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a b s t r a c t

We present a novel unsupervised fall detection system that employs the collected acoustic
signals (footstep sound signals) from an elderly person's normal activities to construct a
data description model to distinguish falls from non-falls. The measured acoustic signals
are initially processed with a source separation (SS) technique to remove the possible
interferences from other background sound sources. Mel-frequency cepstral coefficient
(MFCC) features are next extracted from the processed signals and used to construct a
data description model based on a one class support vector machine (OCSVM) method,
which is finally applied to distinguish fall from non-fall sounds. Experiments on a
recorded dataset confirm that our proposed fall detection system can achieve better
performance, especially with high level of interference from other sound sources, as
compared with existing single microphone based methods.
Crown Copyright & 2014 Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Currently, there is an increase in aging population across
the globe particularly in developed countries. As presented in
Carone and Costello [5], the ratio between the number of 65þ
people to those between 15 and 64 in the European Union
(EU) is projected to double to 54% by 2050 and the topic of
home care for elderly people is receiving increasing attention
as a consequence. Within the field of health care for elderly
people, one important issue is to detect whether an elderly
person has fallen or not [9]. As shown in Hsieh et al. [9], falls
can cause problems for an elderly person physiologically, such
lsevier B.V. This is an open a

man Khan),
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as broken bones, connective and soft tissue damage, even
death; although some falls do not result in physical injuries,
the elderly people who fall cannot get up without assistance
and this period of time spent immobile also affects their
health. Due to the serious damage which can be inflicted by
falls to elderly people, detection of falls is an important aspect
of assisted living. Instead of assigning nurses to monitor
whether elderly people fall or not in their homes in a 24/7
manner, an automatic fall detectionmethod is required, which
will detect a fall event when it happens so that alarm signals
will be sent to certain caregivers (such as hospitals, health
centers or relatives) to provide assistance to the elderly
person.

Different methods have been proposed for detecting
falling activities in recent years. Karantonis et al. [10]
proposed a real-time classification system for the types of
human movement associated with the data acquired from a
single, waist-mounted, triaxial accelerometer unit. In their
approach, acceleration signals generated due to gravity and
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body motion were sampled and processed by certain types
of digital filters, and a hierarchical binary structure classifier
was then applied on the processed data for classifying
different types of movements and detecting falls based on
a second-by-second decision process. This system was able
to distinguish between periods of activity and rest; recog-
nize the postural orientation of the wearer; and detect
events such as walking and falling. According to their
experimental results, a fall detection rate of 95.6% was
obtained. Instead of fixing the accelerometer at the waist
position, Kangas et al. [21] tested the performance of a
triaxial accelerometer attached to the subject's body in
different positions: head, waist and wrist to detect fall
activities. The acceleration information measured by the
accelerometer in different positions was compared with an
appropriate threshold to determine a fall. The results
showed that fall detection using a triaxial accelerometer
worn at the waist or head together with a simple threshold-
based algorithm is efficient, with a sensitivity of 97–98%
and a specificity of 100%. Acceleration sensors can be used
with other devices to achieve a comprehensive fall detec-
tion system, in Estudillo-Valderrama [6], a low-power
waterproof biocompatible accelerometer smart sensor
(ACSS) was applied and an additional user interface module
was integrated in the second layer (denoted as personal
server (PSE) in this paper) to allow the elderly person to
access some of the most important data being processed;
from the algorithm aspect, an additional time analysis was
used by convolving the resulting acceleration data segment
with certain defined waveforms, to detect some proble-
matic fall events such as a knee fall. A total of 332 samples
of fall and non-fall activities simulated by 31 young and
healthy males and females were tested, 100% sensitivity and
95.68% specificity were obtained and a further reduction of
false positives can be obtained by manually canceling the
fall alarm through the user interface.

Due to advances in computer vision and camera/video
and image processing techniques, camera sensor based
computer vision methods were also widely applied to
detect falls. Some computer vision methods extract video
features from the recorded image sequences and the feature
values are compared with a certain threshold to determine
whether a fall happens or not. Miaou et al. [24,25] proposed
a detection system consisting of an omni-dimensional
camera and a computer server, which had the advantage
of capturing 3601 simultaneously in a single shot to remove
blind spots. In this approach, a clean background was first
obtained. After that, the foreground of interest was
obtained by subtracting the background model from the
current image and a rectangle enclosing the foreground
object was created. The height to width ratio of this
rectangle was taken as a feature and compared with a
particular threshold to detect falls. The threshold value in
this system was customizable depending on the personal
physique. The experimental results showed a detection rate
of 78% without personal information that increased to 90%
with personal information. Rougier et al. [31] proposed a
fall detection system based on the motion history image
and some changes in the shape of the person. The move-
ment amplitude was measured by the motion history image
(MHI) obtained from the frame differencing results and
when a large amplitude movement was detected, the shape
change feature (such as the changes of the aspect ratio and
the orientation angle of the fitted ellipse) was compared
with proper thresholds for fall detection. The threshold
values were chosen empirically and the experimental
results showed a good rate of fall detection with a sensi-
tivity of 88%, and an acceptable rate of false detectionwith a
specificity of 87.5% was obtained, assuming a fixed thresh-
old. Instead of 2D features, some 3D features can be
extracted and compared with proper thresholds for fall
detection. Auvinet et al. [2] applied calibrated cameras to
reconstruct the three-dimensional shape of a person and
fall events were detected by analyzing the vertical axis's
volume distribution. When the major part of this distribu-
tion was abnormally near the floor over a predefined period
of time, it is implied that a person had fallen on the floor
and an alarm was triggered. The experimental results
showed good performance of this system (achieving 99.7%
fall detection rate or better with four cameras or more) and
a graphic processing unit (GPU) was applied for efficient
computation. Considering that sometimes the Euclidean
distance between extracted features may not reflect the
real semantic similarity between images, Yu et al. [37]
propose a novel semantic preserving distance metric learn-
ing (SP-DML) algorithm to encode the visual features and
semantic contents in a new distance metric construction.
The new distance metric could be applied to measure the
dissimilarity between two images in a more accurate way
by integrating the semantic contents.

Extracted features could also be applied together with a
classifier, to classify falls/non-fall activities. Mirmahboub
et al. [26] proposed a view-invariant fall detection system
by using a single camera. The silhouette area extracted by
background subtraction combined with inclination angle
was extracted from a video sequence as features. And
these were then fed into a support vector machine (SVM)
for classifying fall activities and non-fall activities. Differ-
ent kernels were tested in this work and the experimental
results on a public dataset showed that the polynomial
kernel of second degree can achieve the best performance
with 100% fall detection rate and less than 1% of mistaking
non-fall activities as falls. Yu et al. [39] extracted ellipse
features and projection histogram features from postures
obtained from background subtraction results, and the
obtained features were applied to construct a directed
acyclic graph support vector machine (DAGSVM) classifier
to classify four different types of postures (stand, bend, sit
and lie). The classification results, together with the floor
region detected during a floor detection phase, were
applied to detect falls. The fall detection system was tested
on a dataset of 15 people, a high fall detection rate (97.08%)
and very low false detection rate (0.8%) were achieved.

We need to notice that it is not always easy to label
all the training features for the classifier construction;
in order to solve the problem, Yu et al. [38] propose an
adaptive hypergraph learning method. The proposed
method inherits the advantage of the traditional hyper-
graph learning method as in Zhou et al. [40], which models
the high-order relationship among samples. Besides, com-
pared with the traditional hypergraph learning method, an
improved hypergraph construction approach is adopted in
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Yu et al. [38] by varying the size of the neighborhood for
multiple hyperedges construction. And both the labels of
unlabeled training samples and the weights of hyperedges
could be learned in a simultaneous way to improve the
classification performance. Sometimes, multiview features
(different types of features such as color, shape, and
texture) may be available to be exploited. Liu and Tao
[17] and Liu et al. [18] exploit multiple type features for
image annotation application by multiview Hessian reg-
ularization (mHR)/multiview Hessian discriminative
sparse coding (mHDSC) methods respectively, which effec-
tively solve the poor generalization performance problem
of the traditional Laplacian regularization (LR) method
designed for a particular type of single view features.
Yu et al. [36] propose a novel high-order distance-based
multiview stochastic learning (HD-MSL) method, which
combines multiple types of features into a unified repre-
sentation and integrates the labeling information based on
a probabilistic framework. The proposed HD-MSL method
can automatically learn a combination coefficient of dif-
ferent types of features, which can exploit complementary
information and by the aid of the alternative optimization,
the classification scores are obtained simultaneously. The
experimental results presented the effectiveness of the HD-
MSL method compared with other state-of-the-art ones
with much higher classification accuracy. In summary, the
methods in Yu et al. [38], Liu and Tao [17], Liu et al. [18] and
Yu et al. [36] have potentials to be applied for building up a
more efficient classifier for classifying falls/non-fall activities
from multiview, partly labeled features.

For the accelerometer sensor based method, there is a
need for the elderly person to wear the accelerometer
sensor so that it is both obtrusive and inconvenient. For
the computer vision based method, there is a privacy
issue due to the fact that the daily life of an elderly person
is recorded by a camera, but this is unlikely to deter an
elderly person using the system if it preserves their
independence. Besides, change in a room environment,
such as the movement of furniture and illumination
change, will affect the performance of the computer
vision based method. In order to overcome these limita-
tions, the acoustic sensors (microphones) could be
applied and we therefore propose a novel fall detection
system based on acoustic sensors in this work. Compared
with other related acoustic sensor(s) based methods, our
proposed technique is more robust to background acous-
tic noises because a novel SS technique removes the
possible interferences from other sound sources by using
only two microphones. Considering the difficulty to
obtain the actual falling sounds to build up the super-
vised two class classifier, in our proposed method, only
non-fall sounds from normal activities are applied to
build a data description model, which can effectively
distinguish falling or non-fall sounds. The organization
of this paper is as follows: Section 2 gives a brief over-
view of the proposed acoustic sensor based fall detection
system and other related work; the implementation
details of this proposed fall detection system are given
in Section 3. Section 4 describes the evaluation of the
proposed fall detection system and the final discussions
and conclusions are provided in Sections 5 and 6.
2. Overview of the proposed fall detection method and
other related works

In order to overcome the limitations of the acceler-
ometer based methods and computer vision based meth-
ods, some researchers use acoustic sensors (microphones)
to detect falls based on the acquired audio signal. In Zigel
et al. [41], a fall detection system based on a floor vibration
sensor and a microphone was proposed; the vibration and
sound signals were obtained from the hardware equip-
ment and temporal and spectral features were extracted
from the resulting signals. Bayes' classifier was then
applied to classify fall and non-fall activities based on
the extracted features. In their work, a doll which
mimicked a human was used to simulate falls and their
system detected such falls with a fall detection rate of
97.5% and a false detection rate of 1.4%. In Li et al. [16] an
acoustic fall detection system was developed, which auto-
matically detected a fall and reported it to the caregiver.
The study used an 8-microphone circular array which
provided a better 3-D estimation of the sound location
by using the steered response power with the phase
transform (SRP-PHAT) algorithm Mungamuru and Aarabi
[27], and the sound signal was then enhanced by a
beamforming technique with the aid of the resulting
location information. Mel frequency cepstral coefficient
(MFCC) features were extracted from the enhanced sound
signal and the kth nearest neighbor method was applied to
discriminate a fall from a non-fall activity. A pilot experi-
ment on a dataset containing 30 fall activities and 120
non-fall activities was performed, all the falls were
detected and only six non-fall activities were taken as fall
activities. An improvement of Li et al. [16] was proposed in
Li et al. [15] by introducing height information for the
sound source estimated by an eight-microphone array; if a
sound source's height was larger than a particular thresh-
old, then it was unlikely to be a fall. In this way, the false
alarms due to background noise were reduced to a large
extent. A larger dataset which contained 120 simulated fall
sounds and 120 simulated non-fall sounds generated by
three stunt actors was used for evaluation. A good perfor-
mance was obtained with 100% fall detection rate and 3%
false detection rate. In order to solve the problem that it is
not easy to obtain realistic fall sound for training, a one
class classifier technique was proposed in Popescu and
Mahnot [29] using only the non-fall sound recorded from a
single microphone for one class classifier construction. The
sound signals were initially pre-processed by a Wiener
filter for noise removal and the extracted MFCC features
were then used to build the corresponding classifiers. In
this work, three types of one class classifier: nearest
neighbor classifier, the one class support vector machine
classifier and mixture of Gaussian classifier were tested.
From the preliminary results, it was found that the fall
detection results achieved by the three one class classifiers
were comparable with those by using the popular two-
class support vector machine in terms of the ROC curve
analysis.

A new acoustic sensors based fall detection method
is proposed in our work, which applies a novel SS tech-
nique to remove background noises; besides, the one class
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support vector machine (OCSVM) technique is applied and
only the MFCC features from non-fall sounds are applied to
construct the OCSVM data description model to distin-
guish falling/non-fall sounds. The block diagram of the
proposed two-microphone based fall detection system is
shown in Fig. 1; initially, an elderly person undertakes
normal activities in a room environment and the gener-
ated acoustic signals (footstep sounds) are collected. The
system is targeted at the situation where a single person
lives alone and interference by pets is beyond the scope of
this study. For each sequence of the collected acoustic
signal, the method in Loesch and Yang [19] is applied to
estimate the number of sound sources. If the estimated
number of sound sources is larger than one, which implies
the acoustic signal is mixed with some interference (such
as a mixture of footstep sounds and TV sounds), the SS
technique proposed in Khan et al. [12] is applied to
separate the mixed acoustic signals to obtain the indivi-
dual signal coming from each source. Moreover, the posi-
tion of each sound source is also estimated, which can be
taken as a cue to determine the interferences (such as the
most common TV interference in a real home environment
as mentioned in [41]) and can be reinforced by the fact
that the prior position knowledge of an interference
source (usually the TV position is fixed and can be
obtained in a real home environment). The MFCC features
Fig. 1. The block diagram of the proposed fall detection system.

Table 1
List of important notations.

Main steps Notation

Interference suppression and MFCC feature extraction Xrevðf ; tÞ
Xrevlate ðf ; tÞ
Xclnðf ; tÞ
Gðf ; tÞ
SIRpost ðf ; tÞ
N ð�jμðf Þ; η2ðf ÞÞ
yðf ; tÞ
hdðf Þ
dsðf Þ
ς2s ðf Þ
Hi(k)

OCSVM modelling f ðxÞ
w; ρ

ΦðxÞ
α

kð�; �Þ
Ganchev et al. [7] corresponding to the non-interference
acoustic signals are next extracted and applied to con-
struct a data description model based on a one class
support vector machine (OCSVM) technique. This con-
structed OCSVM normal model is finally applied to distin-
guish normal sounds (footstep sounds generated by
normal activities) from abnormal sounds (falling sounds).

3. Methods

Before introducing our proposed method, we clarify
important notations in Table 1. These notations are used
when we present the main steps of the proposed method,
which include the interference suppression, MFCC feature
extraction and OCSVM modelling.

3.1. Interference suppression

Initially, we use the method in Loesch and Yang [19] to
estimate the number of sound sources from a recorded
acoustic signal. The method operates in the time–fre-
quency (TF) domain by first identifying reliable TF points,
estimating the direction-of-arrival and then clustering
them using nearest-neighbor classification. If the number
of the estimated sources is one, then we determine
whether the acoustic signal is interference or not by the
source position estimated by the source localization
scheme [23]. The acoustic signal is regarded as an inter-
ference if the estimated source location is from a known
interference source position (such as TV position) and is
thereby discarded.

If the number of estimated sources is more than one,
a two-stage source separation method utilizing only two
microphones is performed. Since, in general, most realistic
enclosures are highly reverberant, i.e. reverberation time
(RT60) is over 400–500 milliseconds, therefore, in the first
stage we dereverberate the observed two-channel acoustic
mixture. The dereverberation scheme is based on spectral
subtraction [12]. In the second stage we employ an
efficient model-based source separation technique which
is motivated by aspects of the human auditory system by
Description

Observed reverberant signal
Late reverberant component
Clean signal
Gain function applied to yield the clean signal
Aposteriori signal-to-noise ratio

Normal distribution with mean μðf Þ and variance η2ðf Þ
Mixture at frequency f and time instance t
Mixing vector
Direction vector
Model variance
Frequency response of the ith triangular filter at the frequency k

Hyperplane function estimated by OCSVM
Parameters determining the hyperplane
Mapped vector x in a feature space
Dual variables
Kernel function
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combining the models of interaural level difference (ILD),
interaural phase difference (IPD) and the model of mixing
vectors [11]. This probabilistic modeling, which is per-
formed in the time–frequency (TF) domain, yields TF soft
masks for each source in the mixture that can be used for
their reconstruction.

3.1.1. Dereverberation
A sound source in general reaches the microphones by

following a direct path and multiple reflective paths. In a
realistic room these reflections could be on the order of
thousands of samples in duration with typical sampling
rates, making the observed acoustic signal highly rever-
berant. The late part of such reverberation is said to have
particularly detrimental effect. Thus, in the first stage, we
dereverberate the measured two-channel acoustic mix-
tures. We achieve this by using a spectral subtraction
based binaural dereverberation method [12].

If, in the TF domain, Xrevðf ; tÞ is the observed reverberant
signal and Xrevlate ðf ; tÞ is the late reverberant component,
then the clean signal Xclnðf ; tÞ at frequency index f and time
frame t for spectral subtraction based dereverberation
methods can be written as Xclnðf ; tÞ ¼ Xrevðf ; tÞ�Xrevlate ðf ; tÞ:
The process can also be written as

Xclnðf ; tÞ ¼ Gðf ; tÞXrevðf ; tÞ ð1Þ
where Gðf ; tÞ is a gain function applied to the observed
reverberant signal to yield the dereverberated clean signal.
The gain is estimated as [14]

G f ; tð Þ ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIRpostðf ; tÞþ1

p ð2Þ

where SIRpostðf ; tÞ ¼ jXrevðf ; tÞj2=σ2
Xrevlate

ðf ; tÞ is the a posteriori
signal-to-noise ratio (SNR) and j:j denotes the magnitude
operation. Here σ2

Xrevlate
ðf ; tÞ is the variance of the late

reverberant speech component. The left and right channel
reverberant signals are independently processed to obtain
the gain function as explained above. The two gains are
combined [12] to form a single gain that is applied to the
mixtures for dereverberation. The dereverberated mixtures
are supplied to the second stage for separation.

3.1.2. Source localization and separation
The ratio of the left and right dereverberated signals

in the TF domain gives the observed ILD and the IPD at
frequency f and time t. The phase residual, the difference
between the observed IPD and the predicted IPD (by a
delay of τ samples), is modeled with a normal distribution
with frequency-dependent mean ξðf Þ and variance σ2ðf Þ
[23], pðϕðf ; tÞjτðf Þ;σðf ÞÞ ¼N ðϕ̂ðf ; t; τÞjξðf Þ;σ2ðf ÞÞ. The ILD is
also modeled with a normal distribution with mean μðf Þ
and variance η2ðf Þ [23], pðαðf ; tÞjμðf Þ;η2ðf ÞÞ ¼N ðαðf ;
tÞjμðf Þ;η2ðf ÞÞ. The left and right channels, in the TF domain,
are concatenated to form a mixture yðf ; tÞ. Assuming the
signals are sparse in the TF domain [35] and only one
source is dominant at each TF point, yðf ; tÞ at each time t
and frequency f can be approximated as [32] yðf ; tÞ
� hdðf Þsdðf ; tÞ, where hdðf Þ ¼ ½hldðf Þ;hrdðf Þ�T is the mixing
vector from the dominant source sdðf ; tÞ to the left and
the right sensor at that TF point. The mixing vectors are
modeled for each source with a Gaussian model as [32],

p y f ; tð Þ ds fð Þ; ς2s fð Þ
�� ��

¼ 1
πς2s ðf Þ

exp � Jyðf ; tÞ�ðdH
s ðf Þyðf ; tÞÞ:dsðf ÞJ2
ς2s ðf Þ

 !
ð3Þ

where dsðf Þ is the direction vector, ς2s ðf Þ is the variance of
the model, ð�ÞH is the Hermitian transpose, and J � J
indicates the Euclidean norm operator.

The ILD, IPD and mixing vector models are combined
and the model parameters are estimated in the maximum
likelihood sense using iterative expectation–maximization
(EM) [11]. TF masks are generated after a fixed number of
iterations and then used to reconstruct the acoustic signals
from different sources. Together with each reconstructed
acoustic signal, its corresponding source position is also
estimated by the method in Mandel [23] as in the single
source case, in order to determine whether the recon-
structed acoustic signal is an interference or not; only the
non-interference acoustic signals are retained for further
processing.

The time required to run the source separation algo-
rithm, in order to suppress potential interferences, is linear
in the number of points within the time–frequency repre-
sentation, the number of sound sources, the number of
discrete values of the delay τ that are used, and the
number of EM iterations.
3.2. MFCC feature extraction

Features are next extracted from the non-interference
acoustic signals after the interference suppression procedure
has been completed. The most commonly used acoustic
features for speech/audio recognition are Mel-scale frequency
cepstral coefficients (MFCCs). As mentioned in Li et al. [15],
MFCCs take into consideration human perception sensitivity
with respect to frequencies. In fall detection, we use MFCCs as
features to distinguish fall and non-fall sounds, as humans can
distinguish such sounds. For an acoustic signal, the procedure
of extracting the MFCCs is divided into the following steps as
presented in Ganchev et al. [7]:

1. Segmentation and Hamming windowing: For an input
acoustic signal, it is segmented into frames with approx-
imate 50% overlap. Each frame is multiplied by a Hamming
window in order to minimize the boundary effect due to
segmentation.

2. For each frame, the discrete Fourier transform (DFT)
is applied to convert the time-domain points into the
frequency domain, and the magnitude values of the DFT
for frames are calculated.

3. Converting the DFT data into filter bank outputs, as
presented in Ganchev et al. [7], the filter bank contains 40
equal area triangular filters, which cover the frequency
range 133,6854 Hz. The center frequencies of the first 13
are linearly spaced in the range [200,1000] Hz with a step
of 66.67 Hz and the next 27 are logarithmically spaced in
the range [1071, 6400] Hz with a step logStep¼1.07. Each
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one of these equal area triangular filters is defined as

Hi kð Þ ¼

0 for ko f i�1

2ðk� f i�1Þ
ðf i� f i�1Þðf iþ1� f i�1Þ

for f i�1rkr f i

2ðf iþ1�kÞ
ðf iþ1� f iÞðf iþ1� f i�1Þ

for f irkr f iþ1

0 for k4 f iþ1

8>>>>>>>><
>>>>>>>>:

ð4Þ

where i stands for the ith triangle filter, which is deter-
mined by frequencies f i�1, fi and f iþ1 (the center frequen-
cies for the ði�1Þ th, ith and ðiþ1Þ th filters). And k
corresponds to the kth coefficient of the DFT coefficient.

4. We calculate the log values (with the base 10) of the
filter bank outputs and the DCT transform [15] is applied
on the outputs, a certain number of DCT coefficients form
the final MFCC features.

Most of the computational costs of the MFCC features
extraction come from steps (2) and (4), which involve
transforming the discrete time domain audio signal into
the frequency domain and the discrete cosine transforma-
tion of filter bank outputs. Algorithms which accelerate
the DFT and DCT, such as the fast Fourier transform (FFT)
and fast DCT transform as proposed in Proakis and
Manolakis [30] could be applied to reduce the computa-
tional costs. By the aid of the fast Fourier transform and
fast DCT transform, the arithmetical operations for a N
points sequence could be reduced from OðN2Þ to
OðN � log2 NÞ, provided N is a power of 2.

From the above four steps, we extract the MFCC
features for an input acoustic signal and the MFCC features
are then used to construct the OCSVM model for describ-
ing non-fall sounds from normal activities, as presented in
the next section.

3.3. One class support vector machine

To model the extracted MFCCs, the OCSVM is applied,
which is an elegant data fitting method described in
Scholkopf et al. [33]. The basic idea behind the OCSVM
model is that given a data set X¼ ½x1;…; xN� drawn from
an underlying probability distribution P, the correspond-
ing supporting region can be obtained by estimating a
function f. If a sample is obtained from the supporting
region, both the distribution probability value and the
function f value are large; otherwise, small values of
distribution probability and f are obtained.

Compared with the single Gaussian model or mixture
of Gaussian model, OCSVM is more flexible because there
is no assumption in OCSVM that the data to be fitted
should follow particular types of distributions (single
Gaussian or a mixture of Gaussians), which are insufficient
for high-dimensional data (such as the MFCC features
used in this work) description due to the curse-of-dimen-
sionality.

As proposed in Scholkopf et al. [33], the function f is in
a linear form as

f ðxÞ ¼w � x�ρ ð5Þ
for the data sample x (here � represents the dot-product).
And in most cases, the data x is mapped into a feature
space with x-ΦðxÞ in order to obtain a better non-linear
result for data fitting and Eq. (5) becomes

f ðxÞ ¼w �ΦðxÞ�ρ ð6Þ
In order to obtain the parameters w and ρ, the follow-

ing quadratic problem needs to be solved based on the
dataset X¼ ½x1;…; xN�:

min
w;ξ;ρ

1
2
JwJ2þ 1

νN
∑
i
ξi�ρ

subject to ðw �ΦðxiÞÞZρ�ξi; ξiZ0 ð7Þ
where νAð0;1� and the nonzero slack variables
ξ¼ ½ξ1;…;ξN� are introduced to allow for the possibility
of outliers (the data points which are not drawn from the
supporting region).

Using multipliers αi;βiZ0, where i¼ 1;…;N, a Lagran-
gian function is introduced as

L w; ξ;ρ;α;β
� �¼ 1

2
JwJ2þ 1

νN
∑
i
ξi�ρ

�∑
i
αiððw �ΦðxÞÞ�ρþξiÞ�∑

i
βiξi ð8Þ

where α¼ ½α1;…;αN � and β¼ ½β1;…;βN �; the derivatives
of the above Lagrangian function with respect to w, ξ and
ρ are set to zeros, which yields

w¼∑
i
αiΦ xið Þ

αi ¼
1
νN

�βir
1
νN

∑
i
αi ¼ 1 ð9Þ

The results of (9) are substituted into (8) while consider-
ing the constraints of α, as mentioned in Boyd and Vanden-
berghe [4], and a dual form of problem (7) is obtained as:

min
α

1
2
∑
ij
αiαjΦ xið Þ �Φ xj

� �
subject to 0rαir

1
νN

; i¼ 1;…;N; ∑
i
αi ¼ 1 ð10Þ

The problem (10) is a convex problem and can be
solved by the standard algorithm for solving the convex
problem as mentioned in Boyd and Vandenberghe [4].
Instead of representing ΦðxÞ explicitly, the kernel techni-
que [3] is applied and a kernel function kðx; yÞ ¼ΦðxÞ �
ΦðyÞ is used to represent the dot product of samples in the
feature space and (10) is then rewritten as

min
α

1
2
∑
ij
αiαjk xi; xj

� �
subject to 0rαir

1
νN

; ∑
i
αi ¼ 1 ð11Þ

And in this work, the popular Gaussian kernel
kðx; yÞ ¼ eð� Jx�y J 2Þ=2σ2

is applied, where σ is the Gaussian
kernel parameter.

From Eq. (9), the solution of α in (11) (denoted as αn) is
related to the solution of w in (7) (denoted as wn) with

wn ¼∑
i
αn

i ΦðxiÞ ð12Þ

The solution of parameter ρ in (7) (denoted as ρn) can
be found from the Karush–Kuhn–Tucker (KKT) conditions
as described in Boyd and Vandenberghe [4], from which
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the following equations hold:

αn

i ððwn �ΦðxÞÞ�ρnþξni Þ ¼ 0

βn

i ξ
n

i ¼ 0 ð13Þ
where ξni and βn

i denote the ith solutions of ξ and β for
minimizing (7).

It can be observed from (13) that for a particular index i,
if αn

i and βn

i are non-zero, the corresponding data sample
xi satisfies

ρn ¼ ðwn �ΦðxiÞÞ ð14Þ
and from Eq. (9), wn is replaced with ∑iαn

i ΦðxiÞ, then
ρn ¼∑

i
αn

i ðΦðxiÞ �ΦðxiÞÞ

¼∑
j
αn

j kðxj; xiÞ ð15Þ

Finally, after αn and ρn are obtained, the decision
function (6) is determined as

f ðxÞ ¼∑
j
αn

j kðxj; xÞ�ρn ð16Þ

which is then used to model the dataset X (MFCC features
in this work); if the value of f ðxÞ for a data sample x is
large, then the sample x is likely to come from the
supporting region where most samples of X reside.

We need to remark that with the aid of the OCSVM
algorithm, only the supporting vector (the sample xi

whose corresponding coefficient αn

i 40) is kept for con-
structing the decision function in (6). In this way, the
decision function is not represented by all the training
samples as in the traditional kernel based method [3] and
the computational cost for deciding whether a data sample
is normal/abnormal could then be reduced. After training
the OCSVM classifier, the computational cost for testing a
date sample by the trained OCSVM classifier is OðNÞ, where
N is the number of support vectors.
Fig. 2. The experimental room environment with two micr
4. Experimental results

4.1. Experimental settings

The system evaluation experiments were performed in
a lab environment with the dimension 5:6 m� 4:4 m�
3:5 m as shown in Fig. 2. Two RV 6 microphones were used
to record the audio signals and we used a Firepod micro-
phone preamplifier to convert the analog signals to digital
ones with a sampling rate of 16 kHz. Matlab R2010b
was then used to process the converted digital signals
for interference suppression, extraction of MFCCs and
classification operations. A television was introduced as
the acoustic interference source, which was used to test
the performance of the proposed system under the influ-
ence of acoustic interferences as in the real-home envir-
onment. When a person simulates fall activities, a mattress
was used to prevent the person from being injured.

4.2. Comparison with other source separation methods for
interferences suppression

To test the efficacy of the proposed two-channel source
separation approach, we first compared our algorithm
with three other state-of-the-art source separation meth-
ods in a simulated environment, as shown in Fig. 3. Speech
data, assumed to be the television interference, was mixed
with human walking sound at different levels of rever-
beration. The level of reverberation was varied using the
well-known source image method [1]. The synthetic room
impulse responses (RIRs) generated using the image
method were convolved with the sound sources to model
the reverberant sources, which were then mixed to form
the reverberant mixtures.

The objective of this experiment was to separate the
walking sound from the acoustic mixture and to effectively
ophones, and a television (TV) to simulate interference.
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Fig. 3. The simulated room setting with approximate sound source
positions. Human walking sound was mixed with the television (TV)
interference at different levels of reverberation. The assumed spacing
between the audio sensors (microphones) for the proposed method was
0.17 m and the other techniques was 0.04 m. The mixtures were then
separated using the different methods and the performance recorded.
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measure and compare the separation performance of the
proposed source separation scheme with other methods.
We chose to use synthetic RIRs and available sound
sources in order to be able to quantitatively measure the
separation performance using state-of-the-art objective
metrics. The frame-based segmental signal-to-distortion
ratio (segSNR) [20] was used to evaluate the separation
performance of the different methods. Our source separa-
tion method was compared with the method in Kim et al.
[13] based on independent vector analysis, the method in
Naqvi et al. [28] that is based on minimum variance
distortionless response (MVDR) beamforming [8] and the
technique in Maganti et al. [22] which is also based on
array beamforming. It is highlighted that the beamforming
based methods in Naqvi et al. [28] and Maganti et al. [22]
require the knowledge of the sound source locations,
which we assume are known.

The different source separation methods were evalu-
ated at three different reverberation times (RT60) i.e.
300 ms, 485 ms and 600 ms, achieved by varying the
reflectivity of the walls. These RT60s were chosen since a
typical real home room has an RT60 in this range. The
results in Fig. 4 show improved performance by the
proposed method over all the other methods at all
RT60s. The proposed method with dereverberation based
pre-processing effectively dereverberates the mixture
which is later separated by the combined models of the
interaural level difference (ILD), interaural phase differ-
ence (IPD) and mixing vectors. The technique in Maganti
utilizing four microphones performs second best. Overall,
Maganti's scheme, both with two and four microphones,
does better than the simple MVDR beamformer due to the
fact that it employs additional post-processing on the
beamformers output to further suppress the interference.
In summary, the proposed source separation method using
only two microphones, with the pre-processing to tackle
the high levels of reverberation present in realistic envir-
onments, performs better than the beamforming-based
methods, even with the a priori knowledge of the sound
source locations, using two and four microphones in
similar conditions.

4.3. Fall detection performance evaluation

To construct the dataset of the normal sound samples,
we interviewed a healthy 75 years old person and the
frequency of representative activities during 1 week as
summarized in Table 2. In the experiments, one volunteer
is asked to simulate these activities, and for each activity a
sound sequence of 10 s (s) is recorded (which is sufficient
to cover the period of a particular activity).

For each acoustic sequence, it was segmented into 1 s
sound blocks with 50% overlap, and the MFCC features
were then extracted from them to construct the normal
OCSVM model, which is used to classify fall and non-fall
sounds. For the MFCC features extraction, each 1 s sound
block was divided into frames, the length of each frame is
set to be 256 points, the overlapping rate between frames
was set to be 37.5% and the initial 13 coefficients of the
DCT of the outputs of 40 area triangular filters correspond-
ing to each frame were chosen as MFCC features. With a
sampling rate of 16 kHz, for one particular sound sample,
an MFCC feature vector with a dimension of 1274 was
extracted.

Another dataset was recorded which contains the sound
sequences of 64 falls (including frontal fall, side fall and
backward fall) and 64 non-falls (including walking, standing,
bending, lying and sitting) as the test dataset, each sound
sequence also lasts for 10 s. For each testing sequence, it was
also segmented into 1 s testing sound blocks (with 50%
overlap), the extracted MFCC features from the testing sound
samples were fed into the OCSVM model for classifying.

To test the influence of the TV interferences, we intro-
duced 50% of such interference (50% interference implies
the interference signal variance is one half of that of the
target signal variance) on both training and testing datasets



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FNR

TP
R

Single microphone method

Two microphones method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FNR

TP
R

Single microphone method

Two microphones method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FNR

TP
R

Single microphone method 

Two microphones method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FNR

TP
R

Single microphone method

Two microphones method

Fig. 5. Comparisons of the ROC curves for fall detection by using single microphone and two microphones under different interference levels: (a) no
interference, (b) 25% interference level, (c) 50% interference level and (d) 75% interference level.

Table 2
Summary of the frequency of representative activities of an elderly person during 1 week.

Activity Description Frequency

Walking The elderly person walks to move between different places of the room or do some cleaning activities 16
Standing The elderly person stands almost still to watch television 6
Sitting The elderly person sits to have a rest (either watching TV or eating fruits) 8
Lying The elderly person lies on the sofa for a nap or watching TV 8
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(to simulate the situation that a person does normal activ-
ities or falls while there is some other sound interference,
such as the TV is on). In our work, three different inter-
ference levels were tested, they were 25%, 50% and 75% of
the maximum volume of the laptop.
Receiver operating characteristic (ROC) analysis [34] was
applied for evaluation purpose. Different thresholds were
chosen for the OCSVM model and the true positive rate
(TPR, which represents the percentage of falls which are
correctly detected) and false negative rate (FNR, which



Table 3
The performance of the single microphone method [41,29] under different interference levels.

Evaluation criteria No interference 25% interference level 50% interference level 75% interference level

AUC value 0.9928 0.9902 0.9684 0.9293
optimal TPR 0.9688 0.9844 0.9219 0.8281
optimal FNR 0.0313 0.0781 0.1250 0.0781
Geometric mean 0.9687 0.9526 0.8981 0.8737

Table 4
The performance of the proposed method under different interference levels.

Evaluation criteria No interference 25% interference level 50% interference level 75% interference level

AUC value 0.9928 0.9912 0.9829 0.9738
optimal TPR 0.9688 0.9531 0.9375 0.9063
optimal FNR 0.0313 0.0469 0.0419 0.0313
Geometric mean 0.9687 0.9531 0.9477 0.9370
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represents the percentage of non-falls which are wrongly
detected as falls) were calculated for these thresholds, and
the results are plotted as a ROC curve. Ideally, for a perfect
fall detection system, TPR should be 1 and FNR should be 0.

As proposed in Tax [34], two criteria can be obtained
from the ROC curve for performance evaluation, they are:

1. AUC value – which denotes the area under the ROC
curve, a larger AUC value means a better performance of
the corresponding model used for detecting falls.

2. Optimal TPR and FNR pair under a particular
threshold, which maximizes the geometric mean,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPRnð1�FPRÞ

p
, whose range is ½0;1�, for a perfect system

with unity TPR and FNR zero the corresponding value of
geometric mean is unity.

Fig. 5 shows the ROC curves of our proposed fall
detection system for four scenarios (without interference,
and 25%, 50% and 75% of maximum volume interference),
the corresponding AUC, optimal TPR and FNR pair and
optimal geometric mean values are summarized in Table 4.
For comparison purpose, we also give the performance of
the fall detection system by using only one microphone as
in Zigel et al. [41] and Popescu and Mahnot [29] without
interference suppression and the results are summarized
in Table 3. From these two tables, we can see that the
performance of our proposed system is better than that of
the single microphone based methods in Zigel et al. [41]
and Popescu and Mahnot [29]. The performance of our
proposed system is similar to that of the single micro-
phone method without interference or at low interference
level; however, at high interference level, the advantages
of our system are evident. Compared with the single
microphone based methods, there is an increase of 7.4%
TPR for our proposed system (90.63% for our method and
82.81% for the single microphone method) at 75% max-
imum volume interference level, with 4.6% less FNR being
obtained (3.13% for our method and 7.81% for the single
microphone method). Besides, it can also be observed that
our proposed system is less affected by increasing inter-
ference level. For our method, the AUC value drops from
0.9928 with no interference to 0.9738 with 75% maximum
volume interference and the geometric mean value drops
from 0.9687 to 0.9370. While larger decreases of these two
values can be observed from the single microphone based
methods in Zigel et al. [41] and Popescu and Mahnot [29],
the AUC value drops from 0.9928 with no interference to
0.9293 and the geometric mean value drops from 0.9687
to 0.8737 as the interference level increases to be 75%
maximum volume.
5. Discussions

This paper proposes an efficient unsupervised acoustic
fall detection system with interference suppression. It
inherits the advantages of traditional acoustic sensor
based fall detection systems: there is no need for the
elderly person to wear special equipment as in the accel-
erometer based methods; besides, compared with the
computer vision based method, there is no problem with
sudden illumination change for this proposed acoustic fall
detection system and privacy intervening issues are much
reduced. Compared with the state-of-the-art acoustic fall
detection systems as proposed in Zigel et al. [41], Li et al.
[16], Mungamuru and Aarabi [27], Li et al. [15] and
Popescu and Mahnot [29], the proposed fall detection
system has the following advantages:

1. The proposed fall detection system adopts an unsu-
pervised scheme, which makes use of the features
extracted from the normal sound samples constructing
an OCSVM model to distinguish falls from non-falls. For
the unsupervised method, there is no need for the falling
sound samples for model construction compared with the
supervised schemes in Zigel et al. [41], Li et al. [16],
Mungamuru and Aarabi [27] and Li et al. [15] which need
multiple volunteers to simulate extra falling activities to
obtain falling sound samples, which is inconvenient;
besides, the simulated fall activities from volunteers are
different from the real falls from elderly persons.

2. Compared with the unsupervised fall detection
system proposed in Popescu and Mahnot [29], this system
applies an elegant SS technique for interference suppres-
sion by using only two microphones, which makes our
proposed fall detection system less sensitive to interfer-
ences, as presented in the Experimental section.
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Although the source separation method used for inter-
ference suppression does reasonably well in the current
scenario; as realistic home environments could be more
hostile and the level of reverberation very high, the
reflections received at the sensors could be very strong
and may appear as new sources causing estimation errors.
Future work could therefore consider robust techniques
for these realistic environments that provide an accurate
estimate of the number of sources in the mixture and
source separation. Besides, currently the running time on a
2.20 GHz Intel Core i5 processor was approximately 50 s to
separate two sound sources from a 3-s i.e. 48,000 sample
mixture using a τ grid with 61 values and 16 EM iterations.
The computational costs of the source separation method
need to be reduced in order to meet the real time demand.

6. Conclusion

In this paper, we proposed a novel unsupervised fall
detection system. Acoustic signals (footstep sounds) were
collected from an elderly person's normal activities, which
were then processed by an efficient dereverberation and
source separation technique if the estimated sound number
was larger than one; the position information of the sound
sources was also exploited in the processing. MFCC features
were extracted from the processed acoustic signals and
used to construct an OCSVM model to distinguish fall from
non-fall sound samples. The performance of this proposed
system was evaluated in a simulated environment and
better performance was achieved compared with the
state-of-the-art single microphone based methods.
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