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AlISTRACT 

One of the most conceptually difficult topics to be studied 

at school level is calculus. Its notation and subtle 

implications are but two of its main ares of difficulty for 

students. The views of exponents of the calculus on methods 

of approach to the subject vary as much as the different 

notations of the calculus. The degree of difficul ty wi th 

which calculus is perceived also varies from writer to 

writer. Experience shows, however, that, whatever the 

approach, the concepts of calculus are difficult to impart. 

Nevertheless, it is an important subject not only for those 

students who are mathematically able, but also for the large 

numbers who need to use it in other curricular areas. 

In this dissertation we examine the role of calculus in 

schools and look at the traditional methods of approach. The 

emphasis is on methodology and applications without recourse 

to rigour except where this is relevant to the theme. New 

approaches to the calculus· are considered wi th particular 

reference to the influence of the microcomputer. Its role as 

a teaching aid in the process of trying to impart the 

concepts of the calculus is a recurring feature throughout 

this work. 

In the analysis of the methods of approach to the calculus in 

schools, use is made of personal experience in teaching 

calculus and, based on that experience, some attempt is made 

to shed light on the areas of the literature which have 

proved difficult to impart. 
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1.1 A brief historical perspective. 

Mathematics, with a history extending beyond 4000 years, is a 

constantly growing subject and the rapidity with which it has 

developed over the last century is clearly reflected in 

changes in mathematical curricula, although this reflection 

is often delayed. These changes were necessary for social 

reasons: pupils trained on aspects of traditional mathematics 

syllabuses in schools floundered at university level as they 

encountered a new style of university mathematics which bore 

no resemblance to that which they encountered in schools. The 

high influx of students into universities was accompanied by 

a high failure rate which became politically important [1] (p 

101). It was necessary, therefore, for changes in curricula 

and teaching styles to accommodate the transi tion between 

secondary and tertiary level. 

The use of mathematics as a tool in many ares of industry and 

commerce has also given rise to the need 

curricula. A number of students who do 

for changes in 

not aspire to 

university mathematics need to be acquainted with the many 

applications of mathematics relevant to their chosen careers 

in science, technology and commerce. They need, therefore, to 

be introduced to the new applications of mathematics, 

particularly with reference to the use of computers, before 

embarking on the world of work. Here, we look at the 

in mathematics curricula with specific reference 

influences of the calculus on these changes. 

changes 

to the 

Newtonian calculus was fairly common knowledge amongst 

engineers, 

nineteenth 

physics, 

scientists 

century. 

theoretical 

and mathematicians throughout the 

It was widely used in mathematical 

physics and analytical mechanics. 

Further applications of mathematical. analysis to the theories 

of electricity and magnetism, and a desire to achieve a 



greater understanding of the 

applications of mathematics to 

'real 

what 

world' , 

is now 

3-

led to 

called 

mathematical modelling - an important feature of which is the 

identification, construction and solution of differential and 

integral equations. 

Calculus is one of the areas of mathematics which contributed 

to the increasing gulf between university and school 

mathematics [1]. Hardy's book on Pure Mathematics attempted 

to bridge the gap between school and university mathematics. 

It failed because it introduced students to a style of 

mathematics which was not an extension of school mathematics 

and which they found difficult [1]. The traditional approach 

to calculus and the implications of its generality caused 

more problems than it solved; even for university students. 

It was out of concern for this situation that. mathematics 

projects such as SMP [2] and SMSG [3] were set up. Other 

groups seeking to bridge the gap between school and 

university mathematics have been formed, for example The 

Mathematical Association (MA) and The Association of Teachers 

of Mathematics (ATM). The main aim of all such groups is to 

seek to present conceptually difficult mathematical ideas in 

an elementary and understandable way. The ideas of the 

calculus are widely used in careers such as engineering and 

science [22]. Many students of average ability, and indeed a 

wider range of students, have benefited from the many varied 

approaches to the concepts of ele~ept~ry calculus in schools. 

For example, the computer approach'. to concepts of calculus: 

integration, differentiation and limiting processes [11] have 

served to clarify some of the fundamental ideas of calculus. 

1.2 The role of the calculus. 

Men were starting to study the material world intensively 

around 1600 A.D. The motion of all kinds of moving objects -
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from planets to pendulums - were of great concern. From that 

study came the knowledge of the stars, atoms and machines 

that we enjoy today. Calculus is an example of the kind of 

development which grew out of the desire to understand the 

'real world' more fully, and, as a consequence, its use has 

been indispensable in every development in science and 

mathematics from 1600 to 1900 A.D. [4]. It is to be found in 

the theory of heat, light, gravitation, sound, electricity 

and magnetism and the flow of water - hydrodynamics. Calculus 

enabled Maxwell to predict radio twenty years before 

physicists could demonstrate radio experimentally and it 

played a vital role in Einstein's theory of 1916 and the new 

atomic theories of the nineteen twenties. Apart from these 

and the many other applications in science and technology, 

calculus stimulated the appearance of new branches of 

mathematics modelling and numerical methods. In this 

century, therefore, even those ares of mathematics which do 

not use calculus directly are connected in some way with 

subjects related to calculus [4]. 

Calculus, then, plays a vital role in the development of 

mathematics and the enhancement of mathematical education, 

both for the pure and applied mathematician. CA pure 

mathematician is one who studies mathematics for its own 

sake, whilst an applied mathematician is one who studies 

mathematics in order to deal with some aspects of the 'real 

world': science, economics, engineering and medicine). 

In the past, the view of calculus was that it is a difficult 

subject. Gradually, particularly in England, teachers began 

to realise its use in the solution of problems by a much 

easier root than an appeal to the purely algebraic methods. 

In English schools students had two or three years of 

calculus. Some mathematicians argued that this was 

inadequate; that calculus was too difficult for all but a 

few, and the conceptual difficul ty of the calculus should 
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preclude 

must be 

its study by average students and its exposition 

left to well qualified mathematicians [4]. The 

substance of this view prevails today, but new directions and 

methods in mathematical teaching - the use of computers, for 

example,- have shown that it is possible to enable a wide 

range of students to gain some appreciation of the elementary 

concepts of a conceptually difficult subject. A question 

which remains is one which seeks to determine the way in 

which calculus should be taught or introduced in schools. The 

answer, hopefully, lies in much of the discussion which 

follows in this work. 

1.3 Rigour versus understanding. 

Another area of concern with regard to calculus in schools 

has been the extent to which the traditionally rigorous 

approach to calculus should be compromised to facilitate 

easier understanding by a wider range of students. Early this 

century, Thompson [6] attempted to address this problem and, 

as a consequence, he was ridiculed by many purists of the 

day. He attempted to show that it was possible to simplify 

the ideas of the calculus in order that it was more appealing 

to students. The opposite view is held by Schwarzenberger [5] 

who argues that it is not possible to simplify calculus. 

Coupled with this concern is the argument as to when calculus 

should be introduced in schools and the possible consequences 

of students moving to university courses in science and 

technology without adequate grounding in the subject. 

The purists continue to argue that to rob calculus of its 

rigour is to rob it of its beauty; to simplify it to the 

extent that it is not treated seriously. The above is the 

substance of Feit's article [71 • He advocates that an 

introductory course on calculus should be presented in a 

manner that is understandable to students without sacrificing 
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rigour. The influx of students whose mathematical backgrounds 

vary considerably but who have need of mathematics - calculus 

- in their fields of study, has forced many professors to 

realise that not every student of engineering or science is a 

mathematician, or, indeed, in love with the subject. This has 

brought about changes both at school and university level in 

methods of approach to mathematics and subjects dependant 

upon ma thema tical applications. To some extent, some text 

books [23, 241 have made strenuous efforts to reduce their 

dependence upon symbolic manipulations and seek to explain 

mathematical ideas without stifling students with 

complexi ties beyond their unders tanding. As a resul t, many 

areas of mathematics which were previously discussed at 

graduate level have found their way into sixth form courses. 

For example, hyperbolic functions and integration and 

differentia tion of these are part of some A Level Further 

Mathematics syllabuses. 

Most text books on calculus, particularly those that have 

'cornered' the market, are written for students with a degree 

of maturity and mathematical sophistication. Calculus is not 

a course taught exclusively to prospective students of pure 

mathematics, yet it is one area of mathematics which has 

successfully resisted the winds of change [71. Students are 

often bombarded with catalogues of mathematical definitions, 

theorems, rules and exceptions to rules. It should be clear 

to mathematical educators that it is not necessary to 

understand every possible meaning and application of a 

fundamental idea in calculus before using it. Fei t argues 

that, in any topic of mathematics, certain facts must be 

learned, but these should be no more than is required at each 

stage. His ideal book on calculus would be one which works 

like the brain. He writes: 

·Our thinking process involves grasping a few details, 

attempting to apply them to the whole, grasping some 

more details and applying these, and so the main idea 
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be 

to 

is 

becomes clearer. The process continues, as at each 

step we embrace more details and let them percolate 

through the system, thus extracting a better picture 

of the whole. A book should imitate this process 

by presenting details as and when they are needed." 

attempt is being made here to suggest that rigour should 

sacrificed for a more humorous or conversational approach 

problem solving. What should not be sacrificed, however, 

students' understanding of the subject matter for the 
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desire on the part of authors to impress instructors. Feit's 

recommendation is that students should be taken 'by the hand' 

and shown how a problem can be changed, in varying degrees, 

to give better understanding and different results. This is 

in keeping with the approaches and recommended practices 

advocated by Cockcroft [8j in paragraphs 240 to 243. 

1.4. The Computer Influence. 

Many of the applications of mathematics in science and 

technology would not be possible without the use of 

computers. The whole study of numerical methods, for example, 

and its use in solving differential equations would be a 

tedious, if not impossible exercise. The computer is an 

influence within mathematics which is changing the attitudes 

of mathematicians to mathematics and, as a consequence, the 

ways in which mathematics is taught today. Throughout this 

dissertation reference would be made to the use of computers 

in mathematics teaching, with specific reference its use in 

approaches to some aspects of calculus. 

The arrival of this new technology brings with it the 

beginnings of a new phase in the development of mathematical 

education - the second major revolution in thirty years. The 
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introduction of the 'New Mathematics' in the 1960's was 

largely due to internal forces teachers and professional 

mathematicians dissatisfied with the mathematics curriculum. 

The new technology - computers - will change our cultural 

environment in a way which will force mathematics education 

to respond [9]. Currently, some· teachers are bemused by the 

pace of this change. The development of new software and 

hardware is seen as a threat to teachers who must ensure that 

the far-reaching implications, not simply the present 

practical applications, provide a vision of the possibilities 

of their (computers) use in mathematical education in the 

future. 

Winkelmann [10] argues that in addition to the technical 

considerations, there are social factors relating to teachers 

and their work in the classroom. He suggests that we should 

distinguish three different levels of computer use : 

Its use in principle - a consideration of how information 

technology might be used for teaching specific topics in a 

.particular discipline; 

Its use in practice - actual use in the classroom, using 

available equipment and software; 

Its use in reality - a measure of the relevance of computers 

in certain disciplines and of their use by teachers. 

Both employers and agents of government have acknowledged the 

use of computers in schools. Indeed, the availability of 

computers in most schools is a direct response to political 

initiatives and governmental directives, that education 

authorities should be aware of the changing technological era 

and the need to make necessary changes in curriculum planning 

to reflect that change. 
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Mathematics, in particular, has benefited from the new 

technology and associated software. There is much imaginative 

software developed for use in the teaching of ma thema tics. 

This covers areas of the subject from counting to calculus 

[11]. However, research shows that 39% of teachers used the 

computer very rarely in their mathematics teaching, whilst 

33% never use it at all [12]. This is a situation which needs 

to be remedied if all teachers and students are to share in 

what Tall [9] refers to as an exciting new phase of 

development. The Council for Educational Technology 

highlighted in their report [13], the need for continuing 

curriculum development to produce materials and software, and 

an increase in the amount of research into the impact of the 

new technology on the mathematics curriculum. A measure of 

the responsibility for the direction of changes in 

. mathematics teaching must be shared by teachers who would 

otherwise be forced to accept the new technology as an 

imposition rather than a welcomed aid to their work in the 

classroom. 

1.5 Calculus and GCSE. 

Many radical changes have taken place in the education system 

of England and Wales over a period of time. One that is seen 

as the most radical is the advent of GCSE [14]. This new 

examination may be seen to combine two previous certificates 

CSE and 0 level. Its introduction has brought wi th it 

implications for all subject areas including mathematics. The 

point of concern here is its implication for calculus. 

GCE 0 level included elementary calculus. The option existed 

for the elementary trea tment of ideas such as velocity and 

acceleration, maxima and minima, and areas under curves. 

These provided a prelude to a more detailed treatment in the 

sixth form. For example: 
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(i) The equation of a curve is y = 12 + 4x - x 2 • Show 

that the curve has local maximum and find the 

maximum value. 

(ii) Calculate the area bounded by the arc of the 

curve y = 12 + 4x - x 2 between x = -2 and 

x = +2, the ordinate at x = 2, and the x-axis. 

( Oxford GCE, Autumn 1984 ) [25]. 

Calculus is absent from GCSE mathematics. The consequences of 

this exclusion can only be assessed with time. One possible 

consequence, however, could be the 'handicap' this may cause 

at sixth form level. The A level course is a difficult course 

to complete in the time allocated. Previously, the fifth year 

provided - an opportunity to discuss, in a less formal way, 

some ideas - including calculus - to be considered in greater 

detail in the sixth form. Calculus plays a large role in A 

level mathematics and the physical sciences. It is present, 

too, in economics and statistics at A level. Students who 

pursue these subjects at A level in a combination of subjects 

which exclude mathematics have thus been deprived of an 

introduction to relevant ideas in calculus in their fifth 

year. The Higginson Report [30] cites the introduction of AS 

levels as a means of meeting the needs of such students. 

Research in the United States by Spresser [16] shows that 

students who do well on university courses in mathematics, 

engineering and science had three years of an introduction to 

ideas of the calculus in secondary school. The A level course 

is' essentially a two-year sixth form course. Applying 

Spresser's findings to the situation which exists in UK 

schools would lead to highlight the importance of an 

introduction to calculus - even as an option - in the fifth 

year. Indeed, his research [15] shows calculus in year five 

would be advantageous. It must be acknowledged that the US 

system is very different from that in the UK. Nevertheless, 

the point being made here is that there is an omission from 
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GCSE - calculus - which is of fundamental importance in later 

A level work in mathematics. 

Some teachers argue that within the framework of GCSE and 

wi th the emphasis on investigations by Cockcroft [8] and 

others [33], it is possible to embrace a numerical approach 

to calculus using investigations. Experience shows, however, 

that there is some unwillingness on the part of teachers to 

cover any topic that is not specifically mentioned in a 

syllabus related to a particular course. GCSE coursework is 

not compulsory for mathematics until 1991,and those who do 

not welcome its inclusion and all the assessment objectives 

it entails, may well argue that a numerical approach to 

calculus, at this stage, is neither relevant nor desired. It 

is necessary for teachers to carefully observe the 

consequences for A level mathematics. Only then would GCSE be 

forced to remedy the exclusion of calculus from its framework 

or, indeed, justify its exclusion. 

Tall [44] argues that this new qualification - GCSE ~ will 

impinge on the teaching of calculus at A level and that, when 

it does so, two opposing factors will come into play that are 

peculiar to the British system. Firstly, the broader span of 

GCSE will contain less of the material which is currently 

regarded as essential prerequisi tes for the calculus (for 

example, the reduced emphasis on algebraic manipulation). 

This would add to the dilemma for teachers. It would make it 

difficult to reach the same level of performance at A level, 

producing pressure on teachers to reduce content and an 

increasing dependence upon investigational elements through 

coursework. Secondly, the agreed 'common core' shared by A 

level examination boards will, in practice, present strong 

opposi tion to major changes. The way ahead may be unclear, 

but it is sensible for both teachers and pupils to 

familiarise themselves with the computer methods of approach. 

The deep structure and subtle ideas of the calculus are well 
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served by an exploration of the graphical approach at A 

level. 

1.6 GCE A level and the calculus. 

The first examinations for GCE A level were held in 1951 and, 

since then, have been administered by eight GCE Boards in 

England and Wales. Their syllabuses and procedures are 

scrutinized by the Secondary Examination Council, but they 

are, in the main, independent bodies. A levels have been 

widely accepted as setting recognised standards of academic 

excellence by educationists and industrialists. The variety 

of syllabuses provide an opportunity for candidates and 

teachers to choose the one which best suits their needs. 

Since 1951, however, there has been some concern about the 

nature and structure of A levels and the failure of the GCE 

Boards to identify, with sufficient clarity, their aims, 

objectives and criteria for assessment. The Higginson Report 

[31] records the common perception that, over the years, 

syllabuses have become too voluminous and candidates are 

overburdened with having to memorise a large amount of 

information to the exclusion of other important demands 

[paragraph 1.3]. Another criticism hinges on the narrowness 

of programmes of study and a system which seems to encourage 

prema ture specialisation. Mathematics has, to some extent, 

addressed the first concern by making examination papers less 

rigorous and with the inclusion of a more comprehensive 

formulae sheet wi th its A level papers. There is greater 

scope, therefore, to examine a knowledge and application of 

principles. 

The recent introduction of Advanced Supplementary (AS) level 

syllabuses has been a step towards broadening students' 

experience and catering for a wider range of non-specialist 
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students .Any A level reform should recognise: the need to 

appeal to less formalised mathematics and embrace aspects of 

decision mathematics and problem solving mathematics [31,32]; 

the role of the mathematical model and modelling processes 

[33] in the 16-19 curriculum; and the greater crosscurricular 

role mathematics plays in the new technological age. 

The Higginson Report [31] stresses the importance of rigour 

[paragraph 2.7 - 2.11], a concept with which mathematics in 

general, and calculus in particular, is quite familiar. 

Rigour, it argues, has several components: assessing and 

rewarding higher level skills;'modes of assessment which have 

claim to exactitude; setting out plainly and precisely, 

though not necessarily in detail, what is to be studied and 

learned, what is to be assessed and how that assessment is to 

be made; identifying aims and objectives and establishing 

syllabuses; setting and marking of questions and awarding 

grades. The implications for mathematical education and 

teachers are enormous. Rigour should no longer be confined to 

methods of exposition of subject matter, but to other areas 

which combine with teaching approaches to achieve attainment 

and certification which sustain public confidence and the 

currency of its certificates with employers. The future of 

mathematics depends, to a large extent, on the ability of 

curriculum developers and teachers to respond positively to 

these challenges. 

The wide choice of syllabuses and the independence of the 

syllabus writers contribute to the difficulty teachers 

experience in choosing a particular Examination Board. The 

report [31] calls for all syllabuses to be governed by common 

general principles' and subject specific principles. Often 

schools have to justify their choice of Examination Board to 

employers who sometimes entertain the view that some A level 

examinations are more difficult than others and, as such, the 

higher grade categories are easier to obtain on some A level 
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papers. A common set of principles, aims and objectives, 

applicable to all GCE Boards, and the new identified 

compulsory common core would serve to facilitate greater 

compara~ility between Boards. Employers would then be able to 

accept with confidence what it means when applicants state 

that they have completed a course in A level mathematics and 

achieved a particular grade. 

The following looks at the calculus content of four 'major' 

Examining Boards in an attempt to ascertain the degree of 

commonality between these Boards, as far as calculus is 

concerned. It is acknowledged that there are eight Examining 

Boards and that there is no significance in the choice of 

this particular group of four. The aim here is simply to show 

the types of calculus content at A level for the 1990's and 

to see whether or not there is some adherence to the agreed 

national common core. Furthermore, 

there are other syllabuses at 

it is acknowledged that 

this level: Further 

mathematics, Mathematics with applications, AS level, Pure 

mathematics and Applied mathematics as single subjects. The 

following analysis of the calculus content of these four 

Examining Boards at A level suffices to facilitate and 

substantiate a conclusion to the above objective. 



Notes and abbreviations. 

Pm : Pure mathematics with Mechanics. 

Ps : Pure,mathematics with Statistics. 

The above combinations consist of 3 papers: 

Paper I - Pure mathematics 

(common to papers 2 and 3). 

Paper 2 - Mechanics. 

Paper 3 - Statistics. 

Examining Boards and Syllabuses. 

LOND : University of London School Examination Board. 

Pure mathematics with Mechanics - 371. 

Pure mathematics with Statistics - 374. 

AEB The Associated Examining Board. 

Pure mathematics with Mechanics - 636. 

Pure mathematics with Statistics - 646. 

JMB Joint Matriculation Board. 

Pure mathematics with Mechanics - PI + Me!. 

Pure mathematics with Statistics - PI + S. 

OXF University of Oxford Delegacy of Local 

Examinations. 

Pure mathematics with Mechanics - 9850/1/2. 

Pure mathematics with Statistics - 9850/1/3. 

15 

An entry of Pm or Ps separately implies that the particular 

topic is only offered in the mechanics or statistics paper 

respectively. For example, differentiation of a vector with 

respect to a scalar variable is offered by London and AEB in 

the mechanics part of Pure mathematics with mechanics. An 

entry of Pm and Ps together implies essentially that the 

'particular topic occurs in both combinations. 
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Examining Boards 

Syllabus Content LOND AEB OXF JMB 

The derivative as a limit. Pm Ps Pm Ps Pm Ps Pm Ps 

The gradient of a tangent as the 

limit of the gradient of a chord Pm Ps Pm Ps Pm Ps Pm Ps 

Differentiation of standard 

functions. Pm Ps Pm Ps Pm Ps. Pm Ps 

Differentiation of sums, 

products, quotients. Pm Ps Pm Ps Pm Ps Pm Ps 

Differentiation of composite and 

inverse functions. Pm Ps Pm Ps Pm Ps Pm Ps 

Implicit functions. Pm Ps Pm Ps Pm Ps Pm Ps 

Parametric functions. Pm Ps Pm Ps Pm Ps Pm.Ps 

Rates of change. Pm Ps Pm Ps Pm Ps Pm Ps 

Tangents and normals. Pm Ps Pm Ps Pm Ps Pm Ps 

Maxima, minima, points of 
inflexion. Pm Ps Pm Ps Pm Ps Pm Ps 

Curve sketching. Pm Ps Pm Ps Pm Ps Pm Ps 

Connected rates of change. Pm Ps Pm Ps Pm Ps Pm Ps 

Small increments and 

approximations. Pm Ps Pm Ps Pm Ps Pm Ps 

Areas under curves. Pm Ps Pm Ps Pm Ps 
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Examinin~ Boards 
Syllabus Content LOND AEB OXF JMB 

Integration as of 
•. 

a reverse 
differentiation. Pm Ps Pm Ps Pm Ps Pm Ps 

Indefinite and definite 

integration. Pm Ps Pm Ps Pm Ps Pm Ps 

Integration of standard 

functions. Pm Ps Pm Ps Pm Ps Pm Ps 

Techniques of integration -

decomposition. Pm Ps Pm Ps Pm Ps Pm Ps 

Linear and non-linear 

substitutions. Pm Ps Pm Ps Pm Ps Pm Ps 

Integration by parts and 
partial fractions. Pm Ps Pm Ps Pm Ps Pm Ps 

Volumes of revolution. Pm Ps Pm Ps Pm Ps Pm Ps 

Centres of mass and centroids. Pm Ps Pm Pm 

Trapezium rule. Pm Ps Pm Ps Pm Ps 

First order differential 

equations with variables 
separable. (*) Pm Ps Pm Ps Pm Ps Pm Ps 

Differentiation of a vector 
w.r. t. a scalar variable. Pm Pm 
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Examining Boards 

Syllabus Content LOND AEB OXF JMB 

Kinematics of a particle 
--

dv/dt = f(v) or f( t). 
vdr/dx = f(x) or f(v) and their 

solutions. Pm Pm Pm Pm 

Velocity and acceleration as 

vectors. Pm Pm Pm 

Velocity and acceleration when 

position is a function of time. Pm Pm Pm Pm Ps 

Probability density function. Ps Ps Ps Ps 

Normal distribution. Ps Ps Ps Ps 

Poisson distribution. Ps Ps Ps Ps 

Newton - Raphson process. Pm Ps Pm Ps 

Simpson's rule. Pm Ps Pm Ps 

Integration of a vector w.r.t. 

scalar variable. Pm 

Simple harmonic motion. Pm Pm 

Mean values of functions. (*) Pm Ps 

Velocity and acceleration of a 

point moving in a straight line. 
(*) Pm Ps 

Continuous distribution. Ps Ps Ps Ps 
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(*) Implies that this topic is not part of the agreed 

national common core. 

The above analysis shows that of the four Examining Boards 

chosen there is adherence to the agreed national common core. 

There is evidence, however, of the independence of Examining 

Boards to include what they wish. For example, first order 

differential equations with variables separable is not part 

of the agreed national common core; nevertheless, all four 

boards include this topic but only JMB acknowledges it in 

their syllabus description. 

The combinations analysed above: pure mathematics with 

mechanics and pure mathematics with statistics, are two of 

the most popular at A level. Students choose these for 

different reasons: they may have an engineering bias and so 

opt for Pm whilst those with a business orientation choose 

Ps; on the other hand, only one option may be available at a 

particular school. The choice in the latter case is, more 

often than not, the choice of the teacher or school. 

Calculus, however, is part of a wider syllabuB and it is the 

content of that syllabus, with its aims and objectives, which 

form the basis of the earlier discussion. Any change in 

content of a particular syllabus is likely to have some 

effect upon calculus, the specific nature of which is 

conjecture at this stage. The possibility, however, in the 

changing Situation, is a reduction in the amount of calculus 

at A level and balanCing that reduction with an introduction 

of the more applicable elements of calculus at AS level. AEB, 

for example, is offering three syllabuses at AS level in 1990 

with reduced calculus content. These are: 

Mathematics: (Pure with Applications) - 994, 

Mathematics: Calculus and Particle DynamiCS - 995, 

Mathematics with Applications (Contrasting) - 384. 

The first two are intended to serve as a complement to other 
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mathematical and scientific studies, whilst the third hopes 

to cater for candidates studying Arts and Humanity subjects 

at A level [53]. 

1.7 The needs of industry and commerce. 

Much attention has been drawn to the mathematical needs of 

the school leaver in an industrial society [63]. Cockcroft 

[8] made specific reference to these needs. Harris [62] 

argues that much of the mathematics needs of industry and 

.commerce , as advocated by Cockcroft, are not actually used 

in these domains. The prevalence of computers and calculators 

in industry and commerce have eradicated, to some extent, the 

need for school leavers to be able to physically perform many 

skills: roots of numbers; calculations with trigonometry; 

multiply and divide fractions; solve quadratic equations, to 

name a few [62] (page 9). 

Fitzgerald [22] also argues that the mathematical demands on 

employees are not static for too long. He attributes this to 

the continual development of new machines, industrial 

processes and commercial practices. All these lead to a shift 

of emphasis on the mathematical needs of industry and 

commerce. The following is a list of tasks where, he 

observed, the need for mathematical skills has been reduced: 

Modern computer systems allow immediate access to any 

point in a stored file, so that visual/manual searching, 

involving recognition of numerical (and, incidentally, 

alphabetical) order is less in evidence. 

Less substitution into algebraic formulae is required, 

because the functions are absorbed into computer 

programs. 



. A craftsman working with a computerised machine 

programmed by a technician may not need to use any 

trigonometry, nor may the technician if he is using 

a computer-aided system. 
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Computer-aided design facilities can absorb many complex 

applications of geometry and trigonometry and make 

conventional drawing-board skills redundant. 

Graph-plotters, linked to computers, can produce third­

angle projections, isometric and perspective drawings, 

line-graphs, bar-charts, pie-charts and many other 

displays depending on the programs being used, so that 

there is less need to produce these by hand. 

There are many specialised tasks which are being 

programmed into computers such as deciding how to cut 

various sizes of glass from large standard sheets in 

order to minimise waste - previously done by experience 

and estimation [22] (page 14 - 15). 

New and increasing ma thema tical demands, however, embrace 

elements of: problem solving - modelling and investigations; 

transformation geometry; keyboard skills; number bases 

binary, octal and hexadecimal are in common use; analysis of 

numerical data; graphical displays - bar-chart, pie-chart and 

line graphs; coordinates and algebraic thinking [22] (page 15 

- 22). Some of these are contained in a pre-A level course of 

study. The challenge for mathematical education, then, is 

great. Not only is it required to meet these needs but it is 

also required to meet the needs of students who wish to 

pursue degree courses which prepare them for work in more 

technologically advanced branches of industry: aircraft 

design, fluid dynamics, electrical and mechanical 

engineering. 
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New syllabuses in mathematics (section 1.6) are attempting to 

cater for this need. They serve to facilitate a much greater 

for students and signal a marked 

way in which A level mathematics is 

variety of choice 

improvement 

responding 

by the new 

to the 

to the increasing 

technological age. 

and changing demands put upon it 

No improvement, however, in a subject area can be achieved 

without implications. If A level mathematics, indeed 

mathematics in general, is to survive in a rapidly ~hanging 

technological age and continue to serve in its many 

crosscurricular roles, the debate and discussion between 

syllabus writers, curriculum planners and teachers on the 

issues raised by the Higginson report (despite its rejection) 

must continue. The fundamental aim should be to provide 

courses which are relevant, stimulating and interesting, 
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2.4 Students' view and understanding of the calculus. 

; 
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2.1 Teaching calculus. 

This dissertation seeks to discuss the role and applications 

of calculus in the school curriculum. It examines the way in 

which calculus is introduced at school level, and looks at 

some of the methods of approach though not in detail. 

There is an argument against the presentation of any calculus 

in schools. This argument has its basis in the belief that 

many teachers only show the student how to perform mechanical 

processes without the necessary emphasis 

Furthermore, there is the claim that the 

on principles. 

study of small 

amounts of calculus in secondary schools induces false 

confidence in students and that, as a result, they often 

flounder in university work [20]. Presser's research [15,16] 

shows the opposite and supports the introduction to calculus 

at this stage. 

It is fair, however, to say that the possibili ty always 

exists for some degree of misunderstanding in university 

subjects which began at school level. Insufficient time and 

attention to detail contributes to this. The claim, however, 

merely serves to emphasize the need to ensure that mechanical 

processes and the understanding of the underlying concepts, 

at each stage, complement each other. 

Early this century, Thompson [6] startled the mathematical 

world with a treatment of the calculus which was seen as a 

deviation from the norm. He used an approach to calculus 

which he argued was simple and lacked ma thema tical rigour. 

Methods similar to Thompson's have always been used by 

mathematicians and scientists as a way of finding results 

which they subsequently prove by other means. Schwarzenberger 

[5] discusses ~hompson's approach and argues that it evades 
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some of the important concepts in the fundamental development 

of the calculus. The report of the Mathematical Association 

[17] asserts that the concepts of the calculus are too 

important to be treated in a trivial way. It concludes that 

there is no -part of mathematics for which the methods of 

approach and development are more important than the calculus 

- a view with which most teachers will concur. This degree of 

importance, it argues, is partly because of the novelty of 

the notation, but mainly because of intrinsic difficulties -

the ideas of a limit, for example. These occur very ~arly in 

the development of the calculus and, as such, any approach to 

calculus should be gradual [7] without apology for the 

frequency of appeal to the principles rather than the 

processes. Much of the chaos which ensues after a hurried 

introduction to calculus has its basis in the confusion that 

arises when students find themselves unable to deal with any 

matter which is slightly outside the usual routine. 

Any approach to elementary calculus must seek to address 

three main themes [18]. These are: 

a) The study of gradients which leads to the idea of the 

derivative; 

b) The process of finding simple, plane areas which 

leads to the finding of the definite integral; 

c) The relationship between rates of change of a 

quantity and the rates of change of a function. 

It is important that the principles underlying each of these 

themes should be given their own importance whilst due regard 

is paid to the inter-relationships between them. Shuard and 

Neill [18] assert that often they combine harmoniously in 

many applications of the calculus to describe mathematically 

some situations in the 'real world'. 

One of the main problems students face is that, more often 

than not, the work is based on a great deal of algebraic 



manipulations at a stage when they are still trying 

confidence in dealing with algebra. Indeed, the 
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to gain 

formal 

definition of the derivative of a function is often more off-

putting than useful. The predominance of electronic 

calcula tors and computers in schools makes it easier for 

students to see that the derivative of x 3 at x=a is 3a2 , than 

it is for them to have seen, and not understood, the formal 

algebraic manipulations which lead to the same answer. 

It is possible, therefore, with these fac~lities, to make the 

ideas of the calculus accessible to a wide range of students 

seeking to make themselves familiar with it. The pleasure of 

calculus could be available even to those students who would 

not have previously studied it because of their inability to 

manipulate algebraic expressions. 

Teachers must never fail to understand that whilst the basic 

ideas of calculus hinge on the idea of a limi t and subtle 

properties of the number system [191, complete understanding 

is not possible at an early stage. Numerical and graphical 

approaches [91, facilitated by the availability of computers, 

should not be seen as excessive time wasting but as a better 

way of nurturing sound intuitive understanding. 

2.2 A teacher's dilemma. 

There was a time' when cal cuI us was looked upon by many as 

being abstruse and 

mathematics. It 

lying beyond the boundaries of elementary 

occupied the mathematics and science 

syllabuses of universities and colleges. Earlier we discussed 

the developments in engineering and science which have made 

greater demands on mathematics, to the extent that, the 

desirabili ty of bringing such a powerful mathematical tool 

within the reach of a wider circle of students, led to the 

gradual simplification of its presentation. Today calculus 
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forms part.of all A-Level syllabuses. It used to be an option 

in some Q-Level syllabuses but is absent from GCSE. 

Most teachers of mathematics have completed courses in 

analysis and advanced calculus. They are aware and 

acknowledge the overwhelming beauty of the logical structure 

of the calculus when assembled in an imposing form. Calculus 

is wide and deep in its ramifications and applications [21] 

and the temptation is continually present to include much 

more than the limitations imposed by time would allow. Here 

lies the dilemma for teachers. Faced with a lengthy 

examination syllabus, of which calculus is a part, it is 

often difficult to give calculus the treatment it deserves. 

The result is an exposition on the calculus which falls short 

of what is deemed necessary for such an important exercise. 

The absence of calculus from GCSE is likely to make the 

demand on time much tighter. 

An elementary knowledge of algebra, trigonometry and the 

fundamental principles of geometry are necessary ingredients 

for the basis on which the ideas of the calculus would be 

built. Many students of calculus are weak in one or more of 

these areas. It is not surprising, therefore, that the 

principles of the calculus take second place in a treatment 

which has to ensure that mechanical processes are familiar 

for examination purposes. A teacher's role in ensuring that 

the right balance exists between principles and processes is 

often influenced by two factors: the realization of the need 

for a detailed and thoughtful approach and the punitive 

consequences of failure to complete the requirements of a 

syllabus as a result of insufficient time. The success or 

failure of an introduction to calculus depends upon the right 

balance between these two factors, whatever the method of 

approach. The absence of calculus from the framework of GCSE 

makes striking that balance a more delicate exercise. Both 

teachers and pupils have been denied the opportunity to 



explore ideas of the calculus before a fuller treatment at 

sixth form level. 

2.3 Problems of notation. 
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All areas of mathematics have notations which are associated 

with them. None, however, can claim to .have had as many 

differeJ!J ):t9.t,ations __ whic~ have_ persisted In such regular and 

popular use as in the treatment of calculus [18]. Each 

notation has its meaning, advantages and disadvantages. Their 

su~vival is attributable to the fact that they emphasize 

different aspects of the development, and so are useful at 

different times and in different circumstances. 

Thurston [50] argues that although mathematics is, by its 

very nature, precise and logical - for the most part - there 

is one topic which falls short of the ideal: the definition 

and meaning of dy/dx. In a first course on calculus this 

meaning is often obscure. The consequence is that students, 

although they use the given definition of dy/dx, do not 

really understand the meaning of it. It is important that 

some discussion precedes any definition since crucial to this 

definition is what, to students, seems to be dividing by 

zero. Wha t follows a t tempts to look at this point before 

considering an approach to the definition of dy/dx. 



The idea of dividing by zero is as controversial as a 

definition or meaning of infinity. Perhaps the easiest 

solution here is to get students to perform this operation 

on their calculators. They would undoubtedly get an error 

message. It is usually sufficient to conclude from this that 

division by zero is not possible. 

students often argue - falsely of course - that 07- 0 = 1 

because 5 -i- 5 = 1, 10 T 10 = 1 and so on. It is useful to 

trade on their experiences in elementary algebra here, 

stressing ~hat the correct argument stems from the fact that 

division is the inverse of multiplication. As a consequence 

x = ~ 
q 

is the (unique) solution of the equation 

qx = p 

The equation : 

Ox = k, k constant, .(k f O~ 
has no solution, but the equation : 

Ox = 0 

has every value of x as a solution. So neither k + 0 nor 0 of 0 

is possible. 

This clarification should not be seen as a trivial exercise 

as students who have not grasped these rather fundamental 

facts would fail to appreciate the meaning of: 

Lt (~) lix-70 6x I 

thinking that it is of the form 0+ 0, and conclude that the 

answer is 1. Alternative, 0 : 0 = 0, because 0+5 = 0, 

0+10 = 0 and so on. Hence, Lt lliJ = 0 is another common, 
6x~ 0 L 6x 

erroneous conclusion. 
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Traditionally, an introduction to differentiation uses the 

notations: 

6y, OX and Qy 
dx 

A typical starting point is to find the gradient of the 

curve y=x2 at point P(x,y) 

y 

y+ oy 

P-----------~YN 

y 

x 
x x+ bX 

Fig.2.3(a). 

Let Q be a neighbouring point. (The idea of 'neighbourhood' 

is not considered here!) Q has co-ordinates (x +ox, y +Oy). 

The gradient of PQ = QN 
PN 

= ~ where 6x '" 0 

; 



Q lies on y=x2 and as such satisfies its equation. 

y + Oy = (x + Ox) 2 

= x 2 + 2x. 6 x + Ox2 

But Y = x 2 

and 

But 

and 

• (y = 2x,Cx + rx2 
•• 0 0 0 

~ = 2x + (, x 

f(x + Ox) 

f (x+hl - f (xl 
h 

=(X+OX)2 

(1) 

(see section 3.2) 
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reduces to the same as the right hand side of equation (1) 
when h = 6x.· 

We now consider what happens as Q moves to P. Obviously 

. Ox ---? o. In otherwords we can make (2X + 6 x) as close as 

we please to 2x by taking Ox small enough. 

So 

\le write, 

= Lt (2X + 0 x) = 2x, from (1). 
6x-70 

gy for Lt (~x) , so that the derivative, 
dx 6x-"""'7 0 0 

or the derived function, of y = x 2 is: 

gy = 2x 
dx 

The teaching problems of'x~O has already been discussed. ~ 

is a fraction and often gy is taken to be a fraction. It is 
dx 

. ! 



important that this crucial difference is emphasized. The 

relationship between them is that gy is the notation 
dx 

used to represent Lt (~).It is the limit of a: ratio 
6x~o 6x __ _ 

but it is not itself a ratio. 
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There are two further concerns here: the quantity & x is 

sometimes mistaken to be 6. x and the student now has to 

accustom himself to a notation in which 6 x is a single 

In the symbol and not a product; the ambiguous 

definition of the function y = x2 , x 

use of x. 

can be any real 

number, but P is a 

The strengths of 

point 

6x 
(x, y) where x is a fixed value. 

and Oy lie and emerge in the 

applications of the ideas of differentiation, in particular 

small changes and rates of change. 

The function notation is used to find the gradient of the 

function at a point with known x - co-ordinate. 

y f(x)=x 2 y f(x)=x2 

(a+h)2 f(a+h) 

P N P N 

f(a) 
~~ ____ -L ________ ~_____ X 

a+h 

This approach considers 

x coordinate (a+h), 

Fig.2.3(b). 

another point 

Where hio. 

a a+h 

Q, on the graph, with 

The gradient of the 

function is given by the gradient of PQ, which is 2li. 
PN 



Gradient of PQ = Ca+h1 2 - a 2 
h 

= 

= 

2ah + h2 

h 

2a + h 

or fCa+hl-fCal where h=f,o 
h 
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The discussion now hinges on what happens as Q ~ P, so that 

h~ O. Here, too, we can make (2a+h) as close as We please 

to 2a by taking h as small as we please. Hence, the 

derivative of the function 

f(x) = x 2 

at the point x=a is 2a. We symbolise this derivative with 

the notation f'(x) f dash x. So for: 

f(x) = x 2 

f' (a) = 2a. 
'2 

The derived function, of f(x)=x is, x~ 2x.1 
Despite its length this notation is clearer for beginners of 

calculus. There is no mystery about h, whereas Ox is viewed 

with some doubt. The point a, is clear and unambiguous and 

this method serves to facilitate the 'recognition of the 

distinction between the derivative and the derived function. 

However, if this is used as the initial approach in an 

introduction to calcUlUS, the notation gy cannot be delayed 
dx 

for too long because gy is more widely used in the very many 
dx 

applications of calculus. 

Whatever the notation used, it is important that it is 

concise. It should be easy to manipulate. It is important 

that teacher and stUdent work in both notations as they are 

advantageous in different ways, and neither is a sufficient 

SUbstitute for the other. A suggestion here is that teachers 

should use, at each stage of the development of the 

calculus, the notation which seems most appropriate for the 
communication of the ideas they wish to impart. Much, too, 

will depend upon the level of ability of the stUdents 

concerned. 
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2.4 Students' view and understanding of the calculus. 

Many significant changes have occurred recently which present 

an opportunity for teachers to look seriously at the way in 

which calculus is taught. The most important and obvious is 

the arrival of the microcomputer in schools in general and 

the mathematics classroom in particular. It brings with it 

the possibility for new investigative methods of approach to 

mathematics and Tall [431 argues that pupils following the 

experimental approach to calculus have a significantly better 

geometric insight into the notion of differentiation. 

Students' first encounter with calculus is usually through 

considering two points A and B on a graph and considering how 

the 'chord' AB 

(section 4.2). 

tends to the tangent at A as B approaches A 

The informal language at this early stage 

introduces unforeseen difficul ties since the interpre ta tion 

of phrases such as 'tending to a limit' or 'as close as we 

please' is not easy at this stage. The graphical approach to 

calculus, however, using computers [Ill, enables students to 

see this limiting process and closeness of approach to a 

particular limit or, indeed, the tangent at A referred to 

above. Another difficulty, however, is the interpretation of 

the word 'chord'. In geometry the 'chord' is a finite line 

segment between two points on a curve, whereas the tangent to 

the curve is seen by students as an infinite line. 

Schwarzenberger [51 argues that the mathematical difficulties 

of classical analysis do not lend themselves to simple 

explanation and that any attempt to formalize the ideas of 

calculus will implici tly contain underlying difficul ties 

which haunt students. Tall [431 suggests that the above 

argument demonstrates the ma thema tical difficul ties of 

analysis, not the cognitive difficulties of the calculus. Any 

attempt to simplify 'high-powered' mathematics, he argues, 

will contain inherent difficulties for the learner. What is 
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absent is the inability of any such attempt to address itself 

to the alternative possibility of seeing the basic concepts 

of the subject matter from the pupils' pOint of view. They 

are unable, therefore, to progressively build up to the ideas 

from their current position. 

The task of teachers, therefore, is to somehow try to enable 

students to get an intimation of the whole concept first, 

then they would be in a better position to organize their own 

thoughts and thinking processes to cope with these ideas. The 

microcomputer is a resource in the mathematics classroom 

which facilitates this method of approach. It enables a 

cognitive approach to the calculus without the prerequisites 

of limiting processes and chords approaching tangents, based 

on the fact that the derivative is not just the gradie~t of 

the tangent, but the gradient of the graph itself. The role 

of the computer in mathematical education is a study in its 

own right. Its invaluable contribution to the study and 

presentation of calculus in schools cannot be emphasized too 

strongly. 



Chapter 3: Important basic ideas in learning calculus. 

3.1 Real numbers and continuity. 
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3.3 Graphs of real functions. 

3.4 Gradient. 

3.5 Rate of change and gradient. 
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3.1 Real numbers and continuity 

Mathematical ideas concerning numbers and limits underpin 

much of the work on calculus. Frequently we make mathematical 

assumptions at various points in teaching calculus to 

beginners in order to, one hopes, nurture an intuitive 

understanding of important ideas. For example, the limit idea 

occurs in several situations, two of the most important 

being: the limit of a sequence and the limit of a function. 

The definition that a sequence (sn) of real numbers tends to 

a limit s iff: "Given any positive real number E. > 0, there 

exists NEZ (which might depend upon £) such that 

I sn -s I < € for all n > N." 

This definition, like the definition of the limit of a 

function, embraces - in addition to the idea of smallness or 

as close as we please - the idea of a real number tending to 

a limit and the process of arriving at that limit. The idea 

of a· real number needs to b.e explained to students. A 

(positive) real number can be represented by a length of a 

line. Freudenthal [48] argues that real numbers should be 

identified as points on a line. The problem here is one of 

limited accuracy as it is difficult to distinguish ·between a 

line segment of .f'i. and one of length 1.414, since not only 

are they different, but one is irrational and the other 

rational, a 

Shuard [18] 

particularly 

vital distinction 

argues that the 

good picture of the 

in pure mathematics [49]. 

real number line gives a 

ordering of real numbers. It 

serves also to facilitate the idea that every point on the 

line corresponds to a real number. This, in turn, leads to 

the idea of the property of real numbers called completeness. 

It is usual for the idea of completeness to be taken for 

granted in a first course in calculus [18] (p 262). 

A first course in calculus also assumes that students 

intuitively realize that most of the functions they encounter 
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are continuous, that is to say: everywhere in their domains. 

Their graph can be drawn without 'lifting pencil from paper'. 

However, the ideas of continuity, real number and a rigorous 

discussion of the algebra of limits is beyond the scope of an 

A level course [18] (p 254-279). Intuitive ideas of these, 

however, are relevant to any discussion in an introductory 

course on integration and differentiation [49], but care is 

necessary in attempting to strike the right balance between 

rigorous definitions (such as that of a limit of a sequence 

given above) and sound intuitive understanding. Mathematics 

is a difficult enough subject to understand without the 

additional hazards which are introduced by misguided attempts 

to provide the wrong sort of motivation or help. 
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3.2 Functions. 

It is desirable that we begin the study of calculus by 

clarifying ideas about the meaning of a function, since it 

is essential to the understanding of the subject. Students 

will have some intuitive ideas about functions from their 

study of elementary algebra. Indeed, they will appreciate 

that the growth of a plant is an example of a functional 

relation. If variations in temperature, moisture and 

sunlight remain constant then the progress of a plant is a 

function of time. The fact that we are unable to express 

this relationship in a mathematical form is not relevant to 

the theme. 

Elementary physics asserts that the formula for a falling 

body is 

Where 

S = 1. gt2 
2 

s is the distance fallen, 

t is the time taken 

g is the acceleration due to gravity -

assumed constant. 

In the above equation sand t are variables and the distance 

s fallen depends on the time t. Distance s, therefore, is a 

"function" of time. 

Most students now have a background in mathematics which 

uses modern ideas about functions. Familiarity with 

functions and their associated notations provides students 

with a greater opportunity for understanding the 

differentiation process. Many texts in calculus do not take 

advantage of this. Here, we discuss the function notation 

and how it can be used to facilitate an introduction to the 

differentiation process . 

. ! 
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The literature on functions used ideas of domains and co-

domains and a rule which establishes the relationship 

between them. This rule tells how the domain is mapped into 

the co-domain. A typical description of a function is: 

f: l'R~l'R given by x~x2 

or 

f: l'R~ l'R given by f(x)= x2 

Here the domain is the set of real numbers which is mapped 

into the codomain - also 1R - by a rule which takes x in rR 
into its square. There are several representations of 

functions. The following are three different representations 

of the above function: 

a) 

b) 

, 
.( ---+ 

JR 
stands for 'maps to' in this context)i 

1R 

1 -----~) 1 

2 ----~) 4-

x ---__ ~) x 2 

Domain codomain 

6 

4 

12 
~x2 

8 

2 -+---------~~--~-4 

o 

-2 
x·~ 

-4 

Domain 

4 

8 

Codomain 

. , 
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c) 
y 

Codomain 

x 
Domain 

Fig. 3.2(a). 

Each of the above diagrams is an adequate representation of 

the function but (c) - the .cartesian graph - is more useful. 

It contains far more information than an arrow diagram. It 

represents a function in a manner that is useful in calculus 

and shows that 

y = x 2 

is the equation of the graph of the function 

f:x~ x 2 

Mathematicians now appreciate the importance of stating the 

domain and codomain of functions. There is the tendency to 

speak of 'the function f' rather than 'the function 

f(x)'. The symbol f(x) is usually reserved for the image of 

an element x in the domain, so that it is acceptable to 

write: 

x ) f (x) 



It follows, therefore, that 

f:x ~ x 2 = f(x) 

f:(x+h)~(x+h)2 = f(x+h) 

-- - -- --- ------------
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Here x and x+h are in the domain on which the function f is 

defined. f(x+h) and f(x) are the images of (x+h) and x 

respectively. In particular f(a) and f(a+h) are the images 

of a and (a+h) in the domain of f. So the expression 

fla+h) - fla) 
h 

would have some meaning to students. It is easier to relate 

this expression fo the- idea' of' finding the derivative of a 

function at x=a. Essentially, the expression 

f la+h) - f la) 
h 

is the gradient of the 'tangent' AB in 

f(x) 

A 

f(a) 

Fig. 3.2(b).i 
I 

B 

f(a+h) 

h ------'»1 

a a+h 
I , 

Fig. 3.2(b). 

~ . J 

x 



The limit as h tends to zero is the derivative of f(x) at 
x=a 

Le. [fea+hl
h 

feal] 

is the definition of the derivative of f(x) at x=a. 
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We can now differentiate and integrate functions from the 

knowledge and appreciation of their nature and composition. 

New directions in mathematical education have caused most 

examining 

treatment 

calculus 

bodies to have due regard to present day, modern 

of mathematical concepts. The new approach to 

is clearly reflected in most examination 

syllabuses. 

In concluding the above discussion it is necessary to draw 

the attention of students to a more general representation of 

a function. Essentially it is a rule which defines a 

particular type of correspondence or relation between domain 

and co-domain.(Fig.3.2(c»). The correspondence must be one 

to one or many to one and each and every member of the domain 

must have an image in the co-domain. 

rule f 

• ..... -=IH----t ( X ) 

\ 
range 

Domain Co-domain 

rule g 

~-=::::::=::::::==f1'~t-g (x) and g (y) 

Domain Co-domain 

Fig.3.2(c) 
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3.3 Graphs of real functions. 

, 
It is also important to look at graphs of real functions 
without reference to a particular rule. This serves to show 
the general representation of the terms 'domain', 'co-domain' 

and 'range' discussed in 3.2. 

y = f(x) 

Range ~ 

x 

\ 
Domain 

Co-domain 

Fig.3.3(a). 

3.4 Gradient 

There are many basic ideas which require systematic 
discussion at the beginning of any course in calculus.These 
ideas need not be introduced in a formal manner [11) but in 

such a way that use is made of students' prior experiences in 
algebra and geometry. So far we have looked at some of those 
ideas: real numbers, functions as a rule, domain, co-domain, 
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range and limits. Here we look at another idea: gradient, 

which must be assimilated before a student can, with any 

degree of understanding, pursue a course in calculus. 

Students should be familiar with the straight line and its 

general equation 

y = mx + c. 

They should know the meaning of m, the gradient, and the 

meaning of c. Most students are familiar with finding 

gradients of line segments between two points. A good 

approach seeks to invite students to consider problems like 

this and, on the basis of that experience, arrive at the 

relationship between the gradient of the line segment and the 

line of which it is part [20]. The value of c can be 

estimated or calculated. 

The value of c is more useful, however, in practical work 

such as the physical sciences. In A level physics, students 

often need to plot the relationship between two variables. ~n 

example of this is the relationship between pressure and 

temperature of a constant volume of gas (Charles Law) 

[51,52].(See Fig.3.4(a». 

p p = Po(1 + k6) 

"'I
PO 

" .J 
" " 

o 6 

Pressure vs Temperature (constant volume). 

Fig.3.4(a). 
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In the above 

pressure when 

diagram the 

temperature 

value of c corresponds 

is zero. This value is 

to 

PO, 

the 

the 

intercept on the 'pressure axis'. 

In addition to the many simple numerical exercises which can 

be used to consolidate the meaning of m, there are several 

available software w~ich can be used to give a graphic 

representation of a concept. Tall's Graphic Calculus [9] 

looks at the whole idea of gradient in relation to several 

functions including the straight line. He uses the function 

a means of notation which we discussed earlier as 

defining m, the gradient of a straight line. Whatever the 

approach 

important 

to an interpretation or 

that students undertake 

meaning of 

one or both 

m, it is 

exercises. 

Certainly the computer approach would serve to confirm quite 

easily that any line segment of the same line would give the 

same gradient m. The above exercise does prove invaluable in 

facili tating a smo_oth transi tion to, and understanding of, 

the general form 

y = mx + c. 

From this point of understanding we can consider the 

algebraic representation of the gradient of any straight 

line. (Fig.3.4(b». 
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y 

y=mx+c 

Q 

p 

x 

Fig. 3.4(b). 

If P and Q are two points on that line, then the gradient of 

the line is the gradient of the line segment PQ. 

Gradient of PQ = Y2=Yl 
x2-x l 

The abundance of calculators in schools enables calculations 

of gradients of straightlines when x and y values are in 

decimal form; thus ending any restriction, of using whole 

numbers for ease of calculations. The concept of ratio is 

subtly concealed in the calculation of gradients. Many 

students need to be convinced that any size of right-angled 

triangle would yield the same gradient. Furthermore, 

geometry tells us that all such right-angled triangles are 

similar and the fundamental property of similar triangles is 

that their corresponding sides are in the same ratio. A 

verification of these facts through practical exercises with 

some tabulation would serve as a useful exercise. 



48 

3.5 Rate of change and gradient. 

There are many practical experiments in the discrete real 

world which can be used to introduce the idea of rOa te of 

change and its relationship with gradient. °Here we look at 

one such experiment which can be carried out in a classroom 

or laboratory. It requires much student participation and 

discussion. The experiment uses a pipette containing water at 

a height h. Water is allowed to drip into a container and the 

change of height with time is recorded. A question and answer 

method of discussion is used. 

- - -' 1----1 - - -- - -, h {m} 

- --
- -~ . 
- -- . 

h {m} 

hZ 

o t s 

Fig. 3.5{a}. 



Q. What is the rate of change of height at time to s? 
A. We make a prediction. 

Average rate of change of height = h2 - hI 

t2 - tl 

Q. Is this a good prediction of the rate of change at to? 
A. No, this is only an approximation. 

Q. How could this prediction be improved? 

A. We could take measurements at t3 and t4. 
Predict average rate of change of height = h4 - h3 

t4 - t3 

Q. Can we improve on this? 

A. Yes, we can chose smaller intervals which include to. 

For example: 
I I I 
tl to t2 

I I 
t3 to t4 

Q. Can we do this indefinitely? 

A. Not in the real world because of inadequate measuring 

instruments and because of measurement errors. 
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We need, therefore, to adopt another approach to arrive at 

the average rate of change of height at to. 

Q. What can we do? 

A. Make a mathematical model. 

For example: h 

Fig. 3. 5(b). t 



Q. What do you notice about the curve? 

A. It is continuous. 
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Here we can pause to re-affirm the ideas of the continuous 

real number line as opposed to a discrete real world. 

Q. What process can we use (with the curve) to arrive at our 

goal? 

A. The process of finding the limit (gradient of the curve) 

at to. 

For example: 

h 

t to t 

Fig. 3.5(c). 

t 

Here we need to consider two limits: one as t approaches to 

from the right and the other as t approaches to from the 

left. We need 

and, 

Lim rh­
t~tol! -

h~- __ + 
L , the limit from the right. to 

Lim [ha- hJ = 
t-Ho to- tJ L~, the limit from the left. 
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We can form a derivative, if and only if, L+ = L-' Denoting 
this limit by L, we can say that 

L = dh/dt 

L = h'(t) 

and the function is differentiable at t 
O· 

Prediction of instantaneous rate of change of height at to is 

given by dh/dt. 

The concept of differentiability should not be 'laboured' too 

much at this stage, since it requires 

than that which is appropriate to 

ability of A level students. 

more rigorous analysis 

the likely levels of 
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Chapter 4: Traditional approaches to teaching differentiation. 

4.1 Introduction. 
4.2 The Chord Approach. 
4.3 The Scale Factor Approach. 
4.4 The Tangent Approach. 
4.5 Summary. 
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4.1 Introduction. 

It is usual for the introduction to differentiation in 

schools to be concerned initially with the finding of 

gradients of simple curves at known points: the gradient of 

the function f(x)=x2 - much used, but simple enough to 

manipulate - at the point (3,6), say. The equations of 

straight lines and their interpretations have been dealt 

with in Chapter 3. It is necessary, therefore, only to refer 

to their importance in any attempt to teach the concepts of 

differentiation, at this point. 

Traditionally, lessons begin with the definition of the 

gradient of the graph ofa function at a point as the 

gradient of the tangent to the graph at that point. This is 

followed by geometrical representations of chords and their 

approaches to the tangent - the limiting process. Three 

methods of introducing differentiation are considered here: 

a) The chord approach 

b) The scale factor approach 

c) The tangent approach. 

a) The Chord Approach 

Chord PQ 

Tangent at P 

Fig.4.l(a). 

This method was attributed to Newton and formed the basis of 

elementary calculus for schools in almost all early text 

books on calculus and is still widely used in current text 

books. 
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r- b) The Scale Factor Approach 

f 
i) ii) 

D 

D Q 

B 

P 
C 

A B 

Fig.4.1(b). 

Here the cartesian graph in Fig.4.1(b).- (i) and the arrow 

diagram (ii) are used. In (i) the ratio CD is a measure of 
AB 

the gradient of the chord PQ, but in (ii) the same ratio is 

a measure of the scale factor of the enlargement from AB to 

.CD. This is essentially the same as the chord approach in 

terms of calculations, but different in terms of the 

geometrical representation. This method of approach to 

differentiation was used and pioneered by S.M.P. - Schools 

Mathematics Project - in their 'A' level course. 

c) The tangent approach. I 

(x) 

p 

Best Linear Approximation Bad Linear Approximation 

Fig.4.1(c).! 
I 
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This approach to differentiation appears in calculus and 

Elementary Functions, (Montgomery and Jones), [57]. 

Initially this treatment was intended for 16 year olds, but 

elementary ideas of calculus are introduced,. in some cases, 

at a much earlier or later age. The fundamental concepts, 

however, are relatively easy to impart and understand. The 

two simple diagrams show clearly that of all possible 

straight lines PP3' PP2' PP1 , drawn through the point P, 

none approximate more closely to the gradient of the 

function at P than the tangent at P. 

4.2 The chord approach. 

The three approaches to differentiation referred to above 

are discussed in more detail here. The chord approach is 

considered first. 

f(x) 

f(a+h) 
f(a) 

a a+h 

Fig.4.2(a). I 

The gradient of PQ for the function f(x) is given by: 

Gradient PQ = f Ca+h) - f Ca) see Fig.4.2(a). 
h 

For simple functions it is possible to tabulate the values 

of the difference quotient 

fCa+h) - fCa) 
h 



56 

for a given or different values of a, and a corresponding 

sequence of values of h. Hitherto, such calculations would 

have been tedious, but the easy access to calculators and 

computers in schools would facilitate this rather important 

exercise. It is good practice to choose'different values of 

a and sequences of h for 

collectively, through 

calculations would serve 

the limiting process. 

each student to investigate so that 

discussion, the many different 

to give a broader understanding of 

For example, finding the gradient of the tangent" to the 

graph of f(x)=x2 at the point (2,4), say. 

f (x) 

[2+h, (2+h) 2] 

p 

4 
------------------------~~--~----~--------~x 

2 2+h 

Fig.4.2(b). 

P is the point (2,4) 

Here: a=2 

f(a)=4, and choose h = 4.1 

Let the sequence for h be that shown in the tabulation. 
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h f(a+h) f(a+h)-f(a) 
h 

4 36 8 

3 25 7 

1 16 6 

2 9 5 

0.75 7.5625 4.75 

0.5 6.25 4.5 

0.25 5.0625 4.25 

0.05 4.2025 4.05 

0.03 4.1209 4.03 

0.02 4.0804 4.02 

0.01 4.0401 4.01 

0.0001 4.0004 4.0001 

Table 4.2(b).' 

clearly, as Q tends to P the gradient of the tangent at P 

tends to 4 . Since h cannot be zero, it is necessary to 

emphasize that the closeness of this approximation to 4 is 

achieved by taking h as close as we please to zero. 

It is only after repeated calculations of this sort that any 

attempt should be made to generalise. The general form of 

the gradient of PQ: 

gradient of PQ = f(a+hl - f(al 
h 

= (2+h) 2_ f(21 
h 



= 4+ 4h + h 2 - 4 
h 

= 4h + h 2 

h 

= 4 + h, 
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now has some meaning. As P and Q are essentially different 

points and h cannot be zero, the gradient of PQ can be made 

as close as we please to 4 by choosing h small enough. 

4.3 The scale factor approach. 
Secondly, the scale factor approach appeals to concepts of 

scale factor and local scale factor which may prove to be an 

additional and unnecessary burden to most students. A 

reasonably sound knowledge of sets and intervals is required 

here. The closed interval AB[a, a+h] is mapped onto the 

interval CD[f(a), f(a+h)] in such a way that 

A is mapped onto C 

B is mapped onto D [581·1 

See Fig.4.3(a)..' 

x f(x) 

f(a+h) 

C 
f(a) 

Fig.4.3(a). 



The ratio CD is equivalent to the difference quotient 
AB 

f(a+h) - fCa) 
h 
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wi th CD and AB 'being equal to [f (a+h) f(a)] and h 

respectively. The difficulties here are two fold: the 

problem of signs and the fact that as Q get closer to P, the 

quotient. 

f (a+hl - f Ca) 
h 

becomes increasingly difficult to visualize. Some 
interpretation of 

h1'~ ~ca+hl h fCa)] 

is required. This is referred to as the local scale factor 

at P, another concept which is geometrically obscure [581., 

Finally, for some functions, the case may arise in which a 

particular element in the domain - the closed interval 

[a, (a+h)] - is mapped onto an element outside the 

.closed interval [f(a), f(a+h)]. For example, the closed 

interval [-1,2] for the function f(x)=x2 

x , f(x) 

B D 
2-+--------~----~r4 

3 

2 

Cl 

O'-+------~~--~~+-O 

-1 
A 

Fig.4.3(b). 



Here 

and 

f(1) = fC-1) = 1 
f(2) = 4 

fCO) = 0 

60 

So whilst A is mapped onto C and B onto D, there is a point 

on AB which is mapped' onto a point outside the interval 

[1,4]. The additional conceptual difficulties here, renders 

this method unsuitable as an introductory course in calculus 

- particularly for average students. It is perhaps for this 

reason that such an approach is absent from most texts. 

4.4 The tangent approach. 
The third method of approach - the tangent approac~ 

- seeks to find an equation of a straight line 'which is 

tangential to the graph of a function at a particular point. 

This line, if it exists, is unique. Essentially the idea 

hinges on showing that the best linear approximation near a 

particular point is achieved when a non linear function is 

replaced by a linear function. That linear function is the 

tangent to the curve at the point in question. 

A discussion of smallness and error terms is necessary here. 

For whilst the function 

y = x2 + 2x + 1 

gives a curve, the function 

y = 2x + 1 

gives a straight line. The function y = 2x + 1 is a linear 

approximation of 

y = x2 + 2x + 1 

when x is small, since x2 - the error term - is negligible 

compared to x. 

So y = 2x + 1 is a tangent to the function y = x2 +2x + 1 at 

some point. That point is easily found by solving 

x2 + 2x + 1 = 2x + 1 



giving, x=O. When x=O, y=l and thus y=2X+1 is a tangent to 

y= x 2 + 2x + 1 at the point (0,1) 
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The following diagram shows the geometrical representation 

of the above. 

-1 -.1 
2 

y 

Fig.4. 4 (a) ./ 

~y=2X+1 

The generalization of this method of approach to that of 

finding the equation of the tangent to a function at a 

general point x=a, is difficult. The level of algebraic 

manipulation and geometrical representation and appreciation 

may be beyond the scope of many students. The well-used 

function f ex) =x2 is sUfficient to demonstrate the salient 

points in the general case. Using equations of higher degree 

may serve only to confuse rather than enlighten. The 

following simple analysis proves an adequate explanation of 

the basic concepts. 

x 



y I 2 
y=X 
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a 2 +2ah 

__________________________ L-~~ ____ ~ ____ _L __ _L___x 

a a+h 

Fig.4.4(b). 

For any point x=a, consider the point x=a+h - Fig.4.4(b) 

Here x 2 = (a+h)2 

= a 2 + 2ah + h 2 

The linear part of this expression in h a 2 + 2ah­

corresponds to the point N on the tangent at P. So as h 

becomes closer to zero, h 2 is negligible compared to hand 

PQ becomes PN. PN is thus the best linear approximation of 

the tangent at P. 

4.5 Summary. 

In concluding the analysis of these three major methods of 

approach to differentiation, it is necessary to make the 

following remarks: 

(1) whilst all three methods are individually adequate, 

a choice must be made so that matching is achieved 

(for example, the level of ability of the students 

concerned might determine which method is used and 

when) ; 

(ii) able and above average students should almost 

certainly bi exposed to all three as each serves to 

elucidate the concept of the derivative. 
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Chapter 5: Traditional approaches to teaching integration. 

5.1 Introduction. 

5.2 The definite integral. 

5.3 Areas under curves - methods of summation. 
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5.1 INTRODUCTION - The Reverse of Differentiation 

In Chapter 2, section 2.2, reference was made to the 

restrictions the lack of time put on teachers when they 

attempt to teach calculus and give it the full treatment it 

deserves. The whole concept of integration is associated 

with summation but time does not allow the rigours of the 

summative process to be thoroughly examined. 

One of its aspects is the converse of differentiation and it 

is this aspect that is most commonly used in schools as 
an introduction to integration.' 

From this viewpoint, the problem to be solved is .that of 

finding a function which when differentiated produces a 

given function. The process of finding the integral, 

however, is seldom as simple as it seems. For example, the 

function whose derivative is 2x is required. Intuitively, a 

reasonable guess is x 2 , and indeed 

·but also, 

and 

g (x2 + 2) = 2x 
dx 

g (x2 + 1.) = 2x 
dx 2 

In short, it seems that there are a family of functions for 

which the derived function is identical. The function 

approach to calculus has been used throughout this work and 

the analysis of this concept would use that approach. 
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In general, if y = f(x), the derived function 

I 
~ = f (x) 

similarly, if y = f(x) + c, where c is any constant, 

I 

~ = f (x) 

gy 
The reverse process asserts that, if dx = f'ex), and f(x) is 

anyone of those functions whose derivative is f'ex), then 

there are a family of functions of the form, 

y = f(x) + c, 

each one obtained by giving c all possible values. The 

general function f(x) + c, where c is arbitrary is called 

the complete primitive of the derived function f'ex). 

The completeness of the family needs to be shown and 

explained. . It is complete because no further function can 

be found such that its derivative is f I (x). This is easy to 

demonstrate. 

For if, YI = flex) and Y2 = f2 (x) are two functions 

for which ~ = I(x), then 

= 
I 

f (x) - f I (x) = 0 

From our knowledge of differentiation, any function whose 

derivative is zero for all values of x must be a constant. 

It. follows, therefore, that any two solutions of the 

differential equation, 
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'-- ) 

~ = f'ex) 

can only differ by a constant. So if y = f (x) is one 

solution, every other solution takes the form 

y = f(x) + c 

It is useful to show at this stage that graphs of the 

complete primitive are a family of curves which may be 

obtained by drawing anyone of them and moving it at right 

angles to the x axis. (See fig 5 .1a). For example if .. ~ = 2x 

then y = x2 + c. 

y 

C.=3 

t= -1 

x 
-1 

-2 

FIG 5.lCal 

Experience shows the above discussion to be invaluable 

especially in that it eradicates the suspicion with which 

the constant of integration, c, is usually viewed. It is 

therefore unhelpful at the initial stage to confront 

students with the formula 

Jxn dx = ~~? + c ___ _ (i) 
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and then try to explain the relevance of c. Furthermore, 

the emphasis is on the reverse process of differentiation 

and students by this stage are usually familiar with the 

formula, 

d (xn) = nxn - 1 
QX 

(ii) 

Both formulas (i) and (ii) use the function f(x) = xn on 

which to operate. Students are often confused by this as it 

appears that the function and the derived function are 

identical. The generalization 

Jrxn dx = ~ztl + c 

should be shown to come from the considerations of the 

complete primitives referred to earlier. There are many 

simple functions for which the derived functions are known: 

, 
x2 a) f (x) = 2x ------- Y = + c 

b) 
, 

3x2 f (x)· = ----- y = x3 + c 

c) 
, 

4x3 x4 f (x) = ------ y = + c 

Students can see that if 2x is the result of the 

differentiation - as in ~(x2) = 2x - then the integral must 
dx 

contain a constant factor of x such that it cancels with the 

2 in 2x 

Therefore,] 
2x dx = 2x2 + c 

~ 

J 2x dx = x 2 + c 
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In other words, the power of n increases by one and the 
reciprocal of the new power is the constant factor required. 

Having established this fact, it is less difficult to show 

and justify: 

a) fx dx = ;K2 + c 
2 

JX2 dx ~3 + c 
3 

b) 

f x 3 dx = ~4 + c 
4 

c) 

which are more direct applications of the formula, 

fxn dx = xn+1+ c 
n+l 

Finally, the integral in the above form is indefinite. This 

term is not easy to explain if the method of approach is to 

present students with the formula. However, from the 

previous discussion, each integral is one of the family of 

primitives and its precise form depends on the choice of the 

value c • Its "indefinite" nature is thus clearly 

. established. 

It is not easy to formulate a set of rules by which any 
I 

function may be integrated nor indeed I always possible to 

recognise the function from which the derivative was 

obtained. Many methods of integration exist and, in general, 

these consist of transposing and manipulating functions in 

such a way that they assume the form of standard functions 

whose integrals are known. The 

integration is that the result can 

differentiation. students should be 

out this check. 

great advantage of 

always be checked by 

encouraged not to miss 
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Using algebraic and trigonometric methods in conjunction with 

the definition of the derivative students can verify that the 

derived functions of 

f(x) = sinx and f(x) = eX 

are 

f 1 (x) = cosx and fl (x) = eX 

respectively. This implies that, 

JCOSX dx = sinx + c 

and 

J eXdx = eX + c 

Alternatively, the above results can be deduced from a 

knowledge of the power series expansion for sinx and eX.'It 

is assumed, here, that students are aware of such 

expansions. 

From 

we have, 
d (ex) = 0+1 + x + x2 + ~3 + 
ox 2"! 3! ---

d (ex) = 1 + x + x2 + x3 + 
Ox 2"! :n ---

d (eX) = eX 
Ox 
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Similarly, f eX dx = j (1 + X + X2 + x3 + x4 + ______ )dx 
"2"! :n ;r! 

feXdX 

= (x + x2 + x3 + x4 + - -- --) + c 
"2"1 :n ;r! 

= (eX - 1) + c 

= eX + (c-l) 

= eX + cl where cl = (c-l) is a 
constant. 

The power series for sinx and cosx are given by: 

Sinx = )( - x3 + x5 + x7 + :n 51 71 --- --

cosx = 1 - x2 + x4 - x 6 + -- -- --
"2"1 ;rl 01 

Students can use simple. differentiation to show that: 

d (sinx) = cos x ~ JCOSXdX = sinx + c 
QX 

and 

d (cosx) = QX 
-sinx ) J sinxdx = -cosx + c 

The method of approach to the above conclusions is left to 

the teacher. However, it is·good teaching practice to allow 

students to verify the results for themselves by one of the 

alternative methods. 
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5.2 The Definite integral. 

Usually the definite integral is introduced in relation to 

areas under curves. This association stems from the work of 

the mathematicians of classical Greece, like Archimedes, who 

pioneered work in this area. students therefore often feel 

that the only appreciation of the definite integral is one 

which relates specifically to the finding of an area under a 

curve. It should be emphasized that it is a method of 

summation. 

From the discussion in section (5.1), the integral was 

indefinite because of the arbitrary choice of c. It is not 

always possible to draw the graph of the curve to which the 

integral refers and as such any association with a specific 

area is difficult to see. 

The characteristic of the definite integral is its 

independence of the constant c, but from a teaching point of 

view it is better to demonstrate this, in general terms, 

before formulating the conclusion. A popular example is to 

consider the motion of a particle moving with a velocity 

vms-1 . 

I I 
o x 

A B 

FIG 5.2 Ca) 

If the particle moves along Ox and is at points A and B at 
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times tl and t2 respectively with corresponding distances sI 

and s2 from 0 - FIG 5.2 (a) - then AB represent the finite 

distance travelled between times tl and t 2 . This distance is 

sI - s2· Clearly both s2 and sI depend on time, so we may 

write 

In general s = f(t) (a) 

So s2 - sI = f(t2) - f(tl) is the distance travelled 

by the particle in the interval tl to t 2 . 

But velocity v = ds 
at: 

and 

From (a), (p) and (c) 

and 

v(t2 ) = dS2 = f I (t2) 
dt2 

v(tl) = dS I = 
iff:

1 

S2 = f(t2 ) + c 

sI = f(t l ) + c 

f'· (tl ) 

--------- (b) 

(c) 

So the distance travelled(s2-s~ is independent of the origin 

from which s is measured, that is, it does not depend on the 

value of c. 
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The following argument reinforces the arguments above. For 

if 

v = ds = 3t2 - 2t en: 

s = J vdt = t 3 - t 2 + c 

s2 - sI = (t23 - t22 + c) - (tl3 - tl2 + c) 

= (t2 3 - t22) - (tl
3 - tl2), which is 

independent of c. 

Therefore, we write s = ]2 vdt is the definite integral on 

tl 
the interval tl to t 2 . 

The treatment of the definite integral and its formal 

definition - the limit of a sum - in most texts on calculus 

is beyond the scope of the majority of students. It is 

necessary to use concrete examples, as above, to consolidate 

the concept. The use of the area beneath a curve should not 

be neglected as it is the most popular treatment of the 

definite integral in school texts. The usual rigorous 

analysis associated with it should, however, be ·avoided. 

Students can often see that the shaded area (see FIG 

5.2(b» - corresponds to 

y 

fIx) 

x 
o 

a b 

FIG 5.2(bl 
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the area "up" to x=b minus the area "up" to x=a. The formal 

definition 

b 

A = J f (x) dx, (discussed in section 5.3) 

a 

is not so easy to impart. A trivial example such as f(x)=x 

is helpful here. 

y y=x 

5 - --------B 

3 -

'\~5 X 
o D C 

FIG 5.2 (c) 

In FIG 5.2 (c) Area of ABCD = Area of dOBC - Area of AODA 

= ~ (5x5) - ~ (3x3) 

= 8 units 

5 
Applying the formula A = 3)" x dx, we get 

A = 

= 8 units, as before 

One important observation is that there is no consistency on 
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the treatment of definite and indefinite integral in texts 

on calculus. Some writers introduce the definite integral 

first, 
between 

failing in the process to make the important link 
integration and differentiation. Integration is a 

summation, and evaluation is through anti-differentiation 

using the fundamental the'orem. Such an approach shows the 

relationship between and the importance of the processes of 

finding areas and of summation. 

5.3 Areas under curves - methods of summation 

In earlier work on areas of geometric shapes students will 

have found areas of rectangles and used this knowledge to 

discover the areas of triangles and trapezia. As a start to 

areas 'under' curves it is possible to draw on this past 

experience. In finding areas of rectangles the process is 

usually one of counting squares; dividing the rectangle into 

squares and counting them and relating the number of 

to a relationship between the length and width 

square. 

squares 

of the 

A rectangle can be divided into two triangles, the area of 

each being half the area of the rectangle. So any triangle 

with base equal to the length of a rectangle anrl ,height 

equal to its width, has an area equal to ' .1 LxB or .1 base x 
2 2 

height. A trapezium on the other hand can be divided into 

two triangles. 

b I 

D c 
a 

FIG 5.3 Cb) 



Area of: !J. ABC = .1 
2 

6 ADC = .1 
2 

Area of trapezium 

bh 

ah 

= Area oflJ ABC 

= .1 bh + .1 
2 2 

= .1 (a+b)h 
2 

ah '. 
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+ Area of IJ ADC 

In FIG 5.2 (c) we saw how an area under a line could be 

found without the use of calculus, but calculus gave the 

answer quickly. A similar treatment .can be applied to a 

rectangle provided the equations of the straight lines which 

make up the rectangle are known. 

The most popular approach to areas 'under' curves is the one 

which uses a knowledge of the areas of rectangles, triangle 

and trapezia even though the graph or curve does not assume 

a 'straightline form. The method often employed is that of 

approximating rectangles or trapezia. 

y 

(a) 

a b 

Y 

(b) 

FIG 5.3 (c) 

~.--

,d~!j 

~~~ 
a I b 

In FIG 5.3 (c) part (a), the shaded rectangles and the 

'dotted' '''upper rectangles" are both approximations to the 

area under the graph. So students can see and appreciate the 

inequality: 
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Area of lower rectangles 5 Area under graph 5 Area of upper 

rectangles. 

In b) the area under the graph approximates to the area of 

the shaded trapezia. It is difficult here, though to 

establish an inequality with any degree of accuracy. It is 

not clear whether the area of the shaded trapezia is greater 

or less than the area under the graph. 

The "sandwich" inequality, however, enables us to 

approximate as close as we please to the area under the 

graph by making the areas of the upper and lower rectangles 

as close together as we please. A simple demonstration using 

the function f(x)=x2 would prove the point. 

y / 
A 

7' 
/ 

/ 
/ 

1/ 
1/ 

/ 
/ 

./ 
,./' F o 

.1 .2 .3 .4 .5 .6 .7 .8.9 1 

FIG S.3 Cd) 

f(x)=x2 

Area under f(x)=x 2 
OAF is required. 

Area under lower rectangles ~ Area under 5 Area under upper 

f(x)=x2 Rectangles 
, 

Using ten rectangles of width 0.1 we have: 

0.1(02 + 0.12 +- - +0.9 2 )5 Area under ~ 0.1(.12+0.2 2+--1.02 ) 

f(x)=x 2 

0.285 ~ Area under 5 0.385 - - - (1) 

f(x)=x 2 

Using twenty rectangles of width 0.05 we have 

0309 5 Area under 5 0.359- - - (2) 
2 

f(x) = X 
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From the inequalities (1) and (2) we see that the area under 

the curve can be made as close as we please to the true area, 

by adjusting the width of the rectangles. The calculations 

involved are made easier by the use of calculators. 

Nevertheless, a formal definition - of area under a graph is 

requires if students are to be able to use a formula in other 

less amenable cases. 

y 

D y=f(x) 

A 

C , 

I:f-ox~" ( 
x (x + ox) 

a 
x 

b 

FIG 5.3 (e) 

Most of the literature on areas under curves consider an 

element of the required area A. In FIG 5.3(e), 

B is the point [x,o] 

C is the point [x+Ox,O] 

A is the point [x,y] 

D is the point [x+6x, y+6"y] 

When Ox and 6y are corresponding increases in x and y. Using 

previous argument y.Ox is an approximation to the area of 

OA, so we may write, 

6A:'y.Ox 

The limiting process was discussed in Chapter 3, so it is 

reasonable here -to consider what happens when Ox becomes as 

close as we please to zero. As ox ~ 0 the area of ~ AND 

decreases to the extent that OA becomes very close to y.Sx. 
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Considering the required area as the sum of all elementary 

areas y.Ox, . 

b 

Area A~Ly·l)x. 
a 

As bX-+O, 

b b 

Lim L y.Sx = 5y dx 

cSx-+O a a 

or, 

b 

A =f Y dx 

a 

This approach has the advantage of introducing students to 

the idea of integration as a summation. Practical work with 

calculators as in the previous example (FIG 5.3 (d» also 

reinforces the idea of summation. The first method uses the 

ideas of the reverse process and the indefinite integral. 

Both methods embrace ideas about integration which are 

complementary and students should be made aware of these. 
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Chapter 6: New approaches to integration and deferentiation. 

6.1 Introduction. 

6.2 Numerical Approach. 

6.3 Applications of differentiation. 

6.4 Applications of integration. 
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6.1 Introduction • 

. Some of the traditional approaches to calculus have been 

discussed. To some extent the method of approach to calculus 

in schools is dependent upon the attitude of the teacher. He 

can either introduce the subject with an understanding that 

he, the teacher, knows all about it and the students must 

learn it, or he can attempt to justify the first steps of the 

subject in the light of the students' previous experiences. 

Shuard and Neill [18j (p 63), discuss a method of approach to 

integration without a knowledge of differentiation. They 

argue that the availability of calculators in schools make it 

possible for students to have first-hand numerical experience 

of finding areas under graphs. They acknowledge, however, 

that the unwieldiness of the resulting algebra is beyond the 

scope of most students and, as such, a more suitable method 

is required. They also discuss a method of finding the 

derivative of f(x) = xn (p 37). This hinges on the definition 

of the derivative 

fl (a) = Lt (a+h)n_f(a) 
h---+ 0 h 

Here, too, the algebra is tedious and may well be beyond the 

capability of most students. The conclusion depends on prior 

knowledge of the binomial theorem or Pascal's triangle of 

. binomial coefficients. Teacher-led discussion could show, 

however, that the above definition reduces to 

f'(a) =nan- l 

provided h is small enough. Both of the above methods involve 

a numerical element but whilst suitable for some students, 

may be inappropriate for others because of the algebraic 

content. 
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6.2 Numerical approach. 

Here we look at how, in the light of the new technology, a 

numerical approach provides a suitable introduction to a 

first course in calculus. In most·cases it is simple, easy to 

understand and appeals to concepts with which most students 

are familiar. We have already discussed 

to the derivative (p 57). There we 

calculation by calculator or computer 

derivative of f(x) = x 2 , at x = 2, using 

a numerical approach 

showed how simple 

could lead to the 

the idea of gradient 

which is familiar to most students. This numerical work, 

then, has two aims: it introduces students to the ideas. of 

the derivative and the derived function in very concrete 

situations; it facilitates, by their own intuitive. 

generalisation, that for 

f(x) = xn 

f' (x)= nxn - l 

and f'(a)= nan - 1 

I \ 

We have also discussed one method of approximating the area 

under a curve (p 77). There we used the "sandwich" inequality 

and the process of approximating rectangles. Many elementary 

accounts of numerical integration, however, use the trapezium 

rule [65]. We illustrate this rule using one interval only. 

y 

a 

b 

ff(X) 

f(b) 

f(a) 

a b 

/f---h ~ 

dx ~l. h(f(a) + f(b» 
2 

Fig.6;2(a) • 

(x) 
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The trapezium 

fUnction (Le 

rule uses a linear approximation to the 

the chord over the interval [a, b]). In a 

practical application, however, we may specify any number of 

subdi vision of the interval [a, b]. The growing availabili ty 

of programmable 

makes this sort 

calculators 

of 

and 

shifting the emphasis 

analysis 

from the 

microcomputers in schools 

totally feasible, rightly 

production of answers by 

standard integration to interpretation of results. This rule 

can be used to obtain integrals which give a lead to theory 

not yet established. For example, we can approach the 

logarithmic function by evaluation of 

a 

J~ dx for a=1,2,3, ••••• 
1 x . 

or investigate ~ by evaluating 

1 

oJl!JX 

We examine the latter as an example of a typical A level 

question. 

Example. 

Use the trapezium rule with eight strips to find an 

approximation for 

1 

o 
Jl!X~X 

Compare your answer with the exact value of the integral to 

find an estimate for'TT. 
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In this case we use strips of width 0.125 (i.e h=0.125) and 

appeal to the generalisation of the rule: 

lA'"" A __ !:~:;n:x] 
With the help of calculators students can verify that for 

y = 1 
1+x2 

yO = 1 Yl = 0.9846 

Y2 = 0.9412 Y3 = 0.8767 

Y4 = 0.8 Y5 = 0.71791 

Y6 = 0.64 Y7 = 0.5664 

Y8 = 0.5 

Therefore area 

=0.5(0.125)[1+2(0.9846+0.9412+0.8767+0.8+0.7191+0.64+0.5664) 

+0.5] 

=0.7847 

The exact value of the integral is ~/4, hence an estimate of 

is given by 

11' "" 4(0.7847) 

~3 .1388 

The challenge now is for students to try and find closer 

estimates by taking more strips.This exercise is useful 

although it would not give the best estimate of 11 to three 

decimal places. It provides. however. opportuni ty for 

discussion of results and an appreciation of integration as a 
summation. 
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6.3 Applications of differentiation. 

In discussing the applications of differentiation, the rules 

of differentiation such as the product, function of a 

function and quotient rules will be assumed where necessary. 

Emphasis is placed on those areas which appear in the 

introductory courses on calculus and often form part of 

first examinations. We will be mainly concerned with the 

applications of differentiation in finding rates of change, 

maximum and minimum values and elementary curve sketching . 

.. 
Classifying points of zero gradients. 

In Chapter 3 the equation of straight lines of the form 

y=mx+c was discussed. The gradient of any such line is zero 

if m=O. 

The equation then takes the form 

y=c,. a constant. 

In other words, whatever the change in x, the value of y 

remains unchanged. Elementary co ordinate geometery tells us 

that any line of the form 

y=k, a constant 

is parallel to the x-axis. It is necessary, therefore, for 

zero gradients to be associated with horizontal lines. 

Furthermore, if y=mx+c is the equation of the tangent to 

f(x) at x=a, then 

fl(a) = m 

The condition, therefore, for the function f(x) to have zero 

gradient at a point x=a, is that 

fl (x)=O 

at x=a, or fl(a)=O 
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The whole discussion of zero gradients of tangents relates to 

the investigation of points where a function turns and a 

consideration as to whether these points correspond to a 

maximum or minimum value. We define a turning point to be one 

about which the gradient of the tangent changes sign. We also 

look at horizontal points of inflexion at this stage. 

i) y 

--::=-.-.::-- f ' (b) =0 
local maximum 

f' (a)=o 
local minimum 

\ f(x) 

x 
x=a x=b 

U) y 

----------~~---r----~~---------x 

f(x) 

points of inflexion. 
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y 

f(x) 

( 

Fig.6.3(a). 

As . a prelude to the discussion it is helpful to briefly 

recapitulate on the gradients of tangents with specific 

reference to positive and negative gradients. It is 

insufficient to simply say that lines which pass between the 

first and third quadrants have positive gradients, whilst 

those which pass through the second and fourth quadrant have 
negative gradients. It is also unsatisfactory to say that 

the gradients can be got from the equations of the 

straightline. It is evident that 

y = 2x +3 

and 

y = 5 - 4x 

have a positive gradient of 2 and a negative gradient of -4 

respectively, but in the whole discussion on the nature of 

turning points, the equations of the tangents in the 

neighbourhood of stationary points are not known. The 

conclusion is based entirely on positive and negative slopes 

or gradients. A simple cartesian graph would clarify the 

point. 



i) ii) 
y 

p 

+ve 

y 
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y=f2(X) 
p 

Q +ve 

N N 
-ve Q +ve 

x --------~~~------------x 

Fig.6.3(b). 

In the above diagram members of the family of straiqhtlines 

drawn from the second to the fourth quadrant - Fig. 6.3 (b), 

(i) - and the first and third quadrants are drawn - Fig. 

6.3(b), (ii). In each case the gradient of each line 

represented by the ratio PN. Using the normal sign 
QN 

convention, the ratio PN is negative in (i) and positive in 
QN 

(ii) . 

Some active participation by students in the calculation of 

similar ratios PN for different lines would serve to 
QN 

consolidate the idea of positive and negative slopes or 

gradients. Finally, the relationship between the gradient of 

the tangent and f'ex) at the point x=a needs to be repeated 

here. It is helpful to remind students that f I (a) is the 

gradient of the tangent to the curve f(x) at x=a. The 

discussion of the nature of turning points of a function can 

now begin in earnest. 

The four different points of zero gradients were shown in 

Fig. 6.3-(a). The contours of these are used here: 



i) 

E) 

positive 
gradient 

Negative 
gradient 

Negative 
iii) gradient 

iV)~ ositive 
gradient 

x=a 

x=a 

zerogradient 

x=a 

Local Maximum 

Local Minimum 

Negative 
Gradient 

x=a 

positive 
gradient 

negative 
gradient 

POINTS OF INFLEXION 

Fig.6.3(c). 
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Some modern texts on calculus summarise diagram ·6.3 (c) in 

the following way: 

i) 

+ve -ve 

LOCAL MAXIMUM 

H) 

-ve +ve 

o 

LOCAL MINIMUM 

Hi) 

-ve 

POINTS OF INFLEXION 

Fig.6.3(d). 
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The above diagrams refer to the sign of the gradient of the 

tangent in the neighbourhood of the point in question. 

Experience shows that when used in isolation .it causes 

confusion, but used in. conjunction with .Fig.6.3(c), the 

relationship between the contour of the turning points and 

the behaviour of the tangents - in terms of the signs of 

their gradients about these points - is very clearly made and 
understood. 

In concluding this discussion of zero gradients, the use of 

the terms local maximum and local minimum must be 

justified. More often than not the terms "maximum point" 

and "minimum point" are used to refer to local maximum and 

local minimum. This is quite misleading because often the 

local maximum is not the maximum point of the function. For 

instance the function 

f(x) = X(4-x)2 : x € Real Numbers. 

has a local maximum at x=~ and a local maximum at x=4. 
3 

However, x = ~ does not correspond to the maximum value 
3 

of the function, nor does x=4 with the minimum value. See 

sketch in Fig.6.3(e). 

y 

~ 
3 

4 

Fig.6.3(e). 

f(x)= X(4-X)2 

x 



students do find it difficult, however, to apply the 

technique outlined so far in all but simple cases. For 

example 

f(x) = x 2 
f (x) = x (x-l) 
f(x) = xC3-x) 
f(x) = x3 - 6x2 + 9x - 2 
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The types of functions which cause difficulty are those of 

the form f(x) = Q(x) where Q(x) is a rational function. One 

such function is considered here. 

Consider x +-2 

f I (x) = 

But. fl (x)=O for only one value of x: X=Oi 

when x > 0, f'ex) is always negative; 

when -2 < x < 0, f'ex) is always positive. 

So the point of zero gradient, x=O, corresponds to a local 

maximum. 

The reason for the difficulty here is their apparent 

inability to discuss the range of values of x for which 

algebraic expressions of the type 

are valid. 

One other type of application of zero gradients is worthy of 

some mention ·here: the type which involves an element of 

geometry as a requirement for the solution to be possible. 

For example, the finding of the maximum volume of a cone 

inscribed in a sphere of radius R. 



Fig.6.3(f) • 

Volume of cone ABC 

dV = !.rC4Rh - 3h2 ) 
dh 3 

= V = 

V = 

V = 

93 

with reference to Fig.6.3(f) 

let the height of the cone be 

h and radius of its base be r. 

The property of intersecting 

chords of a circle implies 

that 

AN x NB = CN x ND 

i.e. r2 = (2R-h) x h 

!.1fr2h 
3 

!.1fh2 (2R-h) 
3 

!.7J"C2Rh2_h3) 
3 

dV = 0 when h=O, or h= ±R 
dh 3 

The volume V assumes the value zero when h=O or h=2R. The 

point of zero gradient occurs in this range. Furthermore, V 

is positive for all values in the range 0 < h < 2R. Hence 

the point of zero gradient h=± R corresponds to a maximum 
3 

value and 

= 
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The reasons for the difficulties in problems or applications 

of this type are the following 

i) failure to recognise the geometry of the figure; 

ii) the volume equation cannot be differentiated as it 

stands because rand h are functions of each 

other; 

iii) the concept of local maximum or minimum does not 

apply here; the points of zero gradient correspond 

to maximum or minimum values. (discrete values). 

Teachers must ensure that applications of the theory and use 

of zero gradients include problems of this kind. 

The Second derivative - its meaning and use. 

The main thrust of the arguments here is the use of the 

second derivative as a means of classifying points of zero 

gradients. In terms of a definition, the second derivative, 

fQ(a), is given by 

This definition, 

teaching purposes. 

f" (a) = Lt 
h~O 

fl (a+h) - fl (a) 
h 

however, is somewhat formidable for 

It is better to introduce the concept of 

the rate of change of the first derivative. In other words 

it should be made quite clear that just as f'ex) gives 

useful information about f (x), so also f" (x) - the second 

derived function - gives useful information about f'ex) and 

hence f (x) • 

In Fig.6.3(b) and Fig.6.3(c) the behaviour of function and 

tangents about the point of zero gradient was considered. 

There it can be seen that if f I (a) is positive then the 

function is increasing. So if f" (a) is positive then the 

function f'ex) is increasing; that is the gradient of f(x) 

is increasing. An increase in the gradient of f (x) is 
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associated with the graph of f(x) bending to the left: that 

is, in the direction of x increasing the path of f (x) 

inclines leftwards. Similarly, if fll (a) is negative then 

f'ex) is decreasing and the gradient of f(x) is decreasing. 

In this case the graph of the function bends to the right. 

A summary of the analysis so far is shown. :diagrammaticall~ 

Fig.6.3(g) 

In the direction of x increasing·we have: 

t 
x=a 

LOCAL MAXIMUM 

i) f(x) bends to the right 

f'ex) decreasing 

fll(x) < 0 about x=a 

Fig.6.3(g). 

LOCAL MINIMUM 

x=a 

ii) f(x) bends to the left 

f'ex) increasing 

fll(x) > 0, about x=a 

Part (i) corresponds to a local maximum whilst part (il) 

corresponds to a local minimum. 

The point of inflexion is much more difficult to classify 

using this analysis. The characteristic of a point of 

inflexion is that about the stationary point the function 

changes the direction in which it is bending. The crucial 

factor here is that a point of inflexion does not 



necessarily occur at a point of zero gradient. 

( see Fig.6.3(h) ). 
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It is not necessary to consider horizontal inflexions 

separately. We need only stress that the criteria for a point 

of inflexion is that f" (x) changes sign - in all cases -

about that point. We can show, therefore, that if f'(x) = 0 

and f'(x) does not change sign then f"(x) must. For example: 

f(x) = x 3 

f'(x) = 3x2 

f' '(x) = 6x 

and f'(O) = 0 = f"(O). 

Here, f'(x) is positive about x = 0, but f"(x) changes sign. 

Therefore x = 0 corresponds to a point of inflexion. 

f'(a) > 0 

f' (a) < 0 

x=a x = a 

Fig.6.3(h). 

Many students, however, falsely conclude that a point of 

inflexion necessarily occurs at x=a if f"(a)=O. This very 

common error of argument can easily be corrected as it takes 

very little time to show that for 



and 

f(x) = x4 

f' (x) = 4x3 

f"(x) = 12x2 

f"(O) = 0 = f'(O) 
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Furthermore, f"(x) does not change sign about x=O; indeed it 

is positive for all values of x other than x=O. 

A good teaching strategy is to leave the consideration of 

the second derivative as a means of determining the nature 

of turn points for a later stage of the development. In 

short, it should not be over-emphasized at the early stage. 

Students can safely and competently resolve each case by 

considering the sign of f'(x) about x=a. It is necessary to 

remark, however, that 'non-horizontal' points of inflexion can 

only occur when f" (a) =0, since f" (x) only changes sign when 

it goes through f"(a)=o. A later and more advanced treatment , 
can appeal to Taylors Theorem. 

. An aid to curve sketching. 

This section uses two examples to demonstrate the uses of 

zero gradients in curve sketching. In the process it would 

be necessary to recall some of the relevant guidelines which 

assist the sketching of some functions. For example, 

i) a possible domain of the function; 

ii) any obvious points: what happens when x=O or f(x)=O; 

iii) behaviour of the function when x is large or small 

(positive or negative); 

iv) points of discontinuity and the behaviour of the 

function near these; 

v) turning points. 
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The above are by no means the only considerations in any 

systematic approach to curve sketching, nor are they all 

necessary for each function. Although this point is 

stressed, experience shows that students are often happier 

with the final shape of the graph of the function when all 

the above guidelines have been tested. 

The following two examples are chosen in such away as to use 

all of the above considerations between them: 

Sketch a) f(x) = (x-I) (x-2) (x-3) 

b) f(x) = ~ + ~ 
x-I 4-x 

Sketch a) f(x) = (X-I) (x-2) (x-3) 

when X=I, 2 or 3, f(x)=O 

when x=o, f(x) = f(O) = -6 

Expanding f(x) we get: 

f (x) = x 3 - 6x2 + Ilx -6 

f' (x) = 3x2 - I2x + 11 
, 

f (x) turns where f(x) = 0 

i.e. 3x2 - I2x + 11 = 0 

x = 1.42 and x = 2.58 (both 

For 1 < x < 2, f(x) is positive, 

and 2 < x < 3, f(x) is negative. 

2dp) 

When x is large and positive, f(x) is large and positive. 

When x is large and negative, f(x) is large and negative, 

Finally, f(x) is continous everywhere. 



f (x) 

f(x)-(x-l) (x-2) (x-3) 

1 

2 

-1 

Fig.6.3(i) • 

The local maximum of f(x)~ 0.385, when x - 1.42 

The local minimum of f(x)~ -0.385, when x - 2.58 

Sketch b) f(x) - ~ + ~ . (- 6 ) 
x-I 4-x (4-X) (X-I) 

Discontinuities occur when x-I and x=4 

As: x~oa'", f(x)~O 

x .~oo-, f(x) --+ 0 

For: 1 < x < 4, f(x) is positive. 

x < 1, f(x) is negative. 

: x < 4, f(x) is negative, 

When x-O, f(x)- -1.5 

Qy 
dx 

= f' (x) - 12x - 30 
[(4-X)(X-l)]2 
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Turning points occur when fl(x)=O 

fl (x)=O when x=2.5 

For 2 < a < 2.5, f'ea) < 0 

2.5 < a < 3, f'ea) > 0 

x = 2.5, f(x) ~ 2.67 corresponds to a local minimum. 

Sketch 

Y 
3 

2 

1 

3 

I 

I 
I 

Fig.6.3(j) • 

5 

Rates of change and small changes. 

f(x)=_2_ + _2_ 
x-I 4-x 

x 

This is one of the most widely used applications of 

differentiation. It is ever present in the 

and examples of such applications will 

physical sciences 

be discussed in 

Chapter 7 - crosscurricular applications. The concept of 

rates of change was discussed at length in chapter 3. 

Here a very popular examination type application is given. 



This application is chosen because, 

of elementary geometry and rates 
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it embraces the concepts 

of change and small 

changes. The physical situation considered is leaking tap 

dripping water into right circular cone at a certain rate. 

We wish to calculate the rate at which the surface area of 
the water is increasing at a certain height. The discuBsion 
would be non-specific,with any necessary assignments to 
quantities made,to prove that the rate of change of surface 
area is inversely proportional to the height of water at the 
time considered. See Fig.6.3{kD. 

, , 

R ~ 

H 

Fig.6.3(k). 

H is'the height 
of the cone. h 
is the height 
of water at 
time t, and r' 
the radius of 
the surface 
of water. 



From the geometry of the Figure, 

~ = h 
. R H 

r = hR 
H 

The surface area of water at height h is given by 

i.e. A =1Th2R2 
--H2-

dA = 21rhR2x dh ----- (a) from dA = dA x dh 
dt H2 dt dt dh dt 

Now the volume of the water at height h is given by 

V = 1.11' r 2h 
3 

i.e. V = 1. 7r h 3 R2 
3 ~-

dV = 11"92B2 x dh 
dt H dt 

The rate at which the tap is leaking is given ,by, dV. 
dt I 

suppose 

Then 

dV = 0.2 cm3s-1 , say, 
dt 

dh 
dt 

= (b) 
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From (a) and (b) we get 

dA = 
dt 

dA = 0.4 
dt h 
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x 

In other words, the rate of increase in the surface area of 

water is inversely proportional to the height h. 

This problem is similar to that discussed in relation to 

Fig.6.3(f). Evidently it involves more rigorous analysis 

but the underlying teaching points must not be overlooked. 

This type of problem embraces concepts of elementary 

geometry and the concepts of implicit differentiation which 

students usually find difficult to manipulate. Teachers need 

to stress the importance of the geometry of a figure to the 

solution of a mathematical problem to which the figure 

relates. In applications of differentiation students need to 

be made aware of the dependance of the variables involved on 

each other. This is crucial to the solution of the problem 

as can be seen in the previous example. Another difficulty­

for students - arises when attempts are made to differentiate 

the expression 

Both 

with 

Rand H are constant and the surface area, A, varies 

h. It is easy for students 

to find dA, they often fail to 
dt 

function rule 

dA = dA x dh 
dt dh dt 

to find dA, but in trying 
dh 

recognise the function of a 
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In short,A and h are 'functions' of each other but they are 

both functions of time, hence the application of the above 

rule. Experience in the classroom shows that students need 

to be reminded of this fact quite often. 
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6.4 Applications of integration. 

The discussion on applications of integration will be 

concerned with those areas which occur most frequently in 

school mathematical examinations. other applications 

specific to particular curricular areas will be dealt with 

in the Chapter on Cross Curricular Applications. The 

examples chosen and the relevant discussion serve to 

highlight particular concerns. Any relevant formulae will be 

assumed. 

Finding Areas Under CUrves 

In section (5.3) we discussed the general approach to 

finding areas under curves. Most of the problems using this 

application are concerned 

beneath a graph of some 

with finding a defined area 

given function. Often it is 

necessary to sketch the function first in order to see 

precisely which area is required. This is an' exercise in 

itself and will not be considered here. Instead we study 

specific problems and analyse some of the difficulties that 

students experience. 

Consider the case of finding 

a) The area under the graph of y=x2 

b) The area bounded by the graph y=x2 , 

the y-axis and the line y=4 
y 

y=x2 

y=4 
i 

4--~--------~--------~ 
A 

x=2 
B 

A 
B 

x 
o 1 2 

Fig.6.4(a).' 
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The required areas for parts (a) and (b) are labelled A and 

B respectively - Fig. 6.4 (8) • Most students can cope with 

part (a), but it is included here because it will form part 

of the discussion of part (b). 

The required area A is given by 

2 

A = J y dx 

0 

2 

= f x2 dx 

0 

= .!l. units 2 

3 

-----------
To find the area B, however, experience shows that a number 

of students perform the calculation for A and use the 

relation that 

Area B = Area of rectangle AOBe - Area A 

giving 

Area B = 8 - .!l. 
3 

i.e. B = 16 units2 

J. 

Now this is quite correct, but students will often do this 

even if part (a) of the question was not given. The reason 

for this lies in the fact that most text books discuss the 

finding of areas under curves with reference to the x axis 

and almost without exception conclude that 

b 

Area under curve A = ~ ydx 

a 

This is a clear case of mechanical processes versus 

principles. section Z.Z refers to the need for teachers to 

ensure that the right balance exists between principles and 

mechanical processes. 
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The difficulty lies in students I inability to fully grasp 

the process by which the area is found. The whole process of 

finding areas revolves around considering an element of the 

required area and summing all such areas. Teachers need to 

reinforce and demonstrate this. See Fig.6.4(b). 

y y=f(x) 

A B 

Y2 
x 

6y 
;t. 

D 
YI C 

x 

Fig.6.4(b). 

The area ABCD is required and the element of area 6A is 

given by 

The required limiting process is one in which 6y --+ 0 and 

not 6x --+ 0 

:. 6; -? o(n) = 
x 

Yielding 
Y2. 

x dy A = y/ 
(reinforcing Bumma tion: A-·~f.d A) 

This result is absolutely vital and must be stressed. The 

question of finding the area B is then one of using, 

4 

B = J x dy 
o 
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4 

i.e. B = J y1/2 dy 

0 

B = ~ 
3/21

4 

J 
B = 16 units2 (as before). 

3 

It is acknc;>wledged that in specific questions the. first 

method of solution may well be easier, but the point being 

made here is that students often demonstrate a lack of 

understanding of the fundamental principles in finding areas 

under curves. 

Another example which highlights this difficulty is one in 

which two curves overlap. For example the area between the 

intersection of the curves y=x2-2X and y=4-x2 . A sketch of 

these curves is shown below. 

y 

-1 

Fig.6.4(cl 

The advice here should be to label each curve as Y1 and Y2 

Y1 = 4-x2 

Y2 = x2-2x 

x 
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In addition to the difficulty under discussion, there is 

also the further problem of finding the limits of 

integration. These are obviously where the curves meet. They 

meet where 

Y1 = ;Y2 
i.e. 2x2 ~ 2x - 4 = 0 

x=-l or x=+2 

The element of area is shaded and (Y1-Y2).bx is the area of 

this element. The required area is given by 

2 

A = f (Y1-Y2)dx 
-1 

2 

= J (4+2X-2x2)dx 

-1 

= 9 units2 

The detail of the solutions is not a priority here. It is 

the difficulties which students encounter which are of some 

concern. These types 

examination level and 

of qUestion occur 

more often than not 

freqUently at 

the solutions 

submitted by students reveal most clearly that the 

underlying principles and 

been misunderstood. It 

techniques referred to here have 

is very important that adequate 

discussion and demonstration accompany the teaching of areas 

under curves as this application is typical of many arising 

in other branches of science. 

Velocity and Acceleration 

An important example of the use of integration and 

differentiation occurs in mechanics and familiarity with 

this subject is assumed in this section. Students are 

familiar with the discussions of falling bodies and 

particles moving through space with various velocities. 

Here, and in a teaching context, we can tie up some of the 

points made earlier on areas under graphs and indeed areas 

of geometric shapes like triangles, rectangles and trapezia. 
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We bring the following definitions from our previqus 

discussions on differentiation and the definite and 

indefinite integral. We assert that if a 

velocity vms -1 and is at a distance 

reference, then, 

v = ds 
dt 

or vet) = s' (t) 

and using the indefinite integral 

particle moves with 

Sm from a point of 

set) = J v(t)dt or s = J vdt 

i) S 

= v 

T t 

il) v 

T 

dv=a 
dt 

t 

DISTANCE-TIME GRAPH VELOCITY-TIME GRAPH 

Fig.6;4(d). 

Similarly, we have discussed the second derivative Sll(t) and 

here 

or 

Sll(t) =v'(t) 

But v'(t) = dv gives the acceleration act). So 
dt 

using the indefinite integral 

vet) = f(t)dt 

v = Ja dt 
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In each case ds and dv are gradients of the tangent to each 
dt dt 

graph Fig.6.4(d). 

Consider ila particle moving with constant velocity v over 

a time interval tl to t2. 

v 

A B 

t 

Fig.6.4(e). 

The distance or displacement in the time interval tl to t2 

is given by the area of the rectangle. 

Le. s = v(trtll 

We can appeal to the definite integral for if vo=km. s'" where 

k is constant, 

s = JVdt 
gives t2 

s = J kdt 

tl 

= [kt ]t2 
tl 

i.e. s = k(trtll 

or s = vo(trtll 



112 

ii) a body falling vertically with constant acceleration 

(here, the acceleration due to gravity) 

The equation of the velocity-time graph is given by 

V = lot 

V 
v=l<it 

o 
T 

Fig.6 .4(0. 

The distance travelled in time T is the area of .the shaded 

triangle given by 

S = I IOT2 
2' 

Here, too, the definite integral gives the answer, 

T 

S = J vdt 
o 

T 

= f lot dt 
o 

= 

The point being made here is that in a number of cases 

students fail to represent the motion of the particle in 

graphical form. The consequence is that they become involved 

in tedious applications of equations of motion when the 

formula for the area of triangle, rectangle or trapezium 

gives the answer. The following example is quite common in 

examinations: 
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Example: A body moves from rest with acce1e~ation Sms-2 for 

2 seconds then moves with constant velocity for 4 

seconds before coming to rest in a further 3 

seconds. Find the distance travelled. 

The easiest method of solution is to draw a diagram which 

shows graphically the motion of the body. 

V 
16 

0-- 2 

A 

4 

Fig.6.4(g) 

B 

c 
t(secs) 

3 

The only calculation needed for the solution is the velocity 

at.A - This is given by 

V = at 

V = 16 ms-1 

The distance travelled is the area of the trapezium QABC 

S = i (AB + QC) x 16 

S = 104m 

Evidently a sketch or diag~ammatic representation of the 

motion of moving bodies is not always possible, and the 

method of solution depends upon evaluating integrals. A 

vector example is chosen here to demonstrate this. Also it 

serves to draw attention to an important fact not often 

mentioned in texts. 

Consider the motion of a particle with velocity vector given 

by 
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We wish to find the distance of the particle from the origin 

given that when t=o, the position of the particle is given 
,. l' #!to 

by 2i-3J+k. 

- 1 vdt give Now S = 

s 1 2" "''' = (3t i+2tj+k) dt 

S = 3'" 2A. A t i + t j + tk + c 

The vector c is point of concern here. In dealing with the 

indefinite integral mention is made to the constant of 

integration. No reference, however, is made to the fact that 

the constant of integration is relative to the domain of 

application. Here the domain of application is vectors and c 
is a constant vector. However, scalar examples of c should 

be discussed first. 

Using the initial condition we get 

. ,.. " = 2i - 3j + k 

and 
... " " S = (t3+2)i +(t2-3)j +(t+l)k 

The above concern may appear trivial but students often feel 

that c is not constant because it is a vector, even though 

they may well have done work on vectors. 

In general, however, the velocity 

than it might first appear. It 

change of velocity with time and 

gives the acceleration at that 

time graph is more useful 

gives information on the 

the gradient at any point 

instant. Furthermore, the 

area under the graph - as we have just seen - gives the 

distance travelled. 
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v 

vet) 

t 
o 

Fig.6.4(h) , 

In Fig.6.4(h)i, area A gives the distance travelled in the 

interval 0 to tl and area B the distance travelled in the 

interval tl to t 2 . The acceleration a(tl) is the gradient of 

the tangent to the curve at t 1 . In short, the velocity-time 

graph contains all the information students need on the 

motion of the particle. students need to be able to deduce 

these 'bits' of information when they are required. 

Volumes of Revolution 

This is an equally popular application which makes frequent 

appearances at examination level. At times volumes of 

revolution appears as an application in its own right or 

tied up in some way with areas under curves. The methods are 

similar and as such the concerns expressed 

areas are equally valid here. 

previously on 
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y y 

y=f(x) 

--4--------L~~~~~~----x --4----------------------- x 
a b 

Fig.6.4(i) 

The volume generated by rotating area A about the x-axis is 

given by 

b 

V =1 y2 dx 

(71" because elementary volume is a cylinder of volume 1Ty2Jjx) 

Whilst rotating B about the y-axis gives 

b 

V = rrJ x 2dY 

a 

(See Fig.6.4(i) 

One of the applications of volumes of revolution which occur 

in a number of texts is to find the volume of a cone. 

Students are required to prove or verify using the definite 

integral that the volume of a cone is given by 

V = .1 nr2h 
3 

where h is the vertical height and r the radius of the base. 

Frequently they are told to use a line of gradient ~ which 
h 

passes through the origin and rotate it about the x-axis. 

(FIG 6.4 (j') 
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y 

-----~--~ __ --------- h I I I 

-- I 

------ \' __ 1 

-- - \,1 

Fig.6.4{j) 

The volume then is given by 

V = }1Ty2 dx 
0 

h 
= J11 [~ xy dx 

0 

= . -r I ~;. ~31 h 

0 

= 1. TT r 2h 3 

Whilst this is a good example to use to test the formula for 

volumes of revolution, the restriction of choosing a line of 

gradient ~ is an unnecessary one to make. Firstly, studentS 
h 

often forget the stipulation on the function to use, and 

would find it difficult to do this question in an 

examination if it were not given. Secondly, they often ask 

what function should be integrated to get the required 

answer. The failure, here, is to recognise that if the 

straight line has gradient ~ it must be of the form 
h 

y = ~.x 
h 
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since it passes through the origin. Many students try to 

find the required volume using 

v = 

Finally, any line of the form y = mx, m (t 0), rotated about 

. the x-axis within the limits 0 to h is sUfficient to deduce 

the answer required. 

y 
y=mx 

ma 

o~----------------L--1-----------------
a 

Fig.6.4(k). 

Volume generated is given by 

a 

V = f TT' y 2dx 
0 

a 

= f 1T' (mx)2 dx 

0,-' 

2 
= 7T m a 3 

'3' 

The solid generated is clearly a cone of height a and base 

radius ma. 

can be written 

V = 



since h=a and t=ma 

V = .! TT r 2 h 
J 
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Whilst a line of gradient ~ passing through the origin does 
h 

the 'trick' nicely,· it is really a source of confusion to 

most students who cannot ·see why that choice of line was 

made. 

In concluding, students often do not recognise the 

relationship between volume of revolution generated and 

area. The volume generated by rotating y=f(x) about the x­

axis between x=a and x=b is given by 

b 

V = jrry2dX 
a 

b 

= j7r[f(X)]2dX 

a 
There is, therefore, a function F(x) = .".. [f(x)]2 for which 

b 

V = J F(x)dx 
a 

The right hand side of this equation is essentially the area 

under the graph of F(X). 

This serves to emphasise that integration is, essentially, a 

summation. 
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Chapter 7: Crosscurricular applications. 

7.1 Why teach applications? 

7.2 Calculus in applications. 

7.3 Mathematical Modelling. 

7.4 Statistics. 
7.5 Economics. 

7.6 Physics. 

7.7 Chemistry. 
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7.1 Why teach applications? 

In Chapter 1 we referred to the many areas other than , 
mathematics in which calculus is used. Mention was made to 

the use of mathematics as a tool rather than a subject whose 

traditional exposition is for the purist mathematician. The 

field of applications, in the context of the school 

curriculum, is one in which mathematics is used as a means of 

enabling students to take their places i~ society. There are 

many students who will not use mathematics in their later 

careers but will need, as citizens, to estimate and make 

judgements or decisions during their working lives. 

The following are four mathematical and pedagogical reasons 

for teaching applications [1) : 

a) For motivation: an application of a piece of 

mathematics to a practical problem can motivate 

students to learn mathematics thus consolidating 

the concepts. 

b) For cultural reasons: many English mathematicians 

contributed in some way to the development of 

calculus. Newton's contribution to calculus is an 

example. It is insufficient to learn calculus without 

some knowledge or appreciation of what led to its 

development and how it was used by Newton and others. 

c) For fear of something 'worse': the view here is that 

teaching mathematics is the responsibility of 

mathematics teachers. They should also be responsible 

for teaching applications as only then can they 

reduce the possibility of crudity, unsuitability and 

inaccuracy which is likely to accompany a treatment 

by non-mathematicians. 



d) To teach recognition of structure out of 'noise': 

this is similar in a sense to making order out of 

chaos as a reason for teaching mathematics. The 

essence of this reason for teaching applications 

is that teachers should try to nurture an 

investigative approach to problem solving 

(Cockcroft) which will ena-ble them to identify 

mathematical structures within a variety of 

situations. 

132 

More often than not, however, the social reasons for teaching 

applications are more important. In every walk of life and 

perhaps every day the ordinary citizen needs to make 

judgements and decisions. These need to be rational if they 

are not to give rise to greater inconveniences and punitive 

penalties. Decisions and judgements can be more rational if 

they are approached in an analytical and quantitative way. 

7.2 Calculus in applications. 

The importance of gradients of lines was discussed in section 

3.4. Gradients of lines lead to the notion of differentiation 

and the derivative [9]. With an idea of gradients, simple 
" 

problems of maxima and minima can be attempted. There are an 

abundance of situations in the 'real world' where the above 

ideas of the calculus can.be employed. 

Often we speak of exponential growth and decay or population 

growth of species. These require the use of differential 

equations, the solutions of which employ methods of calculus; 

integration, for example. Embedded in the definitio~ of the 

integral is the concept of area and often we are required to 

find areas under or enclosed by curves. 
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The motivating examples mentioned so far· may appear to be 

applications which are prevalent in classical· physics or a 

purely mathematical domain. They are, however, equally 

applicable in the biological sciences: blood flow and 

muscular movement, or commerce. The examples which follow in· 

the next sections will attempt to demonstrate this. 
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7.3 Mathematical Modelling 

It is fair to say that the mathematics taught in schools and 

on undergraduate courses, to a greater or lesser extent, 

provides most students with a formal approach to their 

subject. The way mathematics is taught emphasises basic 

principles and a need for rigour. It does not appea~ 

however, to provide students with the techniques necessary 

to tackle raw problems as they arise - a view with which 

many employers would concur. The implication here is not 

that there is necessarily an inherent lack of ability, but 

is perhaps a reflection on the formal nature of mathematics 

teaching in schools and colleges. 

Several reports on mathematics and mathematics teaching 

highlight the need to treat mathematics in a less formal way 

and to consider the formulation of mathematical problems 

from real, 

approach is 

practical situations. A broad title for this 

mathematical modelling. 

One missing ingredient in the teaching of mathematics is the 

representation of the so called 'real world' in mathematical 

terms. Students often argue that they fail to ,see the 

relevance of a piece of mathematics. Perhaps a modelling 

approach to real world situations would enable them to gain 

a more precise understanding of their significant 

properties, and provide them with a platform from which to 

deduce and predict results and events. Indeed, it would not 

be unreasonable for an engineer to want to know whether his 

bridge will withstand the loads likely to be placed on it; 

so he would first make a scale model of it, test it, and 

then build it. 

The general principles of mathematical modelling requires 

firstly, the identification of the problem; some 

consideration as to whether the problem is amenable to 

mathematical treatment, and whether there are any skills 
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needed which are not related to mathematics. Once the 

significant features have been identified, the next stage is 

to translate these into mathematical entities and postulate 

relations between entities. The process of modelling can be 

summarised in the following diagram. 

----­
.(,- --- ---- --

Real Problem I--+-
Situation Formulated Model Prediction 

Self 
Consistency 

I Validation 
I 

A POSSIBLE MODELLING PROCESS 

It is argued in Book 3 of Advanced Level Course of SMP that 

there are three stages in dealing with situations in science 

which are amenable to mathematical treatment. These three 

stages are: 

i) formulation 

ii) solution 

iii) interpretation of results 

Formulation is seen as the most difficult stage since 

relevant symbols and laws of science are used to produce 

mathematical equations for solution. The actual solution of 

such equations is easy compared to their formulation since, 

in general, there are standard methods of approach for 

dealing with most equatio~in mathematics. 
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A typical problem is to find the time taken for a conical 

funnel to empty and how this time depends on the initial 

height of the liquid in the funnel. 

There are many factors to be considered here before any 

attempt is made to translate this problem into a 

mathematical model. Indeed there are several variables which 

may effect the solution and conclusion. 

The time to empty, T, depends on: 

i) the initial height, ho, of the liquid; 

ii) the shape of the funnel; 

iii) the density of the liquid; 

iv) the viscosity and surface tension of the 

liquid; 

v) gravitational acceleration; 

vi) temperature and the diameter of the funnel 

nozzle. 

It is evident that a consideration of all these factors 

would result in a complex set 

unknowns. One method of approach 

of equations in several 

is to vary the height ho 

whilst observing the change in time, T, and keeping all 

other factors, constant. This is the first stage of a 

modelling cycle. 

We need now to make an assumption on the possible behaviour 

of the liquid under such a situation. It is reasonable to 

postulate that the rate of flow is proportional to the 

pressure difference at the orifice, and that this pressure 

difference is also proportional to the depth of the liquid. 

Let V = the volume of liquid in the vessel at time t, 

ho =. initial height, 

h = height of liquid at time t, 

p = pressure difference at the orifice. 
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1-- r ----t 

r=htan e 
h 

I le 
orifice 

Fig.7.3(a). 

The rate at which liquid flows out of the funnel is the rate 

at which the volume is decreasing. This is given by ~ and 
dt 

is negative, therefore, 

and 

- gy 0( P 
dt 

po(h 

Together these imply 

_ dVe( h 
dt 

that is, Q'/= -kh ---(i) (k a positive constant) 
dt 
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This equation contains the variables V, t, and h and cannot 

be integrated in this form. We can eliminate V by using the 

formula for the volume of a cone, 

2 
= ! .T(. (h tan S)h; 

3 

i.e. V = !.7T.tan2e.h3 

li/.= 
dt 

3 

1.~tan2e.3h2. dh = 1ftan2e.h2 dh 
3 dt dt 

tan2S.h2 dh = - kh (from (i». 
dt 

-------- (iiJ 

h dh = - A' 
dt 

where A I = k/"fT tan2e. 

Integrating we get, 

! h 2 = - A't + B 
2 

When t=O, h=ho ~ B=!ho2 
2 

Ih2 = .. -
• 

2 
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Equation (iii) is the equation of a parabola - See Fig.7.3(b). 

'-and when h=ho , t=Ojwhen t=T and h=O, we have 

T = h 2 -0 
2A' 

Le. T = h0
2 • 11, tan2e 

2k 
2 

This supports the original assumption that T~ho 

t 
o T 

Fig.7.3(b). 

The sandwich inequality discussed in section 5.3 can also be 

used here to analyze the problem in an alternative manner. 

r 

T (r-br) 

h 

1 

Fig.7.3(c). 



130 

If the height of the liquid is reduced by a small amount h, 

the volume v, shaded in Fig. 7 .3(c) satisfies the sandwich 

inequality 

This gives 

Now as 

Hence, 

6 t~ 0, we get 

TTr2 dh 
dt 

? dv 
dt 

dv = 1Tr2 dh 
dt dt 

(since br-+O as bHO). 

= 11tan2 e. h 2 dh as in equation (ii) above. 
dt 

The rest of the analysis follows as before. 

In most cases, questions on mathematical modelling can be 

reduced to a relationship between two variables in the form 

of a differential equation. At school level, mathematical 

modelling questions are usually simple, with the 

restrictions on variables which may affect the model, kept 

to a minimum. Indeed, in a number of cases, the question 

specifies the two variables to be considered. 

At 'A' level the questions usually relate to the behaviour 

of populations under some controlled conditions. Malthus did 

a great deal of research on population models and in 1798 he 

proposed his 'gloomy doctrine' that the survival of the 

human race was only possible if periods of exponential 

growth were punctuated by plague and famine. The Malthusian 

model for the rate of population growth of an organism 

reared in constant conditions is given by 



dNt 
dt 

= 
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where b is the instantaneous birth rate per head of the 

population. Integrating we get 

Nt = No e bt 

where N=No when· t=O and Nt is the instantaneous size of 

population at time t. Death can be included in the model by 

introducing the death rate, d, and putting C=b-d, where C 

is the innate capacity of the population to increase. Under 

natural conditions it is unusual for C to be constant even 

for small intervals of time. In general c=C(t), and the 

solution of 

is: 

t C(t)dt 
o 

The following Further Mathematics question makes use of this 

model [59] (p 98-113) but is not really modelling. 

The population x of a colony of bacteria increases 

at a rate equal to the product of the number x of 

bacte~ia present at time t, and the capability C 

of the environment to support the number present 

at time t. The capability C is measured by the 

excess of the maximum number b of bacteria that 

can be supported by the environment over the 

number of bacteria actually present. write down 

the differential equation governing the growth of 

bacteria. Solve this differential equation, 

expressing x in terms of t, given that the 

population at time t=o is p, where p < b. State 

what happens to the population after the passage 

of a large interval of time. 

(London: June 1980) 

The wording of this question leaves a great deal to be 

desired, but if we accept this we can proceed as follows: 
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with reference to the question, let the rate of increase of 

the population be dx. Then 

i.e. 

dt 

dx = xC 
dt 

where C = (b-x) 

dx = x (b-x) 
dt 

is the required differential equation. The mathematical 

model is now completed. This confirms the point made earlier 

about the simplicity of the models used at this level. The 

solution of the resulting differential uses traditional 

mathematical methods. On separating the variable, we get 

J dx 
x(b-x) 

= 

Using the partial ,fractions on the left hand side of this 

equation, we get 

or 

yielding 

when 

+ 

+ 

_1 )dX = fdt 
b-x 

_1 ) dx = 
b-x 

fbdt 

Inx - In(b-x) = bt + c ______ (a) 

t=o, x=p, 9' c = In (--1L) 
b-p 
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Equation (a) becomes 

In (b~X ) 
= bt + In (~) 

In 
[t<b-PU = bt 
P (b-x) 

or x Cb-pI = e bt 
p (b-x) 

and 
x = pb/(p+(b-p)e-bt ) 

is the required solution. Clearly, for large passages of 

time, (b-p)e-bt tends to zero and x tends to b. A graph of 

the behaviour of the population depends on p. 

POPULATION 

b -----------------------------------

p 

p 

L-______________________________ ~t 

TIME 

Fig.7.3(d). 

In concluding, it is acknowledged that not all of the 

components of the modelling process referred to earlier have 

been discussed in the school context. In wider applications 

of modelling, however; it would be necessary to consider the 

validity of the model and, indeed, test it. In industrial 

applications, making predictions from mathematical models is 

an important exercise if the model is to be adopted. 
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W statistics 

statistics is one of the curricular areas which uses 

mathematics throughout. It embraces concepts of mathematics 

ranging from counting to calculus. At school level, the main 

application of calculus is in dealing with the probability 

density function (pdf). This particular application will be 

discussed here. We begin with the definition of the 

probability density function. 

Definition: If X is a continuous random variable and f(x) 

is a function for which 

i) f(x) ~ 0 for all x, and 

"" 
ii) jt(X)dX = 1 

-'" 
then f(x) is said to be a probability 

density function of X. 

The definition requires an appreciation of the idea of a 

function which is non-negative for all x. In particular the 

second part of the def ini tion assumes a form which is not 

usually discussed at any length with mathematics students at 

this level. Some texts prefer to use 

J f (x) dx = 1 

R 

where R is the range of possible values. I 

other texts are even more specific in that they use the 

condition 
B 

J f(x)dx = 1 

AI 
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where A and. B·are the least and greatest possible values of 

X respectively. The alternative definition of part (iil 

above is more useful in that it is easier to relate the pdf 

to its mathematical context. The pdf defines the probability 

that x lies in the interval [a,b] which is clearly seen to 

be b 

J f(xldx 
a 

and is therefore represented by the area· of the shaded 

region. 

Fig.7.4(a) 

f (xl 

The quantity 

Jb f(xldx 

a 

a 

Fig.7.4(a) 

b 

is essentially the area under the curve y=f(xl as discussed 

earlier in Chapter 6. 

Associated with the probability density functions are the 

terms mean and variance. The mean is defined as 

Elx) = f x f(x)dx 

R 



and the-variance as 

where 

V[X) = E[X2 ) - [E[X))2 

E[X2) = ~ x2 f(x)dx 

R --,-
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Example 1. Let X be a continuous variate with the following 

distribution: 

i) f (x) = 2 x for 1 < X" 2 
T 

ii) f(x) = 0 elsewhere. 

o 1 2 

Fig.7.4(bl. 

f(x) =.be 
3 
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The probability that x lies in the interval [1,2] i~ given 
by 

2 

P(l ~ x ... 2) = J. 2 x dx 
"3 

1 

= ~ XJ: = 1 

But also the required area is that of a trapezium given by 

P(l ~ x ~ 2) = 

\ . = 1 (as before) 



" 
Example 2. Avariate X has a pdf 

i) f(x) - Cx(2-X) , 0 C x ~ 2 

ii) f(x) - 0, otherwise. 
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Find the value of the constant C and the mean and variance 

of x. Find also the probability that two values of x chosen 

at random from such a distribution will both be larger 

thim i. 

To find C we use the basic property of pdf's 

2 

f Cx(2-x) dx - 1 
o 

2 
C J . (2x - x2 ) dx - 1 

o 

C .1. - 1 
3 

C = J. 
4 

The pdf is symmetrical about the point x=l and as such the 

mean is one. This conclusion is facilitated bya sketch of 

the function. FIG 7.4. (c). 
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1 

2 

= J. J (2x2-X3)dx 
4 

0 

= J. ~~3 -!~J: 4 

= 1 



2 

Now E(X2 ) = J. J x 3 (2-x)dx 
4 

0 

= J. ~4 _ ~5 I: 4 

= Q 
5 , 

So variance V[X] = E[X2 ] [E[X]]2 

= Q - 1 
5 

= .! 
5 
------- , , 

The probability that a value of X'chosen at random 

than 1 can be found by integration as 

2 

P(l ~ x ~ 2) = fi X(2-X) dx 

and hence 

1 

= .! 
2 

P (both values of x chosen at random, and hence 

independently, lie between 1 and 2) 

= .! .! 
2 2 

= .! 
4 

140 

is larger .-
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To conclude we look at two further applications of calculus 

in this context: the finding of the mode and median of a 

distribution. The median of a distribution occurs at M, a 

point of the interval on which the pdf is defined such that 

half the distribution lies to the left of M and half to the 

right. It is reasonable, therefore, to expect from the 

definition 

for 

B 

P(A ~ x ~ B) = J f(x)dx =1 

A 

M J f(x)dx 

A 

=.1. 
2 

where M is the median value. As discussed before, when the 

pdf is symmetrical about some particular value M then this 

value will be the mean as well as the median. The mode, 

corresponds to the maximum of 

[A,B]. Differential calculus 

the function on the interva.l 

is used here. The turning 

point (s) of the function are examined and their na ture -

local maximum or minimum - determined. However, the mode may 

be at one end of the interval and a check must be made that 

the value of f(x) at the ends of the interval do not exceed 

tha t of any local maximum in the interval. The following 

example demonstrates the finding of the median and mode of a 

distribution. 

Example: The variate X is claimed to have a pdf, such that, 

1) f(x) = 4(x-x3 ) , 0 ~ x ~ I 

ii) f(x) = 0 , otherwise. 

Show that f(x) could indeed represent a pdf and, assuming the 

claim is correct, find the mode and median of X. 



To show that f(x) represent a pdf we need to show that 

I 

and 

Using 

i) f 4 (x-xJ ) dx=l 

o 

ii) f(x) ~ 0 for all x 

i.e. 4(x-xJ ) ~ 0 for 0 < x ~ I 

integration we have 

I ! 4 (x-xJ)dx 

= I 
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A sketch of the curve is SUfficient to show that f (x) ~ 0 

for: 

O~x"1. 

f (x) 

f(x) = 4 (x-xJ ) , 0 ~ x ~ ~ 

f(x) = 0 otherwi.se. 

o 1 

To find the mode, we use calculus to find any maxima. 

f (x) = 4 (x-xJ ) 

f'ex) = 4 - 12x2 

fl I (x) = -24x 



for a turning value f'(x) =0 

i'.e. 4-12x2=0 

x = + 1 or x = -1 
{j Vj 

since x = -1 is of no interest here - it lies outside the 
(j 

interval •. 

"'e consider f"(x) when x = +1 
73 

and note that 
f' '(x) < 0 

Therefore x =+1 corresponds to a local maximum. 
,fj 

Since f(x)=O at the ends of the interval the mode is at 

To find the median , M, note that 

.rM 
4(x-x3 )dx = t 

o 

Yielding a quadratic in M 2 

from which we get 

M-=± 1.31 or Md± 0.541 

The only possible value of M is 

M -= 0.54 

143 
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7 • 5 Economics 

The study of economics is punctuated with mathematical 

rigour at all levels. 

subject in its own 

Indeed, mathematical economics is a 

right. Economics considers the 

relationship between 

quantity and cost. 

variables such as profit, demand, 

In any situation where functional 

relationships are considered, it is difficult not to 

examine how one variable in the relationship changes with 

another. This involves ideas of rates of change and here 
applications of differentiation. For example, the elasticity 
of demand is defined as 

Here we look 

to 

~ = 

= 

= 

= 

% change in quantity demanded 
% change in price 

.Qg 100 
q 

4.R . 100 
P 

tta J! 
q dp 

~ Q 
q 

of derivatives and at simple 

some of 

applications 

the economic variables mentioned integration 

above. The following abbreviations are used: 

p = profit 

Q = quantity - bought or sold 

TR = total revenue 

TC = total costs 

AC = average costs 



145 

Application of Maxima and Minima 

Example The market demand function of a firm is given by 

4P + Q - 16 = 0 

and the AC function takes the form 

AC = ~ + 2 - 0.3 Q + 0.05 Q2 
Q 

Find Q which gives 

i) maximum revenue 

ii) minimal marginal costs 

Use the second derivative test in each case 

i) Given: 4P + 
Thus P = 
Total Revenue TR = 

= 
= 

Revenue is a maximum when 

d(TR) = 4 - 0.5Q 
dQ 

When d(TR} = 0, then 
dQ 

Q - 16 = 0 

4 - 0.25Q 

P.Q 

(4 - 0.25Q)Q 

4Q - 0. 25Q2 

dCTRl 
dQ 

4 - 0.5Q = 0 

Le. Q=8 

Thus revenue is a maximum when Q=8 



ii) Average costs AC = ! + 2 - 0.3Q + 0. 05Q2 
Q 

Thus, 
Total costs TC = Q.AC 

= 4 + 2Q - 0. 3Q2 + 0.05Q3 

Marginal Costs MC = dCTC) 
dQ 

MC = 2 - 0.6Q + 0.15Q2 
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Marginal Costs are a minimum when dCMC) 
dQ 

= 0 and d2~MC) > 0 
dQ 

When 

i.e. 

dCMC) = -0.6 + 0.3Q 
dQ 

dCMC) = 0 , then 
dQ 

- 0.6 + 0.3Q = 0 

Q = 2 

Thus marginal costs are at a minimum when Q=2 

The above is an example of an application of the concepts of 

maxima and minima discussed in Chapter' 6. Most of the 

applications of derivatives at school level revolve around 

finding the maximum or minimum of the particular economic 

variable and as such the above example is sufficient to 

demonstrate this application. 
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Application of Area under curves 

Area under curves is used here as an application of 

integration in economics with reference to two economic 

variables: Consumer's Surplus and Producer's surplus. 

Economic theory asserts that in a competitive market, the 

price of a commodity does not reflect what consumers would 

be willing to pay for it rather than go without. Instead the 

price is a reflection on the valuation they place on their 

last purchase. The following diagrams look at Consumer's and 

Producer's surpluses and how they are measured. 

PRICE 
P E 

Consumer's Surplus 

AL---------i-----------------
B Q 

Fig.7.5(a). 

QUANTITY 

A graph of price against quantity shows the demand function 

f . At price AD, the quantity demanded is AB. ABCD is the 

amount paid by consumers. However, the benefit 'derived' by 

consumers is the total area under the demand function over 

the range AB. The Consumer's surplus, therefore, is the 

shaded area. Evidently, the area is the area of the triangle 

EDC. If, however the demand function assumes the shape of a 

curve, then the consumer's surplus is given by 

q 

Consumer's surplus", f f(Q)dQ - Area of rectangle ABCD 

o 
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where q = AB and f is the demand function 

P 

The supply curve and 

the producer's surplus 

AL------------L----------------
B Q 

Fig.7.5(b). 

The producer's surplus is measured in a similar way. FIG 

Fig.7.5(b), 

Producer's surplus = Area of rectangle ABCD -

where q = AB and the supply function is. g . The following 

example demonstrates this application. 

Example If the demand function is given by 

p = 10 - Q - Q2 

and the supply function is given by 

p = Q + 2 

Calculate the consumer's and producer's surplus at 

equilibrium price. 



Demand function P = 10 - Q _ Q2 

Supply function P = Q + 2 

At the equilibrium price 

10 - Q - Q2 = Q + 2 
Q2 + 2Q - 8 = 0 

(Q-2) (Q+4) = 0 

thus Q=2 or -4 

Q cannot take a negative value, therefore Q=2 

When Q=2 , P=4 

Fig.7.5(c) shows the Producer's and Consumer's surplus 

P Producer's 
Surplus 

4 

2 

o 2 

Consumer's surplus: 

P 

10 

Q o 

Fig.7.5(c). 

2 

Consumer's 
Surplus 

2 

Area under demand curve = ~ (10 -Q - Q2)dQ 

o 

Area of rectangle = P.Q = 8 

Therefore ConsumerS Surplus = '1 7-
3 

= 15 ! 
3 
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Q 



Producer's Surplus: 
2 

Area under supply function = J' (Q+2)dQ 

o 

= 6 

Area of rectangle = P.Q = 8 

Therefore, producer's surplus = 2 

150 
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. 7.6 Physics. 

Physics, like statistics, uses mathematics throughout: the 

'A' level course, Indeed, the mechanical applications are 

essentially those which occur in 'A' level' Appiied 

Mathematics. Thus we discuss here other applications which 

would normally not occur in a mathematics course. 

For example the formula for the magnetic flux density B at a 

point distant r from an infinitely-long straight current­

carrying conductor uses calculus for its derivation. 

Example 

dl 

'n 

1 

Fig.7.6(a): 

Induction: From the Biot and Savart law, the induction at P 

Fig.7.6(a) is given by 

B = Ii-'Q I.dl.Sine 
417" a 2 

Firstly, we try to express everything in terms of ~ the 

variable of integration, 

From the geometry of the figure 
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I = rcota 

dl = -r cosec2a.d9 

and 

a=r cosec9 

0 

Thus B = PO! J - sin9de 
211"r 

11"/2 

= P.OI ~s~~r 2 .". r 1(/2 

In atomic physics the rate of disintegration of radio active 

atoms is often discussed. The following example looks at how 

calculus assists that discussion. 

Example: What is meant by the half-life period an~ decay 

constant? 

Explain the relation between them 

A radioactive source has a half-life of 4 days. 

Compare the initial rate of disintegration of the 

atoms with the rate after 3 days. 

The "half life period", T, is the time taken for the number 

of unchanged atoms to fall to half. its initial value. The 

"decay constant", A is the constant of proportionality 

between the rate of change, dN, at any instant and the 
dt 

number, N, of undisintegrated atoms at the same instant. 



That is dN = - AN 
dt 

Upon integration we get 

N = N~ -At 
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, A a positive constant 

where NO is the initial number of undisintegrated atoms at 

t=o and N is the number after a time t. 

After a time T 

and 

or 

From 

Ho 
2 

= 

eAT = 2 ---------(i) 

AT = 1n2 

rate of disintegration, r, is given by 

dN=-ANoe-~t 
dt 

when t=O, rate rO = dN = - A NO 
dt 

when t=3 days, rate r1 = dN = -Ae -3A. NO-
dt 

From (i) above ~ 
e = 21/T 

Therefore, 
rl = - ANo·2-3/ T 

= -),No·2-3/ 4 



Thus the ratio of the rates required is given by 

~O = 23/ 4 

Le. 

r1 

~o = 1.7 (approx) 
r1 

The following are the graphs usually associated with the , 
half-life experiment. 

Total 
Count 

Half 
complete 
count 

N 

t 
o T 

RADIOACTIVE DECAY WITH TIME 

Final complete count 
-- -- -- -- -- -- -- -----

It- T1/2--;1 time 

COUNT IN HALF-LIFE EXPERIMENT 

Fig.7.6(b). 
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Newton's law of cooling is a specific 

derivative of a function at a point. 

application of the 

TEMP °c 

A 

_1J\-____ :;:",: 

TIME 

TEMPERATURE FALL 

Fig".7.6(c). 

The above diagram shows the graph temperature change wi th 

time of a cooling body. The instantaneous rate of change of 

temperature e at the point P is given by the gradient of the 

tangent to the curve at P. 

The rate of fall is a measure of AB, and 
BC 

If Q is the quantity of heat lost per second, then 

experiment shows that 

which is proportional to d9/dt, the rate of cooling. 
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where S is the surface area of the body's surface, and 8R is 

the temperature of the surroundings. k is a constant 

depending on the nature of the surface. 

The following examples occurred as part questions at 'A' 
level and are chosen because they exhibit the fundamental 

process of summation as did the magnetic force example 

earlier. 

Example 

2b 

2a-

~ coaxial cable of length 1 has an inner 

copper conductor of diameter 2a and an 

outer copper conductor of internal 

diameter 2b separated by a plastic 

insulating material of resistivity f' 
as shown in the diagram. 

I 

Show that electrical resistance R between inner· and outer 

conductors is given by the expression 

R = f lnlb/al 
27Tl 

Consider an elementary strip at a 

radius r. The element of resistance 

is given by 



Thus 

Lt 
5r~O 

b 

(~)= dR 
clr 

= f 6r 
2 TT rl 

=~ 
2 Trrl 

= ~ 
21frl 

~ dR = edr 
211' rl 

R = f .f.Jh: 
21Trl 

a 

= 

= 

b 

f dr 
r 

a 

~ InCb/a) 
271"1 
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Example: A square metal frame of side 1 and resistance R is 

placed with its plane parallel to a long thin wire 

carrying a steady current I in a vacuum. The 

nearer side' of the frame is at a distance L from 

the wire as shcivin • 
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( 1 1 ---"1 

I 
I 1 

I 

i) Show that the magnetic flux 0 through the frame is given 
by 

f> = ~Il ln2 
2 

ii) derive an expression for the mean rate of heat 

production in the frame when the steady current I in the 

wire is replaced by an alternating current I = 10 sin wt. 

i) -Considering an elementary area t5 A of length L and width 

Ox at a distance x from the wire. 

Then bA = 1.Ox 6, = B.OA where B is the magnetic flux density 

and B = J...<oI 
27Tx 

Thus 
51 j..{o!. SA j}.oI1..&x = = 

21fx 2 77x 

6:~o(¥x) = g! = Mo:lt 
dx 2TTx 



21 
~ =f~dX 

2rx 

1 

= 

21 
[In x] 

1 
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ii) Power dissipated as heat = 12R = y2 where v is the rate 
R 

of change of flux per second ~ 
dt 

M 
dt 

=lL-(#oIl 
dt 2 11" 

where I=IOsinwt 

= ~~01coswt.ln2 
2Tf 

Mean rate of heat production H is found by using the root­

mean-square value Ir of the alternating current I. 

where 10 is the maximum value of the current. 

H = 

i.e. 

L 
2R 
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7,7 Chemistry 

Most of the calculus used in chemistry at school level is 

concerned with rates of change of chemical reactions. From a 

particular chemical process a differential equation is set 

up, the solution of which depends on the standard integral 

J~. dx = In x + c 

Here we look at two areas: chemical kinetics - to examine 

the integration of the rate laws and a simple application in 

chemical thermodynamics 

In chemical kinetics the rate of chemical reaction is 

expressed as the variation in concentration of either 

reactants or products with time. If A is a reactant and [A] 

denotes the concentrations of A in moles per litre, then the 

rate of reaction is given by 

-drAl 
dt 

= 

Reactant A disappears as reaction proceeds, therefore, the 

quantity QlAl is negative. 
dt 

Now 

implies 

-QlAl = kl [A] 
dt 

Upon integration 

(kl a constant) 
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when t=o, the concentration of A is [AJo, therefore c = 
-In[AJ o 

Thus we have , 
- In [AJ = kIt - In[AJ o 

or 

For a first order reaction, a graph of In lAlo against time 
[AJ 

gives a straightline with gradient k1 

Also, [AJ = [AJ o e -~. 

and the concentration [AJ decreases with time 

For a second order reaction 

yielding 

-lli.lU 
dt 

-~ 
[AJ 

-J [A~2 

= 

= 

-1- = k2t + constant. 
[AJ 

when t=o, the concentration of A is [AJo, and the constant 
= _1_ 

[AJ o 

Thus for second order reactions 

Reactions of higher orders are dealt with in the same way. 
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In thermodynamics, it is necessary to look at· heat 

capacities at constant pressure or volume. This analysis 

uses rates of change. 

The heat capacity, C, of a system, can vary with temperature 

and is defined in the differential form. 

C = l!g 
dt 

where q is the quantity of heat absorbed when temperature is 

increased by T degrees. 

The heat capacity at constant volume is equal to the rate of 

which the internal energy of the system increase with 

temperature. 

1. e. Cv = dE 
dT 

when heat is supplied to a system at 'constant pressure 

expansion occurs and work is done against applied pressure. 

Therefore, 

But 

Thus 

Therefore, 

Cp = Cv + work done in expansion 

= dE + 
dT 

P dv 
dT 

p dv 
dT 

H = E + pv 

dH = dE + P 
dT dT 

Cp = llli 
dT 

(p constant pressure) 

(H = heat content). 

dv 
dT 

Thus, the heat capacity at constant pressure is equal to the 

rate of increase of heat content with temperature. 
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Chapter 8: Conclusion. 
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8. Conclusion. 

Some attempt has been made to look at the way in which 

calculus has developed in schools and the part it has played, 

and will continue to play, in mathematical education. Many 

changes have taken place. A subject which once occupied the 

syllabuses of University mathematics has gradually made its 

way to the domains of school mathematics. This particular 

change was not easy as some exponents of the calculus felt 

that to reduce its presentation to the extent that it became 

presentable in schools was to trivialise the subject. 

The main opponents to this change argued on the grounds that 

calculus would lose its rigour and be deprived of a beauty 

wi th which it has been familiar. The fact that a loss of 

rigour might facilitate understanding was not an appeasement. 

As a consequence; for many years, the resistance to change 

showed no signs of subsiding. 

One major influence on the change was the introduction of the 

microcomputer. It is probably the single most influential 

agent of change in mathematical education [9]. It has, by its 

ability to demonstrate visually many conceptual ideas, 

introduced many students to areas of mathematics which were 

only dealt with in an algebraic manner. The speed with which 

the computer can execute mathematical calculations supersedes 

the process of any physical computation. This caused many 

teachers to be somewhat concerned about their role in the 

classroom. They saw the microcomputer 'as an invasion of the 

privacy of their classrooms. 

Another influence to changes in approach to mathematics in 

general, and calculus in particular, was the way and speed 

with which technology was changing. This technological age 

brought with it new demands; it appealed to applications of 

mathematics rather than mathematics for its own sake. 
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Teachers began to . realise that many students study 

mathematics only for the possibility of being able to use it 

in areas of science, engineering and commerce. It was 

necessary, therefore, for teachers to· critically examine 

their approaches to many areas of mathematics, thereby 

responding to a change in society - the technological age -

which was not a passing phase but a permanent state of 

affairs. 

Tall [9], ref,erring to the challenge of the new technology, 

argues that major problems face us in the 15 - 19 age group 

in mathematics education. He attributes these to the fact 

that applications of 

technologically diverse, 

mathematics were becoming more 

leading to pressure to modify the 

mathematics curriculum. Furthermore, changes in the 

technology' were occurring so rapidly that individuals were 

required to be more flexible and capable of solving new 

problems as they arise. The' role of the computer in changing 

the perception of mathematics, and indeed the nature of 

mathematics, for teachers and students, is very evident 

today. It facilitates imaginative ways of approaching 

mathematical concepts that are likely to create greater 

understanding for a new generation of students. 

The prominence of the new technology in schools, however, was 

not in itself a solution to teachers' problems initially. 

Unsuitable and, in some cases, unavailable software made it 

difficult for teachers to transfer normal tried and tested 

teaching methods to a computer approach. Currently, however, 

there are a number of software packages available to teachers 

which facilitate the teaching of calculus in schools; for 

example, Graphic Calculus [11] and Omnigraph [64]. These 

enable a clear and graphical approach to many concepts of the 

calculus, allowing the students to become familiar with the 

terminology, which would otherwise have been difficul t to 
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impart: limits and the process of tending to these; numerical 

approaches to the derivative; and integration as a summation. 

The traditional approaches to the calculus have been looked 

at with some discussion of the terminology used and the 

intrinsic difficulties associated with it. We also considered 

the problems teachers face in trying to teach the concepts of 

the calculus whilst attempting to strike the right balance 

between principles and processes. A further concern expressed 

was the restrictions on time and the need to meet syllabus 

requirements. Couple with this the exclusion of calculus from 

GCSE and what we have is a possibly critical situation, the 

consequences of which may only reveal themselves as the 

success or failure of the new examination to fulfil its aims 

and objectives is continually assessed. 

The crosscurricu1ar role of mathematics in schools and its 

ability to continue to fulfil this role in a situation which 

appears to change daily and makes new demands each time have 

been considered. Some examples of the use of calculus in 

other areas are included. The hope is that they show how the 

many basic ideas of elementary calculus are used in 

applications across the curriculum. 
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