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Polynomial GSVD Beamforming for Two-User
Frequency-Selective MIMO Channels

Diyari Hassan, Soydan Redif, Senior Member, IEEE, John G. McWhirter and Sangarapillai Lambotharan, Senior
Member, IEEE

Abstract—In this paper, we propose a generalized singu-
lar value decomposition (GSVD) for polynomial matrices, or
polynomial GSVD (PGSVD). We then consider PGSVD-based
beamforming for two-user, frequency-selective, multiple-input
multiple-output (MIMO) multicasting. The PGSVD can jointly
factorize two frequency-selective MIMO channels, producing a
set of virtual channels (VCs), split into: private channels (PCs)
and common channels (CCs). An important advantage of the
proposed PGSVD-based beamformer, over the application of
GSVD independently to each frequency bin of the orthogonal
frequency division multiplexing (OFDM) scheme, is that it can
facilitate different modulation and/or access schemes to various
users. Using computer simulations, we characterize the bit error
rate performance of our two-user MIMO multicasting system
for different PCs/CCs configurations. Here, we also propose an
OFDM-GSVD benchmark system, and show that our PGSVD-
based beamformer compares favorably to this benchmark under
erroneous and uncertain MIMO channel conditions, in addition
to its advantage of facilitating heterogeneous modulation and
access for various users.

Index Terms—broadband (wideband) beamforming, space-
time adaptive processing, frequency-selective MIMO channels,
polynomial matrix, joint factorization, generalized singular-value
decomposition, GSVD, polynomial GSVD, PGSVD, OFDM.

I. INTRODUCTION

THE transmission of data from one point to multiple
points has become important in recent times particularly

because of the increasing demand by end-users for wireless
multimedia content, or multicasting. This is achieved by
realizing physical-layer multicasting via adaptive beamform-
ing. The beamformer is used to generate point-to-multipoint
logical multiple-input multiple-output (MIMO) channels over
the physical layer [1]–[3]. In [3], Senaratne and Tellambura
propose a beamformer based on the generalized singular
value decomposition (GSVD) [4] for data transmission from
a single source to two users through two MIMO channels.
The GSVD-based beamformer meets the needs of the end-
user for multicasting by realizing virtual channels (VCs)

This work was supported in part by the Engineering and Physical Sciences
Research Council (EPSRC) under the grant EP/R006385/1.

D. Hassan is with the Faculty of Engineering & Sciences, Qaiwan Inter-
national University-UTM Franchise, Sulaymaniyah, Kurdistan Region-Iraq.
(e-mail: diyari.hassan@uniq.edu.iq).

S. Redif is with the Department of Electrical and Electronics Engineering,
Faculty of Engineering, European University of Lefke, Lefke, Northern
Cyprus, TR-10 Mersin, Turkey. (e-mail: sredif@eul.edu.tr).

J. G. McWhirter is is with Cardiff University, Cardiff, CF24 3AA, Wales,
UK. (e-mail: mcwhirter@physics.org).

S. Lambotharan is with Signal Processing and Networks Research Group,
Wolfson School, Loughborough University, Leicestershire, LE11 3TU, UK.
(e-mail: s.lambotharan@lboro.ac.uk).

over the physical wireless channel. The beamformer not only
implements classic point-to-point VCs, called private channels
(PCs), serving individual users, but also yields point-to-two
point VCs, namely common channels (CCs), that address the
needs of both users simultaneously.

The GSVD is an extension of the singular value decomposi-
tion (SVD) [5] to two matrices. It performs joint factorization
of two rectangular matrices with the constraint that the number
of columns of the two matrices are equal. A number of
algorithms for GSVD computation have been proposed, partic-
ularly Van Loan’s approach in [6] which takes advantage of the
link between GSVD and cosine-sine decomposition (CSD) [5],
first established in [7]. Since each elementary decomposition
is numerically stable, with mostly orthogonal transformations,
this CSD-based approach is robust. A more general definition
of the GSVD can be found in [8].

The GSVD-based beamformer mitigates co-channel inter-
ference (CCI), or crosstalk, between the two users and/or
between the different VCs. The CCI is due to non-zero, off-
diagonal elements of the two MIMO-channel matrices. The
beamformer works by jointly minimizing these off-diagonal
entries, and hence decoupling the MIMO channels. However,
emerging wireless systems are designed to provide high data
rates, which gives rise to intersymbol interference due to
frequency-selective multipath fading [9], [10]. The GSVD
beamformer would not be expected to combat multipath since
it does not have the necessary degrees of freedom (DoFs) to
realize the required temporal filters. To date, the problem of
point-to-two point multicasting for frequency-selective MIMO
channels has not been addressed in the literature.

One possible way forward in this regard is by way of
a frequency-domain scheme based on orthogonal frequency-
division multiplexing (OFDM) [9], [11], [12]. Such an ap-
proach would utilize the discrete Fourier transform (DFT)
over the entire data to convert the multipath-channel problem
into a number of individual narrowband tones [13]. As such,
the frequency-selective channel is converted into individual
frequency-flat MIMO channels. The GSVD can then be ap-
plied to factorize the two (scalar) channel matrices at each bin.
This GSVD-based MIMO OFDM (OFDM-GSVD) approach
has not been investigated so far in the literature.

There are two possible drawbacks with a per tone GSVD
method. Firstly, this will force all private channel users to
employ an OFDM-based access scheme and applications, and
OFDM frame-level synchronization. The second drawback of
an OFDM-GSVD approach is that it would not be efficient
in situations where the scalar MIMO-channel matrices are
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rank deficient in one or more frequency bins; so, for those
bins, we have the underdetermined MIMO-system case [14]–
[16]. Channel-matrix rank deficiency models spatial corre-
lation and/or interbin interference. Under such conditions,
the problem bin(s) would need to be identified and related-
information relayed to the receiver. However, conveying this
information itself may consume considerable bandwidth.

An alternative approach is one that generalizes the GSVD-
based beamformer in the time-domain by utilizing itera-
tive polynomial matrix factorization techniques. A frequency-
selective MIMO channel can be represented by a matrix of
filters, or a matrix with polynomial entries, where each entry
now describes both the CCI and multipath in the MIMO
system. Akin to the factorization of the scalar MIMO-channel
matrix, a decomposition of polynomial matrices is required for
successful decoupling of the two MIMO channels. Pioneering
work by McWhirter has lead to an extension of the eigenvalue
decomposition (EVD) to the polynomials, namely polynomial
EVD (PEVD), in [17]–[19]. The PEVD decomposes a space-
time covariance (parahermitian matrix) matrix into a parauni-
tary matrix and a diagonal parahermitian matrix.

Over the past decade, a number of time-domain, iter-
ative algorithms for PEVD approximation have been pro-
posed [17], [18]. These algorithms broadly fall under one
of two categories: the second-order sequential best rotation
(SBR2) [17] and the sequential matrix diagonalisation (SMD)
algorithms [18]. Recently, their utility has been demonstrated
through application to various problems, including blind
source separation [20]–[22] and channel coding [23]–[26].

Analogous to the scalar GSVD, a GSVD for polynomial
matrices (or PGSVD) would be a natural extension of the
polynomial SVD (PSVD) [27], [28] for two polynomial ma-
trices. Despite this innate connection and the many potential
applications, work on PGSVD has not been reported on in the
literature as yet. Therefore, in this paper, we first introduce the
concept of a PGSVD and provide an efficient algorithm for
its implementation. We then propose a broadband beamformer
based on PGSVD to enable multicasting over frequency-
selective MIMO channels. Here, the term broadband (or wide-
band) beamforming refers to the case where the (space-time)
beamforming is performed for frequency-selective channels;
so the beamformer characteristics are different for different
frequencies, due to the frequency selectiveness of the channels.

The work considered in this paper, as well as in [3], requires
the number of antennas to be of the same order as that of
the intended spatial channels. However, when the number of
antennas is significantly greater than the intended number of
spatial channels, it may be beneficial to consider a hybrid
analogue and digital beamforming, as in [29], [30], to reduce
the complexity associated with the massive number of RF
chains.

A. Contributions and Main Features

The main contribution of this paper is threefold:
• An iterative, time-domain algorithm is proposed for

computing an approximate GSVD of two rectangular
polynomial matrices. The PGSVD is a novel concept
which is proposed here for the first time in the literature

Fig. 1: Frequency selective two-user MIMO system.

as a polynomial-matrix equivalent of the scalar cosine-
sine decomposition (CSD)-based approach in [6]; and
has been achieved through the introduction of newly
developed numerical algorithms.

• A broadband beamformer that enables multicasting over
two frequency-selective multi-input multi-output (MIMO)
channels is proposed, as illustrated in Fig. 1, which
exploits PGSVD. Our approach is a non-trivial gener-
alization of the narrowband scheme in [3].

• The proposed approach can facilitate heterogeneous mod-
ulation and/or multiple access schemes in different virtual
channels (VCs), depending on user needs, which cannot
be achieved with the benchmark system.

The last salient feature above permits, for example, the use of
code/frequency division multiple access (CDMA/FDMA) on
the private channels (PCs), for secure point-to-point commu-
nications, whilst simultaneously maintaining high throughput
links on the common channels (CCs) using, e.g., high-order
modulation schemes, such as 256-QAM (quadrature amplitude
modulation).

B. Notation and Overview

We use capital and small boldface variables, e.g. A and v,
to denote matrices and vectors, respectively. The notation a(z)
represents a function a : C → C; e.g., A(z) : C → CM×N
represents an M ×N polynomial matrix in the indeterminate
variable z−1, and is given by A(z) =

∑t2
τ=t1

A[τ ]z−τ [19],
where aij(z) =

∑t2
τ=t1

aij [τ ]z−τ , t1 ≤ t2, τ ∈ Z is entry of
A(z); and aij [τ ] ∈ C, is an element of the coefficient matrix
A[τ ], for i = 1, . . . ,M and j = 1, . . . , N . Hence, coefficient
matrices of A(z) can be written as A[t1], . . . ,A[t2]; e.g., the
coefficient matrix of lag zero is denoted A[0]. A list of other
notations in this paper is provided in Table I.

Below, in Section II, we review the scalar CSD and GSVD;
in Section III, we define the PGSVD and propose an algorithm
for its implementation based on an extension of CSD to
polynomial matrices. Its utilization in realizing suitable beam-
formers for point-to-two point, frequency-selective, MIMO
channels is discussed in Section IV. Our PGSVD algorithm
and broadband MIMO beamformer are then evaluated in
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TABLE I: List of Notations.

Notation Description

(.)∗ Complex conjugation
(.)T Transpose of a matrix or vector
(.)H Hermitian transpose of a matrix or vector
diag{.} Diagonal entries of a matrix
rank{.} Rank of a matrix or polynomial matrix
min{., .} Smallest value among the two elements
(A,B) Concatenation of two matrices, or polynomial

matrices, in the column dimension
U−1 = UH Unitary matrix U

Ũ(z) = UH(1/z∗) Paraconjugate transpose of U(z)

Φ(z) = Φ̃(z) Parahermitian matrix Φ(z)

U−1(z) = Ũ(z) Paraunitary (PU) matrix U(z)

W †(z) Pseudoinverse of W (z)
IN N ×N identity matrix
a(ejΩ) Power spectral density of the function a(t)
Ω Normalized angular frequency
O(.) Big-O notation for computational complexity

Section V. Finally, conclusions are provided in Section VI.

II. SCALAR MATRIX FACTORIZATIONS

Motivated by [6], here we describe an efficient and stable
algorithm for computing the scalar GSVD by way of the CSD.

A. Generalized Singular-Value Decomposition

Consider the two matrices H1 ∈ CM×N and H2 ∈ CP×N .
Let H =

(
HT

1, HT
2

)T
and K = rank{H}. Define the GSVD:

H1 = UCXH and H2 = VSXH , (1)

where U ∈ CM×M and V ∈ CP×P are unitary matrices
and X ∈ CN×N is a non-singular matrix; C ∈ CM×N and
S ∈ CP×N are block diagonal matrices satisfying

CHC + SHS = IN . (2)

Depending on the relationship between M,P , and N , the
matrices C and S will comprise diagonal sub-matrices Σ1

and Σ2 and zero matrices.
These diagonal sub-matrices contain non-zero singular val-

ues, ci and si, respectively, such that Σ2
1 + Σ2

2 = I(M+P−N).
Hence, the element pairs satisfy c2i + s2

i = 1, i = 1, . . . ,K,
and |ci| = 1, i = (K + 1), . . . , N ; and are ordered:

0 < c1 ≤ · · · ≤ cK ≤ cK+1 = · · · = cN = 1,

1 > s1 ≥ · · · ≥ sK ≥ 0 .
(3)

The diagonal elements of C and S define the generalized
singular-value pairs (ci, si), or the generalized singular-values:
σi =

√
c2i /s

2
i ; it follows that the generalized eigenvalues are:

σ2
i = c2i /s

2
i .

B. Cosine-Sine Decomposition

Define the matrix Q =
(
QT

1, QT
2

)T ∈ C(M+P )×N , where
Q1 ∈ CM×N and Q2 ∈ CP×N . Suppose Q satisfies QHQ =
IN . The CSD relates the SVD of Q1 to that of Q2 via the
decompositions:

Q1 = UCZH and Q2 = VSZH , (4)

where U ∈ CM×M , V ∈ CP×P and Z ∈ CN×N are unitary
matrices. The diagonal matrices C ∈ CM×N and S ∈ CP×N
contain the non-negative sine and cosine pairs and satisfy the
same properties as in GSVD. Indeed, GSVD is identical to
CSD in the case where, given H in Section II-A, HHH = IN .
Hence, CSD is a special case of GSVD.

C. Computing the GSVD

Highly based on the algorithm in [6], a common approach
to computing the GSVD is one that uses the QRD and the
CSD. The first stage of this method calculates the QRD of
H =

(
HT

1, HT
2

)T
, i.e.,

H = QR , Q =

(
Q1

Q2

)
,

Q1 ∈ CM×N , Q2 ∈ CP×N , R ∈ CN×N ,

(5)

where Q is unitary and R is upper-triangular and non-singular.
This approach proceeds by computing the CSD of Q, as in
Section II-B, producing the GSVD unitary matrices U and
V; and the diagonal matrices C and S. Given Z from (4), the
GSVD non-singular matrix X is: X = RHZ.

For a more stable algorithm, the generalized singular-values
σi are categorized as small, if σi < 1/

√
2, and large σi, if

σi > 1/
√

2. A proof of this can be found in [6]. Once the
diagonals of C are ordered as in (3), this categorization can
be implemented by finding the index k such that

0 ≤ c1 ≤ ... ≤ ck ≤ 1/
√

2 < ck+1 ≤ ... ≤ cJ ≤ 1 . (6)

There are a number of methods for computing the CSD. An
efficient way involves calculating the SVD of only Q1 from
(4), yielding matrices U, C and Z; then the matrices V and
S are obtained via the QRD [6], [31], [32]. In the next section,
we generalize this approach to polynomial matrices.

III. POLYNOMIAL GENERALIZED SINGULAR-VALUE
DECOMPOSITION

In this section, we extend the concepts in Section II and
derive a stable algorithm for the computation of a PGSVD of
two rectangular polynomial matrices. We first generalize the
CSD algorithm to the realm of polynomials by way of a new
PSVD algorithm. The proposed PSVD algorithm is based on
SMD in [18] and utilizes the cost function in [23]. We then
show how our new PSVD can be used to calculate the PGSVD.

A. Polynomial GSVD

Here we extend the definition of the scalar GSVD in (1) to
the realm of polynomial matrices. Let H1(z) : C → CM×N

and H2(z) : C → CP×N , and H(z) =
(
HT

1 (z), HT
2 (z)

)T
:

C → C(M+P )×N . Then, assuming K = rank{H(z)} ≤ N ,
we define the PGSVD as:

H1(z) = U(z)C(z)X̃(z)

H2(z) = V (z)S(z)X̃(z) ,
(7)

where U(z) : C → CM×M and V (z) : C → CP×P are
paraunitary (PU) [19]; the polynomial matrix X(z) is non-
singular.
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As in the scalar case (Section II), the structure of diagonal
polynomial matrices C(z) and S(z) in (7) depends on the the
relationship between M,P , and N . In this paper, we consider
the more practical condition where M,P ≤ N ; in particular,
if M,P = N , C(z) and S(z) take the form

C(z) = diag{c1(z), c2(z), . . . , cK(z)}
S(z) = diag{s1(z), s2(z), . . . , sK(z)} ,

(8)

which is more pertinent to the MIMO systems analyzed later
in Section IV.

The entries of C(z) are given by ci(z) =
∑τc
τ=−τc ci[τ ]z−τ ,

and likewise for S(z), where 2τc is the polynomial order and
ci[τ ] denotes the ith diagonal entry of the coefficient matrix
C[τ ]. Then the diagonal entries of C[τ ] and S[τ ] satisfy

0 < c1[0] ≤ · · · ≤ cN [0] ≤ 1 ,

1 > s1[0] ≥ · · · ≥ sK [0] ≥ 0
(9)

and c2i [0] + s2
i [0] = 1, where ci[0] is the ith diagonal element

of C[0]. Hence, C(z) and S(z) satisfy

C̃(z)C(z) + S̃(z)S(z) = IN . (10)

Their diagonal entries together can be viewed as the
generalized polynomial singular-value, or eigenvalue, pairs
(ci(z), si(z)). Assuming si(z) are stable, finite impulse re-
sponse (FIR) filters, and hence invertible, then the ith general-
ized polynomial eigenvalue is given by: σ2

i (z) = c2i (z)/s
2
i (z).

The generalized eigenvalues corresponding to zero-order co-
efficient matrix is: σ2

i [0] = c2i [0]/s2
i [0]. Here, as in the scalar-

matrices case, the condition si[0] > 0 must be satisfied. In
general, σ2

i (z)|z=ejΩ = σ2
i (ejΩ) = c2i (e

jΩ)/s2
i (e

jΩ), for a
particular frequency Ω. Then it is clear that si(ejΩ) must not
have any spectral nulls, i.e. si(ejΩ) > 0, for all Ω.

Note that for a specific value of z, say z = z0, (7) is just the
scalar GSVD as in (1). Hence, following Van-Loan in [4] we
assume, without loss of generality, that X(z0) is non-singular,
for all z0, in other words, X(z) is invertible.

B. Polynomial CSD
In this subsection, we generalize the CSD to the case

polynomial matrices (or PCSD). Consider the composite ma-
trix Q(z) =

(
QT

1(z), QT
2(z)

)T
: C → C(M+P )×N , where

Q1(z) : C→ CM×N and Q2(z) : C→ CP×N . Furthermore,
suppose Q(z) satisfies Q̃(z)Q(z) = IN . Then we define the
PCSD as:

Q1(z) = U(z)C(z)Z̃(z)

Q2(z) = V (z)S(z)Z̃(z) ,
(11)

where U(z) : C → CM×M , V (z) : C → CP×P and Z(z) :
C → CN×N are PU. The diagonal matrices C(z) : C →
CM×N and S(z) : C→ CP×N satisfy the same properties as
in PGSVD. The PU matrices U(z) and Z(z) can be calculated
using the PSVD, described in the next subsection; whereas the
PU matrix V (z) can be computed with the PQRD of S′(z) =
Q2(z)Z(z), i.e.,

S′′(z) = Ṽ (z)S′(z) . (12)

Analogous to the scalar case, the PGSVD is identical to PCSD
when H̃(z)H(z) = IN , where H(z) =

(
HT

1 (z), HT
2 (z)

)T
.

C. Polynomial SVD

Essentially, the PCSD relates the PSVD of Q1(z) to the
PSVD of Q2(z) through (11). In this paper, the PSVD is
implemented with the application of two PEVDs [27], [28],
an approach that generalizes the well-known method for
computing the conventional scalar SVD through application
of two scalar EVDs [5]. Hence, the PU matrices U(z) and
Z(z) in (11) can be obtained from the respective PEVDs of
the two parahermitian matricesQ1(z)Q̃1(z) and Q̃1(z)Q1(z),
i.e.,

Q1(z)Q̃1(z) = Ũ(z)D(z)D̃(z)U(z)

Q̃1(z)Q1(z) = Z̃(z)D̃(z)D(z)Z(z) .
(13)

D. PEVD Calculation

In this subsection, we propose an efficient PEVD algorithm
for finding the PEVDs in (13). Sequential matrix diagonalisa-
tion (SMD) is a class of fast, iterative, time-domain algorithms
that has been shown to provide a very accurate PEVD [18].
The maximum-element SMD (ME-SMD) algorithm uses a
norm (correlation) based cost function to minimize the largest
off-diagonal element at every iteration. However, this cost
function makes the algorithm sensitive to larger correlation
terms related to dominant channels. In situations where there
are strong noise related correlations, there would be a tendency
for ME-SMD to eliminate true cross-correlation terms rather
than noise-related terms between weaker channels. This has
the effect of limiting the achievable level of diagonaliza-
tion [23]; thus restricting the degree to which the MIMO
channels can be decoupled.

One way of alleviating this problem is to use a cost function
that is, in proportion, equally responsive to correlations in all
channels. The coding gain measure in [33] has this feature.
Following the strategy in [23], a coding-gain optimized ver-
sion of the ME-SMD, namely SMDC, can be obtained by
optimizing the coding gain measure. In the following, only
the cost-function aspect of the algorithm is discussed. For a
full treatment of SMD, the reader if referred to [18].

Let Φ(z) : C → CM×M be a parahermitian matrix,
as in (13), with on-diagonals: φi(z) =

∑
τ φi[τ ]z−τ , i =

1, . . . ,M . Then the proposed SMDC algorithm maximizes the
following sample coding-gain function at the lth iteration:

Ĝ(l) =

(
1

M

M∑
i=1

φ
(l)
i [0]

)
·

(
M∏
i=1

φ
(l)
i [0]

)− 1
M

, (14)

where φ(l)
i [0] is the zero-order, on-diagonal element of Φ(z)

at the lth iteration.
Note that one or more of the terms φ(l)

i [0] may tend to zero,
which would cause (14) to tend to infinity. This can be allevi-
ated by applying a simple regularization technique [23]. The
original proof for ME-SMD in [18] remains valid for the new
SMD variant. Use of (14) is expected to enhance the spectral
majorization and strong decorrelation performances of SMD.
Hence, as well as being suited for MIMO-channel coding
applications, our SMDC algorithm will be more applicable to
subspace decomposition and data compression problems than
its correlation-based counterparts.
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E. Computing the Polynomial GSVD
Here we extend the approach in Section II-C to the case

of polynomial matrices. The first step here is to compute the
PQRD of H(z) =

(
HT

1 (z), HT
2 (z)

)T
, that is,

H(z) = Q(z)R(z) , Q(z) =

(
Q1(z)
Q2(z)

)
, (15)

where Q1(z) : C → CM×N and Q2(z) : C → CP×N , Q(z)
is PU and R(z) : C → CN×N is upper-triangular and non-
singular.

Analogous to the scalar case, this approach then calculates
the PCSD of Q(z), via a PSVD and a PQRD, which yields
the PGSVD canonical matrices U(z), X(z), V (z), C(z) and
S(z). The matrices U(z), C(z) and Z(z) of the PCSD can
be found directly by computing the PSVD of Q1(z). Then the
PU V (z) and diagonal S(z) can be calculated from the PQRD
of a sub-matrix defined by the first k columns of S′(z) =
Q2(z)Z(z), which yields V (z) from (7). The diagonal S(z) is
simply given by: S(z) = Ṽ (z)S′(z). Lastly, the PGSVD non-
singular polynomial matrix X(z) is obtained thus X(z) =
R̃(z)Z(z), where Z(z) is got from (11).

The pseudocode for the proposed PCSD algorithm is pro-
vided in Algorithm 1. Our approach makes use of the efficient,
SMD-based PQRD (SM-PQRD) algorithm in [26].

IV. PGSVD APPLIED TO TWO-USER
FREQUENCY-SELECTIVE MIMO CHANNELS

In this section, we show how the proposed PGSVD al-
gorithm can be used as a broadband beamformer for point-
to-two-point MIMO multicasting in a frequency-selective en-
vironment. We considered two user case only for simplicity
of describing our algorithm, however, extension to point-to-
multipoint MIMO multicasting would be straightforward.

A. MIMO-Channel Decoupling
Consider a transmitter with N antennas and two receivers,

consisting of M and P antennas respectively, as shown in
Fig. 1. Suppose that the source signal is s(n) whose Z-
transfrom is s(z) : C → C. We stack the signals transmitted
via N antennas into a signal vector whose Z-transform is
s(z) : C→ CN . This signal propagates through two different
frequency-selective (FS) MIMO channels whose Z-transforms
are H1(z) : C → CM×N and H2(z) : C → CP×N with
the same number of columns. So without any transmitter
precoding, the signals at the two receive-antenna arrays can
be represented in Z-domain as

vi(z) = Hi(z)s(z) + ni(z), i ∈ {1, 2}. (16)

To begin with, we assume perfect knowledge of the channel-
state information. Later, in Section V-B, we assess the impact
of this assumption on the performance of the proposed system.

We assume that the two MIMO frequency selective channels
undergo block fading, so the channels do not change within a
block, but can change between blocks. We can jointly factorize
H1(z) and H2(z) by way of a PGSVD:

H1(z) = U(z)Σ(z)W (z)

H2(z) = V (z)Λ(z)W (z) ,
(17)

Algorithm 1 Computing the polynomial CSD (PCSD)
Input: Q1(z) (M ×N ), Q2(z) (P ×N )
Output: U(z),V (z),Z(z),C(z) and S(z).

1: Initialize: J = min{M,N}, K = min{P,N}.
2: Compute PSVD of Q1(z), producing PU U(z) and
Z(z); diagonalizedC(z) with polynomial singular values:
c1(z), ..., cJ(z) – arranged in ascending order.

3: Find k such that:
0 ≤ c1[0] ≤ ... ≤ ck[0] ≤ 1/

√
2 < ck+1[0] ≤ ... ≤ cJ [0] ≤ 1.

4: Set S′(z) = Q2(z)Z(z).
5: Compute the PQRD of the 1st k columns of S′(z),

obtaining PU V (z).
6: Set S(z) = Ṽ (z)S′(z).
7: if k < K

a: Gather rows i and columns j of S(z) into St(z), where
i = k + 1, k + 2, ..., P and j = k + 1, k + 2, ...,K.

b: Compute PSVD of St(z), giving PU Ut(z) and Zt(z);
diagonal Λt(z).

c: Update: (a) columns j in C(z) and Z(z) with those of
C(z)Zt(z) and Z(z)Zt(z); (b) columns i in V (z) with
those of V (z)Ut(z); (c) rows i and columns j in S(z)
with those of Λt(z).
d: Gather rows r and columns j of C(z) into Ct(z), where
r = k + 1, k + 2, ..., J .
e: Compute PQRD of Ct(z), obtaining PU Vt(z) and
upper-triangular Rt(z).
f: Update: (a) columns r inU(z) with those ofU(z)Vt(z);
(b) rows r and columns j in C(z) with Rt(z) diagonals.

where W (z) : C → CN×N is invertible and U(z) : C →
CM×M and V (z) : C→ CP×P are PU. Here, Σ(z) and Λ(z),
satisfy the same properties as the diagonal matrices C(z) and
S(z) for the PGSVD defined in Section III-A.

The diagonal elements of Σ(z) and Λ(z) represent the gains
of the non-interfering VCs (CC or PC) from the source. The
PC is a VC from S to U1 (or U2), having unit gain. The CC,
unlike the PC, is point-to-two point VCs that cater to both the
users simultaneously, with channel gain factors satisfy (9). The
total number of PCs and CCs for each user depends on the
number of antennas at the three terminals, however, the num-
bers of VCs are fixed. In Table II, we show how the numbers of
PCs/CCs vary for the various antenna configurations. Note that
the only system configuration that provides CCs and PCs for
both users simultaneously is M,P < N under the constraint
of (M + P ) ≥ N . Hence, we consider this class of two-user
MIMO-system configuration for the purposes of investigating
our PGSVD-based beamformer.

NB: An important feature of the proposed PGSVD beam-
former is that it allows the use of different modulation or
access schemes on different spatial channels. For example,
CDMA/FDMA can be used for PCs while higher-order mod-
ulation schemes, such as 256-QAM, can be used for CCs,
facilitating the flexibility to have heterogeneous applications
and services.
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TABLE II: Numbers of CCs and PCs realized through PGSVD
beamforming for antennas (M,P,N) at the source S and users
U1, U2, respectively [3].

Configuration # CCs # PCs

S → {U1, U2} S → {U1} S → {U1}

M > N , P ≤ N P N − P 0

M ≤ N , P > N M 0 N −M

M,P ≤ N N 0 0

M,P < N , and M + P −N N − P M − P
(M + P ) ≥ N

N ≥ (M + P ) 0 M P

B. Precoding Stage

The factor W (z) in (17) can be used to enable joint
precoding of the two MIMO subsystems at the transmitter.
Specifically, assuming W (z) is invertible, the two coded
transmit signals are obtained by:

xi(z) = W−1(z)s(z) , i ∈ {1, 2}. (18)

However, matrix inversion is often fraught with difficulties,
numerical instability being the main problem, especially for
matrices with large condition numbers. Another potential issue
with this approach is that the precoding is non-energy preserv-
ing, so it may attenuate or amplify the transmit power, which is
undesirable. This may be alleviated somewhat by normalizing
the transmit signal such that the average total transmit power
is maintained at the desired level. One way of realizing the
normalization is with a diagonal invertible polynomial matrix
that is chosen to provide the needed transmit power normal-
ization. However, this requires updated information about the
average channel power.

An alternative approach is to work with the pseu-
doinverse of W (z) instead of W−1(z). Let W (z) =
UW (z)ΣW (z)ṼW (z) be the PSVD of W (z), where
ΣW (z) = diag{σ1(z), σ2(z), . . . , σN (z)}. Then

W †(z) = VW (z)Σ
†
W (z)ŨW (z) (19)

is the generalization of the Moore-Penrose pseudoinverse to
polynomial matrices. The matrix Σ

†
W (z) is formed by taking

the reciprocal of all the non-zero entries of ΣW (z); i.e.,
Σ
†
W (z) = diag{1/σ1(z), 1/σ2(z), . . . , 1/σN (z)}.
So the precoding is performed with the application of

W †(z) in (18), instead of W−1(z). Hence, the coded broad-
cast channels are given by:

xi(z) = Hi(z)W
†(z)s(z). (20)

An approximation to the pseudoinverse in (19) can be com-
puted via the frequency domain, where a scalar Moore-Penrose
pseudoinverse is applied at each frequency bin. However, this
approach would ignore any phase-coherence that may exist
between the bins.

A more accurate pseudoinverse can be obtained via a time-
domain PSVD, such as the algorithm in [28]. After calculating

the PSVD, Σ
†
W (z) can then be obtained simply by taking the

reciprocal of the diagonals at each frequency. This method is
naturally energy preserving, so it does not attenuate or amplify
the transmit power. The divide-by-zero problem can be averted
by adding an arbitrarily small value to the divisor. Of course,
the success of this simple approach relies on the accuracy
of the decomposition, and hence the diagonality of PSVD-
generated ΣW (z). However, simple checks can be incorporate
into this approach that enable one to maintain sufficiently
accurate PSVDs.

C. Decoding Stage

The corresponding decoder, or reconstruction, matrices,
applied at the receiver, are given by Ũ(z) and Ṽ (z) from (17).
These are PU matrices so they do not enhance the noise in the
system. Therefore, the k decoded, non-interfering, broadband
channels are simply given by:

y1(z) = Ũ(z)x(z) + Ũ(z)n1(z) (21)

= Ũ(z)H1(z)W †(z)s(z) + Ũ(z)n1(z)

and

y2(z) = Ṽ (z)x(z) + Ṽ (z)n2(z) (22)

= Ṽ (z)H2(z)W †(z)s(z) + Ṽ (z)n2(z) .

D. System Complexity

The computational complexity of the proposed MIMO-
channel broadband beamformer is dominated by the number
of arithmetic operations required by the PGSVD algorithm
over a given number of iterations. As explained in Section III,
computation of PGSVD via the PCSD involves application
of both the SMDC (to calculate the PSVD) and SM-PQRD
algorithms. Let TR and TU be the number of coefficients
of the M × M parahermitian and PU matrices R(z) and
U(z), respectively. Assuming both SMDC and SM-PQRD are
allowed to run for L iterations and N = M , then SMDC
and SM-PQRD both perform O(M3TRL) +O(M3TUL) op-
erations. Hence, taking only dominant terms and simplifying,
the PGSVD does approximately O(M3TL) work, where T is
assumed proportional to TR and TU .

Here, we see that the most expensive component of our
PGSVD-based system is the polynomial matrix multiplica-
tions, which incurs the M3 factor. Consequently, the com-
putational burden increases significantly for larger spatial
dimensions. However, in recent years, both hardware and algo-
rithmic solutions have been proposed that make, respectively,
polynomial-matrix multiplication [34] and iterative PEVD
algorithms [35] more applicable to real-world problems.

As discussed in Section I, point-to-two point MIMO multi-
casting can also be achieved via a frequency-domain approach.
The DFT-processed channel data has K uniformly spaced
frequency bins. The OFDM-GSVD broadband beamformer
operates by applying the scalar GSVD to the (scalar) channel
matrices at each bin, independently, through use of OFDM.
With the assumption that N = M , the baseline OFDM-GSVD
scheme is found to perform O(M2K log (K)) + O(KM3)



POLYNOMIAL GSVD BEAMFORMING FOR TWO-USER FREQUENCY-SELECTIVE MIMO CHANNELS 7

work. Note that the O(M2K log (K)) term is due to com-
puting the DFT of the M ×M MIMO-channel matrix; and
dominates the complexity for K >> M . For large M , the
bulk of the computational cost is due to the matrix-matrix
multiplication operations required by the GSVD [5].

Comparing the complexities of the two methods, with
M common in both expressions, we see that the proposed
PGSVD-based approach is computationally more demanding
for large T and/or L; whereas the latter becomes more
exhaustive for large K.

V. SIMULATION RESULTS

We provide two sets of simulation studies to demonstrate the
performance of the proposed PGSVD algorithm and PGSVD-
based, point-to-two point MIMO-channel equalization method
described in the previous sections. The first set of results, in
Section V-A, relate to evaluating the convergence behavior and
efficiency of proposed PGSVD algorithm. The second set of
simulations assess the efficacy of proposed broadband MIMO-
channel beamformer for multicasting applications. Results are
averaged across an ensemble of 1000 random scenarios of the
two types of randomly generated system models, for the two
sets of experiments.

Unless stated otherwise, the following PQRD/PSVD-
algorithm parameter settings were used for all simulations,
since they provided a good trade-off between decomposition
accuracy and computational cost and/or communications ef-
ficiency. The algorithms were allowed to run for l = 200
iterations. We found that beamformer performance did not
improve by a notable amount for l ≥ 200. The algorithm
convergence parameter was set to ε = 10−5, which is an upper
bound on the dominant off-diagonal element. The polynomial-
matrix trim function in [17] was applied to the updated
canonical matrices with µ = 10−5. This function truncates
the matrix coefficients at large lags (in the tails of polynomial
matrices) containing a µ-th of the total power.

A. Algorithm convergence

We will now illustrate the validity and investigate the
decomposition quality of the proposed CSD-based PGSVD
algorithm by means of some simple but insightful experiments.
The algorithm was applied to two order-5 polynomial matrices
A : C → C3×3 and B(z) : C → C3×3. The coefficients
of A(z) and B(z) were drawn from a zero-mean, complex-
Gaussian, wide-sense stationary process.

In the first experiment, the input polynomial matrices were
reconstructed from the canonical-form matrices generated by
the PGSVD algorithm; i.e., Â(z) ≈ U(z)C(z)X̃(z). In Fig. 2
(a) we show the input A(z) along with the reconstructed Â(z)
in Fig. 2 (b). Notice the strong likeness between the two
polynomial matrices. The maximum off-diagonal energy in
the matrices C(z) and S(z) was of the order of 10−6, which
meant C̃(z)C(z)+S̃(z)S(z) = I was approximately satisfied,
as indicated by the product terms C̃(z)C(z) and S̃(z)S(z)
shown in Figs. 3 (a) and (b), respectively. These results
demonstrate that the proposed PGSVD algorithm is able to
provide a joint factorization of the two polynomial matrices

(a)

(b)

Fig. 2: Entries of (a) A(z) and (b) reconstructed matrix Â(z)

from the polynomial matrix factorization: U(z)C(z)X̃(z).

A(z) and B(z) to a very good approximation. The PQRD and
PSVD algorithms operate by means of iterative procedures and
are known to converge [27]. As described in Section III, the
PGSVD algorithm operates by using those routines within the
well established structure of the CSD algorithm. As such, the
PCSD algorithm, on which our PGSVD algorithm is based,
does not involve any iterations; so the concept of convergence
does not apply to the PCSD and, by construction, nor does
it apply to the PGSVD. Therefore, in the following, we
explore the convergence of the underlying PQRD and PSVD
algorithms, since these reflect the decomposition quality of the
proposed PGSVD/PCSD algorithm.

The PSVD and PQRD operate by transferring, respectively,
the off-diagonal and beneath diagonal coefficients onto the
main diagonal. For a fair comparison, we investigate the
magnitude of the largest off-diagonal/beneath-diagonal coef-
ficient at each iteration. Fig. 4 shows the magnitude, g, of
the dominant off-diagonal/beneath-diagonal term as a function
of iteration number, l. It can be seen that both algorithms
converge in ∼200 iterations. Also, note that the PSVD al-
gorithm converges slightly faster than the PQRD algorithm,
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(a)

(b)

Fig. 3: The polynomial matrices (a) C̃(z)C(z) and (b)
S̃(z)S(z).

which could be because the former converges monotonically,
whereas the latter converges non-monotonically.

B. BER Performance

In the following, we consider the frequency-selective, two-
user, MIMO communications system in Fig. 1, where, data
is transmitted from a single source S to two users U1

and U2. We simulated transmitting 1100 coded BPSK/QPSK
modulated symbols through each of the two channels. We
assume block fading and perfect knowledge of channel-state
information. Convolutional source coding with the code rate
of 1

2 was used along with appropriate equalization at the
two receivers, as in [25]. The propagation environment was
modeled using channels possessing an exponential power-
delay profile, which are typically seen in macro-cellular
communications systems [25]. A five-path fading model was
used for the frequency-selective channel from the nth source
antenna element to the mth/pth antenna sensor of U1/U2,
where m = 1, . . . ,M , n = 1, . . . , N and p = 1, . . . , P . The
channel matrices have polynomial entries with exponentially

Fig. 4: Convergence of the PSVD and PQRD algorithms,
which constitute the PGSVD algorithm.

decaying envelopes, which are:

hmn[τ, t] = αeψ(τ−1)η[t] , (23)

for τ = 1, 2, ..., 5, Here, hmn[τ, t] is the τ th multipath
coefficient between the nth transmit antenna and mth receive
antenna w.r.t time interval t, η[t] is a zero-mean, complex
Gaussian random variable; and the parameter α is chosen to
normalize the average channel gain to unity. Here, ψ denotes
the decay factor, which was set to ψ = 0.8 in generating
Hi(z), i ∈ {1, 2}.

The following simulation results are for different antenna
configurations, chosen to explore the performance of realistic
CCs and/or PC scenarios. Note that, for the same configu-
rations, BER results for the frequency-selective environments
observed here analogously mirror the narrowband results re-
ported in [3]. Note also that the reason behind very low bit
errors in our results is partly due to the fact that we use error-
correcting coding followed by equalization.

In Fig. 5, we show coded BER performances corresponding
to an antenna configuration given by {N,M,P} = {3, 3, 3}.
Our PGSVD beamformer produces three CCs for each of the
two users. It can be seen that the BERs experienced by U2

for CCk are similar to those of U1 for CC(4−k), k ∈ {1, 2, 3}.
A striking result is the symmetry observed here, which is due
to the fact that M = P and the coefficients Hi(z) are drawn
from a symmetric and independent distribution. Notice that the
BER shown for U1 improves from CC1 to CC3, whereas, the
converse is true for U2. This observation is consistent with the
fact that the cosine coefficients ci(z), from PGSVD, appear in
descending order, as in (9).

The coded BER performances of the PC/CCs for the
{N,M,P} = {4, 3, 3}-antenna case is shown in Fig. 6. We
see that the: (i) CCs, for each user, have a different BER
performance; (ii) BERs of U1 for CC1/CC2 are very similar,
if not the same, to those of U2 for CC2/CC1; (iii) BER
relating to the PCs of both users are approximately the same;
and (iv) the PCs outperform the CCs. Results (i) to (iii) are
again a consequence of the statistical symmetry in the two
MIMO channels. Result (iv) is because of the extra spatial



POLYNOMIAL GSVD BEAMFORMING FOR TWO-USER FREQUENCY-SELECTIVE MIMO CHANNELS 9

Fig. 5: BER performances of the CCs for the {N,M,P} =
{3, 3, 3}-antenna configuration.

Fig. 6: BER performances of the PCs and CCs for the
(N,M,P ) = (4, 3, 3)-antenna configuration.

DoF possessed by the source coupled with the fact that each
PC caters to just one user.

Fig. 7 shows coded BER performances for {N,M,P} =
{4, 3, 2} case. As with previous configurations, the PCs show
very similar BERs; moreover, the PCs outperform the CCs,
which is because most of the available DoFs go towards
enabling the PCs. This PC-to-CC beam distribution provided
by the PGSVD-based beamformer maximizes the multiplexing
gain. Notice also that the CCs of the two users experience
slightly different BERs. The reason for this is that the CC1 of
U1 is equivalent to the third sub-channel gain factor which is
smaller than U2’s CC1 corresponds to the second sub-channel
gain factor.

Fig. 8, shows the coded BER performance for the
{N,M,P} = {4, 2, 2} antenna configuration. This is an
interesting case in that the source has as many spatial DoFs
as the combined DoFs of the two users. In this case, one
would expect the PGSVD-based beamformer to approximate
a broadband zero-forcing beamformer – able to minimize
CCI equally well across all PCs. However, the beamformer
generates four PCs with differing BERs; notably, U1’s PC

Fig. 7: BER performances of the PCs and CCs for the
{N,M,P} = {4, 3, 2}-antenna configuration.

Fig. 8: BER performances of the PCs for the {N,M,P} =
{4, 2, 2}-antenna configuration.

performs significantly worse than U1’s PC2 and U2’s PC1,
especially at high SNR. This is mainly due to the fact that
the PSVD produces large-order U(z) matrices in (11) for
encoding this PC. Recall from Section III-C that our approach
to implementing the PSVD involves the application of two
PEVDs, which effectively doubles the order of the PSVD
polynomial matrices. One possible way of alleviating this
problem is to consider a PQRD-based PSVD. The PQRD of
Foster et al in [27] could be applicable, once modified to
handle underdetermined systems.

C. BER Performance – Channel Errors and Uncertainties

Note the absence of a bit-error floor in all the BER results
presented here thus far. This is indicative of the fact that
the PGSVD-based beamformer minimizes the CCI between
the two users. Elimination of CCI is to be expected given
exact knowledge of the two MIMO-channel polynomial ma-
trices. Perfect channel knowledge is typically assumed, in
the literature, when evaluating channel coding schemes [1],
[2], [25]. However, in practice, the channel state information
may have to be estimated and tracked, especially in a fast
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Fig. 9: Effect of channel estimation error on U1’s CC1 BER
performance for {N,M,P} = {3, 3, 3}.

varying environment. The channel-estimation process gives
rise to estimation errors which negatively impact the BER
performance of the MIMO-channel communication systems.
Therefore, it would be prudent to investigate the robustness
of our PGSVD-based beamformer to errors and uncertainties
involving the MIMO channels.

Firstly, we assess system performance under channel esti-
mation errors. The errors in the two estimated MIMO-channel
matrices can be represented by additive channel-estimation
error matrices E1(z) : C → CM×N and E2(z) : C →
CP×N with entry-coefficients drawn from a zero-mean com-
plex Gaussian process with variance σ2. Then the erroneous
channel estimates, given by

Ĥi(z) = Hi(z) +Ei(z) , i ∈ {1, 2} , (24)

are used to compute the PGSVD-based beamforming matrices
instead of Hi(z).

In Fig. 9, we show the effect of channel-estimation errors on
the coded BER performance of U1’s CC1 for the {N,M,P} =
{3, 3, 3}-antenna configuration. Expectedly, total bit errors in-
crease markedly as σ2 increases, producing BER floors at high
channel-estimation errors. For example, there is over an order
of magnitude reduction in BER performance, for σ2 = 0.01,
at 10-dB SNR. This performance degradation highlights the
reliance of PGSVD-based beamforming on MIMO-channel es-
timation accuracy. The semi-blind broadband MIMO-channel
estimator of Hassan et al in [25] can be used to provide good
channel estimates when considering such MIMO systems; the
investigation of which is left for future work as it would detract
from the main goals of this work.

With the next set of results we demonstrate the robustness
of our broadband beamformer to rank-deficient MIMO links,
which models MIMO-channel spatial correlations. Experi-
ments conducted were for the channel model in Section V-B
and the {N,M,P} = {3, 3, 3}-antenna configuration, for
which the channel matrices have a (full) rank of 3. The rank of
the channel matrices was reduced to 2 for 16 of the frequency
bins, uniformly distributed across the spectrum.

Fig. 10: BER performance comparison of the proposed
PGSVD-based and OFDM-GSVD beamformers, for full-rank
and rank-deficient MIMO channel matrices.

As discussed in Section I, a competitor method for point-to-
two point MIMO multicasting can be obtained by performing
per tone GSVD beamforming via OFDM (or OFDM-GSVD).
In this frequency-domain approach, the scalar GSVD is used
to jointly factorize the channel matrices at each frequency
bin. For the OFDM-GSVD method used here, we found that
working with 512 DFT points struck a good balance between
BER performance and PU filter lengths.

In Fig 10, we compared the BER performances of the pro-
posed approach with that of the OFDM-GSVD method under
full-rank and rank-deficient channel conditions. Here, we only
show the performance of the dominant CC for U1, which was
CC3 in this case. Clearly, both systems show similar perfor-
mance for the full-rank case, with the former attaining slightly
lower bit errors at higher SNRs. However, a striking result is
that, for rank-deficient MIMO links, the PGSVD-based system
outperforms the OFDM-GSVD approach; this performance
gap increases significantly at higher SNRs. The performance
degradation of OFDM-GSVD is because information of each
transmitted symbol is constrained to one frequency bin. This
problem can be alleviated with feedback of channel condition
information to the receiver; however, at the cost of reduced
usable bandwidth and higher overhead. Contrastingly, with our
time-domain approach, the entire channel spectrum is used
to communicate the information in each symbol, making the
system more robust to this type of channel corruption.

Lastly, we provide validation of our approach for the case
of non-flat fading channels using the Jakes fading model.
The frequency-selective transmission channel from the nth
source antenna element to the mth/pth output of a 3 × 3
MIMO channel is described by a seven-path fading model. The
multipath problem is modeled by using the velocity variation
of the source from 3 to 4 km/h.

Fig 11 shows the BER performances of the proposed
approach applied in the case of a Jakes MIMO channel. For
comparison, we include the bit errors made by the OFDM-
GSVD baseline scheme. As before, the BERs of the dominant
CC for U1 are shown. Results show that the proposed PGSVD-
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Fig. 11: BER performance comparison of the proposed
PGSVD-based and OFDM-GSVD beamformers, for Jakes
MIMO channels.

based beamformer compares favorably to the OFDM-GSVD
approach. The reason for this is that, as in the case of the rank-
deficient channel problem, the OFDM-based method decodes
on a bin-by-bin basis, and so will produce more bit errors
for bins that coincide with parts of the spectrum where the
channel fading is great. Conversely, the proposed system is
more robust to these types of errors since the information in
each symbol is spread across the entire frequency bandwidth.

VI. CONCLUSION

In this paper, we have proposed a broadband beamformer
that can generate point-to-two point MIMO channels for mul-
ticasting in frequency-selective environments. To this end, we
proposed a generalized singular value decomposition (GSVD)
for polynomial matrices, achieved by extending the cosine-
sine decomposition (CSD) to the polynomials. The polynomial
GSVD (PGSVD) is used to design the required broadband
beams for efficient broadband MIMO multicasting. The main
features of the proposed approach are:

• Yields broadband virtual channels that simultaneously
accommodate for both point-to-point private channels
(PCs) and point-to-two point common channels (CCs).

• Robust to channel-estimation errors, rank-deficient links
and non-flat fading channels; and produces favorable
BER performances as compared to a baseline OFDM-
based scheme, which is also proposed in this paper.

• Supports the use of various and varied modulation/access
schemes on the different virtual channels (VCs), depend-
ing on end-user needs.

As an example for the last feature, our MIMO system can
allow CC users to benefit from the new multi-gigabit wireless
personal and local area network specifications, such as the
IEEE 802.11ad/ay, whilst simultaneously providing flexibility
to use other conventional access schemes, such as point-to-
point CDMA/FDMA, for the PCs.
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