
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Detecting changes and avoiding catastrophic forgetting in dynamic partiallyDetecting changes and avoiding catastrophic forgetting in dynamic partially
observable environmentsobservable environments

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.3389/fnbot.2020.578675

PUBLISHER

Frontiers Media SA

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT

This is an Open Access Article. It is published under the Creative Commons Attribution 4.0 International
Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

LICENCE

CC BY 4.0

REPOSITORY RECORD

Dick, Jeff, Pawel Ladosz, Eseoghene Ben-Iwhiwhu, Hideyasu Shimadzu, Peter Kinnell, Praveen K Pilly,
Soheil Kolouri, and Andrea Soltoggio. 2020. “Detecting Changes and Avoiding Catastrophic Forgetting in
Dynamic Partially Observable Environments”. Loughborough University.
https://hdl.handle.net/2134/13562636.v1.

https://lboro.figshare.com/
https://doi.org/10.3389/fnbot.2020.578675

ORIGINAL RESEARCH
published: 23 December 2020

doi: 10.3389/fnbot.2020.578675

Frontiers in Neurorobotics | www.frontiersin.org 1 December 2020 | Volume 14 | Article 578675

Edited by:

James Leland Olds,

George Mason University,

United States

Reviewed by:

Eiji Uchibe,

Advanced Telecommunications

Research Institute International (ATR),

Japan

Juan V. Sanchez-Andres,

University of Jaume I, Spain

*Correspondence:

Jeffery Dick

j.dick@lboro.ac.uk

Andrea Soltoggio

a.soltoggio@lboro.ac.uk

Received: 30 June 2020

Accepted: 20 November 2020

Published: 23 December 2020

Citation:

Dick J, Ladosz P, Ben-Iwhiwhu E,

Shimadzu H, Kinnell P, Pilly PK,

Kolouri S and Soltoggio A (2020)

Detecting Changes and Avoiding

Catastrophic Forgetting in Dynamic

Partially Observable Environments.

Front. Neurorobot. 14:578675.

doi: 10.3389/fnbot.2020.578675

Detecting Changes and Avoiding
Catastrophic Forgetting in Dynamic
Partially Observable Environments
Jeffery Dick 1*, Pawel Ladosz 1, Eseoghene Ben-Iwhiwhu 1, Hideyasu Shimadzu 2,3,

Peter Kinnell 4, Praveen K. Pilly 5, Soheil Kolouri 5 and Andrea Soltoggio 1*

1Department of Computer Science, Loughborough University, Loughborough, United Kingdom, 2Mathematical Sciences,

Loughborough University, Loughborough, United Kingdom, 3 Teikyo University Graduate School of Public Health, Tokyo,

Japan, 4 School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough,

United Kingdom, 5HRL Laboratories, Malibu, CA, United States

The ability of an agent to detect changes in an environment is key to successful

adaptation. This ability involves at least two phases: learning a model of an environment,

and detecting that a change is likely to have occurred when this model is no longer

accurate. This task is particularly challenging in partially observable environments, such

as those modeled with partially observable Markov decision processes (POMDPs). Some

predictive learners are able to infer the state from observations and thus perform better

with partial observability. Predictive state representations (PSRs) and neural networks are

two such tools that can be trained to predict the probabilities of future observations.

However, most such existing methods focus primarily on static problems in which

only one environment is learned. In this paper, we propose an algorithm that uses

statistical tests to estimate the probability of different predictive models to fit the current

environment. We exploit the underlying probability distributions of predictive models

to provide a fast and explainable method to assess and justify the model’s beliefs

about the current environment. Crucially, by doing so, the method can label incoming

data as fitting different models, and thus can continuously train separate models in

different environments. This new method is shown to prevent catastrophic forgetting

when new environments, or tasks, are encountered. Themethod can also be of use when

AI-informed decisions require justifications because its beliefs are based on statistical

evidence from observations. We empirically demonstrate the benefit of the novel method

with simulations in a set of POMDP environments.

Keywords: POMDP, PSR, continual learning, catastrophic forgetting, lifelong learning, neural network

1. INTRODUCTION

A useful skill for an agent that explores the world and learns to act in it is the ability to predict what
happens next (Geisser, 1993). One way is to try to learn a model of the world so that predictions
are generated within the agent and compared with observations to improve the model. However,
this idea assumes that it is possible to learn a large and static model of the entire world. In reality,
it is more feasible to try to learn a model of a subset of the world, i.e., an environment. Therefore,

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.578675
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.578675&domain=pdf&date_stamp=2020-12-23
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.dick@lboro.ac.uk
mailto:a.soltoggio@lboro.ac.uk
https://doi.org/10.3389/fnbot.2020.578675
https://www.frontiersin.org/articles/10.3389/fnbot.2020.578675/full

Dick et al. Detecting Changes in POMDPs

an agent may interact in different environments at different
points in time. This is a condition that challenges learning
algorithms that often need to be set manually by a user that labels
tasks or substitutes models for each new task or environment.

A more effective agent would be able to learn different
tasks or environments more autonomously, incorporating new
knowledge without forgetting the skills learned in a previous
task or environment. To accomplish this, an agent needs
to learn an environment and detect when a change occurs,
or when a completely new environment is met. By doing
so, a lifelong learning agent will also remember previously
learned environments, and quickly recover their models if old
conditions return.

The majority of current machine learning approaches,
however, assume that learning occurs in one static environment.
These approaches make it possible to optimize policies for
one problem, but do not scale well to learning multiple
problems, or to learning in an incremental way more tasks
over a lifetime (Thrun, 1998). Approaches known as meta
reinforcement learning (Finn et al., 2017; Rothfuss et al., 2018;
Rakelly et al., 2019; Zintgraf et al., 2019) are designed to learn
multiple tasks, but they assume that a signal is given when
the task changes. While this is a step toward learning more
tasks sequentially, such algorithms still require a teaching signal
that labels different tasks. Additionally, reinforcement learning
algorithms are intended to optimize a policy that maximizes
reward (Sutton and Barto, 2018). Therefore, the knowledge of
the environment is implicit in the policy and shaped by the
reward function.

One method to quickly adapt to changes in the environment
is provided by reinforcement learning approaches that
explicitly model the environment, and therefore can
rapidly search the parameter space when those change.
These approaches, known as model-based reinforcement
learning (Doya et al., 2002; Nagabandi et al., 2018;
Lecarpentier and Rachelson, 2019), require the model to
be hand-designed, and also learn policies with the aim
to maximize a reward. In short, because reinforcement
learning aims to provide actions that maximize reward,
their applicability is limited when there are no actions or
rewards available.

If an environment does not provide rewards, it can still
be explored and learned with the aim, e.g., to predict future
events. The concepts of Markov chain and of Markov decision
process (MDP) are abstractions to model an environment when
actions are, respectively, absent or present (Bellman, 1957). An
extension of MDPs are partially observable Markov decision
processes (POMDPs) that account for the fact that observations
from a system do not always reveal the state. POMDPs have
many important applications in the real world, e.g., the airplane
collision avoidance system ACAS X is based on POMDP
models (Kochenderfer et al., 2015). POMDPs have also been
used to model brain information processing for decision making
under uncertainty (Rao, 2010), and to model working memory
in the brain (Todd et al., 2009). While POMDPs are a flexible
tool to model a variety of real world systems, the assumption
of partial observability of the underlying states in the observed

environment is precisely what makes it difficult to derive accurate
POMDPs from data.

Because POMDPs can include a reward function, much of the
research in learning POMDPs falls under reinforcement learning
theory and is intended to find an optimal policy in a rewarding
environment (see e.g., Shani et al., 2005). One exception is the
Baum-Welch algorithm (Rabiner, 1989), designed to generate
Hidden Markov Models, that can be adapted for POMDP
environments by incorporating actions. One limitation of this
method is that it requires knowing the number of states in
advance, and works best when provided with an initial estimate
of the underlying POMDP.

Predictive state representation (PSR) is a general
representation of a POMDP that does not need to learn
the underlying states. PSRs, instead, learn the probabilities
of future observations. Due to the nature of PSR methods,
which learn directly from observations rather than trying to
find hidden underlying states, discovering and learning an
accurate PSR of a POMDP environment is faster than trying to
reconstruct the underlying MDP (Littman et al., 2002). A variety
of algorithms have been proposed to improve the learning
of PSRs such as transformed predictive state representations
(TPSRs) (Rosencrantz et al., 2004) and compressed predictive
state representations (CPSRs) (Hamilton et al., 2013). Some
algorithms improve the learning method, often utilizing TPSRs
and CPSRs (McCracken and Bowling, 2005; Yun-Long and
Ren-Hou, 2009; Liu et al., 2016; Downey et al., 2017), while
others allow the agent to learn in more complex domains, e.g.,
with continuous action or observation spaces (Wingate and
Singh, 2007; Boots et al., 2013).

Other parametric models such as neural networks (Bishop,
1995) can also take a history of recent actions and observations
as input, and be trained to predict the next observation. These
approaches are less explainable, but have grown in popularity
with the resurgence of neural networks, the use of deep
and recurrent networks, and powerful hardware for training
(Schmidhuber, 2015).

The approaches cited so far assume that the environment is
stationary. Therefore, we can hypothesize that under dynamic
conditions where the agent switches between environments
over time, such approaches will either learn an average of the
environments, or learn accurately the most recent environment
while forgetting the previous ones. One example of dynamic
conditions is an autonomous driving problem in which a vehicle
encounters different environments, such as different driving rules
or weather conditions. In theory, two or more POMDP models
that alternate over time can be modeled as one single POMDP
in which a non-observable state determines the sub-part of the
model that generates the current data. However, this approach is
likely to increase the complexity of the model significantly. Thus,
a hierarchical approach in which different POMDP models are
used to predict different environments may be more scalable.

Assume, e.g., a system in which a transition from a state A to
B occurs consistently with probability 1, but after some time has
passed, the environment dynamics change such that state A leads
to C with probability 1. The challenge in learning this case with
one single model is that rather than capturing the hidden state,

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

the model could learn that the environment transitions from A
to B or to C with a probability of 0.5 for each state. This is true
on average, but inaccurate at any particular point in time. As a
consequence, the result will be either a model with low accuracy,
if a slow learning rate is used, or catastrophic forgetting if a faster
learning rate is used.

The idea presented in this paper is to explicitly learn such
hierarchically nested hidden states by means of a statistical
framework that selects different predictive models to fit a data
stream at different times. The proposed approach tracks the
probability of a current window of data of fitting differentmodels,
and thus the probability of an agent being in one of many
possible environments when the only cues, e.g., observations
and actions, are implicit in the data stream. This is done by
comparing the expected frequencies of observations derived
from predictive models with the observed frequencies in the
current data stream. Discrete observations and actions follow
multinomial distributions, thus, performing χ2 tests is a viable
method of estimating the probability of the new observed data to
fit a learned predictive model.

An important consequence of assessing a model’s probability
of fitting the current data is that data points at different times
can be assigned to different models to improve them separately
and independently. By doing so, we can learn different models
under the assumption of stationary conditions and implement
continual learning of multiple environments, thus avoiding
catastrophic forgetting in dynamic POMDPs. The proposed
method provides an evidence-based and explainable algorithm
to justify the belief of the system. Moreover, the novel approach
does not need reward signals to learn models for different
environments, making it a more general method than reward-
based approaches such as reinforcement learning.

The next section provides the background on POMDPs that
is necessary to introduce the novel algorithm that we name
adaptive model detection (AMD).We also briefly introduce PSRs
and a simple neural network as baseline model learners to be
employed by the novel AMD algorithm explained in section
3. Simulation results are presented in section 4 followed by a
discussion and conclusion.

2. BACKGROUND

Predictive models such as predictive state
representations (Littman et al., 2002), neural networks and
POMDPs have been extensively used in the past to model
dynamical systems with discrete representations. This section
provides the background for these approaches that lay the
framework for the method in this paper.

2.1. Predictive State Representation (PSR)
and POMDP
Predictive state representation (PSR) is a model to predict
observations in stochastic environments, including POMDPs.
A POMDP is defined as a hextuple {S ,A,T,O,�,R}, where S

is the set of underlying MDP states; A is the set of actions;
T is the transition function, T :A × S × S → [0, 1], which

gives the probability of transitioning from one state to another
given the action taken; R is the reward function; O is the set
of observations; and � is the set of conditional observation
probabilities. POMDPs differ from MDPs in that the current
observation is not sufficient for an agent to be able to determine
its underlying state.

Let t be a finite stream of action-observation pairs. Then t is
a test, and we let T be the set of all tests. Let the history hi ∈ H
of the agent at time i be the stream of action-observation pairs
aj ∈ A, oj ∈ O,∀j ∈ [0, i) ∩ N observed up to time i.

A PSR (Littman et al., 2002) of an environment consists of a
set of core tests, Q; a set of |Q|-dimensional ma,o,t vectors for all
a ∈ A, o ∈ O, t ∈ Q; and an initial state.

The set of core tests,Q, is a finite subset of T , with the property
that P(t | h) for all t ∈ T , h ∈ H can be found as some linear
combination of the probabilities P(q | h) for all q ∈ Q. The empty
test, ǫ = {}, is always included in Q, such that P(ǫ | h) = 1 for all
h which are possible under the PSR model. The PSR state vector
after observing history h, y(h), is a (1 × |Q|) vector which holds
P(q | h) for each q ∈ Q. By stacking the rows ofma,o,t for all t ∈ Q,
we obtain a (|Q| × |Q|) projection vector Ma,o for every length 1
test (a, o). For all h ∈ H we have that P(o | h, a) = y(h) × MT

a,o.
Projection vectors for longer tests can be created by multiplying
projection vectors for shorter tests. For example, Ma1 ,o1 ,a2 ,o2 =

Ma2 ,o2 ×Ma1 ,o1 , where× is matrix multiplication.
To maintain an accurate state vector, ma,o,t must be available

for all a ∈ A, o ∈ O, t ∈ Q. Let Q = {t1, t2, . . . , tn}. This can
be used to obtain the state vector at time i, y(hi), given the ai, oi
action observation pair observed at timestep i, and y(hi−1). Recall
that the PSR state vector contains the probabilities of each core
test, and let yj(h) denote the element in y(h) corresponding to
core test tj. Then, the probability of each core test can be found as
follows. For all tj ∈ Q:

yj(hi) = P(tj | hi−1, ai, oi) =
y(hi−1)×mT

ai ,oi ,tj

y(hi−1)×mT
ai ,oi

. (1)

Equivalently, we can use the previously defined projection
vectors:

y(hi) =
y(hi−1)×MT

ai ,oi

y(hi−1)×mT
ai,oi

. (2)

From the definition above, it follows that PSRs can give an
indication of the probability of certain transitions to occur. In
particular, the following theorem specifies the probability of
observing particular action observation pairs:

THEOREM 1. Given that the state vector is y(hi−1) at time
i − 1, the probability of seeing observation oi after taking action
ai at time step i is given by the following equation

P(oi|hi−1, ai) = y(hi−1)×mT
ai,oi

. (3)

Proof: By construction. Note that the state vector contains
enough information to accurately predict future observations
even in partially observable environments. The state vector acts
not only as a prediction, but also as an internal state for the
PSR model.

Frontiers in Neurorobotics | www.frontiersin.org 3 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

A natural question to ask is, ‘what is the predictive state of an
empty history y(ǫ)?’. If the environment is known to always start
in a given underlying state, the corresponding predictive state
may be used. However, this is a strong assumption in general.
If we assume the agent is likely to start in each underlying state
proportionally to the amount of time previously spent in that
state, y(ǫ) can be set to the stationary distribution. The stationary
distribution, which is the weighted expected value of y over all
time steps, is given by

y(ǫ) =

∑
h∈H y(h)

|H|
(4)

where H is the set of all histories. As H is an infinite set, this
is calculated instead from the histories that the agent has seen.
When calculated this way, the stationary distributionmay change
depending on the policy followed by the agent. Additionally,
as the stationary distribution represents a distribution over all
states, it may not be a state that the agent can reach through
normal exploration; however, it represents a positive probability
for all states previously visited.

The state space of the PSR is the set of states that can be

generated recursively by y =
y′×MT

a,o

y′×mT
a,o
, for all a ∈ A, o ∈ O, where

y′ is known to be in the state space of the PSR, and y × mT
a,o is

non-zero. In order to generate the set of states, an initial state y′

must be assumed to be in the state space. Sometimes an initial
state is provided when the starting state of the environment is
known. However, when no initial state is provided, the stationary
distribution may be used.

There are several algorithms for learning PSRs offline, but
relatively few for learning and discovering tests online. One such
algorithm is the constrained gradient algorithm (McCracken
and Bowling, 2005), which we use in our experiments for
learning PSRs.

2.2. Neural Network Predictors
A simple neural network (Bishop, 1995) can be trained to predict
observations in a given environment. Given a time window of
duration i, a neural network can take the observations o ∈

O and the actions a ∈ A and predict the new observation
o at time i + 1. If the softmax transfer function is used to
produce output probabilities, the network can also be trained to
predict the probability of each observation at i + 1 in stochastic
environments. The difference between the prediction and the
observation can be used to train such a system with gradient
descent. As for the PSR model explained in the previous section,
a neural network predictor can be trained effectively only if
stationary conditions are assumed during the training phase.
Thus, changes in the environment such as those occurring in
dynamic POMDPs (see next section) are challenging conditions
that this study addresses.

Neural networks, PSRs, and other predictive models have
one thing in common: they give as output a prediction of the
probability of seeing each possible observation next. The sum of
probabilities of seeing each observation is 1. Let K be a predictive
model, O be the set of possible observations, and A be the set of
possible actions. Then, we define P(o | Ki) to be the predicted

probability of observing o at time i given by K. Additionally,
we define P(O | Ki) as the probability distribution over all
observations at time i given by K.

2.3. Dynamic POMDPs
Assume that an environment remains stationary for a certain
amount of time. Under this assumption, it is possible to learn a
model of the environment (e.g., a PSR, as detailed in McCracken
and Bowling, 2005). If, after a certain amount of time, the
environment changes, the continual training of the same model
will lead to inaccurate predictions at first, and catastrophic
forgetting of the first environment in the long term. This is
because the assumption of stationary conditions is not valid,
and one model tries to learn an average distribution of two or
more distributions that occur in different environments. These
changing environments are similar to switching hidden Markov
models (SHMMs) investigated in Chuk et al. (2020) and Höffken
et al. (2009).

Let V = {V1,V2, . . . ,Vm} be a set of distinct POMDP
environments. A dynamic POMDP environment, D, behaves as
a single environment Vi ∈ V for a number of time steps, n0,
before changing its behavior to another environment, Vj ∈ V.
The dynamic environment D may switch to any environment in
V every nk time steps, with k ∈ N and nk ≫ 1. Effectively, these
dynamics can be seen as hierarchical large stationary models
where a state variable z ∈ N determines the specific environment
Vz at a given time. However, z is not observable and can only
be derived inferring which specific environment from the set V
matches the current stream of data. We assume that transitions
between environments in V occur with considerably lower
frequency than state transitions within the environments Vz .
This assumption reflects two points: (1) in real world scenarios,
generally, two environments can be thought of as being distinct
when transitions from one to another occur rarely, otherwise it
makes more sense to consider them as one environment; (2) for
a model to learn and predict one environment, it is necessary to
experience the environment for a minimum number of steps that
capture transitions within it.

Such dynamic conditions occur typically when an agent learns
to predict an environment, e.g., to navigate in a house, and is
then required to learn a new somewhat different environment,
e.g., to navigate in an office. The new environment might
bear a similarity with the previous one, but also significant
differences. Desirable skills of an agent include the ability to
detect that there is a new environment, the ability to learn
the new environment quickly, possibly exploiting previous
knowledge, and also retain the knowledge of the previous
environment (avoiding catastrophic forgetting). The aim of this
study is precisely to achieve such capabilities as explained in the
next section.

3. ADAPTIVE MODEL DETECTION

The idea and the method for detecting different environments
and training different models according to such detection is
explained in this section. We name our new approach adaptive
model detection (AMD) because it detects likely models to fit the

Frontiers in Neurorobotics | www.frontiersin.org 4 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

data, and works with adaptive models that evolve as new data
is collected.

3.1. Statistical Model Selection
Given a set of statistical models that each predict an environment,
a question that can be asked is: what model is best at predicting a
given stream of data? Several approaches have been proposed in
the literature to performmodel selection (Cox, 2006). Approaches
for model selections are based on the information theory such as
the Akaike information criterion (Akaike, 1974) and the Bayesian
(or Schwarz) information criterion (Schwarz, 1978). The idea is
to measure the information that is lost due to the difference in
statistical distributions between the model and the data using
the Kullback-Leibler divergence (Kullback, 1997). By doing so,
it is possible to select a best fitting model that minimizes this
difference. Different statistical methods, however, may be more
or less appropriate or accurate according to a number of factors
including the number of data points and the assumptions on the
statistical distributions that are being observed.

Given a recent window of data from one environment,
hypothesis testing can be used to accept or reject the null
hypothesis that the distribution of the environment data matches
the distribution of the model-generated data (Lehmann and
Romano, 2006). The ability to accept or reject such a null
hypothesis is a valuable tool, particularly in the context of
explainable AI applications in which a model is used to predict a
data stream. If the current data stream has a very low p-value, it is
reasonable to reject the null hypothesis that the model is correct.
On the contrary, if the null hypothesis cannot be rejected, the
model offers a good approximation and it is therefore reasonable
to (1) consider it as a good-enough predictor and (2) use new data
to further improve it via a training process.

We assume that (1) a data stream is generated by one
environment Vi from the set V; (2) that we want to learn and
identify which model Ki ∈ K describes the current data stream,
including if none of the current models describe the data; (3)
the data stream produces a set of finite discrete or categorical
outcomes. Therefore, we use hypothesis testing instead of model
selection, so that we can determine when none of the existing
models fit the data, allowing us to create a new model. To
identify which specific Vi is generating the data, the problem
can be formulated as selecting the corresponding model Ki that
maximizes the likelihood

argmax
i

L̂ = P(h|Ki) (5)

where h is a limited time window of recent input data.
It is important to note that there are no guarantees that a

current set of models, K, can accurately predict a corresponding
set of environments V. However, the key idea tested is: assuming
we can select the most fitting model given by Equation (5), then
we can associate a particular time window of the data stream and
use it to improve the model Ki to maximize L̂. Therefore, such
an approach can be used both to learn and to find the best set of
models that fit a set of environments.

The data generated by the set of actions and observations in a
POMDP as described in the previous section form a multinomial

distribution. Thus, the χ2 test can be used to accept or reject the
null hypothesis that a recent time window of data is generated by
a given model. In the next sections, the procedure to compute the
degrees of freedom and the χ2 p-values is presented.

3.2. Calculating Degrees of Freedom
The degrees of freedom (DF) of a statistical model K corresponds
to the number of independent parameters in the model, and is
required to perform statistical tests such as χ2. Predictive models
have in common the ability to predict the probability distribution
of the next observation given a history or internal state. Note that
we are not trying to find the number of independent parameters
in the predictive agent, but in the underlying model the agent
predicts. Let o′ ∈ O. If, for all o ∈ {O \ o′} we know the value of
P(o | Ki), then

P(o′ | Ki) = 1−
∑

o∈{O\o′}

P(o | Ki) . (6)

Therefore, the number of independent parameters for each
prediction is |O| − 1 as the final observation’s probability can be
inferred from the others. Each prediction may be independent
in the predictive model, thus, we assume that the predictive
model is an approximation to a statistical model (the underlying
POMDP) with a number of independent states that is much
smaller than the length of a history of data points. To estimate the
number of independent states in the underlyingmodel, we cluster
together similar predictions in the predictive model. These can be
clustered according to the predictive model’s hidden states, the
prediction of the next observation, or the prediction of several
next observations.

3.3. Sampling and Clustering Probabilities
The adaptive model detection algorithm (AMD) keeps a history
windowW of up to L recent prediction observation pairs, where
L is a parameter of the algorithm. The choice of L affects the
behavior of the algorithm as shown in the results section with an
analysis of different values for L.

Knowing how many times each prediction has been made
is necessary to determine whether the environment behaves as
the predictive model expects. To count the number of times
different predictions are given by a learning model, it is necessary
to cluster such predictions that are expressed as vectors with
possibly slightly different probabilities values. Let CK be the set
of all clusters made by AMD for the predictive model. For a
given cluster c ∈ CK , let c̄ be the mean of the distributions
P(O | Ki) ∈ c in the cluster, and c̄(o) therefore be the mean
probability of observing observation o.

AMD uses the DBSCAN clustering algorithm (Ester et al.,
1996) to form clusters of predictions given by a model. The
scikit-learn (Pedregosa et al., 2011) vanilla implementation of the
algorithm is used. As the data changes over time, the DBSCAN
algorithm may form clusters differently on each timestep. This
does not pose an issue, as c̄ can be recalculated at each timestep,
meaning that even when the clusters change, the expected
and observed frequencies will be similar in an accurate agent.
DBSCAN does not include into clusters those outlier points

Frontiers in Neurorobotics | www.frontiersin.org 5 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

which seem to not fit into larger clusters. Such a property is
advantageous in our context because: (1) the mean distribution
of a cluster c̄ is therefore not affected by an outlier that was forced
into it, and (2) clusters must be formed of a certain minimum
size, the advantage of which is explained in section 3.5.

3.4. Calculating χ
2 p-Value

To compute the χ2, AMD counts as Xc,o the number of times
in the history that each observation o follows predictions in each
cluster c for all c ∈ C and o ∈ O. The number of times each
observation o is expected to follow predictions in a given cluster
is given by Ec,o = |c| × c̄(o).

Thus, from Pearson (1900),

χ2 =
∑

c∈C

∑

o∈O

Xc,o − Ec,o

Ec,o
. (7)

Effectively, χ2 measures how well the actual data matches the
expected data, with higher values meaning that the observed data
does not match the expected data well. For a general model, some
values ofXc,o and Ec,o may be equal or close to 0, corresponding to
impossible (or never observed) transitions. For these cases when

Xc,o = Ec,o = 0, the value
Xc,o−Ec,o

Ec,o
is set to 0.

Knowing the χ2 value and DF allows us to find the p-value,
which represents the probability of the observed data coming
from the expected data distribution. This function is available in
most statistical programs, code libraries, and toolkits as part of
the χ2 implementation1.

3.5. χ
2 Testing for Adaptive Model

Detection
Following the guidelines in (Yates et al., 1999), a χ2 test is
considered to be sufficiently accurate when “no more than 20%
of the expected counts are less than five, and all individual
expected counts are one or greater.” Accordingly, a minimum
history length is necessary to be able to perform the test, and
the longer the history, the more accurate the test is expected
to be. Unfortunately, with an arbitrary large POMDP, even
a long history does not guarantee that all possible prediction
observation pairs have been seen. Additionally, while a long
history length makes p-values more accurate, a long history
means that the assessment of the probability for a model can
be done only over a long period of time, potentially losing
granularity on the precise point of the transition.

Even with a long history length, if the agent encounters a
sequence of observations it does not expect, it may produce an
internal state or prediction unlike any it has generated before.
Due to this, the cluster containing the unusual state or prediction
could be small enough that the expected number of times a
given observation follows states in the cluster is lower than 1.
Conveniently, DBSCAN has a minimum cluster size, so such
small clusters can be avoided entirely, unless of course the
probability of observing a particular observation from states in
a cluster are very low.

1In our implementations, the scipy function scipy.special.chdtrc is used.

An AMD that tests data against multiple predictive models
K1,K2, . . . ,Kn keeps track of the p-value of each one, and
uses this tracked p-value to determine which environment it is
most likely to be in. This allows AMD to select which model
is trained at any point in time in a statistically motivated
way, contributing to explainable decisions in AI. Additionally,
detecting which environments are likely at given points in time
opens up the possibility of applying a different policy based on
the current environment.

Note that as long as the p-value is above the threshold at
which the null hypothesis is rejected, it does not matter whether
the value is low, high, or fluctuating. The AMD algorithm is
summarized with pseudo code in Algorithm 1.

4. SIMULATION RESULTS

The effectiveness of the algorithm in a variety of settings is
tested with computer simulations. The set of environments
is introduced in section 4.1. The effect of the history
length parameter L on the detection speed and stability is
investigated in section 4.2. In section 4.3, the algorithm is
extended to demonstrate how labeling incoming data can be
used to continually train separate models, and thus avoid
catastrophic forgetting.

4.1. Chosen Environments
The proposed algorithm was tested on a set of POMDPs
of various size and complexity. The first set of problems
(Figures 1A–D) is a series of uncontrolled POMDP
environments, i.e., Markov chain environments, with only
2 observations (as there are more states than observations, the
observation is given by the color of the state in Figure 1). These
environments appear simple at first, however, they have different
states and transition probabilities, and, due to their stochastic
nature, some environments could be mistaken for others based
on the data generated by exploration. For example, environment
C creates a data stream that can be produced by environment D.
However, when interacting with the environment over a longer
period, the observations reveal the data stream is more likely to
be generated by environment C than environment D.

The next set of environments, Figures 1E1,E2, represents a
decision process originating in S0 where one sequence of actions
takes the agent to S7, and all other sequences lead to S9. The
challenge in this set is that the observations do not reveal the
distance from S0, and thus make it hard for an agent to locate
itself along the graph as it progresses from left to right. E1 and
E2 have two further variations, E3 and E4 (not shown). E3 is the
same as E1 but the transitions from S1 have inverted actions.
Similarly, E4 is the same as E2 but transitions from S1 have
inverted actions. These four environments are very similar in
structure, but they require different policies to be traversed from
S0 to S7.

Finally, environments Figures 1F1,F2 have most of
their transition probabilities being exactly the same. This
means that transitions in the data stream distinguishing
the two environments occur less frequently than in some
other environments.

Frontiers in Neurorobotics | www.frontiersin.org 6 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FIGURE 1 | Set of POMDP environments. States are represented with circles, actions with squares, and transition probabilities with numbers on arrows. The color of

the state corresponds to the observation. Partial observability derives from the fact that different states provide the same observation. The first set (A–D) are simple

Markov chains where transitions occurs without actions and probabilities indicated near the transition arrows. The second set (E1,E1) are more complex problems

where actions determines different paths in a cycle but have deterministic transitions. Environments (F1,F2) are POMDPs with some deterministic and some

stochastic transitions.

4.2. Speed and Reliability of Detections:
Impact of History Length
The experiments in this section assess overall stability of the
detection and the impact of the history length expressed by
the parameter L. Figure 2 shows the effect of different history
lengths when tracking the probability of an accurate PSR
model for environment C. In Figure 2 (left), the values of
L for 40, 60, 80, 100, and 120 are shown. In all cases, the
AMD shows consistent p-values of 0 and 1, indicating that
the model can confidently determine which model the data
stream belongs to. The longer the history, the slower the
change in p-value, confirming the intuitive notion that longer
histories require more time steps to reveal a change in the
environment. When assessed on the stochastic environments
A and B (Figure 2, right), the dropping p-values indicate that

stochasticity is a significant confounding factor in the detection
of the environment.

It can be concluded that a small L is advantageous to detect
changes more readily only if the environment is predominantly
deterministic. When the environment has stochastic transitions,
a longer history might be necessary to guarantee the stability of
the detection. To further assess these dynamics, Figure 3 shows
the comparison of a short and a long history window (L = 20 and
L = 120) on the deterministic environment C and the stochastic
environment D. The AMD p-values show that while C can be
tracked reliably with both L = 20 and L = 120, environment
D (orange line) causes the p-value to oscillate, although with less
amplitude, even with L = 120.

Other factors that can affect the stability of the p-
values could include the complexity and the similarity with

Frontiers in Neurorobotics | www.frontiersin.org 7 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FIGURE 2 | AMD p-values with deterministic and stochastic environments. (Left) Tracking of environment C with different history lengths (parameter L). C is

deterministic and the p-values are consistent at 0 and 1, but the time taken to detect the change in environment varies with the history length. (Right) AMD p-values

for the model A and B with the stochastic environments A and B and L = 120. Tracking stochastic environments results in p-values predicting the wrong environment

more frequently.

other environments. In Figure 4 (left), the tracking of the
environments E1 and E2 is shown with L varying from 60
to 220. The faster settings (L = 60 and L = 100) appear
to detect E2 when still in E1. With L = 140, the detection
becomes more reliable, and with L = 180 and L = 220 the
detection is accurate, although slower after step 2,000 to detect
the transition from E1 to E2. Figure 4 (right) shows the p-
values for all four E models tracked simultaneously. Despite the
similarity of these four environments, the p-values show high
confidence in determining which model currently matches the
data stream. A similar result is also observed in Figure 5 where
the environments of the set F are tested. The stochasticity in this
set does not affect significantly the stability of the p-values. This is
because the environment is primarily deterministic, and although
the points where the data streams differ do not occur often, the
p-value drops significantly when they do occur.

4.3. Avoiding Catastrophic Forgetting With
Continual Learning of Multiple Models
The ability to detect which environment the current stream
of data belongs to allows the system to train different models
independently, and thus implement continual learning and avoid
catastrophic forgetting. The scenario devised in this section is
when two unknown environments X and Y alternate while a
learning system is trying to learn them from the data stream.
This condition is particularly challenging because the data stream
is generated by two different environments, both unknown.
Therefore, there is an obvious bootstrap problem. How can
the AMD know when the environment changes before any
environment has been learned?

A reasonable assumption to overcome this problem is to
assume that the data stream is initially generated by a single

environment for a certain amount of time, so that one single
model can be at least partially trained on the initial data stream.

4.3.1. AMD With Constrained Gradient PSRs

Two simple but highly stochastic environments, shown in
Figure 6, are chosen for this test as depicted in Figure 7. The
learning setup for this first test uses the constrained gradient
PSR learner. It starts to learn a first model while environment
X produces data for the first 10k steps. When the p-value
suddenly drops and remains low at step 10,000, the AMD
clearly indicates that the first model is not valid anymore.
Thus, the new data is used to train a new model. A similar
process occurs for the following environment changes: the
PSR with the highest p-value is trained, and the other is left
idle. The AMD continues to track the probabilities of each
model. Effectively, each chunk of data that is identified by
the AMD as belonging to one model is used to train that
model only and thus enables continual learning and prevents
catastrophic forgetting.

As a baseline, we ran the constrained gradient PSR learning
algorithm with the same parameters, but without AMD detecting
switches in the environment. The agent learns well until time
step 10,000. At time step 10,000–20,000, the agent also learns
the second environment well, although it is not able to reach
the same performance as the PSR with AMD. From time step
20,000 onwards, it is clear that the agent has experienced
catastrophic forgetting, as each time the environment is switched,
the performance decreases dramatically.

In these experiments, the error is calculated as the
average prediction error (the difference between the predicted
probabilities of the next observation and the actual probabilities
of the next observation) over 10,000 time steps in an independent
data stream.

Frontiers in Neurorobotics | www.frontiersin.org 8 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FIGURE 3 | AMD p-values for the models of environments C and D. (Left) With a short history length (L = 20), the p-values for the environment D occasionally

indicate the data matches environment C, and not environment D. (Right) With a longer history length (L = 220), the p-value for model D becomes more stable, not

dropping below 0.3.

FIGURE 4 | Stability of detections for the deterministic set of models E. The agents traversing this environment use a random policy, where actions are chosen from

the set of possible actions which can be taken at each state. (Left) The environment transitions from E1 to E2. The graph shows p-values for the environment E2.

(Right) p-values for all four models are shown while all four environments alternate (L = 220).

4.3.2. AMD With Neural Network Learners

To validate the AMD with the neural network learning
models, we employed a simple three-layer network
whose details are specified in the Appendix 6.1.2.
Figure 8 shows the performance and p-values when
the AMD is applied in combination with the neural
network models.

We observe the same learning dynamics that were obtained
with the PSR learner, although the neural network learner
appears to achieve slightly better performance. The single
model (baseline) shows the typical learning curves when
different tasks or environments are learned sequentially, with
catastrophic forgetting occurring each time the environment
switches. The AMD instead can accurately determine when

the environment switches and use the data to train two
different models.

5. DISCUSSION

The results presented in the previous section show that the idea to
use statistical tests to determine the best fittingmodel to label data
is a promising venue of research. Various aspects of the algorithm
and of the experimental results prompt interesting questions.

The first important aspect that was investigated in section 4.2,
the impact of history length, shows that the readiness in detection
and stability are opposed objectives that need to be balanced.
However, stochasticity appears to be the main factor that requires

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FIGURE 5 | p-values for the models of the set F with L = 120. Agents

traversing this environment utilize a random policy.

longer histories to guarantee stability. We speculate that, while
high levels of stochasticity are an obvious obstacle to learning, it
would be possible to learn also such features of the environments
and incorporate them in future developments of the AMD. One
possibility is to introduce an adaptive history length that could
reduce if an environment is predominantly deterministic, and
increase in length when highly stochastic transitions require
more data points to acquire meaningful statistics.

A second observation is that the dynamic properties of a
series of POMDPs can include both sudden changes and slow
progressive drifts. In the case of drifts that progressively increase
the distance between the distributions of the model and the
environment, there will be a race between the adaptation speed
of a learning algorithm and the AMD p-values. If the learning
algorithm is fast enough to track the drift, the AMDwill maintain
a high p-value, thusmaintaining confidence in the current model.
This condition, however, would lead to progressive forgetting
of the original distribution. If, on the other hand, the drift in
the environment is faster than the speed at which the learning
algorithm can adapt, the AMD will see the corresponding p-
value drop and either select a different model, or create a new
model to learn the new data distribution. While we did not
investigate these conditions, the problem of deciding whether
an environment is drifting to a new distribution, or changing
significantly to warrant the instantiation of a new model, is a
relevant aspect of lifelong learning worth of future studies.

The AMD is intended as a framework that is independent
of the specific learning algorithm used to learn a model.
However, it is worth pointing out that the AMD is limited
by the underlying learning model. In fact, while the p-values
of sub-optimal models could be low, and thus lead to model
rejection or further learning, there are cases in which this is
not true, leading to simpler models having higher p-values than
more accurate ones. In fact, a p-value could be high when the
environment is more complex than the model. Consider, e.g.,

an environment that generates a data stream of observations
0, 0, 1, 1, 0, 0, 1, 1, . . ., where each observation 1 or 0 occurs twice
in a row. A model that predicts that after each 1, the next
observation will be 0 or 1 with equal probability will score a
high p-value although a better model could be learned. In short,
the AMD p-values might not always provide the best metrics to
assess the quality of a model. While choosing the simplest model
to fit the data might prove effective to prevent overfitting and
agrees with the Occam’s razor principle, further analysis might
reveal how best to integrate the AMD algorithm with specific
learning methods.

Given a set of models, one interesting question is what
approach is more effective when a new model is necessary to
learn a new environment. In the context of lifelong learning,
a desirable property is that of exploiting previous knowledge
to accelerate the learning of new tasks. It is possible that the
AMD could facilitate such a forward transfer by instantiating
a new model that matches some properties of the new data.
While this problem was not touched in this study, the AMD
may provide useful statistical insights to inform the creation of
new models.

The set of problems proposed in this study appears simple
at first. However, it is worth noting that partial observability
and stochasticity make it difficult to derive the correct model
from observations even in relatively simple environments.
Additionally, the complexity of an environment might derive
from a large input space, e.g., when using raw images
in a navigation task. We speculate that the use of the
AMD in combination with large neural models for feature
extraction could allow the extension of this method to more
complex problems.

Finally, it is important to note that this study introduces
the idea of model selection from statistics in the domain
of dynamic POMDPs without rewards. We could not
identify existing methods that could be used for a direct
performance comparison. However, with the addition of a
reward function, this study could be extended to incorporate
a policy component, and thus place the approach in the field
of reinforcement learning. Given the large amount of research
in reinforcement learning, this extension would open several
exciting research directions and comparisons with recent RL and
meta-RL approaches.

6. CONCLUSION

This study introduces an algorithm that aims to address a
limitation of many current learning systems: the inability to
monitor a non-stationary data stream while learning from
it. The proposed system, named adaptive model detection
(AMD), monitors the data stream generated by partially
observable Markov decision processes with the aim to assess
the probability of the data fitting a given model. Statistical
tests determine (1) whether the null hypothesis that a current
model produces the data can be accepted or rejected and (2)
which specific model from a set is more accurate to predict a
recent window of data. The novel algorithm was tested with

Frontiers in Neurorobotics | www.frontiersin.org 10 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FIGURE 6 | Environments X and Y. These environments have only two states, but are stochastic. Environment X is more likely to remain in its current state at each

time step, whereas environment Y is more likely to transition between states.

FIGURE 7 | Avoiding catastrophic forgetting with AMD on PSR learners. The unknown environments X and Y alternate overtime. (Top) The performance is measured

as the negative log of the prediction error of each model. A single PSR (black line) is trained on the data stream and it learns an average of the two environments. The

azure continuous line and the orange dash line show the AMD-guided learning: first X is learned, and when the data switches to environment Y, a new model Y is also

learned. Subsequently, data points originating from the two environments are used to further improve each model separately. (Bottom) The AMD p-values for the

AMD-guided learners are shown during the process.

Frontiers in Neurorobotics | www.frontiersin.org 11 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FIGURE 8 | Avoiding catastrophic forgetting with AMD on neural networks models. This experiment is the same as that in the previous figure, but uses neural network

learners instead of the constrained gradient algorithm. (Top) The performance of the AMD-enabled models is shown in the environments X and Y. The baseline is

capable of continuous learning, but forgets the previous environment each time there is a switch. (Bottom) The AMD p-values for the AMD-guided learner are shown

during the process.

two types of predictive models, PSRs and neural networks.
The simulations show that the approach is not only useful
for quickly adapting to changes in an environment, but can
also be useful to associate a stream of data to a particular
environment. By doing so, it is possible to continuously train
different models for different environments, and thus prevent
catastrophic forgetting while learning multiple environments.
The approach can be extended to address a wide set of
problems beyond the limited scope of the environments tested
here. The method could be valuable in AI applications
where critical decisions require an evidence-based and
justifiable process. When multiple environments are presented
sequentially and require incremental learning without labels,
rewards, or signals that a change has occurred, the approach
presented can be used to implement continuous lifelong
learning abilities.

DATA AVAILABILITY STATEMENT

Publicly available data were analyzed in this study. This data can
be found here: https://github.com/JupiLogy/adaptive-model-
detection.

AUTHOR CONTRIBUTIONS

JD developed the novel algorithm, wrote the computer code and
performed the experiments. JD and AS devised the research plan
and methods, analyzed the results, plotted the graphs and wrote
the paper. PL and EB-I performed and analyzed experimental
results. PP, SK, and PK contributed to the formulation of
the research hypotheses. HS and SK provided support for the
statistical method. All authors contributed to writing the final
manuscript.

Frontiers in Neurorobotics | www.frontiersin.org 12 December 2020 | Volume 14 | Article 578675

https://github.com/JupiLogy/adaptive-model-detection
https://github.com/JupiLogy/adaptive-model-detection
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

FUNDING

This material was based upon work supported by the
United States Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under
Contract No. FA8750-18-C-0103. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views

of the United States Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2020.578675/full#supplementary-material

REFERENCES

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Automat. Control 19, 716–723. doi: 10.1109/TAC.1974.1100705

Bellman, R. (1957). A Markovian decision process. Indiana Univ. Math. J. 6,

679–684. doi: 10.1512/iumj.1957.6.56038

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press. doi: 10.1201/9781420050646.ptb6

Boots, B., Gretton, A., and Gordon, G. J. (2013). “Hilbert space embeddings

of predictive state representations,” in Uncertainty in Artificial Intelligence -

Proceedings of the 29th Conference, UAI 2013 (Bellevue, WA), 92–101.

Chuk, T., Chan, A. B., Shimojo, S., and Hsiao, J. H. (2020). Eye movement analysis

with switching hidden Markov models. Behav. Res. Methods 52, 1026–1043.

doi: 10.3758/s13428-019-01298-y

Cox, D. R. (2006). Principles of Statistical Inference. Cambridge: Cambridge

University Press. doi: 10.1017/CBO9780511813559

Downey, C., Hefny, A., Li, B., Boots, B., and Gordon, G. (2017). “Predictive

state recurrent neural networks,” in Advances in Neural Information Processing

Systems, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.

Vishwanathan, and R. Garnett (Long Beach, CA: Curran Associates), 6054–

6065.

Doya, K., Samejima, K., Katagiri, K.-I., and Kawato, M. (2002). Multiple

model-based reinforcement learning. Neural Comput. 14, 1347–1369.

doi: 10.1162/089976602753712972

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). “A density-based algorithm

for discovering clusters in large spatial databases with noise,” in Proceedings of

the Second International Conference on Knowledge Discovery and Data Mining,

KDD’96 (Portland, OR: AAAI Press), 226–231.

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for fast

adaptation of deep networks,” in International Conference on Machine Learning

(Sydney, NSW).

Geisser, S. (1993). Predictive Inference, Vol. 55. New York, NY: CRC Press.

Hamilton, W. L., Fard, M. M., and Pineau, J. (2013). “Modelling sparse dynamical

systems with compressed predictive state representations,” in 30th International

Conference on Machine Learning, ICML 2013 (Atlanta, GA), 178–186.

Höffken, M., Oberhoff, D., and Kolesnik, M. (2009). “Switching hidden Markov

models for learning of motion patterns in videos,” in Lecture Notes in Computer

Science, eds C. Alippi, M. Polycarpou, C. Panayiotou, and G. Ellinas (Limassol:

Springer, Berlin, Heidelberg), 757–766. doi: 10.1007/978-3-642-04274-4_78

Kochenderfer, M. J., Amato, C., Chowdhary, G., How, J. P., Davison Reynolds,

H. J., Thornton, J. R., et al. (2015). “Optimized airborne collision avoidance,”

in Decision Making Under Uncertainty: Theory and Application (MIT Press),

249–276.

Kullback, S. (1997). Information Theory and Statistics. New York, NY: Courier

Corporation.

Lecarpentier, E., and Rachelson, E. (2019). “Non-stationary Markov decision

processes, a worst-case approach using model-based reinforcement learning,”

in Advances in Neural Information Processing Systems 32, eds H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Vancouver,

BC: Curran Associates, Inc.), 7216–7225.

Lehmann, E. L., and Romano, J. P. (2006). Testing Statistical Hypotheses. New York,

NY: Springer Science & Business Media.

Littman, M. L., Sutton, R. S., and Singh, S. (2001). “Predictive representations of

state,” in Advances in Neural Information Processing Systems, eds T. Dietterich

and S. Becker and Z. Ghahramani (Vancouver, BC: MIT Press), 1555–1561.

Liu, Y., Zhu, H., Zeng, Y., and Dai, Z. (2016). “Learning predictive state

representations via Monte-Carlo tree search,” in IJCAI International Joint

Conference on Artificial Intelligence (New York, NY), 3192–3198.

McCracken, P., and Bowling, M. (2005). “Online discovery and learning of

predictive state representations,” in Advances in Neural Information Processing

Systems, eds Y. Weiss, B. Schölkopf, and J. Platt (Vancouver, BC: Curran

Associates), 875–882.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2018). “Neural

network dynamics for model-based deep reinforcement learning with model-

free fine-tuning,” in 2018 IEEE International Conference on Robotics and

Automation (ICRA) (Brisbane, QLD), 7559–7566. doi: 10.1109/ICRA.2018.

8463189

Pearson, K. (1900). On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that

it can be reasonably supposed to have arisen from random sampling.

Lond. Edinb. Dubl. Phil. Mag. 50, 157–175. doi: 10.1080/147864400094

63897

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830. doi: 10.5555/1953048.2078195

Rabiner, L. R. (1989). A tutorial on hidden markov models and

selected applications in speech recognition. Proc. IEEE 77, 257–286.

doi: 10.1109/5.18626

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. (2019). “Efficient

off-policy meta-reinforcement learning via probabilistic context variables,” in

International Conference on Machine Learning (Long Beach, CA), 5331–5340.

Rao, R. P. (2010). Decision making under uncertainty: a neural model based on

partially observableMarkov decision processes. Front. Comput. Neurosci. 4:146.

doi: 10.3389/fncom.2010.00146

Rosencrantz, M., Gordon, G., and Thrun, S. (2004). “Learning low dimensional

predictive representations,” in Proceedings, Twenty-First International

Conference on Machine Learning, ICML 2004 (Banff, AB), 695–702.

doi: 10.1145/1015330.1015441

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel, P. (2018). “Promp:

Proximal meta-policy search,” in International Conference on Learning

Representations (Vancouver, BC).

Schmidhuber, J. (2015). Deep learning in neural networks: an

overview. Neural Netw. 61, 85–117. doi: 10.1016/j.neunet.2014.

09.003

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.

Shani, G., Brafman, R. I., and Shimony, S. E. (2005). “Model-based online

learning of POMDPs,” in Proceedings of 16th European Conference on Machine

Learning, eds J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and L.

Torgo (Porto; Berlin; Heidelberg: Springer), 353–364. doi: 10.1007/115640

96_35

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Thrun, S. (1998). “Lifelong learning algorithms,” in Learning to Learn,

eds S. Thrun, and L. Pratt (Boston, MA: Springer), 181–209.

doi: 10.1007/978-1-4615-5529-2_8

Todd, M. T., Niv, Y., and Cohen, J. D. (2009). “Learning to use working memory

in partially observable environments through dopaminergic reinforcement,”

in Advances in Neural Information Processing Systems, eds D. Koller and D.

Schuurmans and Y. Bengio and L. Bottou (Vancouver, BC: Curran Associates),

1689–1696.

Frontiers in Neurorobotics | www.frontiersin.org 13 December 2020 | Volume 14 | Article 578675

https://www.frontiersin.org/articles/10.3389/fnbot.2020.578675/full#supplementary-material
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1201/9781420050646.ptb6
https://doi.org/10.3758/s13428-019-01298-y
https://doi.org/10.1017/CBO9780511813559
https://doi.org/10.1162/089976602753712972
https://doi.org/10.1007/978-3-642-04274-4_78
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.1080/14786440009463897
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1109/5.18626
https://doi.org/10.3389/fncom.2010.00146
https://doi.org/10.1145/1015330.1015441
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/11564096_35
https://doi.org/10.1007/978-1-4615-5529-2_8
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Dick et al. Detecting Changes in POMDPs

Wingate, D., and Singh, S. (2007). On discovery and learning of models

with predictive representations of state for agents with continuous

actions and observations. Proc. Int. Conf. Auton. Agents 5, 1136–1143.

doi: 10.1145/1329125.1329352

Yates, D., Moore, D., and McCabe, G. (1999). The Practice of Statistics. New York,

NY: H. Freeman & Company.

Yun-Long, L., and Ren-Hou, L. (2009). Discovery and learning of models

with predictive state representations for dynamical systems without

reset. Knowledge Based Syst. 22, 557–561. doi: 10.1016/j.knosys.200

9.01.001

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and Whiteson,

S. (2019). Fast Context Adaptation via Meta-Learning. Long Beach,

CA: ICML.

Conflict of Interest: SK and PP were employed by HRL Laboratories.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Dick, Ladosz, Ben-Iwhiwhu, Shimadzu, Kinnell, Pilly, Kolouri and

Soltoggio. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 December 2020 | Volume 14 | Article 578675

https://doi.org/10.1145/1329125.1329352
https://doi.org/10.1016/j.knosys.2009.01.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

