated correlations between the 
human given tasks and physiological activity. For 
example, a demanding task could be correlated to an 
increase in heart rate and change in heart rate 
variability [22]. This could be interpreted as stress 
experienced by the human operator. Overall, 
physiological metrics amass a large variety of 
sensors, that can be integrated into a DT to measure 
the human current state, The sensors can be further 
grouped into psychophysiological and more 
physical-physiological measurements [23]. 

Psychophysiological measurements such as 
electrodermal activity, cardiovascular signals, 
respiration measurements, brain activity, pupil 
diameter, and blink rate are often utilised to quantify 
the mental status of a human operator. This includes 
measurements of mental workload [24]. Within the 
manufacturing domain and especially during 
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repetitive shift work, human operators are 
susceptible to mental work overload. The UK Health 
and Safety Executive states that high levels of 
mental workloads occur during very complicated or 
monotonous tasks. This is expected to lead to 
fatigue, stress and subsequent errors [25]. However, 
one of the main issues with psychophysiological 
measurements is that they often lack a single 
monolithic interpretation. Thus, they often need to 
be combined with subjective metrics such as self-
reports or questionnaires [24]. Yet, studies 
demonstrated that a combination of different 
physiological metrics could be tied to achieve more 
accurate prediction results for human workload 
[26,27]. 

Physical physiological measurements, on the 
other hand, include Muscular and skeletal 
positioning, as well as muscle tension, which 
indicates high payloads or muscular fatigue of a 
human operator [24]. In general, the contraction of a 
muscle generates electrical activity which can be 
measured through electrodes. This technique is 
known as electromyography (EMG). 

In a manufacturing context, studies have 
considered EMG signals to detect excessive physical 
fatigue, which may result in musculoskeletal 
disorders [28]. In that case, a robot could then assist 
to reduce the payload and the subsequent load on 
human joints [29]. The EMG signals showed an 
increase in mean amplitude and a decrease of the 
frequency spectrum during increased muscle 
fatigue. Yet, it is stated that this method works well 
for constant muscle effort, while it performs less 
reliable for dynamic tasks where muscle efforts are 
undergoing constant changes [28]. Thus, the 
measured EMG signals were used in a model in 
conjunction with estimated forces to establish a 
muscle fatigue model [28]. In the context of the DT, 
observing and monitoring the current physical and 
psychophysiological state could help to improve 
decision-making. 

2.4. Challenges of EMG Data Collection 

In a review on EMG-based continuous human 
upper-limb motion prediction published in 2019, 
two main approaches for classifying EMG signals 
are presented. The approaches are either based on 
classic Machine Learning methods such as Support 
Vector Machines (SVMs) or more advanced 
classifiers such as Artificial Neural Networks 
(ANNs). The methodologies shown in Fig. 1, 
typically start with raw EMG data acquisition. 

Data Acquisition: As can be seen in Fig. 1, all 
three methods share this step. Even very advanced 
classifiers achieve low prediction accuracies if the 
quality of the EMG signal is poor. Thus, a careful 
selection of acquisition device and the position of 

channels above muscles are essential [30]. In non-
medical applications, the term “EMG” is treated as 
a synonym of “non-invasive EMG”, since invasive 
EMGs would require medical expertise to operate 
[24,30]. Thus, invasive EMGs are not considered as 
applicable in a manufacturing context. 

Feature Extraction: This step often includes pre-
processing such as the application of Fourier 
Transform or Independent Component Analysis to 
extract certain bandwidths or features mainly 
responsible for muscular fatigue, while avoiding 
noise/artefacts. ANNs, however, are typically 
trained with raw EMG data to identify the relevant 
constellation of features themselves [30]. 

Classifier Train Test: For both classic Machine 
Learning classifiers, as well as ANNs, training and 
testing are performed before a model can be used 
online/continuously [28,30]. 

Online Usage: One of the main issues identified 
in [30] regarding the classification of EMG data is 
the deviation between the classification accuracy of 
offline models when applied online. This is often 
attributed to subject-specific characteristics within 
the EMG data, which even occurs during different 
recording sessions [30,31]. 

Incremental Learning: An approach to overcome 
these limitations can be found in incremental 
learning. As shown in Fig. 1, the learning and 
classification occur online only. Moreover, it offers 
the ability of life-long learning, which allows to 
incrementally tune the model’s structure and thus 
adapt to subject-specific characteristics within the 
data [31,32]. Furthermore, no prior knowledge about 
the data is required such as the number of classes or 
instances, which allows to significantly lower the 
manual tuning efforts [10]. However, there are 
disadvantages to Incremental Learning such as the 
risk of a plasticity-stability dilemma. This implies 
that the model is supposed to obtain new knowledge, 
yet, not forget previous knowledge. Also, the more 
complex a model becomes, the longer the 
convergence time will be, which includes 
classification and performing the learning operation 
[31,32]. Thus, these problems need to be considered 

Fig. 1. EMG data processing methodologies. 
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when applying Incremental Learning for sensory 
data. Nevertheless, Incremental Learning would 
allow lowering the manual effort when adding and 
integrating various physiological sensors to the 
virtual human model within the DT. Thus, this 
would allow considering human performance and 
state within the DT. As an initial sample case, this 
paper presents an approach based on EMG data in a 
Human-Robot collaborative task to establish human 
muscle activity monitoring within the DT. This is 
intended to further optimise the coaction between 
humans and robots in the industrial DT to capture 
and model such interactions. Also, EMG signals 
have been used in this illustrative example since 
several researchers have highlighted the benefit of 
using EMG to predict physical fatigue [33].  

 Digital Human Representation Framework  

Fig. 2 presents the proposed DT human 
representation framework that put forward the 
‘golden mean’ (i.e. the desirable middle between 
two extremes namely, ‘techno-centric’ and 
‘anthropo-centric’ for human integration) in which 
the human and the manufacturing technology 
partnership can be fully realised.  

The proposed framework extends the existing 
three main entities of DT systems [34] namely, 
physical shop floor, virtual shop floor, and 
communication network, by specifying elements 
involved for integrating human in DT systems. 

3.1 Physical shop floor 

In the physical shop floor, there are three main 
elements which perform different functions: 1) the 
production element which includes machines, 
production lines, materials, workers, processes, etc. 
to produce a product; 2) data perception element 
which consists of IoT-based sensors, data storage, 
and communication technology for collecting, 
saving, and sending the data, status, and behaviours 
of the production element to the communication 
network; and 3) feedback interface element which 
involves a mechanism for the human to access and 
update virtual shop floor information such as a smart 
device support system as well as control 
information/action to regulate the performance and 
operation of a physical production equipment such 
controllers and actuators. The result of the feedback 
element entails the adjustment of production 
operation to human capability and vice versa to 
achieve the common goal. For example, the 
task/event information is the feedback generated by 
the virtual shop floor to managing task distribution 
between the equipment and the human operator.  

3.2 Virtual shop floor 

The virtual shop floor is a digital representation 
of the physical shop floor which consists of two 
main elements: 1) virtual representation element, 
which contains integrated models that process the 
field data to emulate the life of its physical 

Fig. 2. The proposed human integrated DT framework.  
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counterpart (e.g. machine, human, human-machine 
interaction, etc.). This includes geometrical, 
physical, behaviour, and rule models for virtual 
production equipment [35]. Meanwhile, the virtual 
human and its interactions may include geometrical, 
psycho-physiological, physical-physiological 
models, and so on. It can also include AI-based tool 
to produce data-driven models and/or to compare the 
correspondences between physical and virtual data 
for dual optimisation. 2) insight element, which 
relies on AI-based processing, simulation, data 
analytics, and semantic modelling to process 
physical and virtual data for gaining insights for 
optimisation, recommendation, decision-making, 
and visualisation. Digital representation can be built 
in local or cloud storage. Information processing 
functions need to be embedded to convert raw data 
coming from physical space into usable data for 
mapping to the virtual shop floor. The typical 
processes involved are data acquisition, data pre-
processing, data analysis, and data fusion [34]. 

3.3 Communication network 

The communication network is a means to 
exchange information between physical and virtual 
system. It accommodates two types of interactions: 
1) production line and DT, which involves live data 
mapping from physical to virtual space as well as 
performance optimisation and control from virtual to 
real space, and 2) human and DT, which involves the 
digital representation of the human and knowledge 
capture from physical to virtual space, as well as 
intuitive insight provision for decision-making from 
virtual to real space. The network implementation 
varies from Bluetooth, Ethernet, Wi-fi, etc. 
depending on the range of required data access and 
also the network performance e.g. bandwidth and 
latency (4G vs. 5G). 

3.4 Operation mechanism of the framework 

In the future, human workers will perform tasks 
alongside machines and robots with limited to no 
physical barriers on the Physical Shop Floor. This 
realisation requires interconnection between all 
objects which enables data exchange and 
collaboration to achieve common goals. Information 
about the current operational state of the machines is 
collected by using smart sensors. While, human data 
is measured by physical sensors such as EMGs, to 
measure muscle fatigue and physiological sensors 
such as ECG (Electrocardiogram) to detect mental 
workload. All sensor data is sent and processed via 
the Communication Network and interpreted by 
different AI tools within the DT. Through the 
collected data and the virtual model, DT gives the 
transparency of the current status, behaviours, 

performance of the human and the equipment on the 
shop floor. In addition, simulation and data analytics 
can extract useful insights from data processed by 
the single or integrated models, which are presented 
through visualisation in the form of 
recommendations. One example of DT generated 
insight is a task/event schedule. This schedule 
determines which party (Robot, Machine or Human 
operator) will execute a task. In contrast to the 
previous DT approaches, this schedule takes the 
human physical and psychophysiological state into 
consideration. The schedule is communicated via 
smart actuators or controllers back to robots and 
machines, and through personalised human 
interfaces back to the human. An illustrative 
example is presented to demonstrate the 
implementation of the proposed framework on a 
sample case in the following section. 

 Illustrative example 

One of the emerging problems in Industry 4.0 
involves understanding the role of the human in 
Human-Robot Collaboration (HRC). To illustrate 
the conceptualisation of the HRC working 
paradigm, the proposed framework was applied to 
model and optimise the coaction between humans 
and robots in the industrial DT. Fig. 3 depicts the 
considered co-manipulation task in which an 
instrumented human and collaborative robot, in this 
case, a UR10, carry a weight (load) in the workspace 
(physical layer). While the hardware integration, 
data collection and training of data-driven models 
have been completed, the visualisation and 
quantitative evaluation are currently work-in-
progress. 

Based on Fig. 3, the physical layer has three 
groups of sensors, which are robot sensors, 
contextual sensors, and biometric sensors. The robot 
sensors collect the data of the robot’s internal state 

Fig.  3. HRC illustrating the proposed framework. 
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such as the joints angles, motor temperature, motor 
torque, and many others. The biometric sensors 
measure the physical and psychological state of the 
human operator such as heart rate, muscle activity 
EMG signal, head movements, facial temperature, 
and brainwave signals. The contextual sensors 
include motion tracking systems and environmental 
sensors (temperature, humidity, etc.) which collect 
the data not only on the interactions between the 
human and the robot but also on their interaction 
with the surrounding environments. As can be seen, 
various sensors have been used in this experiment. 
To integrate them into one network, the Robot 
Operating System (ROS) was used to enable the data 
collection during Human-Robot Interaction 
experiments. The developed ROS package for 
human wearable sensors has been made publicly 
available on GitHub for the research community to 
use [3], and the theoretical foundation of the GitHub 
tool can be found in [37]. 

Human cognitive skills are used in navigating the 
load, while the robot should follow human guidance 
and carry the weight of the load. The challenge is 
how to embed an autonomous capability to the robot 
to safely accommodate to various degree of human 
physical directions. To achieve this, a force/torque 
sensor was installed at the robot end effector to give 
the ability to sense the haptic cues. The robot needs 
to learn the skill to react to different haptic inputs 
from different operators. The skill acquisition was 
done by having two humans (a leader and a follower) 
perform a co-manipulation task in an unstructured 
environment.  

By collecting displacements, forces and muscle 
EMG signal, the follower’s human behaviour was 
modelled using a data-driven model, which can be 
employed and integrated into virtual robot’s model 
to control, simulate, and analyse the required robot 
behaviour, which takes place in the DT layer. In 
order to learn a behaviour model of human physical 
fatigue, an incremental learning approach has been 
conducted as described in [31]. In light of the 
proposed DT framework, two behavioural model 
blocks are shown in Fig 3. The first behavioural 
block is human follower behaviour; this block 
represents the control strategy of the robots. This 
allows us not only to control and simulate the robot 
behaviour, but it also gives insights on the human 
operator behaviour during co-manipulation, such as 
speed and muscle signal. The second behavioural 
block aims to incrementally learn to predict muscle 
fatigue in human muscles to notify the operator and 
manager/foreman about potential upcoming issues. 
The main advantage of using incremental learning is 
that the quality of behavioural models is improving 
over time, and it can adapt quickly to different user 
data.  

The outputs of these blocks will be visualised to 
managers/foremen who manages the task/event 
schedule. This task/event then will be 
communicated to the robot or human stakeholders 
through controllers and smart actuators as well as 
personalised human interfaces, respectively. In this 
example, the identified muscle fatigue of the 
operator could signal to the robot that additional 
support needs to be provided to the human to prevent 
harm. Alternatively, the signal can be sent to inform 
the operator to take a break or alert the foreman in 
charge to make arrangements for a temporary 
substitute. Thus, human operators can be replaced 
prior to potential injury.  

The communication between the physical and the 
DT layer was achieved via the use of ROS, which 
provides data structures that are suitable for physical 
and biometric messages. ROS plays the role of 
middleware that facilitates the communication and 
the data exchange between the physical layer and the 
DT layer. The physical connection between these 
entities has been realised through Wi-Fi and 
ethernet, in which ROS was the software backbone 
that allows all these entities to communicate with 
each other. The exchange of data has been 
performed using ROS default messages for robot 
information, while customised messages have been 
used for human biological data. Also, ROS provides 
essential functionalities to collect, synchronise and 
filter data. 

 Conclusions and Future Work  

This work presents a framework for human 
digital representation in an industrial DT. The 
framework extends the existing three main entities 
of DT framework by specifying design elements in 
human-integrated DT framework. This is especially 
critical in an environment where human plays a 
significant role to achieve system productivity. An 
illustrative example is presented to show how 
human integration in an industrial DT is 
implemented using the developed framework. 

While the human data integration can potentially 
enhance the performance of the DT system to be 
more adaptive to the human context, the ethical 
issues around data acquisition, data processing, and 
so on have yet to be addressed. In the future, more 
research in human DT integration regarding 
automatic human data collection, data processing, 
and human-based data-driven in DT for optimising 
the whole system performance is required to 
evaluate the working procedure of the proposed DT 
framework.  Since the proposed framework did not 
touch upon communication drawbacks such as 
latency, delays and cloud computations; these 
limitations will be analysed and considered in the 
future implementations. 
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