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a b s t r a c t 

Sustainable chemistry for renewable energy generation and green synthesis is a timely research topic with the 
vision to provide present needs without compromising future generations. In the era of Industry 4.0, sustainable 
chemistry and process are undergoing a drastic transformation from continuous flow system toward the next 
level of operations, such as cooperating and coordinating machine, self-decision-making system, autonomous and 
automatic problem solver by integrating artificial intelligence, data and hardware in the cyber-physical systems. 
Due to the lack of convergence between the physical and cyber spaces, the open-loop systems are facing challenges 
such as data isolation, slow cycle time, and insufficient resources management. Emerging researches have been 
devoted to accelerating these cycles, reducing the time between multistep processes and real-time characterization 
via additive manufacturing, in-/on-line monitoring, and artificial intelligence. The final goal is to concurrently 
propose process recipes, flow synthesis, and molecules characterization in sustainable chemical processes, with 
each step transmitting and receiving data simultaneously. This process is known as ‘closing the loop’, which will 
potentially create a future lab with highly integrated systems, and generate a service-orientated platform for 
end-to-end synchronization and self-evolving, inverse molecular design, and automatic science discovery. This 
perspective provides a methodical approach for understanding cyber and physical systems individually, enabled 
by artificial intelligence and additive manufacturing, respectively, in combination with in-/on-line monitoring. 
Moreover, the future perspective and key challenges for the development of the closed-loop system in sustainable 
chemistry and process are discussed. 
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. Introduction 

The sustainable chemical process is a scientific concept that seeks
o satisfy the present needs without sacrificing the resources and the
nvironment for future generations. In recent years, continuous flow
hemistry is gaining momentum and has progressed considerably from
asic laboratory techniques to complex, multistep processes in practice.
ompared with the traditional batch system, it offers the advantages
f fast mixing, heat transfer, effective reaction time control, and ex-
eriment safety with toxic and highly reactive chemicals. Besides, con-
inuous flow chemistry enables the faster discovery of green chemistry
roducts and synthetic routes, which significantly reduce the emission
f pollutants in the lab- [1] and industrial scales [2] . Continuous flow
hemistry is the mini-continuous plant in the lab. It is considered as
he stepping stone for the sustainable chemical process to be scaled-up
rom scientific research to engineering production. One of the remark-
∗ Corresponding author. 
E-mail address: j.xuan@lboro.ac.uk (J. Xuan). 
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ble examples of sustainable chemical processes is the laminar flow-
ased fuel cells, which utilise liquid fuels as the sustainable resources to
ontinuously generate energy and produce water as the by-product in
he microchannel without negatively affecting the environment [3] . Be-
ides, solar energy, an enormous, reliable, and practically inexhaustible
nergy sources with uniform irradiation can be easily integrated with
ontinuous flow reactors to generate chemical and electrical energy in
ow solar cells [4] , such as producing singlet oxygen [5] and removal of
oxic components from the water [6] . The concept of sustainable chemi-
al process was also seen in the carbon capture and utilisation, in which
he greenhouse gases are captured continuously in the form of micro-
apsules [7] or in the microfluidic device [8] and then converted into
reenly synthesised products [9] . 

The Fourth Industrial Revolution, also referred to Industry 4.0, is cre-
ting an evolution, and the impact has been witnessed across sectors,
specially manufacturing. In the Industry 4.0 context, the sustainable
ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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hemical process potentially becomes a smart lab, connecting cyber-
hysical systems with advanced AI and robust detection techniques. It
ill also create a closed-loop system consisting of cooperating and coor-
inating machines, self-decision-making systems, autonomous problem
olver and learning systems. The goal of the smart lab for the sustainable
hemical process is to produce fully flexible production as fast as possi-
le by adapting the principle of ’Plug and Process’. The robust sensing
echniques are allowed to embed agilely in the multistep reaction and
eparation process for real-time monitoring [10] . Therefore, 3D printing
ffers the best solution because of its unique properties of being flexible
nd customisable, enabling a quick realisation of the principle of ’Plug
nd Process’. Furthermore, adopting a data-driven strategy in the smart
ab allows improving the flexibility and smart manufacturing level. This
trategy is massively depending on data quality and quantity, which can
e assured by utilising advanced sensing techniques through the pro-
ess of in-/on-line monitoring. Moreover, the smart lab is also known as
dark lab’, ’lights out lab’, or ’unmanned lab’, where no human power
s required. It employs artificial intelligence to practice the methodolo-
ies of prediction, automation and autonomy, self-behaving and self-
ecision-making and performing the intelligence control, scheduling,
esign, process control quality as well as maintenance in the sustainable
hemical process. For example, BASF is implementing Industry 4.0 in
ts deployment of 3D printing for site facilities [11] , connected systems
nd advanced predictive and analytics models for process management
nd control and virtual plant commissioning [12] . Schneider Electric
mployed the 3D printing, advanced AI and advanced sensors, which
ed to an improvement of productivity by 2–7% [13] , energy utilisation
ncrease by 30% [14] and operating cost reduction by 50% [15] . Ap-
lying additive manufacturing, advanced AI and robust sensors in the
ndustrial-scale process show a significant momentum to improve the
rocess efficiency, energy utilization and cost-effectiveness. 

As discussed above, AI, data and hardware are the foundation mod-
les of the smart lab. AI is a simulation of human intelligence, which is
rogrammed in the machines to enable them think and act like ’scien-
ist’, such as learning and problem-solving. In the sustainable chemical
rocess, AI algorithms such as neural network [ 16 , 17 ], machine learn-
ng [ 18 , 19 ] and genetic algorithms [ 20 , 21 ] are the common data-driven
pproaches in the monitoring, optimisation and control. Therefore, em-
loying in-/on-line monitoring by embedding advanced sensing tech-
iques into the multistep processes can assure the quality and quantity
f data, which are the primary concern in the data-driven approaches.
hrough in-/on-line methods real-time data from the chemical processes
an be obtained, such as reactants usage, product yield, as well as opera-
ion conditions like pH, temperature, and pressure, which are inaccessi-
le by off-line analysis techniques. In-line methods directly measure the
rocess stream without the removal or diversion of the sample, whereas
n-line methods automatically analyse the sample materials without dis-
ributing the process [22] . Integrating advanced sensing techniques into
eaction chambers requires a flexible design of hardware, which can
e facilitated by the additive manufacturing (AM). AM, also known as
D printing, is a green manufacturing technology, building 3D physical
utputs from digital inputs without conventional tooling. This bespo-
en tool offers excellent advantages for this application which demands
ustomisation, flexibility and design complexity. The advances of using
M were also widely discussed in the fuel cells [23] , flow chemistry
24] and other energy generation devices [25] . 

In addition to that, there is also a high desire to bring AI, data and
ardware together into the lab-scale research to ease the up-scaling pro-
ess later. To date, many works have discussed the cyber and phys-
cal systems of the smart factory separately. The cyber system refers
o the integration of AI and data, where the data is generated through
dvanced sensing techniques and being utilised by the AI algorithms
o perform tasks such as self-optimisation and prediction in the cloud
pace. In contrast, the physical system describes smart labs’ hardware
uch as multistep reactors, separator and detection technology, where
hey can be integrated physically for in-/on-line monitoring, enabled by
M technology. In such cyber and physical systems, if, without AM, the
obustness of the cyber system will be hindered by the low customis-
bility to connect with powerful detection techniques, resulting in the
oss of high-quality data for building a reliable model. On the other
and, if, without AI, the physical system will only be performing real-
ime monitoring with no intelligence feedback and control, limiting the
xtendibility and functionality of the physical system. Therefore, the in-
egration of AI, data, and hardware can realise both the physical and
irtual meanings of the smart sustainable chemistry. 

. Smart physical system enabled by additive manufacturing and 

n-/on-line monitoring 

Here, the physical system refers to the hardware of the smart lab
or sustainable chemical processes such as reactor, separator, and ad-
anced detection. Due to the demand for real-time information, there is
 need to integrate them in housing and casing by additive manufactur-
ng to allow the in-/on-line monitoring. AM could reduce the cycle time
o produce the customized reaction chamber integrated with advanced
etections. This unparalleled approach could encourage researchers to
erform a more iterative approach to embed specific geometries in the
xisting hardware. Therefore, the design can be modified immediately
ased on the requirement of the processes. Moreover, it can also avoid
he loss of detection of the valuable but short-lived intermediates [26] .

Currently, various detection techniques such as temperature mon-
toring, spectroscopy, and imaging have been reported in sustain-
ble chemistry applications via 3D printing for in-/on-line monitoring.
or example, Monaghan had developed multi-material structure spec-
roscopy by ultrasonic additive manufacturing (UAM), embedding fibre-
ptics into the metallic microreactor for in-situ monitoring of B-vitamin
icotinamide and fluorescein [27] , as shown in Fig. 1 A. Via AM-enabled

n-situ monitoring, researchers can obtain real-time data from reactants
sage, product formation and intermediates generation and will there-
ore not be visible using off-line analysis techniques [27] . Maier et al.
ad developed the stainless-steel reactors with in-line oxygen sensor
hrough selective laser melting (SLM) [28] . It was proven as a promis-
ng method for investigating the oxidation of Grignard reagents in the
ow. Both works show the robustness of AM technology to fabricate
ighly complex metallic devices suitable for high temperature and pres-
ure application in sustainable chemical processes whilst maintaining
igh accuracy of measurement in a more freeform design [27] . In an-
ther application for air pollution monitoring, fused filament fabrication
FFF) was used to fabricate the photocatalytic gas phase reactor with an
mbedded semiconductor air quality sensor, which measures electrical
esistance changes [29] . This 3D printed gas sensor is fabricated by inex-
ensive method and assembled with the off-the-shelf components such
s photocatalytic filter and analogue-to-digital converter [29] . 

Adopting AM technology also allows the installation of more power-
ul detections units and improves the evaluation of system performance.
or instance, in fuel cell systems, current density and power density are
he standard real-time information to evaluate the performance. Fused
eposition modelling (FDM) was employed to embed electron param-
gnetic resonance (ERP) spectroscopy on the high temperature poly-
er electrolyte fuel cells for cathode conductivity measurement [30] .
olyjet technology provided a rapid and cost effective way to design a
xture small enough to achieve good signal-to-noise ratio when using

ow intensity X-ray provided by commercial X-ray computed tomogra-
hy scanners for water distribution visualization ( Fig. 1 B) that would be
therwise be difficult to manufacture through conventional machining
31] . The works highlighted the opportunity for real-time monitoring of
aminar flow-based fuel cell using the robust sensors. Menzel et al. pre-
ented a 3D-printed chemical synthesis system including reactor, sepa-
ator, pressure regulator and pump as shown in Fig. 1 C through FDM,
hich creates a complete continuous flow system for multistep chemical

ynthesis [32] . 3D printing of high temperature and chemically resistant
olymer, such as polyether ether ketone (PEEK) on a low-cost 3D print-
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Fig. 1. (A) The schematic diagram of spectro- 
graphic measurement by UAM cell featuring 
embedded the coated optical fibre perpendic- 
ularly to the microfluidic channel for the anal- 
ysis of fluorescein solutions [27] (B) Visualiza- 
tion set-up inside the X-ray computed tomog- 
raphy system with the 3D-printed cell holder 
with flow field fixture [31] (C) Photography of 
the multistep synthesis with 3D printed reac- 
tors, pump, BPR and membrane separator [32] . 
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ng technology creates opportunities for high temperature and corrosive
pplications in the sustainable chemical process [32] . 

. Smart cyber systems empowered by artificial intelligence and 

n-/on-line monitoring 

In sustainable chemical processes, the cyber system adopts the smart-
ess offered by AI to execute tasks such as self-optimisation and predic-
ion using the data generated by in- and on-line detections. Previously,
I had been utilised in the off-line data analysis where the data was
sed to build (typically) surrogate models and performing tasks such
s prognostic health state [16] , prediction [17] and optimisation [20] .
he results have shown the ability of off-line data analysis in trends ob-
ervation and big image visualisation. However, human power is still
equired to keep an eye out on the process and taking control. Recently,
ustainable chemistry is gradually being developed into ‘dark labs’ with
elf-optimisation approach, where AI algorithms replace human work,
ntegrated with in-/ on-line detection and control techniques to perform
 closed-loop of interactive, self-behaviour and autonomy operation. 

To date, direct search methods such as stable noisy optimisation by
ranch and fit (SNOBFIT) [33] is one of very few single-objective op-
imisers which have been successfully applied for self-optimisation in
he multistep process [34] , downstream process [35] , and product syn-
hesis [36] . Clayton et al. employed SNOBFIT algorithm to maximise
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Fig. 2. (A) SNOBFIT algorithm was employed in 
the single objective self-optimization of multistep 
reaction-extraction system by manipulating the 
flow rate of 𝛼-methylbenzylamine and N-benzyl- 𝛼- 
methylbenzylamine for solvent volume ratio and 
nitric acid for pH value, adopted from [34] (B) 
TSEMO algorithm was utilized in the multiple objec- 
tives self-optimization of multistep Claisen-Schmidt 
condensation process by adjusting the flow rate 
of benzaldehyde and acetone for solvent ratio and 
temperature controller from CSTR, adopted from [21] . 
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he concentration of 𝛼-methylbenzylamine in the aqueous phase from
he multi-step reaction-extraction process [34] , as shown in Fig. 2 . By
anipulating the inlet pH and feed volume ratio, this single-objective

ptimiser converged and finally provided 90% of separation efficiency.
he same algorithm was applied in the reactive-extraction process to op-
imise the yield by reducing the generation of side product that would
ause clogging in the reactor [35] . The reaction achieved 66% of yield
y strictly controlling over the reaction parameters such as feed flow
ate, feed volume ratio and temperature [35] . A single optimisation of
nhibitor synthesis achieved 89% of yield by regulating four parameters
uch as feed flow rate, feed volume ratio, temperature and residence
ime [36] . 

However, in practice, economic and environmental factors should
lso be considered during the optimisation. A solution has been pro-
osed via introducing a set of optimal solutions called Pareto front,
here a non-dominated solution is one which cannot be improved with-
ut having a detrimental effect on the other [37] . It enabled multitar-
et optimisation, automated learning of feasible process conditions, and
mproved material utilisation due to the low number of experiments
equired [38] . Later, Clayton et al. developed Thomson sampling ef-
cient multi-objective optimisation (TSEMO) algorithms to maximise
he product purity, space-time yield (STY) and reaction mass efficiency
RME) simultaneously in multistep Claisen-Schmidt condensation reac-
ion [21] , as shown in Fig. 2 B. Multi-objective TSEMO algorithm con-
erged to Pareto front which was successfully highlighted the complete
rade-off between product purity, STY and RME. It enabled the optimi-
ation of multi-step processes concerning multiple objectives simultane-
usly from Pareto front, and potentially to improve the resource utili-
ation and decision-making during process design [21] . Besides contin-
ous flow chemical processes, TSEMO can be used for batch-sequential
esign. 

The flexibility of applying optimisation algorithms, multi-objective
enetic algorithm (MOGA) cooperating with mechanistic and data-
riven approaches to evaluate the performance of chemical processes
as recently reported. Yan et al. and Xu et al. respectively compiled
OGA with artificial neural network (ANN) [39] and deep neural net-
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Fig. 3. Visualization of the combination of AI, AM and in-/on- 
line monitoring in the sustainable energy chemistry and pro- 
cess to create a closed-loop system. 
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ork (DNN) [40] to assess the performance of solid oxide fuel cell.
he data-driven algorithms effectively resolve the correlations between
he inputs and outputs, while non-dominated sorting genetic algorithm
NSGA-II) was competent to optimise the multi-objective functions.
owever, DNN and ANN are the data-driven ‘black-box’ method in
hich the description of the process with input and output of data is
ot clear, which has limited extrapolation with poor interpretability. To
ddress this issue, Yang et al. presented a hybridisation of data-driven
nd mechanism-driven to improve not only the interpretability of data-
riven model, but also the traceability of the first-principle models in
he fluid catalytic cracking simulation [41] . The result shows the effec-
iveness of the hybrid model, presenting better data correlation [41] .
ollaborating hybrid model with optimization algorithms would be a
ew direction in the sustainable chemistry and process. 

. Future perspectives and opportunities 

The previous works have shown the in-/on-line monitoring could be
hysically and virtually enhanced by AM and AI, respectively to achieve
ystem smartness. Yet, a clear gap still exists, where the physical system
equires powerful AI algorithms for smart feedback control, while the
yber system needs data from integrated sensing techniques customis-
ble by AM. Therefore, we envision that a closed-loop paradigm need
o be created for sustainable chemical processes by closely integrating
he physical and cyber systems, as shown in Fig. 3 . This closed-loop sys-
em can potentially create a future lab framework with an extension of
I beyond cyber space and the automation of physical hardware such
s highly integrated system, self-evolving process, inverse design ap-
roach, automated science discovery and service-orientated platform. 

.1. Highly integrated system 

Due to the demand for automatic and autonomous operation in the
hemical process, many robust sensors are required in the multistep pro-
esses to continuously generate accurate real-time process data. How-
ver, connecting advanced sensing techniques to the complex processes
sually is inconvenient due to the requirement of nonstandard compo-
ents. The connected systems are usually space-intensive and bulky with
uch cabling, which increases the electromagnetic interference (EMI)

42] . AM technology is competent to fabricate bespoke and sophisti-
ated 3D objects in various dimensions and enhances the manufactur-
ng agility with ‘Plug and Process’ principle. The fast fabrication speed
lso helps propagate the design innovation with an agile-iterative ap-
roach by adopting a ‘fail fast, fail often’ strategy, as shown in Fig. 4 A.
herefore, an AM-enabled highly integrated system is expected to elim-

nate the boundary and creates a compact assembly, allowing advanced
etection techniques to dial in the multistep process flexibly and thus
mproving the manufacturing agility. The highly integrated unit offers
he benefits of downsizing, light weight, and less cabling, which is bene-
cial to reduce the EMI [42] . Besides, the data quality could be assured

n a highly integrated system to improve the transparency of the system
nd the accuracy of the AI algorithms. The highly integrated system has
ecently been developed in the lab-on-chip and organ-on-chip through
M technology [43] . For example, researchers at Berkeley Lab has pro-
uced an all-liquid 3D-printed lab-on-chip device, potentially to be pro-
rammed to carry out multistep, complex chemical reactions on demand
44] . Besides, 3D printing offers the possibility to introduce multi mate-
ials into the same integrated system to create an on-demand assembly
hat can easily connect to other parts [45] . Such smart hardware, when
ntegrating into the cyber space, will offer a convenient route to scale
p, and bring new possibilities to move from proof-of-concept lab-based
igh integrated systems to more practical systems, such as factory-on-
hip [46] . 

.2. Service-orientated platform for end-to-end synchronization and 

elf-evolving system 

Currently, due to the lack of convergence between physical pro-
ess and virtual space, the information from distributed nodes in the
hemical process such as feed data, equipment data, process parameter
ata and sensory data are largely isolated, fragmented, and stagnant.
herefore, centralized information management, for example, a service-
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Fig. 4. A closed-loop system able to create (A) High inte- 
grated system. The ability of AM technology to create a high 
integrate system with ‘plug and process’ principle in agile it- 
erative approach (B) Service-orientated platform. A service- 
orientated platform is developed through cloud technology to 
aggregate the data from distributed nodes, allowing to imple- 
ment through digital twin and augmented reality platforms 
(C) Inverse design. Inverse mapping focuses on the design as- 
pect of chemistry informatics towards flow chemistry recipe 
while forward mapping mainly deals with molecules predic- 
tion given process recipe (D) Automatic science discovery. 
Robotic scientist works like the human and successfully speed 
up the science discovery in the light-out environment. 
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rientated platform as shown in Fig. 4 B, is required to aggregate the
nformation through cloud technologies. Digital twin offers end-to-end
ynchronization on a service-orientated platform, virtually representing
he physical multi-step process and allows monitoring, control, and fault
etection to overcome the challenge of geographical distance. Maiwald
roup has developed a digital twin approach to demonstrate reactors
ith NMR on the screen through a cloud server [ 46 , 47 ]. Besides, the

ervice-orientated platform is also able to create a self-evolving system
mpowered by AI technology. The self-evolving system adopts AI al-
orithms as the active learning machine to continuously improve and
dapting themselves from the new-incoming information to create a
uper-predictive model. Zhang et al. proposed a concept of inverse aug-
ented reality [47] . In the inverse augmented reality, the characters and

nvironment agents in the virtual world can self-develop and evolved by
earning from the physical world. Therefore, the service-orientated ar-
hitecture mirrors the physical process in the digital twin platform and
evelops into the self-evolving system. 

.3. Inverse design 

In multistep flow synthesis, developing high purity of green
olecules requires more in-depth insights and search into the pro-

ess recipes. Until recently, exploring targeted properties of molecules
hrough using experiences built upon existing synthesis recipes has be-
ome the general strategy. However, this forward design strategy is usu-
lly time-consuming and costly. Promptly solving the recipes is one of
he challenges for future sustainability. To accelerate the design pro-
ess, the inverse design has emerged as a significant sustainable chem-
stry informatics platform enabled by powerful AI algorithms. Based on
he chemistry data, the flow chemistry recipes (e.g. flow rate, tempera-
ure, pressure) would be deduced with pre-defined target properties of
roducts or processes (e.g. purity and conversion). The AI-based map-
ing directions, such as forward and inverse, in chemistry informatics,
re shown in Fig. 4 C. Recently, the inverse design approach has been
idely discussed in materials exploration. Sanchez-Lengeling proposed
 data-driven generative model that can generate unseen materials with
esired properties by learning property distributions of the existing ma-
erials [48] . Besides, European Large-Scale Research Initiative ‘Battery
030 + ’ has implemented Battery Interface Genome – Materials Acceler-
tion Platform (BIG-MAP) [49] to accelerate the discovery of ultra-high
erformance batteries with the inverse computational design of battery
aterials and interfaces empowered by AI, high-performance comput-

ng and autonomous synthesis robotics [50] . Analogising to these ini-
iatives, adopting inverse design in the cyber-physical system will bring
ew possibilities to speed up the discovery of sustainable flow synthesis
ecipes as well. 

.4. Automatic science discovery 

The relatively slow cycle time within sustainable chemistry from
ynthesis to characterization remains a challenge obstructing the sci-
ntific discovery. Likewise, the complexity of experiments and simula-
ion scales exponentially with the number of variables, confining most
esearch in narrow areas of material space. Therefore, an autonomous
obotic driven by a robust AI algorithm is required to take the scien-
ist out of the loop system. Recently, Cooper et al. designed a robot
ssistant to search for photocatalysts [51] , as shown in Fig. 4 D. The
obot had continuously worked for 22 h a day over eight days and per-
ormed 688 experiments within a ten-variable experimental space. With
he advanced laser scanning and tactile feedback of the robot, this mo-
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ile robotic chemist was able to operate in lights-out operation, which is
lso an advantage when carrying out the light-sensitive photochemical
eactions [51] . Besides, Macleod et al. developed a self-driving labora-
ory for autonomously synthesizing and characterizing solar cell mate-
ials [52] . The breakthroughs clearly show a vision that the extension of
I beyond cyber space and the automation of physical hardware brings
n accelerated and automated scientific study. 

onclusion 

It is now apparent that the sustainable chemical research is undergo-
ng a philosophical transformation by coupling AI, data, and hardware
o create a closed-loop cyber-physical system. This transformation will
e developing the ‘lab of the future’ to a self-decision-making manner,
nteractive machines, autonomous problem solvers, and learning ma-
hines through AM, AI, and in-/ on-line monitoring. A closed-loop sys-
em constitutes a highly integrated system enabled by AM technology,
nhancing the integration of advanced sensors into multistep processes.
dopting cloud technology in the cyber-physical system eliminates the
arrier between physical equipment and virtual space. It will develop
nd-to-end synchronization and self-evolving system through central-
zed information management such as service-orientated platforms. The
losed-loop system will also offer an advanced searching platform to ex-
lore the greener synthesis route from the targeted properties of prod-
cts or processes such as purity and conversion through inverse design.
inally, the cyber-physical system will also provide remarkable break-
hroughs for science discovery in an accelerated and automated fashion
ia robotics driven by powerful and robust AI technology. 
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