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Abstract 

 

Design exploration is a fundamental part of the building design process that aims to 

identify the best-performing solution that satisfies the preferences of the stakeholders 

and the requirements of the regulations. Building performance simulation (BPS) can 

act as a quantitative guide for this ‘explorative’ process, its potential however being 

restricted by the various sources of uncertainty which reduce the confidence in BPS 

results, hence jeopardising robustness in decision-making. Although some building 

design studies may have focused on the integration of uncertainty analysis (UA) into 

BPS, optimization and UA are still most commonly treated as separate procedures. 

Coupling these two methods is however essential in the context of robust decision-

making, as optimization can ensure the identification of solutions that minimise the 

objective functions, and UA can improve the confidence in the optimality of solutions 

by evaluating their performance under possible uncertain conditions. 

Additional studies are hence needed to show how uncertainties should be quantified, 

and how robustness should be assessed in the context of building design exploration. 

The literature review uncovers the need for a more flexible definition of robustness 

that enables the articulation of any stakeholder preferences. It also reveals the need to 

extend such a definition to multi-objective problems, as building design solutions are 

most commonly assessed with respect to only one or two criteria due to the associated 

computational complexity, this however restricting the number of optimization trade-

offs and consequently the exploration of the design space. 

This thesis introduces a robust building design optimization framework for handling 

building design problems that are exposed to uncertain conditions, hence supporting 

building design exploration and decision-making under uncertainty. The framework 

comprises five principal steps, which are applied to a single-zone building and a real-

world building: a) uncertainty quantification; b) exhaustive search; c) BPS; d) robust 

optimization; and e) solution analysis. 



Uncertainty quantification refers to the two principal categories of uncertainty which 

are found in the literature: a) the epistemic uncertainty in the choice of an optimum 

solution (that is, the choice of form, construction and systems); and b) the aleatoric 

uncertainty in the predicted performance of the selected solution (due to the natural 

variability in the behaviour of any uncertain conditions, such as the weather). Robust 

optimization combines multi-objective optimization (to efficiently explore the design 

space and reduce the uncertainty in the selection of an optimum design solution), and 

robustness assessment (to ensure the optimality of the selected solution under possible 

uncertain conditions). 

Robust building design optimization is performed in this thesis using a novel robust 

optimality criterion, which states that a robust solution is one that remains optimal 

regardless of the uncertainty in the predicted building performance. Through its 

application to the design optimization of a single-zone building, the robust optimality 

criterion is found to be able to support building design exploration and decision-

making under uncertainty, as it can provide the stakeholders with a set of optimized 

design solutions which are insensitive to the behaviour of any uncertain conditions, 

while accounting for their (risk) preferences. Its application to the design optimization 

of a real-world building shows that the adoption of the novel criterion in the design 

practice can assist the different stakeholders in gaining a better understanding of the 

relationship between solutions and objectives and ultimately designing buildings that 

are optimal in the defined objectives and robust to the inherent uncertainties. 
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Chapter 1 

Introduction 

 

 

 

1.1 General background and problem statement 

The goal of the building design process is to produce a solution that responds to the 

needs of the client while meeting the requirements of the building regulations such as 

the Building Regulations Part L (UK Government 2013a), or the Passivhaus Standard 

(International Passive House Association 2018). Design exploration is a vital part of 

this process that can result in the identification of a satisfactory solution through the 

generation and evaluation of design alternatives. Rules of thumb and the experience of 

the designers have traditionally played a significant role in the evaluation of alternative 

design options. Even though designers’ judgement is essential for the integration of 

qualitative criteria (such as aesthetics and functionality) which cannot be quantified in 

a direct and general manner (Geyer 2009), the reliance on common rules of thumb and 

the intuition of the designers should be treated with caution (Hillier et al. 1972), as the 

entailed subjectivity increases the risk that well-performing design solutions will be 

eliminated and a sub-optimum solution will be chosen. 

Building performance simulation (BPS) can support the identification of a satisfactory 

solution by providing rapid, quantitative feedback on the performance of alternative 

design options (Clarke and Hensen 2015). However, the commonly-used trial-and-

error process of identifying an ‘optimum’ design solution may be misleading and time-

consuming (mainly in the case of a large design space), this revealing the need for a 

more efficient exploration method (Wang et al. 2005). Such a need has resulted in the 

integration of optimization into building design exploration over the last few years, as 

it supports the identification of solutions that best satisfy the considered objective and 
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constraint functions (Machairas et al. 2014). Optimization is therefore described as the 

process of identifying the best solution – or set of solutions – with respect to one or 

more objective and constraint functions. Nevertheless, this process may prove to be 

(computationally) complex due to the plethora of functions which need to be defined 

to reflect the multi-dimensionality of real-world problems (Deb and Saxena 2005).  

The potential of BPS and optimization is also susceptible to parameter uncertainty, as 

– even small – perturbations in input data can affect performance prediction and shift 

nominal optimal solutions to sub-optimal, or even infeasible solutions (Ben-Tal et al. 

2009). As the search for robust designs may return solutions that are different from 

those of the deterministic Pareto set (that is, the nominal optimal solutions, which do 

not incorporate uncertainty) (Avigad and Branke 2008), including uncertainty in BPS 

and optimization is critical for uncovering the consequences of decisions with more 

confidence (Gokhale 2009). However, the majority of building performance analysis 

studies use deterministic simulations that neglect possible variations in any uncertain 

parameters, this entailing the risk of sub-optimality for the optimized solutions, and 

thus of misguided decisions for the decision-makers (DMs) (Van Gelder et al. 2014). 

Robust design optimization couples optimization and uncertainty analysis, acting as a 

decision support tool that accounts for the possibility that the deterministic/ nominal 

values of uncertain parameters may never occur, as a result of the randomness in their 

nature (Hopfe 2009). Although robust optimization may have been used over the last 

few years in other fields such as structural design (Doltsinis and Kang 2004, Martinez-

Frutos et al. 2016), it is still not widely used in building energy studies, this revealing 

the need for further investigation into its significance and implementation in building 

design optimization problems (Nguyen et al. 2014). 

It is hence still ambiguous how to quantify uncertainty and assess robustness, which is 

revealed by the existence of multiple definitions of robustness in the literature and the 

discrepancy in the types of uncertainty that are accounted for as well as their handling 

(Walsh et al. 2013). The majority of existing studies adopt a probabilistic handling of 

uncertainty, assuming that the probability of each uncertain value occurring is known 

and evaluating solutions upon the probability density functions of their performance 

indicators (Van Gelder et al. 2014). These probabilistic formulations of robustness are 
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however infeasible if there is no sufficient information on the probability of occurrence 

of each uncertain input value, this being the case for uncertainties such as the weather. 

Existing formulations of robustness may also not be comprehensible to a non-specialist 

audience (Huang and Du 2007), or may have not been extended to problems where 

multiple objective functions need to be minimised due to the associated computational 

complexity (Rysanek and Choudhary 2013). Finally, existing robustness indicators 

may be conservative (Ehrgott et al. 2014), thus calling for a more flexible definition 

of robustness that is able to support the articulation of the customised (risk) preferences 

of the DMs. 

 

1.2 Aim and objectives 

This thesis aims to develop a new robust building design optimization framework for 

handling building design problems that are exposed to uncertain conditions, therefore 

supporting building design exploration and decision-making under uncertainty. This 

will be accomplished by meeting the following objectives: 

• To investigate the different sources of uncertainty during the building design 

process and how they are quantified. 

 

• To investigate existing robustness indicators and how they assess robustness. 

 

• To develop an approach to formulating a multi-objective design problem that 

is exposed to uncertain conditions – this referring to the definition of design 

solutions, uncertain conditions, design objectives and constraints. 

 

• To develop a new indicator for evaluating the robustness of design solutions 

and identifying optimum solutions that are insensitive to the behaviour of the 

considered uncertain conditions, while supporting the articulation of the (risk) 

preferences of the DMs. 

 

• To explore the behaviour of the new robustness indicator. 

 

• To demonstrate the potential of the new robustness indicator in a real-world 

context. 
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1.3 Thesis outline 

This thesis consists of six chapters. An outline of the chapters is provided below: 

• Chapter 2 carries out a literature review on robust optimization in the context 

of building design exploration. The chapter investigates the different sources 

of uncertainty during the design process and how these are quantified. It also 

investigates existing robustness indicators, with the objective of showing how 

robustness is currently assessed in the presence of such uncertainties. 

 

• Chapter 3 presents the methodology of this thesis. The chapter describes the 

steps of the robust building design optimization framework, which can lead to 

the identification of robust solutions that perform well under uncertainty, while 

satisfying the requirements of the building regulations and the preferences of 

stakeholders. It also defines the experiments that will be performed in chapters 

4 and 5 using a test cell and a real-world building, respectively. 

 

• Chapter 4 describes the application of the framework to a ‘test cell’ (that is, a 

single-zone office building located in London), with the objective of exploring 

the behaviour of the new robustness indicator. 

 

• Chapter 5 describes the application of the framework to a real-world building 

(that is, a new community centre that will be constructed in London), with the 

objective of demonstrating the potential of the new robustness indicator to 

support design exploration and decision-making under uncertain conditions in 

a real-world context. 

 

• Chapter 6 includes the final discussion and conclusions of this thesis. It also 

summarises any limitations and suggestions for future research. 

 

 

 

 



Chapter 2 

Literature review 

 

 

 

 

 

Chapter 2 explicates the role of robust optimization in the building design exploration 

process. The exploration of the design space during the concept and developed stages 

of the building design process is firstly discussed, this flagging up the lack of specific 

steps to generate design solutions and assess their performance. The role of building 

performance simulation and optimization in identifying a solution with a satisfactory 

performance, is then discussed. As this is subject to several uncertainties, uncertainty 

categorisation and quantification are described. The role of robustness assessment in 

ensuring performance and optimality despite such uncertainties, is finally discussed. 

 

2.1 The building design process 

The increased requirements for the successful completion of contemporary building 

projects has led to the involvement of a wide range of stakeholders1, this converting 

the design and construction industry into a more complex landscape. This complexity 

is intensified by the distinctive characteristics of each project, which complicate the 

identification of generalised patterns. Nevertheless, despite the unique character of 

each project, a number of key stages are suggested by the Royal Institute of British 

Architects (RIBA) (Sinclair 2013), in an effort to organise the procedure of briefing, 

designing, constructing and operating buildings. With the design exploration process 

being under the microscope of this work, this section will briefly introduce the key 

stages of building projects and then focus on the steps to explore the design space in 

order to obtain a successful solution during the concept and developed design stages. 

 
1 According to the RIBA Plan of Work (Sinclair 2013), the core roles of a building project include the 

client, project leader, lead designer, architect, building services engineer, civil and structural engineer, 

cost consultant, construction leader, contract administrator as well as health and safety adviser. 
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2.1.1 Key stages of building projects 

The RIBA Plan of Work (Sinclair 2013) aims to provide the stakeholders which are 

involved in the design and construction industry with the tasks and outputs that are 

required within the context of the design, construction and operation of buildings. This 

document was originally published in 1963 in order to ‘provide a model procedure for 

methodological working by the design team’ (Duffy and Hutton 2004), while its up-

to-date version was launched in 2013 (Sinclair 2013). According to the latest version, 

building projects can be divided into eight stages denoted by numbers (from 0 to 7), 

as displayed in figure 2.1: 0) Strategic Definition; 1) Preparation and Brief; 2) Concept 

Design; 3) Developed Design; 4) Technical Design; 5) Construction; 6) Handover and 

Close Out; and 7) In Use. 

 

Figure 2.1. The key stages of a building project according to the RIBA Plan of Work (Sinclair 2013) 

(adapted from Sinclair 2013). 

 

At each of these eight stages, the importance of assembling a successful collaborative 

project team is emphasised. Collaboration is vital for achieving a sustainable design 

solution, this also being one of the cornerstones of the integrated design process that 

was introduced in the 1990s, as a holistic approach to building design (Zimmerman 

2006). Contrary to the traditional design process, the integrated approach is inclusive 

as it encourages the active participation of stakeholders at all design stages. Section 

2.1.2 will focus on how stakeholders can explore the design space during the concept 

and developed building design stages, in order to identify a satisfactory solution. 
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2.1.2 Exploration during concept and developed design stages 

Zooming in on the concept and developed building design stages, the RIBA Plan of 

Work (Sinclair 2013) suggests that these ‘may require a number of iterations of the 

design’, without however providing further guidance about the steps that should be 

followed by stakeholders. Design exploration is iterative (Rezaee et al. 2015) as it is 

powered by a ‘constant search for a design direction’ (Ochoa and Capeluto 2009). The 

adoption of a design direction (also called concept) at the early design stages has been 

described by Darke (1979) as the ‘primary generator’ of the design process (as shown 

in figure 2.2). Its significance has also been underlined by Rowe (1991), who proposed 

the ‘a priori use of an organising principle or model to direct the decision-making 

process’. In the architectural world, this organising principle is also known as ‘parti’2 

and is associated with the sketches that the students of the French School of Arts had 

to prepare in only a few hours – and then elaborate (Gargus 1994). 

 

Figure 2.2. The map of the design process (adapted from Darke 1979). 

 

As mentioned by Mitchell et al. (1988), several renowned architects and artists such 

as Villard de Honnecourt, Leonardo da Vinci and Albrecht Dürer had implemented a 

similar design strategy to translate the general massing they had conceived into fully-

developed drawings. In the context of the building design process, massing refers to 

the three-dimensional form of the building. Massing does not however only influence 

the form of the building, but also its layout and circulation. Given that a building is an 

aggregation of zones accommodating different uses, massing is able to strengthen the 

relationship between individual zones, thus also influencing occupant experience. Due 

its critical role in the building design process, form is part of the exploration process 

in this thesis (section 3.2). However, note that, the exhaustive generation and aesthetic 

evaluation of alternative forms are not within the scope of this work, this requiring the 

continual interaction of the design team with the process (Turrin et al. 2011). 

 
2 ‘Parti’ is derived from the French verb partir, which means to depart. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CD8QFjAE&url=http%3A%2F%2Fwww.wga.hu%2Fbio%2Fd%2Fdurer%2Fbiograph.html&ei=qUWQVbXbE4SNsAGLrIyQBw&usg=AFQjCNFSUJ_FodGQMzK4lRFSmRgXJXaR2Q&sig2=mFgd8UBUj4K62Oy0aqUZGQ
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As stated in the Green Overlay to the RIBA Outline Plan of Work (Gething 2011), 

influential design parameters3 referring to construction and operation must also be 

explored and defined early in the design process to ensure satisfactory performance, 

with no specific steps being, however, determined. As highlighted by Laseau (2001), 

this iterative process commonly involves the following five steps: 

1. Definition of the problem; 

2. Generation of alternatives; 

3. Evaluation; 

4. Selection; and 

5. Communication. 

The first step of this process is the formulation of the design problem, this referring to 

the definition of design objectives, constraints and variables. To be able to define these 

details, attention must be paid by the project team to the initial brief that was agreed 

with the client during stage 1 (i.e. Preparation and Brief) of the RIBA Plan of Work 

(Sinclair 2013). The next step is to generate viable design alternatives, the performance 

of which will then be evaluated with respect to the defined objectives and constraints. 

Based on such evaluation results, a satisfactory design will be selected to be refined 

during the upcoming detailed stages. Prior to refinement, the selected solution must be 

carefully communicated to all team members to make sure the project will move in a 

direction that aligns with the requirements of the client. 

The use of parameters or variables to express a building during the design process is 

based on algorithmic thinking and is known in the literature as parametric design (Jabi 

2013). Its goal is ‘to produce a complete and consistent design model, which satisfies 

the given requirements’ (Motta 1998). In the late 1990s, a few computer-aided tools 

which supported the generation of design variations were launched. However, these 

did not offer a sophisticated interface (Hernandez 2006), hence discouraging designers 

from using them in a systematic way (Monedero 2000). Utilising parametric design to 

solve a building design problem was just popularised over the last few years with the 

 
3 Section 2.4.1.1 will present the design parameters that greatly influence performance prediction and 

should hence attract the attention of stakeholders when developing design alternatives. 
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release of more sophisticated tools which support the generation of several parametric 

design alternatives and therefore increase the efficiency of the search process (Oxman 

and Gu 2015). Grasshopper 3D (Rutten and Robert McNeel & Associates 2007) is a 

popular example, this being a graphical algorithm editor integrated with Rhinoceros 

3D (Robert McNeel & Associates 1998). Building Information Modelling (BIM) tools, 

such as Autodesk Revit (Autodesk 2020), are also based on parametric design thinking, 

although these are characterised by a component-based – rather than a form-finding – 

approach. Despite their great potential to generate design variations, parametric design 

tools still need to improve their interoperability with BPS tools to better support the 

performance-based evaluation of design alternatives, with tools such as Ladybug and 

Honeybee (Roudsari and Pak 2013) being promising to this end. 

Section 2.2 will cast light on the performance-based evaluation of design alternatives 

which takes into account the requirements of the building regulations, with the final 

selection of a suitable design solution being also dependent on the preferences of the 

different stakeholders. Note that, although the decision-making process may be here 

discussed, the focus of this thesis is primarily on the design exploration process – that 

is, the generation and evaluation of alternative designs – and not on the selection of 

the (single) design that will be refined later on in the design process. 

 

2.2 Performance-based building design 

As emphasised by Laseau (2001), evaluating the performance of design alternatives 

with respect to the defined objectives and constraints is an indispensable part of the 

design exploration process, which is also necessitated by the rising energy costs and 

environmental concerns (Elbeltagi et al. 2017). The goal of the explorative process is 

hence to identify a good configuration for the defined design variables depending on 

their economic and environmental performance (Geyer 2009). Building performance 

simulation (BPS) can support the identification of a sustainable solution by providing 

rapid feedback on the performance of design alternatives (Clarke and Hensen 2015). 

Section 2.2.1 will discuss the beneficial role of BPS. Section 2.2.2 will focus on the 

indicators and metrics for quantitatively comparing candidate design solutions. 
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2.2.1 The role of BPS in the design process 

Integrating BPS in building design exploration can support the designers in meeting 

the requirements of the brief that has been agreed with the client, but also complying 

with the Building Regulations Part L that includes the energy efficiency requirements 

for all buildings in England4. As described in the Green Overlay to the RIBA Outline 

Plan of Work (Gething 2011), Part L assessment is one of the principal sustainability 

checkpoints of the conceptual and design development stages. This can be completed 

with the assistance of an energy modelling tool that is approved by the Department for 

Communities and Local Government (DCLG). Two Approved Documents (L1A (UK 

Government 2013b) and L2A (UK Government 2013a)) are able to provide practical 

guidance about how to meet the requirements of the Building Regulations in the case 

of new dwellings and new commercial buildings, respectively. In the case of existing 

dwellings and existing buildings other than dwellings, the Approved Documents L1B 

(UK Government 2013c) and L2B (UK Government 2013d) can respectively assist the 

design team in ensuring compliance with the Building Regulations. 

As highlighted in the CIBSE Guide F (CIBSE 2012), Part L assessment can increase 

the energy efficiency of buildings by setting limits on their design flexibility, quality 

of construction and operation. Building energy efficiency has been the focus area of 

many institutions of architecture across the world, which have established energy and 

environmental policies to highlight the critical issue of climate change and encourage 

sustainable development. One of the cornerstones of those policies is the Declaration 

of Interdependence for a Sustainable Future, published in 1993 by the International 

Union of Architects (IUA) in order to ‘place environmental and social sustainability 

at the core of the professional responsibilities of architects’ (IUA 1993). This policy 

has been adopted by the Royal Australian Institute of Architects (RAIA), recognising 

‘the responsibility of the architectural profession to embrace an integrated approach to 

ecological, social and economic sustainability’ (RAIA 1993). 

The Climate Change Act that was launched in 2008 by the UK Government was also 

an effort to tackle climate change, declaring that ‘the net UK carbon account for the 

year 2050 needs to be at least 80% lower than the 1990 baseline’ (UK Government 

 
4 This thesis focuses on the Regulations in England, as the examined buildings are located in London. 
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2008), with a recent announcement requiring carbon to be brought to net zero by 2050 

(Priestley 2019). Given that buildings greatly contribute to the high level of greenhouse 

gases and hence to global warming, integrating BPS in the building design process can 

play an important role in achieving this significant drop (Hong et al. 2000). After the 

first applications in the 1960s, several researchers have supported the beneficial effects 

of using BPS tools (Augenbroe 2002, de Wilde et al. 2002, Bleil de Souza 2009, Clarke 

and Hensen 2015). These are referred to as ‘a piece of software that accommodates 

three-dimensional representations of the building and that predicts something useful 

about its performance’ (Milne 1991). They are also described as ‘design environments 

that allow designers to reach a good compromise between contradictory requirements’ 

(Morel and Faist 1993), such as energy efficiency and aesthetics (Appelbaum 2015). 

SBEM (Simplified Building Energy Model) (BRE 2018) is the software program 

developed by BRE (Building Research Establishment) for DCLG in order to predict 

the performance of non-domestic buildings and ensure compliance with the Building 

Regulations Part L. In the case of dwellings, SAP (Standard Assessment Procedure) 

(BRE 2012) is used to quantify performance with respect to space heating, domestic 

hot water, lighting and ventilation to satisfy the energy efficiency requirements of the 

Building Regulations. PHPP (Passive House Planning Package) (Passivhaus Institut 

2015) is used when aiming for a Passivhaus building ‘to ensure a high level of energy 

efficiency and comfort’ (International Passive House Association 2018). 

Instead of using one of these tools that carry out steady state calculations, designers 

can use dynamic modelling to predict the performance of the preferred design before 

developing it (Gething 2011). Several building energy performance simulation tools 

are commercially available, the capabilities of which have been contrasted to reveal 

the main features but also the limitations of each software tool (Crawley et al. 2008). 

Among them, EnergyPlus (U.S. Department of Energy 2016a) is a simulation engine 

that has been validated using the tests included in the ANSI/ASHRAE Standard 140-

2001, these enabling the identification of differences in predictions that are caused by 

software errors (Henninger and Witte 2004). EnergyPlus (U.S. Department of Energy 

2016a) can hence support the accurate prediction of the (energy and thermal comfort) 
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performance of design alternatives (Maile et al. 2007) using the metrics described in 

2.2.2, which aim to ensure compliance with building regulations and guides. 

2.2.2 Performance indicators and metrics 

As recommended by the Green Overlay to the RIBA Outline Plan of Work (Gething 

2011), the project team must update the building model as design develops and check 

its performance against targets (Gething 2011). The CIBSE Guide L (Cheshire and 

Grant 2007) also discusses the need for the project team to identify an appropriate set 

of design objectives (or performance indicators) and targets. The literature review on 

building design exploration and decision-making (Attia et al. 2013, Chardon et al. 

2016, Huang and Niu 2016, Østergård et al. 2016, Touloupaki and Theodosiou 2017, 

Kheiri 2018, Longo et al. 2019) reveals that the objectives that are most commonly 

considered by the project team when exploring the performance of design alternatives, 

are the following: a) energy use; b) cost; and c) thermal comfort. In case optimization 

is used to explore the design space, the defined design objectives also act as the goals 

of the optimization process. The requirements of the regulations and the needs of the 

client will inform the selection of objectives and the identification of relevant targets 

(Cheshire and Grant 2007). 

In particular, in the case of buildings other than dwellings, to ensure compliance with 

the Building Regulations Part L that sets the legal minimum standards with respect to 

energy efficiency, the designers must calculate the annual energy use of the proposed 

building and compare it with the energy use of a comparable ‘notional’ building (UK 

Green Building Council 2007). Both calculations make use of the standard data sets 

that are included in the National Calculation Method (NCM), as have been mandated 

by the Energy Performance of Buildings Directive (EU Parliament 2010). These sets 

can limit the design flexibility, quality of construction and operation of the building 

(CIBSE 2012), to make sure that it will meet the limiting fabric and building services 

parameter values and ultimately the carbon dioxide targets. In the case of dwellings, 

the minimum performance requirements are differentiated, these however not being 

the focus of this thesis. 

To ensure compliance with the Passivhaus Standard, heating energy demand must be 

less than or equal to 15 kWh/m2.yr (International Passive House Association 2018). In 
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climates where active cooling is required, cooling energy demand must similarly not 

exceed the limit of 15 kWh/m2.yr. Thermal comfort is also a critical performance 

indicator which can be quantified with the help of the percentage of hours per year that 

the internal temperature is over 25 ℃. To guarantee comfort in warm conditions, no 

more than 10 % of hours must exceed that temperature limit (International Passive 

House Association 2018). Although the PHPP (Passivhaus Institut 2015) estimates the 

percentage of discomfort hours, using a dynamic modelling tool is recommended for 

comfort calculations, as it is more likely to lead to a realistic prediction compared with 

a steady state tool (UK Green Building Council 2007). 

In particular, dynamic tools such as EnergyPlus (U.S. Department of Energy 2016a) 

can provide a more accurate prediction of temperatures in spaces and consequently a 

better estimate of thermal comfort (Maile et al. 2007). Nevertheless, several metrics 

are available in the literature for quantifying the performance of design alternatives 

with respect to thermal comfort (Bleil de Souza and Tucker 2015), and providing 

designers with ‘realistic and measurable targets’ (Cheshire and Grant 2007). Some of 

the most prevalent metrics are displayed in table 2.1. As proposed by the ASHRAE 

Standard 55-2013 (ASHRAE 2013), for a mechanically conditioned building, the 

comfort zone is defined as ‘conditions falling within and including PMV5 levels from 

-0.5 to +0.5’. 

For a naturally ventilated building, the ASHRAE Standard 55-2013 (ASHRAE 2013) 

states that the thermal environment should be considered as acceptable if it meets the 

80% acceptability limit – that is, when the indoor operative temperature is no greater 

than 3.5 ℃ from the comfort temperature that is based on the daily average outdoor 

temperatures of the previous 30 days. Based on the British Standard 15251:2007 (BS 

EN 2007), the operative temperature must be no greater than 3.0 ℃ from the comfort 

temperature, which is based on the weighted average of the outdoor air temperature of 

the previous 7 days. Additional metrics for evaluating comfort performance can be 

found in the literature, this revealing the uncertainty in the definition of performance 

indicators and metrics that should be further investigated in the future. 

 
5 That is, the Predicted Mean Vote based on Fanger’s comfort model (Fanger 1970). 
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Table 2.1. Metrics for evaluating the thermal comfort performance of buildings based on their 

ventilation type and applied comfort model. 

Ventilation type Applied method Metric Reference 

Mechanical 
Deterministic thermal 

comfort model 
-0.5 ≤ PMV ≤ +0.5 

ASHRAE Standard 55-

2013 (ASHRAE 2013) 

Natural 
Adaptive thermal 

comfort model 

Operative temperature - 

Comfort temperature ≤  

3.5 ℃ (80% acceptability) 

ASHRAE Standard 55-

2013 (ASHRAE 2013) 

Operative temperature - 

Comfort temperature ≤  

3.0 ℃ (Category II) 

BS EN 15251:2007 (BS 

EN 2007) 

 

2.3 Multi-objective optimization 

As discussed in section 2.2, BPS can assist designers in meeting the defined objectives 

and constraints. However, the commonly-used trial-and-error process of identifying an 

‘optimum’ design solution may be misleading and time-consuming (mainly in the case 

of a large design space), this revealing the need for a more efficient exploration method 

(Wang et al. 2005). This need has resulted in the integration of optimization into the 

building design process over the last few years, as it can support the identification of 

solutions that best satisfy objective and constraint functions (Machairas et al. 2014). 

Optimization is hence described as the process of identifying the best solution (i.e. 

combination of design parameter values) – or set of solutions – with respect to one or 

more objective and constraint functions. Nevertheless, this process may prove to be 

complex due to the plethora of objective functions (multi-objective optimization) and 

the uncertainty in the representation of input data – which will be further discussed in 

section 2.5.2.2 that focuses on robust optimization. Section 2.3.1 will discuss relevant 

benefits and limitations. Section 2.3.2 will present common optimization algorithms. 

2.3.1 Benefits and limitations 

By evaluating the performance of two algorithms in the context of a building design 

problem that aimed to minimise the annual energy consumption of an office building, 

Wetter and Wright (2003) demonstrated that simulation-based optimization can lead 

to a great reduction in energy use (up to 32% (depending on the location) for the case 

study building) and hence yield considerable economic gains. Optimization is used to 

replace the tedious trial-and-error process of identifying a suitable design solution as, 
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when coupled with a thermal simulation tool, it enables the efficient exploration of the 

design space (for a pre-defined problem) (Wang et al. 2005). It can therefore facilitate 

the comparison of several design alternatives with respect to prevalent performance 

indicators, such as energy use, cost or thermal comfort (Attia et al. 2013, Chardon et 

al. 2016, Huang and Niu 2016, Østergård et al. 2016, Touloupaki and Theodosiou 

2017, Kheiri 2018, Longo et al. 2019). 

Equation 2.1 represents a single-objective optimization problem that aims to optimise 

– and, in particular, to minimise – an objective function 𝑓(𝑥), subject to a constraint 

𝑔(𝑥) ≤ 𝑏 (if applicable) (Caramia and Dell ́Olmo 2008): 

 min 𝑓(𝑥) subject to 𝑔(𝑥) ≤ 𝑏 (2.1) 

Nevertheless, multi-objective optimization is recommended to support green building 

design (Wang et al. 2005), with designers therefore needing to account for more than 

one performance indicator when comparing design alternatives. Prowler (2008) also 

highlights the importance of considering multiple objectives to achieve a successful 

solution. This is similarly suggested by the integrated design approach (described in 

section 2.1.1), which highlights the need to explicitly define all objectives early on to 

inform decisions and prevent critical conflicts. Lawson (1997) also states that building 

design solutions should be ‘an integrated response to a complex, multi-dimensional 

problem’, with the multi-dimensionality of real-world problems calling for solutions 

that meet several, often-conflicting objectives. 

There are two main methods to resolve various conflicting objectives in optimization 

problems: the weighted-sum method and Pareto optimality (Evins 2013). In the case 

of the weighted-sum method for multi-objective optimization, the various objectives 

must be combined to form a single objective function – that will then be optimized as 

described in equation 2.1. Equation 2.2 reveals the need to assign a weight 𝑤𝑖 to each 

objective 𝑓𝑖(𝑥) in order to define this aggregate function (Marler and Arora 2010): 

 ∑ 𝑤𝑖

𝑘

𝑖=1

𝑓𝑖 (𝑥) (2.2) 

where 𝑘 is the total number of objectives (prior to aggregation). 
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However, as the choice of these weights affects optimization results (Emmerich and 

Deutz 2006), this method is suitable for design stages where stakeholder preferences 

are already consolidated and hence their a priori articulation is desirable (Marler and 

Arora 2010). On the other hand, determining scalar weights is not compulsory in the 

case of Pareto optimization, which can therefore support the a posteriori articulation 

of preferences. A solution is called Pareto optimal, if it is not dominated by any other 

solution (Branke et al. 2008). Mathematically, 𝑥∗ (that is, a feasible combination of 

design variable values in 𝑋) is Pareto optimal, ‘if there exists no feasible 𝑥, which 

would decrease some criterion without causing a simultaneous increase in at least one 

other criterion’ (Coello et al. 2007): 

 
𝑓𝑖(𝑥) >  𝑓𝑖 (𝑥∗) for at least one 𝑖 ∈ 𝐼, 𝐼 = {1, … , 𝑘} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚}  
(2.3) 

where 𝑚 is the total number of feasible solutions in the feasible region 𝑋. 

As revealed by the review conducted by Evins (2013), optimization is applicable to 

various fields of sustainable building design such as envelope design (this referring to 

form and construction) (Al-Homoud 1997, Caldas and Norford 2002, Coley and 

Schukat 2002, Wetter and Polak 2005, Diakaki et al. 2008, Wright and Mourshed 

2009, Tuhus-Dubrow and Krarti 2010, Leskovar and Premrov 2011); configuration 

and control of building systems (Wang and Jin 2000, Chow et al. 2002, Wright et al. 

2002, Lu et al. 2005, Fong et al. 2006, Zhang et al. 2006, Cassol et al. 2011, Yang and 

Wang 2012); and renewable energy generation (Charron and Athienitis 2006, Li et al. 

2006, Kumar et al. 2008, Ren et al. 2009, De Ridder et al. 2011, Bornatico et al. 2012, 

Milan et al. 2012, Vetterli and Benz 2012).  

Multi-objective optimization can bring all these fields together, therefore enabling a 

holistic approach to building design (Bichiou and Krarti 2011, Chantrelle et al. 2011, 

Hamdy et al. 2011). Accounting for multiple objectives can consequently moderate 

the decision bias that characterises the conventional one- and two-objective problem 

formulations, via providing the DMs with additional trade-offs that can increase the 

understanding of the consequences of decisions (Kollat et al. 2011). Such trade-offs 

are visualised in figure 2.3 for a bi-objective problem, with rhombuses indicating the 

non-dominated design solutions that form the two-dimensional Pareto optimal front 
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(highlighted with a dashed line). However, in the case of a multi-dimensional Pareto 

front, calculating and visualising trade-offs proves to be challenging (Kotireddy et al. 

2018). This is due to the difficulty in, firstly, calculating a multi-dimensional Pareto 

optimal surface and, secondly, disseminating it to the DMs in a user-friendly manner 

(Deb and Saxena 2005). Accounting for uncertain factors (e.g. weather variations, 

occupant behaviour and randomness of thermal properties) increases the complexity 

of calculating and visualising trade-offs (Tian et al. 2018), which are also vulnerable 

to the capabilities of the selected optimization algorithm (Evins 2013). 

 

 

 

 

 
 

2.3.2 Search and optimization algorithms 

Given that the capabilities of optimization algorithms can affect the optimized trade-

offs (Wetter and Wright 2003), selecting a suitable algorithm is important to finding 

the Pareto optimal front for a given problem. Suitability is however case-sensitive, as 

it depends on the characteristics of the problem that needs to be solved, such as the 

size of the design space (Machairas et al. 2014). Choosing an optimization algorithm 

is also reliant on the desirable trade-off between computational run-time and solution 

quality, as less accurate results may require less computational time but may possibly 

fail to find the global optimum (Brownlee and Wright 2015). 

Optimization algorithms are commonly subdivided into two categories: deterministic 

and probabilistic (or stochastic) (Bartz-Beielstein and Zaefferer 2017). Deterministic 

optimization algorithms can guarantee convergence to the true Pareto front, but at the 

cost of increased computational time (Emmerich and Deutz 2006). Exhaustive search 

is a simple deterministic approach to optimization that can result in the identification 

of the global optimum (for the defined problem) by evaluating all possible solutions 

Figure 2.3. The Pareto front for a (hypothetical) bi-objective problem. 
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(Barhen et al. 1997). In contrast to probabilistic optimization algorithms, this search 

method is independent of the number of objective and constraint functions and it also 

supports the post-processing of results – without the need to reformulate the problem 

(ur Rehman et al. 2017). 

On the contrary, probabilistic optimization algorithms are not guaranteed to find the 

global optimum (Brownlee and Wright 2015) as the discontinuity and/or ruggedness 

of the fitness landscape may obstruct their convergence (Emmerich and Deutz 2006). 

However, such algorithms require less computational time, especially in the case that 

a high level of confidence in convergence is not necessary (Wetter and Wright 2004). 

Evolutionary algorithms can result in a satisfactory approximation set to the globally 

optimal solution set in a single execution (Fleming et al. 2005). By working with a 

population of solutions and employing Darwin’s theory of the survival of the fittest, 

they can search for several Pareto optimal solutions in one run, and provide the DMs 

with a set of options (Branke et al. 2008). There are several evolutionary algorithms 

available in the literature, with NSGAII (Deb et al. 2000) being more widely applied 

(Reed et al. 2013, Kerdan et al. 2017). Note that, ε-NSGAII has extended NSGAII to 

adjust the population size based on the problem complexity (Kollat et al. 2008). 

Being also stochastic in nature, surrogate models (or metamodels) such as Kriging (van 

Beers and Kleijnen 2003) have been used over the last decades for accelerating the 

search process and therefore improving run-time performance (Bartz-Beielstein and 

Zaefferer 2017). Metamodels replace the original, time-intensive models with simpler 

and faster models, thus being computationally inexpensive to run (Van Gelder 2014). 

In other words, they are fit to original data, but have a different parametric structure 

(Eisenhower et al. 2012b). Although metamodels decrease computational run-time, 

they increase the risk of errors in optimization (Nguyen et al. 2014). Their behaviour 

within uncertain optimization problems must also be further investigated (Ramallo-

González et al. 2015), as metamodels were originally applied to such problems only a 

few years ago (Marijt 2009), yet with limitations on the considered uncertainties. 
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2.4 Uncertainty analysis 

Being a concept generation procedure that involves the interaction between several 

stakeholders, the building design process is characterised as an ‘uncertain exchange of 

information’ (Gray and Hughes 2001). In addition to any design parameter variations, 

the building design process is also susceptible to environmental parameter variations, 

which can remarkably affect building performance prediction (Goh and Tan 2009) and 

Pareto optimality (Avigad and Branke 2008). Uncertainty analysis (UA) is essential for 

dealing with this complex process as it allows the ‘determination of the uncertainty in 

results that derives from uncertainty in inputs’ (Helton et al. 2006). This section will 

reveal why UA must be part of the building design process and will categorise common 

sources of uncertainty that affect BPS and optimization results (as discussed in chapter 

1). The most influential sources will be presented, this being beneficial to the definition 

of building design solutions and uncertain conditions. Their quantification will also be 

described, this being vital for populating the thermal model. 

2.4.1 Classification of uncertainties 

Even though BPS can support the building design exploration process, its potential is 

restricted by the uncertainties that are inherent in the definition of all building design 

problems (Clarke 2001), these affecting the accuracy of performance prediction and 

being able to cause a gap between predicted and actual performance (Demanuele et al. 

2010). As recommended by Hopfe and Hensen (2011), taking into consideration these 

uncertainties can strengthen the confidence in the BPS outcomes, and hence improve 

design support and boost decision-making. As also emphasised by Sun et al. (2014), 

the UA of building performance can assist the decision-makers (DMs) in taking risk-

conscious decisions, and therefore increase the robustness of performance prediction 

(Clarke 2001). Despite its benefits though, it is not yet regarded as standard practice 

in building design exploration (Tian et al. 2018), which can be partly attributed to the 

lack of tools that deal with the various sources of uncertainty and thus eliminate any 

associated risks in decision-making (Martani 2015). 

The appropriate treatment of uncertainties is crucial in analysing complex problems 

and informing decisions (Helton et al. 2010), this however being a great challenge due 

to the presence of different types of uncertainty in real-world problems. Kennedy and 
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O’Hagan (2001) classify the uncertainties that are generally associated with the use of 

computational models into the following six main categories: parameter uncertainty; 

parametric variability; model inadequacy; observation error; residual variability; and 

code uncertainty. Parameter uncertainty derives from the lack of knowledge about the 

value of a model input – this being considered as an unknown parameter. Parametric 

variability stems from the incapability to control an input – with its value thus varying 

according to a defined distribution. Model inadequacy is due to the fact that there is 

no perfect model and thus there is always an inconsistency between the predicted and 

real values. Observation errors are considered in the case that the model configuration 

is based on real-world observations, these being part of the residual variability, i.e. the 

variability that is associated with unrecognised conditions. Finally, code uncertainty 

arises from the fact that, in practice, the actual relationship between input and output 

is only known after the successful running of a code, this being questionable in the 

case of several inputs of interest that result in an increased computational effort.  

Focusing on engineering problems, Faber (2005) divides input uncertainties into the 

following three categories: inherent; model; and statistical. Inherent uncertainties are 

due to the fact that nature is not deterministic – or even if it is, our knowledge about it 

remains incomplete. There is therefore an inherent natural variability, which cannot be 

eliminated with the collection of additional data. In contrast, model uncertainties and 

statistical uncertainties can be reduced with the update of available information as 

they arise from the lack of knowledge about input parameter values, this affecting the 

setup and level of detail of the model as well as the sampling and exploration of the 

design space, respectively. 

In the context of building design problem-solving, de Wit (2001) acknowledges the 

subsequent four principal types of uncertainty: scenario; numerical; modelling; and 

specification. Scenario uncertainties derive from the uncontrolled behaviour of the 

‘external’ conditions the building is exposed to, these referring to the outdoor climate, 

the internal heat gains from people, lighting and equipment, and the control of the 

windows, solar shadings and the HVAC system. Numerical uncertainties are caused 

by errors in simulation, these however being eliminated – and consequently ignored – 

in the case of an appropriate specification of discretisation and timesteps. Modelling 
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uncertainties stem from the simplifications and assumptions that are entailed in the 

development of each building model (due to the difficulty in representing complex 

physical processes). Specification uncertainties emerge from the lack of sufficient 

information on the properties of the building, these being related to its geometry and 

construction materials. 

A similar categorisation is introduced by MacDonald (2002), who casts light on the 

quantification of the effects of the following predominant sources of uncertainty: the 

stochastic processes that refer to the assumptions on the weather, as well as on the 

occupancy and operation of the building; the simulation program capabilities and, in 

particular, the algorithms for the various heat and mass transfer processes; the model 

realism that is related to the quality of the representation of reality by the model; the 

values of the input parameters that are used in case there are no measured data; and 

the design variations that are caused by changes in the various design aspects. 

Although the detailed classification of the different sources of uncertainty may vary 

from case to case and/or from scholar to scholar due to the fact that there is still not a 

widely-applied categorisation, their analysis is commonly (Paté-Cornell 1996, Dessai 

and Hulme 2004, Helton et al. 2006, Der Kiureghian and Ditlevsen 2009) performed 

on the basis of their reducibility (i.e. their capability of being reduced). In this way, 

uncertainties are divided into the following two principal categories: epistemic; and 

aleatoric. In more detail, ‘uncertainties are characterised as epistemic, if the modeller 

sees a possibility to reduce them by gathering more data or by refining the model, and 

as aleatoric, if he/she does not foresee the possibility to reduce them’ (Der Kiureghian 

and Ditlevsen 2009). Since epistemic uncertainty emerges from the lack of knowledge 

about design parameter values and it can thus be eliminated with the update of the 

available information, it is also characterised as subjective and reducible (Helton et al. 

2010). On the contrary, aleatoric uncertainty is referred as stochastic and irreducible 

uncertainty, as it arises from the natural variability in the behaviour of any external 

conditions, which cannot be mitigated by gathering additional information. 

In this way, the uncertainties that are detected in the formulation of building design 

problems and the use of BPS for design support can be divided – depending on their 

capability of being reduced or not, respectively – between epistemic and aleatoric 
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(table 2.2). Epistemic uncertainties emerge from the lack of detailed information on 

the form and construction of the building, this eventually resulting in a high number 

of unknown design parameters and potential values, and therefore in a broad range of 

possible performance outcomes. However, while proceeding to the final stage of the 

building design process, the amount of detailed design information increases thanks to 

the decisions that are taken by the DMs in an effort to successfully complete the design 

project. In this way, as the design progresses, the size of the design space – that is, the 

number of alternative design options that need to be explored – decreases, this resulting 

in the gradual elimination of epistemic uncertainties. 

Table 2.2. Categorisation of common sources of uncertainty in building design problems on the basis 

of their reducibility. 

Main categories Cause Reducibility Subcategories 

Epistemic 
The lack of detailed 

design information. 
Reducible 

Form 

Construction 

Systems and operation 

Aleatoric 

The natural variability 

in the behaviour of 
external conditions. 

Irreducible 

Weather 

Occupancy 

Construction (actual 

performance) 

Systems and operation 

(actual performance) 

 

On the contrary, the increase in the design detail does not necessarily result in the 

elimination of aleatoric uncertainties, which emerge from the assumptions that need to 

be taken with respect to the weather, as well as the occupancy and operation of the 

building. As highlighted by Clarke (2001), weather is stochastic and hence inherently 

uncertain, this jeopardising the accuracy of the BPS outcome. Another obstacle to the 

accuracy of the performance prediction is the difficulty in accounting for any micro-

climate phenomena, this being commonly attributed to the unavailability of on-site 

measurements. As a result, the adjustment of the data that is collected from a nearby 

meteorological station is required in order to also take into consideration the urban 

surroundings of the building, a process that however commonly results in intensive 

computations and is therefore being skipped (Sun et al. 2014). The weather-based 
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uncertainties that are associated with the prediction of the future performance of the 

building and the influence of climate change on it are similarly frequently ignored in 

the favour of simplicity (Rastogi and Andersen 2016). 

Occupant-related uncertainties are also commonly disregarded due to the difficulty in 

controlling the random and unpredictable variability in occupant behaviour (O’Brien 

2013). In this way, general – and often unreliable – assumptions are taken in order to 

describe the presence and activity of occupants, as well as their control actions that 

affect the operation of the building in an effort to improve its indoor environmental 

conditions (thermal; air quality; light; and noise) (Hoes et al. 2009). As indicated by 

Soebarto and Williamson (2001), these assumptions may however have significant 

implications in building performance prediction, as they determine the density and 

schedule of occupancy, and thus the energy needs for lighting, equipment, heating, 

cooling, ventilation and hot water. However, in case occupants cannot interfere in the 

control of the HVAC system, the uncertainties that are associated with the undecided 

operation of the system (e.g. the selection of the thermostat setpoint temperature, air 

supply rate etc.) are considered as epistemic (table 2.2). 

Finally, although the uncertainties that are associated with the selection of building 

materials can be eliminated within the design process and are therefore considered as 

epistemic, the uncertainties that stem from the specification of their thermophysical 

properties cannot be removed and are thus characterised as aleatoric. In particular, the 

values of the thermophysical properties of materials (thickness, thermal conductivity, 

density and heat capacity, as well as vapour permeability, roughness, emissivity and 

absorptivity) cannot be accurately predicted due to the influence of several, randomly 

varying factors that cannot be controlled by the designers (Hopfe and Hensen 2011). 

These factors are most commonly related to the moisture content, temperature and age 

of the materials (Huang et al. 2015); the quality of workmanship during installation 

(Salonvaara et al. 2001); and any probable errors in measurement (MacDonald 2002), 

with the overall uncertainty leading to deviations from initial design specifications and 

should thus be considered during design exploration (Malkawi and Augenbroe 2004). 

Similarly, even though the uncertainty that is related to the selection of infiltration rate 

can be eliminated during the design process, its inherent variability – and hence its 
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actual performance – cannot be accurately predicted. In particular, the factors that 

commonly affect the unintended leakage of air through the building fabric are: the 

quality of construction; the usage of the building (such as the opening and closing of 

windows); and the weather (including local micro-climate phenomena) (MacDonald 

2002). The infiltration rate of the building is also a function of its age, this possibly 

causing cracks at the joints (Heo et al. 2012). However, there is not adequate data for 

making a generalisation about the correlation between infiltration rate and age – or any 

other building feature (Persily 1998, 1999). 

2.4.1.1 Influential design parameters 

Given the presence of several sources of epistemic uncertainty, the identification of 

the most influential parameters among them can indicate the principal areas of focus 

during the design exploration process and thus minimise time and effort. Considering 

the impact of any unknown parameters on performance prediction can hence inform 

decisions throughout the building design process, and especially at the early design 

stages where the majority of parameters have not been finalised yet, this providing a 

greater potential for creating a best-performing solution (Farrar-Nagy et al. 2002). In 

addition to this, at early design stages, it is more important to determine the ranking of 

the importance of the different properties of the building, rather than their accurate 

values (Malkawi and Augenbroe 2004). 

Even though the precise ranking of the impact of any unknown design parameters on 

building performance prediction may differ from case to case, an extensive literature 

review can reveal the elements that are most commonly responsible for variations in 

BPS outcomes and should thus be part of design exploration. Note that, the reported 

cases focus on the impact of different sources of epistemic uncertainty on energy use, 

cost and thermal comfort, these being the most prevalent objectives (Attia et al. 2013, 

Chardon et al. 2016, Huang and Niu 2016, Østergård et al. 2016, Touloupaki and 

Theodosiou 2017, Kheiri 2018, Longo et al. 2019). Sensitivity analysis (section 2.4.2) 

may be used during design exploration to enable a customised list of influential design 

parameters (based on the mapping from analysis inputs to analysis outputs). 

In general, energy consumption is concluded to be higher in non-domestic buildings 

(compared with residential buildings), with the highest rates being observed in retail, 
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offices, hotels and restaurants (Pérez-Lombard et al. 2008). Building typology is thus 

a fundamental factor (Moran et al. 2012) as it affects not only the use and operation of 

the building, but also its form, this defining the total surface area that is subject to both 

heat losses and solar gains (Chiras 2002). The importance of form is verified in the 

literature by the high sensitivity of performance prediction to form-related design 

parameters, which are commonly the following: total floor area (Firth et al. 2010, 

Cheng and Steemers 2011, Hopfe and Hensen 2011, Hygh et al. 2012, Wei et al. 2016); 

number of floors (Hygh et al. 2012, Wei et al. 2016); storey height (Firth et al. 2010); 

total length and width (Yildiz et al. 2012); aspect ratio6 (Hygh et al. 2012, McKeen 

and Fung 2014); window area (Hopfe and Hensen 2011, Ballarini and Corrado 2012, 

Yildiz et al. 2012); window-to-wall ratio (WWR) (Hygh et al. 2012, Yang et al. 2016); 

and solar shading (Ballarini and Corrado 2012). 

Regarding the epistemic uncertainties that stem from the undecided (at an early stage) 

construction of the building, the most influential sources are generally related to the 

thermal transmittance of the elements that the building envelope consists of, this also 

being known as U-value. In more detail, energy consumption is highly sensitive to the 

U-value of walls, roof and windows (de Wilde and Tian 2009, Demanuele et al. 2010, 

Firth et al. 2010, Cheng and Steemers 2011, Tian and de Wilde 2011, Ballarini and 

Corrado 2012), as this expresses the rate of heat transfer through the building skin 

(measured in Watts per m2 of construction and Kelvin of temperature difference across 

it). Air permeability is another influential factor (de Wilde and Tian 2009, Heiselberg 

et al. 2009, Breesch and Janssens 2010, Demanuele et al. 2010, Hopfe and Hensen 

2011, Tian and de Wilde 2011, Tian and Choudhary 2012, Kim et al. 2014, Heo et al. 

2015), which represents the volume of air leakage through the building envelope 

(measured in m3 of air per hour and m2 of envelope, commonly at 50 Pa differential 

pressure between inside and outside the building). 

With respect to the epistemic uncertainties that are associated with the operation of 

the HVAC system, the outdoor air supply rate is one of the most influential design 

parameters (Lam and Hui 1996, Heiselberg et al. 2009, Tian and Choudhary 2012, 

Rasouli et al. 2013), as it defines the amount of fresh air that flows to the conditioned 

 
6 Aspect ratio interprets the building’s footprint as a ratio of length to width. 
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building zone(s). The thermostat setpoint temperature for both heating and cooling 

(when applicable) are also concluded to significantly influence building performance 

prediction (Lam and Hui 1996, Lam et al. 2008, Brohus et al. 2009, Demanuele et al. 

2010, Firth et al. 2010, Cheng and Steemers 2011, Tian and Choudhary 2012, Wright 

et al. 2012, Daly et al. 2014), as they control the zone air temperature.  

The specific fan power of the air distribution system is another influential parameter 

(Heiselberg et al. 2009), this expressing the total amount of electrical power that is 

provided to the supply and extract fans, divided by the design air flow rate through the 

system (most commonly expressed in Watts of power per litre of air and second) (UK 

Government 2013e). The type and characteristics of the selected heating and cooling 

system(s) are also very important factors (Hamdy et al. 2011). In particular, building 

performance prediction is found to be sensitive to the efficiency of the system (Firth et 

al. 2010, Cheng and Steemers 2011, Tian and de Wilde 2011, Moran et al. 2012, Heo 

et al. 2015), this representing (in %) the useful energy output divided by the energy 

input (i.e. fuel or electricity) delivered to the system, as determined by the appropriate 

test methods for that type of system (UK Government 2013e). Additional factors that 

are related to the different components of the HVAC system (such as the hot water 

temperature of the heating system, the coefficient of performance of the chiller etc. 

(Eisenhower et al. 2012a)) should be considered for the correct sizing of the system, 

this however being out of the scope of this thesis. 

2.4.1.2 Uncertain conditions 

Ramallo-González et al. (2015) acknowledge three main types of aleatoric uncertainty 

that should be considered in robust building design problem-solving: environmental; 

behavioural; and workmanship and the quality of building elements. Environmental 

uncertainty refers to the uncertainty in the weather prediction and in particular, the use 

of synthetic data to express a real year and the influence of climate change. Behavioural 

uncertainty includes any parameters that are related to human behaviour. Uncertainty 

in workmanship and the quality of building elements expresses possible variations in 

the U-values of materials and the infiltration rate of the building. The consideration of 

all these uncertainties can be facilitated by the development of scenarios, these being 

possible future states that represent plausible conditions (Mahmoud et al. 2009). 
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In more detail, BPS tools contain simplifications about the actual weather, as they 

make use of standard weather data sets that are based on historic data and will thus be 

different from the actual conditions during the operation of the building (Cheshire and 

Menezes 2013). As the unpredictable nature of weather conditions can result in great 

differences between predicted and real performance values, taking into consideration 

possible weather variations is essential for reinforcing the robustness of BPS results 

(Wang et al. 2012). Designers should hence test the performance of candidate design 

solutions using different weather data sets that represent possible weather scenarios 

(Cheshire and Menezes 2013). Given the potential consequences of climate change on 

the building and its occupants (such as discomfort and reduced productivity) (de Wilde 

and Coley 2012), designers should also assess the resilience of the building to possible 

future changes in climate (Gething 2011). They should thus consider climate change 

scenarios to enable the quantification of the influence of climate change on building 

performance prediction (Holmes and Hacker 2007, Wan et al. 2011, Roetzel and 

Tsangrassoulis 2012, Wang et al. 2012, McLeod et al. 2013, Nik and Kalagasidis 

2013, Karimpour et al. 2015, Rastogi and Andersen 2016). Since determining the 

likelihood of these scenarios is difficult due to the natural variability in the behaviour 

of the weather, the selection of scenarios can be informed by the attitude of the client 

and the project team towards risk (Hacker et al. 2009). 

Occupant density is another source of aleatoric uncertainty, which cannot be reduced 

due to the uncontrollable nature of occupant behaviour (Tian et al. 2018). Occupant 

behaviour is an important contributor to the overall uncertainty of BPS (Macdonald 

and Strachan 2001, Clevenger and Haymaker 2006, Hoes et al. 2009, Guerra-Santin 

and Itard 2010, Virote and Neves-Silva 2012, Wang et al. 2012, O’Brien 2013, 

Mavrogianni et al. 2014, Silva and Ghisi 2014, Yan et al. 2015, Hong et al. 2016, 

Gaetani et al. 2017, Sun and Hong 2017). In addition to occupant density, the control 

of the windows, solar shadings, artificial lighting, equipment and the HVAC system 

are also occupant-related uncertain aspects – if the users of the building can however 

interfere in the control of its different systems (Gaetani et al. 2017). 

In addition to any uncertainties in weather and occupancy, designers should also take 

into consideration possible variations in the actual performance of construction and, 
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particularly, in the U-value of different building elements and the infiltration rate of 

the building envelope (Ramallo-González et al. 2015). Such variations can be caused 

by both measurement errors and environmental conditions (such as moisture), which 

can affect the thermophysical properties of materials (such as thermal conductivity, 

density and heat capacity) (Tian et al. 2018). BPS tools do not, however, capture such 

uncertainties, this eventually resulting in incorrect assumptions and hence misleading 

performance values (Li et al. 2015). Due to their impact on performance prediction 

(MacDonald 2002, Corrado and Mechri 2009, Breesch and Janssens 2010, Hopfe and 

Hensen 2011, Silva and Ghisi 2014), these uncertainties must be included in building 

performance analysis. Chapter 3 will suggest how all the aforementioned uncertainties 

can be integrated into the building design exploration process. 

2.4.2 Uncertainty quantification 

As stated in section 2.4.1.1, any influential design parameters (e.g. the glazing area, 

shading strategy, level of thermal mass etc.) must be explored and specified early on 

in the design process to ensure satisfactory performance (Gething 2011). However, in 

real practice, the detailed information about those parameters may not be available at 

the early design stages, this hindering the accurate population of the thermal model 

and thus the confidence in its performance prediction. As stated in the CIBSE Guide 

L about sustainability (Cheshire and Grant 2007), legislation (building regulations) 

and client requirements are the two main drivers of building projects that should be 

considered from the very beginning to avoid unexpected prerequisites and hence save 

time, effort and money later on. For buildings located in England, energy efficiency 

requirements are incorporated in four Approved Documents7 that provide guidance for 

ensuring compliance with the Building Regulations. Table 2.3 displays the limiting 

values for different fabric parameters as obtained from the Approved Document L2A 

about the conservation of fuel and power in new buildings other than dwellings (UK 

Government 2013a). The table also displays the limiting values for compliance with 

the Passivhaus Standard (International Passive House Association 2018). 

 

 
7 L1A (new dwellings); L1B (existing dwellings); L2A (new buildings other than dwellings); and L2B 

(existing buildings other than dwellings). 
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Table 2.3. Limiting values for different fabric parameters according to the Passivhaus Standard and 

Building Regulations Part L. 

 Limiting value 

Fabric 

parameter 

Passivhaus Standard  

(International Passive House 

Association 2018) 

UK Building Regulations 

(UK Government 2013a) 

Wall 0.15 W/m2K 0.35 W/m2K 

Roof 0.15 W/m2K 0.25 W/m2K 

Window 0.80 W/m2K 2.20 W/m2K 

Infiltration rate 0.60 ac/h at 50 Pa 10 m3/hm2 at 50 Pa 

 

By increasing the amount of available information and limiting the design parameter 

values, building regulations can assist the design team in eliminating the (epistemic) 

uncertainties that arise from the lack of detailed knowledge and excluding infeasible 

design choices. Quantifying these sources of uncertainty is required for ameliorating 

the confidence in simulation (Macdonald et al. 1999). As stated by Tian et al. (2018), 

there are two principal methods for quantifying uncertainties in building performance 

assessment: forward and inverse methods. Forward uncertainty quantification aims to 

predict building performance by making use of thermal models with input variations, 

while inverse uncertainty quantification aims to quantify any unknown parameters by 

making use of measurement data that has been collected from existing buildings. 

In forward UA, assigning deterministic values to the design parameters of the model 

would ignore the (aleatoric) uncertainties that are related to the inherent variability in 

the behaviour of any external conditions (such as the weather), this jeopardising the 

confidence in the predicted values of key performance indicators (Hopfe et al. 2013). 

As stated by Tian et al. (2018), there are two main methods for treating uncertainties: 

probabilistic and non-probabilistic. In probabilistic analysis, the probability of each 

uncertain value occurring is assumed to be known and candidate design solutions are 

evaluated upon the probability density function of key performance indicators (Van 

Gelder et al. 2014). In non-probabilistic analysis, the probability of occurrence of each 

uncertain input value is unknown, this obstructing the probabilistic treatment of output 

distributions (Rysanek and Choudhary 2013). 

The probabilistic approach can be subdivided into sampling-based and non-sampling 

methods (Xiu 2009). Sampling-based methods such as Monte Carlo are characterised 
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as ‘external’ methods because the simulation engine is treated like a black box, with 

the model being run several times with different samples (Macdonald and Strachan 

2001). The analysis of the differences in performance predictions is then required to 

draw conclusions on the effect of uncertainties (MacDonald 2002). On the other hand, 

non-sampling methods such as stochastic differential equations are characterised as 

‘internal’ methods. Parameters are here represented as a function of uncertainty, this 

meaning that the underlying algorithm of the simulation engine has to be altered so 

that uncertainty is included at all stages (MacDonald 2002). 

Regarding the sampling-based methods for uncertainty analysis (UA) and sensitivity 

analysis (SA), the following five steps are commonly recommended in the literature 

for their successful implementation (Helton et al. 2006): 

1. Definition of probability distributions to characterise all uncertain input data; 

2. Generation of samples in accordance with the defined distributions; 

3. Propagation of sampled inputs;  

4. Presentation of UA results; and 

5. Determination of SA results. 

In more detail, the first step towards the implementation of a sampling-based method 

for UA and SA is to specify the distributions that characterise the uncertainty in each 

unknown input element. This is the most significant part of the procedure, as it will 

determine the uncertainty in the simulation output and its sensitivity to each element. 

The next step is to generate samples in line with the specified distributions following 

the principles of the selected sampling strategy, with random sampling, importance 

sampling and Latin hypercube sampling being some of the most prevalent methods. 

That is succeeded by the propagation of samples to produce a mapping from analysis 

inputs to analysis outputs, this commonly being the most computationally demanding 

part of the process. Displaying the UA results will then reveal the distributions of 

performance indicators – as resulted from the distributions of uncertain inputs – that 

are usually presented via probability density functions. Exploring the mapping from 

analysis inputs to analysis outputs will finally determine the SA results and disclose 

the impact of individual uncertain input elements on performance indicators. 
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Hence, prior to analysing the probability density functions of performance indicators, 

all uncertain input data need to be expressed mathematically (Haldar and Mahadevan 

2000). If they are normally distributed, as it is most commonly assumed for aleatoric 

uncertainties (de Wilde and Tian 2009, Fennell et al. 2017), their range can be defined 

by their mean plus and minus three standard deviations (𝜇 ± 3𝜎). The probability that 

a variable value lies in this range is 99.7%, which indicates that the associated error is 

marginal. If the bounds are decreased to 𝜇 ± 2𝜎, 95.4% of data are included, while if 

𝜇 ± 1𝜎 bounds are applied, 68.3% of variable values are considered. To calculate the 

probability 𝑃(𝑥1 ≤ 𝑥 ≤ 𝑥2) of a variable 𝑥 having a value between 𝑥1 and 𝑥2, the area 

under the density curve and between these two limits needs to be calculated, as 

expressed by equation 2.4. Note that, the probability density function of variable 𝑥 is 

represented by 𝑓𝑥(𝑥): 

 
𝑃(𝑥1 ≤ 𝑥 ≤ 𝑥2) = ∫ 𝑓𝑥

𝑥2

𝑥1

(𝑥)𝑑𝑥 
(2.4) 

As suggested by Gang et al. (2015), the quantification of aleatoric uncertainties (such 

as occupant density) should consider the maximum possible values of the examined 

unknown parameters – despite the fact that according to building operation examples, 

the real values of these parameters are very likely to be lower. The upper and lower 

bounds of uncertain inputs can be informed by historic data (if however available) or 

confidence intervals (Hussain et al. 2016). For instance, Li et al. (2015) have used 𝜇 ±

1𝜎 to quantify the range in the U-values of solid brick and stone walls that stems from 

the uncertainty in heat flux plate measurements. Heo et al. (2012) suggest using the 

95.4% confidence interval (that is, 𝜇 ± 2𝜎) to define the minimum and maximum 

possible values of the thermal properties of different building materials. Focusing on 

the uncertainty that arises from modelling approximations, Marijt (2009) proposes to 

use a range of [−3𝜎, 3𝜎], so that the probability that a value lies in the defined range 

is 99.7%. To achieve robust buildings that are not sensitive to aleatoric uncertainties, 

designers can hence calculate the ‘six-sigma capability’ of uncertain input elements 

(Tuohy 2009), which can lead to an ‘error-free’ prediction (Pyzdek and Keller 2003).  

Aleatoric uncertainties can be similarly quantified in non-probabilistic UA, although 

performance outputs cannot be subsequently treated as probabilistic distributions due 
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to the absence of certainty in the probability of each uncertain input value occurring 

(Tian et al. 2018). Scenario analysis could hence be used to cope with the unknown 

probabilities of occurrence of these values (Kotireddy et al. 2018). Scenarios are ‘a 

common and easy way to describe uncertain factors in deterministic status’, with the 

only problem then lying in how to reduce the large number of possible states (Xiang 

et al. 2016). A worst-case approach may then be selected, this encouraging the DMs 

to investigate the performance of candidate solutions under the impact of the defined 

worst-case scenarios (El Ghaoui et al. 2003). Based on this approach, a robust solution 

will be one that leads to a satisfactory performance outcome under the worst possible 

realisation of the modelled uncertainty set (Xiang et al. 2016). However, as extreme 

scenarios have a low probability of occurring (Gang et al. 2015) and thus a high level 

of conservatism (Hussain et al. 2016), a more flexible definition of robustness should 

be determined, so that it is able to articulate the customised (risk) preferences of the 

DMs. As highlighted by Tian et al. (2018), additional studies are needed to uncover 

how uncertainties should be quantified as well as how robustness should be assessed 

in building performance analysis, this being discussed in 2.5. Chapter 3 will describe 

how scenario analysis is adopted by the suggested robust optimization framework. 

 

2.5 Robustness assessment 

In order to make sure that the predicted (as resulted from the thermal simulation tool) 

performance of candidate solutions will meet the defined performance requirements 

and not violate any constraints, assessing the robustness of solutions is vital (Avigad 

and Branke 2008). The robustness assessment of design alternatives is an evaluation 

process that provides information about ‘the magnitude of their performance changes 

due to variations of input parameters’ (Struck 2012). Such information is valuable in 

the context of building design exploration and decision-making, as it can minimise the 

risks that are introduced by the natural variability in the behaviour of any uncertain 

conditions (the so-called aleatoric uncertainties), and therefore support designers in 

achieving their aspired performance outcomes (Hopfe et al. 2013).  

Accounting for parameter uncertainty is vital for making informed design decisions, 

as – even small – perturbations in input data can affect performance prediction and 

shift nominal optimal solutions to sub-optimal or even infeasible – and consequently 
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practically meaningless – designs (Ben-Tal et al. 2009). Since the search for robust 

designs may return solutions that are different from those of the deterministic Pareto 

set (i.e. the nominal optimal solutions, these not incorporating parameter uncertainty) 

(Avigad and Branke 2008), including uncertainty in BPS and optimization is critical 

for uncovering the consequences of decisions with more confidence (Gokhale 2009). 

However, the majority of building performance analysis studies employ deterministic 

simulations that neglect possible variations in any uncertain conditions, this entailing 

the risk of sub-optimality for the optimized solutions, and consequently of misguided 

decisions for the DMs (Van Gelder et al. 2014). 

Although some building design studies have focused on the integration of uncertainty 

analysis (UA) into BPS to improve confidence in simulation results (Macdonald and 

Strachan 2001, de Wit and Augenbroe 2002, Hopfe and Hensen 2011), optimization 

and UA are still predominantly treated as separate procedures. Coupling these two 

methods is however crucial in the context of robust decision-making, as optimization 

can ensure the minimisation of the objective function values, while UA can improve 

the confidence in the optimality of design solutions by evaluating their performance 

across a number of possible performance scenarios (Hopfe et al. 2012). This section 

will, firstly, cast light on the definition of robustness and, secondly, present existing 

robustness indicators (as discussed in chapter 1). It will also reveal how optimization 

and UA are currently brought together to solve robust design optimization problems. 

2.5.1 Definitions of robustness 

Robustness assessment has its roots in Taguchi’s robust design method, which was 

developed in the 1950s as a means to achieve high-quality products that ‘can tolerate 

greater variations in the production system’ (Taguchi and Clausing 1990). Taguchi’s 

robust design method has been applied to various fields such as electronics (Taguchi 

1995), automotive industry (Yildiz 2012), and telecommunications (Wu and Chang 

2004) to ensure that the manufactured products will perform ‘on target’ (Andersson 

1997), ‘regardless of uncertainties in design, manufacture and operation’ (Huang and 

Du 2007). Robust products should hence be ‘insensitive to the effects of sources of 

variability, even through the sources themselves have not been eliminated’ (Fowlkes 

and Creveling 1995). Prior to searching for robust products, specifying any sources of 

variation is therefore required. According to Beyer and Sendhoff (2007), these can be 
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classified into the following types: uncertain environmental and operating conditions; 

production tolerances; and model errors. Parkinson et al. (1993) divide uncertainties 

into controllable and uncontrollable parameters, while Jin and Branke (2005) refer to 

variations in design and environmental parameters.  

The discrepancy in the types of uncertainty that have been accounted for by different 

studies on the robustness assessment of candidate solutions, reveals the existence of 

multiple definitions of robustness in the literature (Walsh et al. 2013). In particular, 

Hopfe et al. (2012) suggest that robustness should ‘tackle small or large fluctuations 

in input variables’, while Goh and Tan (2009) state that it should ‘ensure satisfactory 

performance in face of any small variations in design and/or environment variables’. 

Costa et al. (2011) define robustness as the ‘insensitivity to uncontrollable variables’, 

whereas Olewnik et al. (2004) claim that it aims to the ‘minimisation of the effect of 

unforeseeable changes in operating conditions’. According to Bettis and Hitt (1995), 

robustness aims to increase the ‘potential for success under varying future scenarios’, 

with Floricel and Miller (2001) similarly marking its goal to guarantee ‘insensitivity 

to anticipated risks’. 

Even though robustness assessment has been applied in different areas of engineering 

such as structural design (Ben-Tal and Nemirovski 1997, Doltsinis and Kang 2004, 

Starossek and Haberland 2011, Martinez-Frutos et al. 2016), it is still not a prevalent 

method in the context of building design exploration problems (Tian et al. 2018). It 

thus remains ambiguous how to define robustness, but also what types of uncertainty 

to incorporate in its assessment. Van Gelder et al. (2014) describe robustness as the 

‘ability to stabilise optimal performance for the entire range of input uncertainties’. 

Huang et al. (2009) claim that a robust solution must ‘not only optimise the objective 

function, but also minimise the variation in responses arising from any fluctuations’. 

Rysanek and Choudhary (2013) similarly state that it must ‘be maximally beneficial 

and more insensitive to a change in scenario, in relation to all other alternatives’. 

Hoes (2014) define robustness as ‘the ability to handle changes – or disturbances – in 

the building’s environment while maintaining the required performance’. Kotireddy et 

al. (2018) similarly suggest that a robust design solution should ‘reduce the impact of 

the variations that are caused by the uncertainties in external conditions, such as the 
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occupant behaviour and climate change’. As occupancy gains contribute remarkably 

to the uncertainty in the performance prediction of candidate solutions (MacDonald 

2002), Hoes et al. (2011), O’Brien (2013), Buso et al. (2015) and Karjalainen (2016) 

focus on the identification of solutions that are robust against variations in occupant 

behaviour. Other building studies (Chinazzo et al. 2015, Nik et al. 2015, Ascione et 

al. 2017) assess the robustness of designs against weather variations, these emerging 

from the difficulty of predicting future weather (de Wilde and Coley 2012). 

2.5.2 Robustness indicators 

Robustness assessment could be hence briefly described as a method for disclosing the 

possible variation in performance (Clausing 1994). The different interpretations of the 

term (as described in section 2.5.1) have, however, resulted in the development of 

different indicators by relevant studies (Jin and Branke 2005). It is therefore still an 

open question how to assess robustness in the context of building design exploration 

problems and, in particular, how to handle the considered (epistemic and/or aleatoric) 

uncertainties. Following the categorisation that was described in section 2.4.1, there 

are two main approaches to the robustness assessment of design alternatives, based on 

the probabilistic – or not – handling of uncertainties. In probabilistic analysis, the 

probability of each uncertain input value occurring is (assumed to be) known, and the 

robustness assessment of solutions is thus based on the probability density functions 

of performance indicators (Van Gelder et al. 2014). In contrast, in non-probabilistic 

analysis, the probability of occurrence of each uncertain value is unknown (or at least 

not specified with certainty), this hindering the probabilistic treatment of any output 

distributions (Rysanek and Choudhary 2013). Several (probabilistic as well as non-

probabilistic) robustness indicators exist in the literature, the most prevalent of which 

are presented in section 2.5.2.1, with the objective of demonstrating how robustness is 

currently assessed (as discussed in chapter 1). Section 2.5.2.2 focuses on robustness 

assessment in the context of optimization problems that are exposed to uncertainty, 

this revealing the need for a flexible and comprehensible robustness indicator. 

2.5.2.1 Common robustness indicators 

Given the different definitions of the notion of robustness, many indicators have been 

suggested in the literature to numerically evaluate robustness (Jin and Branke 2005). 

According to Huang and Du (2007), the robustness of a design solution expresses the 
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dispersion of the performance function from its arithmetic mean (𝜇). The traditional 

variance (𝜎2) (or standard deviation (𝜎)) and the more recently proposed percentile 

difference are thus recommended as indicators of robustness. Equations 2.5 and 2.6 

show the calculation of the variance and percentile difference (Huang and Du 2007), 

respectively, of a performance indicator 𝑓(𝑥), where 𝑥 is a design solution – among 

the alternative designs that belong to the solution set 𝑋. Let 𝑌 represent all possible 

values of the performance indicator 𝑓(𝑥), as resulted from each possible scenario 𝑢 

(that is, combination of uncertain input values) that belongs to the uncertainty set 𝑈. 

𝑔𝑢(𝑢) is the joint probability density function of the defined scenarios, while 𝐸 is the 

expected value of the squared deviation from the mean of 𝑌 (𝜇𝑌): 

 
𝜎𝑌

2 = 𝐸[(𝑌 − 𝜇𝑌)2] = ∫ [𝑓(𝑥) − 𝜇𝑌]2𝑔𝑢

∞

−∞

(𝑢)𝑑𝑢 
(2.5) 

 
∆𝑦𝑎1

𝑎2 = 𝑦𝑎2 − 𝑦𝑎1, 

𝑎1 = 𝑃(𝑌 ≤ 𝑦𝑎1) and 𝑎2 = 𝑃(𝑌 ≤ 𝑦𝑎2) 
(2.6) 

where 𝑎1 and 𝑎2 refer to the cumulative distribution function of 𝑌 at the left and right 

tail of the distribution, respectively (shown in figure 2.4). 𝑦𝑎1 and 𝑦𝑎2 are the values 

of 𝑌 that correspond to 𝑎1 and 𝑎2, respectively and are called percentile values. 

 

 

 

 

 

 

 

 

These probabilistic formulations of robustness are however infeasible when there is a 

lack of adequate information on the probability of occurrence of each uncertain input 

value. Classical decision rules can alternately be utilised to support decision-making 

Figure 2.4. Illustration of the percentile difference (∆𝑦𝑎1

𝑎2). The grey area signifies the probability of 𝑌 

having a value between 𝑦𝑎1 and 𝑦𝑎2. 
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under uncertainty (Rysanek and Choudhary 2013). These are scenario-based methods 

for deciding among – two or more – alternatives when more than one states of nature 

are considered possible, but their probabilities are not available (Whalen and Churchill 

1971). Scenario analysis is hence used when there are uncertainties that are ‘largely 

unquantifiable in probabilistic terms in the context of prediction’ (Dessai and Hulme 

2004). Robustness will then express the ‘potential benefit’ under these possible states 

of nature, which means that increasing the robustness of a solution will improve the 

likelihood of a satisfactory performance (Bettis and Hitt 1995). 

Wald’s rule (or minimax8) (Wald 1945) is one of the criteria that have traditionally 

been used in decision situations where ‘no full information about the states of nature’ 

had been available (Gärdenfors and Sahlin 1982). It declares that a robust solution is 

one that has the least worst payoff9, as it aims to ‘minimise the maximum risk’ (Wald 

1945). This implies that the DMs must identify the worst performance of each design 

solution across all possible scenarios and then the minimum of those: 

 
min max 𝑓(𝑥, 𝑈), 𝑈 = {𝑢1, … , 𝑢𝑛} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} 
(2.7) 

where 𝑛 is the total number of performance scenarios in the uncertainty set 𝑈. 

Hurwicz’s rule (Whalen and Churchill 1971) seeks a balance between the minimax 

and minimin10 criteria. A coefficient of optimism 𝛼 (0 ≤ 𝛼 ≤ 1) is then needed, this 

expressing the personal view of the DMs about the likelihood of best-case/optimistic 

conditions and the balance to worst-case/pessimistic conditions – and thus their risk 

preferences. If the DMs have a risk-taking philosophy, they will set 𝛼 = 1 which will 

reduce the Hurwicz’s criterion to the minimin criterion while, if they are risk-averse, 

they will set 𝛼 = 0 to reduce it to the minimax criterion (Pažek and Rozman 2009). 

The DMs must hence firstly calculate a weighted-average return 𝐻 for each solution 

and then identify the minimum of those: 

 
8 This refers to a problem where the performance function needs to be minimised. 
9 In this thesis, the term payoff refers to the performance outcome of a candidate design solution under 

a given performance scenario. 
10 The goal of the minimin rule is to minimise the minimum payoff. That is, to identify the solution that 

leads to the best performance under the best-case scenario – which cannot however be guaranteed, thus 

entailing a high risk in decision-making (Whalen and Churchill 1971). 
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min 𝐻, 

𝐻 = 𝑎 min 𝑓(𝑥, 𝑈) + (1 − 𝑎) max 𝑓(𝑥, 𝑈), 𝑈 = {𝑢1, … , 𝑢𝑛} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚}  

(2.8) 

Savage’s criterion (or minimax regret) (Savage 1951) is another common robustness 

indicator, according to which a robust solution is one that has the least worst regret (or 

opportunity loss) (Rysanek and Choudhary 2013). To implement this criterion, for 

each performance scenario, the DMs need to identify the best performance across all 

design solutions and then subtract it from each payoff; that is, calculate the regret of 

each design solution for this scenario. The next step is to find the maximum regret of 

each solution across all scenarios, and then the minimum of those: 

 

min max [𝑓(𝑥, 𝑢) − min 𝑓(𝑋, 𝑢)] 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} and ∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢𝑛} (2.9) 

Range (or max-min) is another common robustness indicator. The range of a design 

solution represents the difference between its maximum and minimum performance 

values across all scenarios (Kotireddy et al. 2017). The DMs hence need to calculate 

this difference for each design solution and then identify the minimum of those: 

 

min [max 𝑓(𝑥, 𝑈) −  min 𝑓(𝑥, 𝑈)] , 𝑈 = {𝑢1, … , 𝑢𝑛} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} (2.10) 

As however argued by Gärdenfors and Sahlin (1982), using a minimax criterion may 

be ‘unnecessarily risk aversive’, which is indicated only in the case the DMs are not 

willing to take any risk in decision situations. Whalen and Churchill (1971) similarly 

characterise it as a conservative rule, as it aims to minimise the performance function 

under the worst-case scenario. Given Hurwicz’s rule is an adaptation of the minimax 

criterion, it can be regarded as a pessimistic indicator too (Rysanek and Choudhary 

2013). The minimax regret criterion is also considered to be rather conservative as it 

aims to minimise the worst-case regret (Ehrgott et al. 2014), while the max-min rule 

is likewise deemed to lead to conservative solutions, thus being suitable for decision 

situations where no performance variation is accepted (Kotireddy et al. 2017). 
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According to Hussain et al. (2016), specifying the desired level of conservatism is a 

fundamental step for evaluating robustness, this being dependent on the probability of 

scenarios occurring – if this information is however available. It is also subject to the 

state of mind of the DMs and, in particular, the risks they would be willing to take 

(Whalen and Churchill 1971). Even though each classical decision rule represents a 

different state of mind that may express the perspective of the DMs, they do not offer 

a control of the level of conservatism and therefore of the degree of robustness. That 

is, they do not provide the DMs with the flexibility in choosing the desired trade-off 

between performance and robustness (Bertsimas et al. 2011). In addition to that, as 

with many probabilistic indicators as well, they may not be entirely comprehensible to 

a non-specialist audience (Huang and Du 2007). Finally, it is still not clear how such 

rules could be extended to problems where multiple performance functions need to be 

minimised (Rysanek and Choudhary 2013), this being however essential for solving 

complex real-world problems. 

2.5.2.2 Robust design optimization 

Robust design optimization (RDO) is a method for handling optimization problems 

with uncertain input data (Ben-Tal et al. 2009). It acts as a decision support tool that 

accounts for the possibility that the forecasted (also called deterministic or nominal) 

values of uncertain parameters may never occur as a result of the randomness in their 

nature (Kouvelis and Yu 2013). A robust design solution is consequently one that not 

only minimises the objective function values – as deterministic optimization aims to – 

but is also insensitive to perturbations in uncertain input parameters (Bertsimas et al. 

2011). As however discussed in 2.5.1, there are many possible notions of robustness 

that have in turn resulted in the development of different indicators (Jin and Branke 

2005). In addition to that, although RDO may have been used over the last few years 

in engineering fields such as structural design (Doltsinis and Kang 2004, Martinez-

Frutos et al. 2016), it is still not widely used in building energy studies, this revealing 

the need for further investigation into the significance and implementation of RDO in 

building design optimization problems (Nguyen et al. 2014). 

According to Bertsimas et al. (2011), RDO aims to provide the DMs with an optimal 

solution that is ‘feasible for any realisation of the uncertainty in a given set’, this thus 



Literature review                                                                                                                                    58 

 

ensuring feasibility ‘independent of the data’. Given an objective function 𝑓(𝑥, 𝑢) to 

be minimised, a constraint 𝑓(𝑥, 𝑢) ≤ 𝑏 that needs to be met (if applicable), a solution 

set 𝑋 and an uncertainty set 𝑈, the general formulation of RDO is: 

 
min 𝑓(𝑥, 𝑢) subject to 𝑓(𝑥, 𝑢) ≤ 𝑏 

∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢𝑛} 
(2.11) 

where 𝑥 ∈ 𝑋 is a design solution, 𝑢 is a combination of values for the uncertain input 

data (i.e. performance scenario) and 𝑛 is the total number of considered scenarios. 

The uncertainty set 𝑈 is hence described as ‘unknown but bounded’, since it contains 

possible combinations of values for the uncertain input parameters (called scenarios), 

as specified for the examined problem (Ben-Tal et al. 2006). Based on this approach, 

robust solutions must therefore be ‘deterministically immune’ to the realisation of all 

scenarios that belong to the uncertainty set 𝑈 (Bertsimas et al. 2011). This set-based, 

non-probabilistic treatment of uncertainty originated from criticism on the credibility 

of probabilistic analysis when limited information is available on the representation of 

input parameters, particularly at early design stages (Moens and Vandepitte 2005). 

Nevertheless, a large number of scenarios may be needed to adequately capture input 

uncertainties, this implying that a rationale should be developed for the selection of 

scenarios in order to keep the computational cost low (Bertsimas et al. 2011).  

This concern can be addressed with the application of a worst-case approach, which 

aims to minimise the objective function under the impact of the specified worst-case 

scenario(s) (Avigad and Branke 2008). Applying this ‘worst-case-oriented’ approach 

to an objective function 𝑓(𝑥, 𝑢) leads to an adapted (from equation 2.11) formulation 

of RDO (Ben-Tal et al. 2006): 

 

min max 𝑓(𝑥, 𝑢) subject to 𝑓(𝑥, 𝑢) ≤ 𝑏 

∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢𝑛} (2.12) 

This minimax formulation of RDO was introduced in the 1970s (Soyster 1973), but 

has only been researched more extensively over the last two decades (El Ghaoui and 

Lebret 1997, Ben-Tal and Nemirovski 1998, Aissi et al. 2009, Bertsimas et al. 2011, 

Ehrgott et al. 2014). Being based on Wald’s decision rule (Wald 1945) (described in 
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section 2.5.2.1), such an approach aims to minimise the objective function against the 

worst-case realisations of uncertain parameters, which therefore need to be represented 

by lower and upper bounds that express their expected minimum and maximum values 

(Thiele et al. 2009). In a similar way, being based on Savage’s criterion (Savage 1951) 

(also presented in section 2.5.2.1), a minimax regret formulation was launched in the 

1990s as a scenario-based approach to robust design (Kouvelis and Yu 1997) and has 

thereafter been researched more extensively (Chen and Lin 1998, Averbakh 2000, 

Kouvelis and Yu 2013). This approach aims to minimise the objective function against 

the worst-case ‘differences between the cost of a scenario when the decided strategy 

is implemented and the ideal cost that could have been obtained’ (Mavromatidis 2017). 

Adopting a worst-case approach may, however, lead to overly conservative design 

solutions (Hussain et al. 2016). Ben-Tal et al. (2004) introduced the adjustable robust 

counterpart to deal with this issue, treating decision variables as adjustable variables 

that are specified as affine functions of the uncertain input data. Variables can hence 

be tuned to the true values of uncertain data, as soon as these are realised. However, 

this formulation of RDO is not suitable for handling aleatoric uncertainties that are not 

eliminated during the design process, while it may be computationally intractable due 

to the quadratic dependence of variables on uncertainty (Bertsimas et al. 2011). 

Finding the best combination of variable values to solve the defined RDO problem is 

more complex in the case of multiple optimization objectives being considered, with 

the designers therefore most commonly accounting for only two objectives (Nguyen 

et al. 2014). Given the recent interest in concepts such as the minimax and minimax 

regret RDO, there are still not many studies that focus on extending these concepts 

from single- to multi-objective problems and overcoming any associated limitations 

(Ehrgott et al. 2014). A weighted-sum method (described in section 2.3.1) may be used 

to simplify a complex multi-objective problem (Van Gelder 2014), but this may not be 

entirely comprehensible to a non-specialist audience. In addition to that, converting a 

complex multi-objective problem into a simplified single-objective problem leads to 

biased solutions, as the articulation of stakeholder preferences precedes optimization 

(Branke et al. 2008). It is thus important that the selected approach to RDO supports 

the a posteriori articulation of any preferences and the risk aversion level of the DMs 
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(Rezvan et al. 2012), providing them with the opportunity to select their preferred 

trade-off between performance and robustness (Jin and Sendhoff 2003). 

 

2.6 Summary 

Chapter 2 provided an overview of building design exploration and highlighted the 

beneficial role of robust optimization in this explorative process that aims to address 

building design problems under uncertain conditions. Even though RIBA suggests a 

number of key design stages and associated outcomes, no specific steps are specified 

regarding how to explore the design space in the light of uncertain conditions such as 

the weather – that is, how to evaluate the performance of candidate design solutions. 

When coupled with BPS, optimization enables the efficient exploration of the design 

space, as it facilitates the comparison of several alternative design options with respect 

to prevalent performance indicators such as energy consumption, cost and/or thermal 

comfort. Even though some building design studies have focused on the integration of 

UA into BPS to improve confidence in simulation results, optimization and UA are 

still most commonly treated as separate procedures. Coupling these two methods is 

however crucial in the context of robust decision-making, as optimization can ensure 

the minimisation of objective function values, while UA can improve the confidence 

in the optimality of design solutions by evaluating their performance across a number 

of possible performance scenarios. 

Prior to developing a new framework for coupling optimization and UA (in chapter 3), 

investigating the different sources of uncertainty and how these can be quantified was 

fundamental (as discussed in chapter 1). Chapter 2 therefore described any influential 

design parameters referring to building form, construction and operation that should 

be explored early in the building design process to ensure satisfactory performance. 

Any uncertain conditions that may greatly influence building performance were also 

described. Regarding their quantification, two main approaches were identified in the 

literature: probabilistic and non-probabilistic. Probabilistic formulations of robustness 

are however infeasible in the case of an inadequacy of information on the probability 

of occurrence of uncertain input values, this being the case for aleatoric uncertainties 

such as the weather. Scenario analysis is thus suggested when there are uncertainties 

which are unquantifiable in probabilistic terms, with scenarios representing plausible 
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combinations of uncertain input values. However, given that robustness assessment is 

still not a commonly applied method in the context of building design exploration, it 

remains ambiguous how to assess robustness under such scenarios. 

Chapter 2 hence also presented existing robustness indicators, with the objective of 

revealing how robustness is assessed (as discussed in chapter 1). Existing indicators 

are found to be incapable of providing the DMs with the flexibility in selecting their 

desired degree of robustness and consequently of incorporating their risk preferences. 

They may also not always be entirely comprehensible to a non-specialist audience. 

Finally, it is still unclear how they could be extended to optimization problems where 

multiple performance functions need to be minimised, this being however essential for 

addressing complex real-world problems. 
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Chapter 3 

Methodology 

 

 

 

 

 

This chapter describes the suggested approach for robust optimization in the context 

of building design exploration, which can lead to the identification of design solutions 

that perform well under uncertainty, while satisfying the requirements of the building 

regulations and stakeholder preferences. The theoretical framework of the explorative 

procedure presented here comprises five principal steps (as shown in figure 3.1): a) 

uncertainty quantification; b) exhaustive search; c) building performance simulation 

(BPS); d) robust optimization; and e) solution analysis. 

 

3.1 Robust building design optimization framework 

The goal of the building design process is to produce a solution that responds to the 

requirements of the client and building regulations (section 2.1). Design exploration is 

an integral part of this process that can result in the identification of a satisfactory 

solution through the generation and evaluation of alternative design options. Robust 

optimization supports design exploration by ensuring satisfactory performance under 

uncertain conditions. This section will describe the five suggested steps for robust 

design optimization – that will then be applied to two case study buildings: a test cell 

and a new real-world community centre (in chapters 4 and 5, respectively). 3.1.1 will 

elucidate the quantification of uncertain design parameters and uncertain conditions. 

3.1.2 will describe the generation of design solutions and performance scenarios by 

applying an exhaustive search to combine all uncertain values. 3.1.3 will describe the 

prediction of the performance of solutions with the help of BPS. 3.1.4 will present a 

new robust optimality criterion for evaluating the performance of solutions under all 

scenarios. 3.1.5 will finally focus on the communication of the evaluation results. 
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Figure 3.1 shows the five steps that compose the robust optimization framework. The 

equations that express the new robustness criterion will be described in section 3.1.4.3. 
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Figure 3.1. The proposed framework for robust building design optimization, which supports the 

identification of robust solutions (𝑥∗). 

 

3.1.1 Uncertainty quantification 

The first step of the design process is the explicit formulation of the design problem 

(section 2.1.2), this including the definition of both design and performance variables 

as sources of epistemic and aleatoric uncertainty, respectively. This section describes 

the quantification of both types of uncertainty as a first step in dealing with a design 

problem that is exposed to uncertainty (as discussed in chapter 1). 

3.1.1.1 Uncertain design parameters 

At the early design stages, building form and the remaining design parameters that are 

related to construction and operation are not finalised yet. As shown in table 2.2 and 
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discussed in section 2.4.1, these are sources of epistemic uncertainty that will be later 

eliminated, with the increase in the design detail. Focusing on form, design options 

express the conceptual ideas that are triggered by the project brief and emerged from 

the brainstorming of the design team. Note that, due to the unique characteristics of 

each project, design options vary from one case study to another. Chapters 4 and 5 will 

present the design variables (and their values) that refer to building form in the case of 

the test cell and the examined real-world community centre, respectively. 

 
Table 3.1. List of design variables (construction and operation) and variable values. 

Subcategories Variables Variable values References 

Construction 

External wall 

construction 

(W/m2K) 11, 12 

1) HW-PH (0.140) 
(IBO 2009, International Passive House 

Association 2018) 
2) LW-PH (0.143) 

3) HW-PL (0.342) 

(Neufert et al. 2012, UK Government 2013a) 

4) LW-PL (0.342) 

Roof 

construction 

(W/m2K) 

1) HW-PH (0.146) 
(IBO 2009, International Passive House 

Association 2018) 
2) LW-PH (0.144) 

3) HW-PL (0.243) 

(Neufert et al. 2012, UK Government 2013a) 

4) LW-PL (0.239) 

Window 

construction 
(W/m2K) 

1) PH (0.780) 
(IBO 2009, International Passive House 

Association 2018) 

2) PL (2.129) (Neufert et al. 2012, UK Government 2013a) 

Infiltration 
rate (ac/h) 

1) PH (0.050) (CIBSE 2006, McLeod et al. 2014) 

2) PL (0.500) (CIBSE 2006, ATTMA 2010) 

Systems and 

operation 

Heating 

setpoint (℃) 

1) 19 

(BRE 2015, International Passive House 

Association 2018) 

2) 20 

3) 21 

4) 22 

5) 23 

 

 
11 HW/LW denotes the thermal mass of each construction (heavyweight and lightweight construction, 

respectively). PH/PL signifies the standard each construction complies with (the Passivhaus Standard 

(International Passive House Association 2018) and the Building Regulations Part L (UK Government 

2013a), respectively). 
12 The U-value of each construction option is provided (in W/m2K). 
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The remaining design variables that are considered in this thesis can be found in table 

3.1, these being influential – as revealed by the literature review in section 2.4.1.1 – 

design parameters. Five variables that are related to the construction and operation of 

the building are selected due to their impact on design objectives: wall construction; 

roof construction; window construction; infiltration rate; and heating setpoint. With 

respect to the wall and roof constructions, four types are selected for each element: 

two options complying with the Passivhaus Standard (International Passive House 

Association 2018) (mentioned in the table as PH); and two options adhering to the 

Approved Document L2A (new non-domestic buildings) of the Building Regulations 

Part L (UK Government 2013a) (abbreviated to PL). This enables the comparison of 

the two building standards with regard to the uncertainty in the predicted performance 

of design solutions – while taking into consideration the possibility of constructing a 

Passivhaus building. The U-values of the constructions are informed by the limiting 

values of the standards (table 3.2). 

 
Table 3.2. Limiting values for different fabric parameters according to the two applied standards. 

 Limiting value 

Fabric 

parameter 

Passivhaus Standard  

(International Passive House 

Association 2018) 

Building Regulations 

(UK Government 2013a) 

Wall 0.15 W/m2K 0.35 W/m2K 

Roof 0.15 W/m2K 0.25 W/m2K 

Window 0.80 W/m2K 2.20 W/m2K 

Infiltration rate 0.60 ac/h at 50 Pa 10 m3/hm2 at 50 Pa 

 

The two options that conform to each standard have similar U-values but different 

levels of thermal mass: heavyweight (HW) (concrete) construction; and lightweight 

(LW) (timber-frame) construction. This allows the impact of thermal mass on the 

performance of solutions to be investigated; that is, how the lightweight or of more 

massive construction building elements can influence the diurnal heating (or cooling) 

cycle of the building (Hopfe and McLeod 2015). The Passivhaus constructions are 

specified upon a catalogue of ecologically rated constructions (IBO 2009) and the 

Passivhaus guide of the Association for Environment Conscious Building (AECB 
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2007). The Architects’ data book by Neufert et al. (2012) is consulted for creating the 

Part L constructions – with their difference lying in the thickness of insulation. 

In addition to supporting the calculation of the capital cost of candidate solutions, the 

Spon’s Architects’ and Builders’ book (AECOM 2015) ensures that all constructions 

consist of commercially available products. Tables A.1 and A.2 of appendix A show 

the material layers of all – external wall and roof, respectively – constructions along 

with the nominal values of their thermophysical properties. These are defined upon the 

manufacturers’ data (where available) and the CIBSE Guide A (CIBSE 2006). 

With respect to the window construction as well as the infiltration rate, two types are 

similarly defined: one option complying with the Passivhaus Standard (International 

Passive House Association 2018) and another one with the Building Regulations Part 

L (UK Government 2013a). Window U-values and infiltration rates are informed by 

the limiting values of the two standards (table 3.2). In the case of infiltration rate, the 

conversion of these values is necessary as the BPS tool that is employed in this thesis 

(EnergyPlus (U.S. Department of Energy 2016a)) requires the number of air changes 

per hour at no differential pressure (ac/h) in order to calculate the design flow rate of 

each thermal zone. This conversion is performed with the help of the standard on air 

permeability (published by the Air Tightness Testing and Measurement Association 

(ATTMA 2010)) and of the CIBSE Guide A (CIBSE 2006) that provides an estimate 

for the infiltration rates of buildings which are located on normally-exposed sites. 

The heating setpoint values express the air temperatures that are recommended by the 

activity database of the National Calculation Method (NCM) (BRE 2015) for a variety 

of building types. For Passivhaus buildings, the recommended value is 20 ℃ (in most 

cases) (International Passive House Association 2018). As no preference weights are 

here considered, all design variables are assumed to have a uniform distribution (de 

Wilde and Tian 2009). Each solution (i.e. combination of design variable values) has 

thus equal chance of being selected. 

3.1.1.2 Uncertain conditions 

Considering the variability in the predicted performance of candidate solutions due to 

the uncontrollable behaviour of uncertain conditions, possible performance scenarios 
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are defined – that is, combinations of performance variable values. Five performance 

variables are selected (table 3.3) due to their influence on optimization objectives – as 

revealed by the literature review (see section 2.4.1.2): weather file; occupant density; 

wall construction (actual performance); roof construction (actual performance); and 

infiltration rate (actual performance). As shown in table 2.2 and discussed in section 

2.4.1, these are influential sources of aleatoric uncertainty that cannot be eliminated 

during the design process due to their random variability. The distribution for variables 

related to aleatoric uncertainty is assumed to be normal (de Wilde and Tian 2009). 

Due to the absence of sufficient information on the probability of each combination of 

performance variable values occurring, however, performance scenarios cannot be 

treated probabilistically. A worst-case approach (Parkinson et al. 1993) is hence used 

to handle aleatoric uncertainty in the context of robust optimization. In particular, as 

the probability distribution function of each scenario cannot be easily determined, a 

robust design solution is one that is ‘least-affected by possible worst-case conditions’ 

(Rysanek and Choudhary 2013). A critical step is hence to define the ‘extreme point 

scenarios’ that act as worst-case conditions (Kouvelis and Yu 2013) and express the 

maximum fluctuation from the nominal values of performance variables that may be 

encountered (Parkinson et al. 1993). In this thesis, each aleatoric uncertainty is hence 

represented by an ‘expected’ value and two limiting values that express ‘extreme’ – 

but still possible – conditions. Table 3.3 displays the three values that are considered 

for each variable: its lower bound, nominal value and upper bound, respectively. 

Concerning the weather file, these three values refer to: the monitored data of 1979 

(CIBSE 1979); the test reference year (TRY) (CIBSE 2016); and the (long) design 

summer year (DSY 3) (CIBSE 2016) for London13. In more detail, 1979 is calculated 

to be the coldest year of the last forty years (for that location); that is, the year with the 

maximum heating degree days. Heating degree days are a measure of the heating 

energy required to maintain internal environmental conditions at comfortable levels 

(Belcher et al. 2005). They show the mean number of degrees by which the external 

temperature on a given day is less than the base temperature (that is, 15 ℃ (Virk and 

Eames 2016)), totalled for all days in the considered period (UK Department of the 

 
13 This is where the examined case study buildings are located. 
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Environment 1993). The TRY weather file is used to predict the energy usage of a 

building during its design stages (Eames et al. 2016) and ensure compliance with the 

Building Regulations Part L (UK Government 2013a). It acts as a typical year, as it 

consists of average months selected from a historical baseline of 1984 to 2013 (Virk 

and Eames 2016). 

Table 3.3. List of performance variables and variable values. 

Subcategories Variables Variable values Description/ References 

Weather Weather file 

1) 1979 
Cold year: maximum heating degree days 

(CIBSE 1979) 

2) TRY Typical year (CIBSE 2016) 

3) DSY 3 
Hot year: long, less intense warm spell 
(CIBSE 2016) 

Occupancy 

 

Occupant 

density 

(persons/m2) 

 

1) Nominal - 50% (MacDonald 2002)  

2) Nominal  (BRE 2015) 

Construction 

(actual 

performance) 

External wall 

construction 

(W/m2K) 

1) Fast response 

Nominal values refer to the design 

variable values of table 3.1. The lower 

and upper bounds represent possible 

variations in the response of the thermal 

mass. The considered variations in the 

thermal properties of individual material 

layers depending on their general category 

(Clarke et al. 1990) are included in tables 

A.3, A.4 and A.5 of appendix A. 

2) Nominal 

3) Slow response 

Roof 

construction 

(W/m2K) 

1) Fast response 

2) Nominal 

3) Slow response 

Infiltration 

rate (ac/h) 

1) Nominal - 50% (MacDonald 2002) 

2) Nominal See table 3.1 

3) Nominal + 50% (MacDonald 2002) 

 

The DSYs are used to assess the overheating risk of a building during its explorative 

process, as they express extreme summer conditions (Eames 2016). The new CIBSE 

data sets (CIBSE 2016) include three metrics for the evaluation of overheating risk. 

The DSY 3 is chosen in this thesis, this indicating a year with a more intense extreme 

and a longer duration than the moderate summer year – but a less intense extreme than 

the high intensity year (Virk and Eames 2016). The selected year for the DSY 3 file of 

London is 1976 (CIBSE 2016) which is also calculated to be the warmest year of the 
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last forty years; that is, the year with the maximum cooling degree days. In this respect, 

the ‘cold’ and ‘warm’ years are selected on the same basis of degree days. 

With respect to the occupant density of the different building zones, nominal values 

are informed by the NCM activity database (BRE 2015). The lower bound represents 

a 50% reduction in occupancy sensible gains (and associated internal heat gains from 

electrical equipment); i.e. minus three standard deviations as proposed by MacDonald 

(2002). As mentioned in section 2.4.2, if a normally distributed variable is limited to 

plus and minus three standard deviations from the mean (𝜇 ± 3𝜎), the probability that 

a variable value lies in this range is 99.7% – which indicates that the associated error 

is marginal (Haldar and Mahadevan 2000). An upper bound is not assumed for this 

variable, as a severe increase in occupancy is not considered to be a possible scenario 

for the examined case study buildings – especially for their office zones, which are 

designed for a specific number of users. 

The selection of nominal values for the wall and roof constructions has already been 

discussed (these are included in table 3.1). However, even if the design specifications 

of all their material layers are known (i.e. provided by their manufacturers), there is 

still a natural variability in the actual performance of the constructions (de Wilde and 

Tian 2009). This inherent uncertainty can be due to the fluctuation of their moisture 

content, which can result in the variation of their nominal thermophysical properties 

(Clarke et al. 1990). MacDonald (2002) has quantified the effect of this uncertainty on 

the three main material categories that are identified by Clarke et al. (1990): non-

hygroscopic (e.g. wool insulation); inorganic-porous (e.g. reinforced concrete); and 

organic-hygroscopic (e.g. chipboard) materials. The considered variations (in %) for 

each material category and thermal property can be found in table 3.4. In particular, 

for moisture contents of 1%, 4% and 7% for non-hygroscopic, inorganic-porous and 

organic-hygroscopic materials respectively, an uncertainty of ± 5%, 15% or 25% – this 

being subject to the material category – is added to the nominal values of thermal 

conductivity (MacDonald 2002). ± 13%, 4% and 11% are the equivalent percentages 

for density, while ± 4%, 19% and 8% are the assumed variations in the case of specific 

heat capacity (MacDonald 2002). 
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Table 3.4. List of the considered variations in the thermal properties of materials depending on the 

general category they belong to. 

Thermal properties Variations Description/ References 

Thermal 
conductivity 

(W/mK) 

Nominal ± 5%, 

15% or 25%  

Nominal values are taken from the manufacturers’ 
data and the CIBSE Guide A (CIBSE 2006). Three 

percentages are provided for each thermophysical 

property (MacDonald 2002), these referring to the 

impact of moisture content on the following material 

categories (Clarke et al. 1990): non-hygroscopic; 

inorganic-porous; and organic-hygroscopic. The 

considered moisture contents are 1%, 4% and 7%, 

respectively (MacDonald 2002). 

Density (kg/m3) 
Nominal ± 13%, 

4% or 11% 

Specific heat 

capacity (J/kgK) 

Nominal ± 4%, 

19% or 8% 

 

Tables A.3, A.4 and A.5 (appendix A) describe how these percentages are combined 

in the case of each material category, in order to allow for the quantification of the 

variation in the performance of each material layer of a multi-layer – wall or roof – 

construction, and subsequently of the overall variation in the actual performance of the 

construction. This overall variation refers to the response of the thermal mass of the 

construction under the influence of the fluctuation of an uncertain parameter (i.e. the 

moisture content in this thesis) that is defined in the literature as the thermal time 

constant of the construction (Tsilingiris 2004). The time constant is thus used in this 

thesis to account for the multiple material layers of each – wall or roof – construction 

and combine the multiple thermal properties of each of these layers (nominal values 

are shown in tables A.1 and A.2 of appendix A). It also supports the quantification of 

the two extreme values of the actual performance of each construction (based on the 

variations presented in tables A.3, A.4 and A.5 of appendix A), with the lower bound 

representing a fast response of the thermal mass (or short time constant) and the upper 

bound signifying a slow response (or long time constant). 

In particular, the short time constant of each (wall or roof) construction derives from 

the combination of the maximum value of thermal conductivity with the minimum 

values of density and specific heat capacity (for each material layer). The long time 

constant is similarly deduced from the combination of the minimum value of thermal 

conductivity with the maximum values of density and specific heat capacity (for each 

material layer). These propositions are based on equations 3.1 and 3.2 (Hassid 1985) 

that calculate the external (𝜏𝑜) and internal (𝜏𝑖) thermal time constants respectively of 
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a multi-layer construction, consisting of 𝑘 material layers (counted from outside to 

inside) and being represented by two resistors 𝑅𝑜 , 𝑅𝑖 and a capacitor 𝐶 (figure 3.2): 

 𝜏𝑜 = 𝑅𝑜𝐶 = ∑ 𝑙𝑖

𝑘

𝑖=1

𝜌𝑖 𝑐𝑝𝑖 [
1

ℎ𝑜
+ ∑

𝑙𝑗
𝜆𝑗

𝑖−1

𝑗=1

+
𝑙𝑖

2𝜆𝑖
] (3.1) 

 

 𝜏𝑖 = 𝑅𝑖𝐶 = ∑ 𝑙𝑖

𝑘

𝑖=1

𝜌𝑖𝑐𝑝𝑖 [
𝑙𝑖

2𝜆𝑖
+ ∑

𝑙𝑗
𝜆𝑗

𝑘

𝑗=𝑖+1

+
1

ℎ𝑖
] (3.2) 

where 𝑙𝑖 is the thickness of each layer and 𝜆𝑖, 𝜌𝑖 and 𝑐𝑝𝑖 are its thermal conductivity, 

density and specific heat capacity, respectively. ℎ𝑜 and ℎ𝑖 are the external and internal 

surface conductance, respectively. 

Equations 3.1 and 3.2 show that, for a given construction, the shortest time constant 

occurs when thermal conductivity is on its highest value, while density and specific 

heat capacity are on their lowest values. In a similar way, the longest time constant 

occurs when thermal conductivity takes its lowest value, while density and specific 

heat capacity take their highest values. A caveat associated with these propositions is 

the difficulty in calculating the probability that all these values occur simultaneously 

for each material layer. However, this is not necessary in this thesis, as the suggested 

framework adopts a worst-case approach to robust optimization that does not rely on 

the probability distribution of the uncertain quantities being known, but rather on the 

limits of such a distribution being known. 

 

 

Figure 3.2. Representation of a multi-layer construction (adapted from Hassid 1985). 

 

Concerning the infiltration rate of the building, the two extreme values indicate a ± 

50%14 deviation (MacDonald 2002) from the nominal values that are shown in table 

 
14 Similarly to the occupant density, this represents plus and minus three standard deviations (± 3σ). 
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3.1. No fluctuations from the nominal values are considered in the case of the window 

constructions, as manufactured windows are not vulnerable to this uncertainty type 

(Van Gelder 2014). Finally, even though the actual heating setpoint values may vary 

from the nominal values as a result of the precision error of (single point) temperature 

sensors (Kelso 2003), no worst-case conditions are added to the list of performance 

variable values that are displayed in table 3.3. This is due to the fact that, firstly, the 

design and operation of the HVAC system are out of the scope of this thesis; and, 

secondly, given that this type of uncertainty can lead to a maximum error of ± 1 ℃15 

(Buswell 2001, Kelso 2003), extreme values are overlapped by the nominal values of 

table 3.1. In particular, the defined values have a step of 1 ℃, while they include 19 

and 23 ℃ as edges, these being the borderline values for achieving thermal comfort, 

as recommended by the NCM (BRE 2015) for different types of thermal zones. 

 

3.1.2 Exhaustive search 

After having specified all the design and performance variables – these representing 

influential sources of uncertainty at the examined design stage – and their values, an 

exhaustive search method is used to define all possible design solutions (𝑥1, … , 𝑥𝑚) 

and performance scenarios (𝑢1, … , 𝑢𝑛) (figure 3.1). As discussed in 2.3.2, given that 

all candidate design solutions are known, their Pareto optimality (within the defined 

problem) will be certain, since there is no doubt about the convergence behaviour of 

the search method – as might be the case for an optimization algorithm, which could 

possibly fail to find the global optimum (Wetter and Wright 2004). As an exhaustive 

search method supports the evaluation of all design solutions prior to the assessment 

of their optimality, its computational performance is not affected by the number of 

optimization objectives and constraints, thus enabling the identification of solutions 

that are Pareto optimum with respect to multiple criteria (four in this thesis: heating 

energy demand; winter thermal discomfort; summer thermal discomfort; and cost). 

Having all design solutions and their performance under all scenarios available prior 

to assessing optimality also allows for more questions to be answered regarding the 

 
15 This again represents plus and minus three standard deviations (± 3σ). 
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examined problem. This enables a better understanding of the relationship between 

solutions and objectives, and therefore a greater support for robust building design 

optimization. Not having to run an optimization algorithm16 whenever modifying the 

problem is important in the context of building design exploration, where the number 

of variables, objectives and constraints often changes along the way due to ‘updated 

information’ (such as a shift of stakeholder preferences) (Kochenderfer 2015). 

A significant limitation of an exhaustive search is however that computational load 

increases exponentially with the number of (design and performance) variables. Even 

though a valuable aid is provided by the concurrent simulation of (20) combinations of 

design and performance variable values (20 threads are used in this thesis), restricting 

the number of variables and their values is crucial for the feasibility of such a search 

method. This provides an additional argument for limiting the design space based on 

the requirements of the regulations and any stakeholder preferences, and restricting the 

number of uncertain conditions following a worst-case approach that necessitates the 

specification of only three values for each uncertain quantity (that is, a nominal value 

and two outlying values), as described in section 3.1.1. 

 

3.1.3 Building performance simulation 

The exploration of the design space is performed in this thesis with the help of BPS 

and optimization methods. Prior to assessing solution optimality, the performance of 

candidate solutions is predicted (under all performance scenarios), using EnergyPlus 

(U.S. Department of Energy 2016a) as an engine. Despite its calculation capabilities, 

EnergyPlus does not support the expeditious creation of building geometry, as it is a 

console-based program that operates by reading input and writing output as text files, 

thus necessitating the application of a third-party graphical user interface. SketchUp 

(Trimble Navigation 2016) is used in this thesis, as it is a user-friendly 3D modelling 

tool, while its OpenStudio plug-in (U.S. Department of Energy 2015) guarantees the 

interoperability with EnergyPlus. After creating the building geometry in SketchUp 

with the assistance of its OpenStudio plug-in, the model is exported as an input data 

file (IDF) and imported into EnergyPlus. This is where any supplementary input data 

 
16 This refers to the case where the new problem is a sub-set of the problem already evaluated. 
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is specified, prior to running all simulations. The values of the considered design and 

performance variables were described in section 3.1.1. Section 3.1.3.1 will present any 

fixed parameter values. 

Since an exhaustive search method is used to evaluate all possible design solutions 

(𝑥1, … , 𝑥𝑚) and performance scenarios (𝑢1, … , 𝑢𝑛), the total number of simulations 

that are run in EnergyPlus are calculated by multiplying the total number of solutions 

(𝑚) by the total number of scenarios (𝑛). In this thesis, 𝑛 equals 162, as resulted from 

the exhaustive combination of the performance variable values in table 3.3, while 𝑚 

varies from one case study to another, as it is affected by the special characteristics of 

each project. Concurrent processing is used to reduce the computational time of BPS, 

with 20 simulations being executed in parallel (by the 20 threads of the computer) for 

better performance, using a bespoke (Java) script. Simulation results are exported to a 

comma-separated file (CSV), which contains the predicted performance values for 

heating energy demand, winter thermal discomfort and summer thermal discomfort. 

By using a programming language (Python) and the Spon’s Architects’ and Builders’ 

price book (AECOM 2015) for reference, the capital cost of each design solution is 

also calculated and added to the CSV file. The file is then post-processed (in Python) 

to apply the new robust optimality criterion, as described in 3.1.4.3. 

3.1.3.1 Model configuration 

Each simulation that is run in EnergyPlus refers to an annual run period which starts 

on the 1st of January and ends on the 31st of December, as defined in the weather file. 

6 timesteps per hour are used for heat transfer and load calculations, as suggested by 

EnergyPlus (U.S. Department of Energy 2016b). After creating the building geometry 

in SketchUp (using its OpenStudio plug-in), the IDF that is imported into EnergyPlus 

contains all the required geometric information for each thermal zone. With regard to 

their construction, the external wall, roof and window constructions and infiltration 

rates were described in 3.1.1, as these are part of the optimization process. Details on 

any constructions that are fixed across all simulations (internal wall, slab foundation, 

internal floor and internal door) are found in table A.6 of appendix A. 

With regard to operation, winter heating and air-conditioning are supplied to thermal 

zones by an Ideal Loads Air System – as this thesis focuses on comparing alternative 
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designs and not on proposing a HVAC system. This component can be thought as ‘a 

unit that mixes air at the zone exhaust condition with the specified amount of outdoor 

air and then adds heat at 100% efficiency’ (U.S. Department of Energy 2016b). Note 

that, there is (sensible) heat recovery when the zone exhaust air temperature is more 

favourable than the outdoor air temperature (U.S. Department of Energy 2016b). 

Table 3.5. List of fixed parameter values in EnergyPlus, as determined by the activity database of the 

NCM (BRE 2015) for office spaces. 

Object Field Value 

People 

People per Zone Floor Area 

(persons/m2) 
0.111 

Sensible Heat Fraction 0.5935 

Lights 
Watts per Zone Floor Area 

(W/m2) 
9 

ElectricEquipment 

Watts per Zone Floor Area 

(W/m2) 
11.77 

Fraction Latent 0.75 

DesignSpecification: 

OutdoorAir 

Outdoor Air Flow per Person 

(m3/s person) 
0.01 

 

Table 3.6. List of Schedule:Compact objects in EnergyPlus, as determined by the activity database of 

the NCM (BRE 2015) for office spaces. 

Activity Level People Lights Electric Equipment 

Through: 12/31 

For: AllDays 

Until: 24:00 

123 

Through: 12/31 

For: Weekdays 

Until: 07:00 

0 

Until: 08:00 

0.2 

Until: 09:00 

0.6 
Until: 12:00 

1 

Until: 14:00 

0.8 

Until: 17:00 

1 

Until: 18:00 

0.6 

Until: 19:00 

0.2 

Until: 24:00 

0 
For: AllOtherDays 

Until: 24:00 

0 

Through: 12/31 

For: Weekdays 

Until: 07:00 

0 

Until: 19:00 

1 

Until: 24:00 

0 
For: AllOtherDays 

Until: 24:00 

0 

Through: 12/31 

For: Weekdays 

Until: 07:00 

0.0539 

Until: 19:00 

1 

Until: 24:00 

0.0539 
For: AllOtherDays 

Until: 24:00 

0.0539 
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Heating setpoints were presented in section 3.1.1, as they are part of the optimization 

process. Outdoor air flows are informed by the National Calculation Method (NCM) 

(BRE 2015), with their values being dependent on the type of each zone. In summer, 

zones are naturally ventilated and therefore no cooling or air-conditioning system is 

used. The Wind and Stack Open Area object is used in EnergyPlus (U.S. Department 

of Energy 2016b) to model the natural ventilation air flow – only when the building is 

occupied due to safety reasons. 

Table 3.5 displays the considered parameter values that are related to People, Lights 

and Electric Equipment, and table 3.6 demonstrates the schedules of these objects in 

EnergyPlus, as proposed by the NCM. Given that the test cell is a single-zone office 

building and the real-world building has several office zones (section 3.2), tables refer 

to office spaces. Chapters 4 and 5 will provide more details for each of the buildings. 

 

3.1.4 Robust optimization 

In this thesis, the exhaustive search is used to generate all possible design solutions 

and performance scenarios, with the identification of the optima being later achieved 

through the Pareto ranking of solutions. Optimization hence acts as a post-processing 

step (figure 3.1), while robust design solutions are then identified with the help of the 

new robust optimality criterion that will be introduced in section 3.1.4.3. Prior to the 

implementation of robust optimization, sections 3.1.4.1 and 3.1.4.2 will describe the 

definition of objective and constraint (if applicable) functions, respectively. 

3.1.4.1 Objective functions 

As indicated by Prowler (2008), in order to achieve a successful design solution, it is 

important to specify the project objectives early on in the design process and maintain 

them in balance from the conceptual to the detailed design stages. In case optimization 

is applied as a method to explore the design space (as suggested in this thesis), these 

objectives also act as the goals of the optimization process, which are related to the 

maximisation or minimisation of a function (such as comfort or cost, respectively). 

Based on the literature (Attia et al. 2013, Chardon et al. 2016, Huang and Niu 2016, 

Østergård et al. 2016, Touloupaki and Theodosiou 2017, Kheiri 2018, Longo et al. 

2019), the most common objectives are: a) energy use; b) cost; and c) thermal comfort. 
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Hence, in this thesis, the performance of candidate solutions is assessed with respect 

to the following objectives that all need to be minimised: a) heating energy demand; 

b) winter thermal discomfort; c) summer thermal discomfort; and d) investment cost. 

As highlighted in section 2.3.1, considering multiple objectives can moderate the bias 

that characterises the conventional one- and two-objective problem formulations by 

providing the DMs with additional trade-offs that can increase their understanding of 

the consequences of decisions (Kollat et al. 2011). In the future, additional objectives 

could be included such as carbon emissions, visual comfort and indoor air quality. 

Table 3.7 displays the four optimization objectives that are considered in this thesis – 

and later applied to the analysed buildings (in chapters 4 and 5). In addition to that, it 

presents the metrics that are used to quantify the performance of candidate solutions 

with respect to these four objectives. The predicted values for (annual) heating energy 

demand, winter thermal discomfort and summer thermal discomfort are the results of 

EnergyPlus (U.S. Department of Energy 2016a). 

Table 3.7. The four design objectives that are considered in this thesis and the applied metrics. 

Design objective Metric Reference 

Heating energy 

demand 
kWh/m2.yr 

EnergyPlus  

(U.S. Department 

of Energy 2016a) 

Winter thermal 

discomfort 

% of total occupied hours 

that PMV < -0.5 

Summer thermal 
discomfort 

% of total occupied hours 
that acceptability < 80% 

Capital cost £/m2 
Spon’s price book 

(AECOM 2015) 

 

Heating energy demand is calculated in kWh/m2.yr to indicate the normalised per 

conditioned floor area space heating energy demand for the occupied winter period 

(note that, there is no additional heating outside the occupied hours). Winter thermal 

discomfort refers to the percentage of total occupied hours within the winter period 

that the PMV (i.e. the Predicted Mean Vote according to the Fanger’s comfort model 

(Fanger 1970)) is less than -0.5. Summer thermal discomfort refers to the percentage 

of total occupied hours within the summer period that acceptability (according to the 

adaptive model (ASHRAE 2013)) is less than 80%. These limits were specified upon 
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the acceptable thermal conditions that are recommended by the ASHRAE Standard 

55-2013 (ASHRAE 2013) for spaces that are mechanically and naturally conditioned, 

respectively. Optimization thus aims to minimise the total number of occupied hours 

(within both the winter and summer periods) that environmental conditions are outside 

the defined comfort zone – i.e. to minimise exceedance hours. 

Note that, in order to predict the values of these objective functions and export them 

in a CSV file (that will then be used to implement optimization), the following output 

variables need to be included in the EnergyPlus (U.S. Department of Energy 2016a) 

model: Zone Ideal Loads Supply Air Total Heating Energy; Zone Thermal Comfort 

Fanger Model PMV; and Zone Thermal Comfort ASHRAE 55 Adaptive Model 80% 

Acceptability Status, respectively. Alternative variables are available in EnergyPlus to 

predict performance values, this revealing the uncertainty in the formulation of the 

optimization problem, which is however out of the scope of this thesis. 

Finally, a bespoke script is implemented in Python to calculate the capital cost of all 

solutions, this expressing the sum of construction materials and labour hours based on 

the Spon’s Architects’ and Builders’ price book (AECOM 2015). Note that, this sum 

refers to the elements of the building envelope that are included in optimization (table 

3.1), and not on any other elements that are related to construction (e.g. internal walls) 

or operation (e.g. the HVAC system). The calculated values are normalised to express 

the capital cost of solutions per treated floor area (in £/m2) and added to the CSV file 

that is exported from EnergyPlus (U.S. Department of Energy 2016a), this containing 

the predicted values for the remaining three objectives. 

3.1.4.2 Constraint functions 

The constraints of the design problem represent the criteria that a design option needs 

to meet in order to be considered feasible. In this thesis, the building regulations and 

guides and any stakeholder preferences are taken into account for the formulation of 

the design problem and in particular, for the specification of any constraint functions. 

To avoid the risk of ‘cognitive hysteresis’ (Gettys and Fisher 1979), in this thesis, the 

application of constraints to the objective functions is posterior to the implementation 

of optimization; i.e. it is part of solution analysis. This disburdens the exploration of 

the design space of the bias that characterises the highly constrained problems, where 
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the resulted solution set is limited by the initial conceptions of the DMs (Reed et al. 

2013). These conceptions may however change along the way, with even small shifts 

being able to modify the resulted solution set (Robinson et al. 2016) and thus exclude 

well-performing solutions from exploration. Not applying a constrained optimization 

method also bolsters the direction of the search towards the truly optimum (Farmani 

and Wright 2003). However, note that, the framework that is presented in this thesis 

can also support the a priori application of constraints to the objective functions – in 

case the DMs are confident that the defined constraints will not change later on. 

The intention of the suggested approach for robust optimization is hence to provide 

the DMs not with a single robust design solution, but with a set of robust alternatives 

to select from. During the analysis of the solution set (as described in section 3.1.5), 

constraints are imposed to the objective function values based on the requirements of 

standards and guides and any preferences of the stakeholders. As an example, if the 

client decides to construct a building that is compliant with the Passivhaus Standard 

(International Passive House Association 2018), its predicted heating energy demand 

must be less than or equal to 15 kWh/m2.yr. Table 3.8 shows the assumed constraints 

on predicted thermal comfort, as recommended by the ASHRAE Standard 55-2013 

(ASHRAE 2013). In the PMV method (employed when the building is mechanically 

ventilated), comfort zone is defined as ‘conditions falling within and including PMV 

levels from -0.5 to +0.5’ (ASHRAE 2013). In the adaptive method (applied when the 

building is naturally ventilated), an environment is considered as acceptable if it does 

not exceed the 80% acceptability limits – i.e. when the indoor operative temperature 

is no greater than 3.5 ℃ from the comfort temperature, which is based on the daily 

average outdoor dry-bulb temperatures of the previous 30 days. 

 
Table 3.8. Constraints on the predicted thermal comfort of buildings based on their ventilation type 

and applied comfort model. 

Ventilation type Applied method Constraint Reference 

Mechanical 
Deterministic thermal 

comfort model 
-0.5 ≤ PMV ≤ +0.5 

ASHRAE Standard 55-

2013 (ASHRAE 2013) 
Natural 

Adaptive thermal 

comfort model 

Operative temperature - 

Comfort temperature ≤  

3.5 ℃ (80% acceptability) 
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However, the DMs may consider a certain range of exceedance hours as acceptable. 

This possibility is also supported by guides claiming, for example, that 300 ‘unmet’ 

hours may be tolerated (ASHRAE 2007), these representing (approximately) the 4% 

of total simulation time (U.S. Department of Energy 2016b). The DMs may also limit 

the extent of functional change – due to the variations in input data – to a user-defined 

value (Deb and Gupta 2006). For example, they may decide that no more than 10% of 

total occupied hours within the winter (and/or summer) period must be outside the 

comfort zone (under all performance scenarios). A change in the original budget may 

similarly limit the feasible region. For example, the client may use 350 £/m2 as the 

maximum limit to the construction cost of the building envelope. Note that, as these 

constraints are determined by the characteristics of each project, they are case-sensitive 

and thus constitute possible but not compulsory decisions. Given that the focus of this 

thesis is primarily on the design exploration process and not on the final selection of a 

design alternative based on actual stakeholder preferences, such constraints are here 

regarded as hypothetical ‘what-if’ scenarios that aim to demonstrate the ability of the 

new robust optimality criterion to support the a posteriori articulation of preferences 

as part of solution analysis. 

The DMs are also provided with the opportunity to add a constraint on the level of 

robustness of candidate solutions based on their risk perception and preferences. The 

application of constraints is further discussed in section 3.1.5, which deals with the 

visualisation of the performance outcomes of design solutions and the investigation of 

several what-if scenarios. After the completion of solution analysis, the DMs are then 

responsible for selecting the most preferred solution. This procedure is referred in the 

literature as a posteriori relationship between search and decision (Miettinen 2001). 

3.1.4.3 New robust optimality criterion 

By coupling optimization and uncertainty analysis, robust optimization can support 

the identification of solutions that perform well under uncertainty. In particular, its 

goal is not only to minimise the objective function value(s), but also to deal with the 

deviations of any uncertain input data from their nominal values (Hopfe et al. 2012). 

Robust optimization is hence a method for addressing optimization problems that are 

exposed to uncertainty. As already mentioned in 2.5.1, it has been applied across a 
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wide spectrum of domains such as finance or statistics, as well as in various areas of 

engineering such as structural design. However, it is still not popular in the area of 

building design exploration, where the majority of studies make use of deterministic 

simulations that disregard any possible variations in the operation of the building or 

its environmental conditions, this entailing the danger of sub-optimality for candidate 

design solutions (Van Gelder et al. 2014). There is also not a single, widely-applied 

definition of robustness, this resulting in various (mathematical) interpretations of the 

term and thus in several robustness indicators being available in the literature. 

According to Bertsimas et al. (2011), robust optimization aims to provide the DMs 

with optimum solutions that remain ‘feasible for any realisation of the uncertainty in 

a given set’, this ensuring feasibility ‘independent of the data’. Adjusting this general 

interpretation of robust optimization to building design exploration problems, a new 

robust optimality criterion is presented that aims to ensure optimality independent of 

the sources of aleatoric uncertainty such as the weather and occupancy. According to 

this new criterion, a robust solution is one that remains Pareto optimal regardless of 

the uncertainty in the predicted building performance that is due to the variability in 

the behaviour of any uncertain conditions. Combining equation 2.3 (that refers to 

Pareto optimality) and equation 2.11 (that refers to robust optimization), equation 3.3 

states that a solution 𝑥∗ is robust, if it is Pareto optimal under all conditions. That is, if 

there exists no solution 𝑥  which decreases 17  a criterion 𝑓𝑖(𝑥, 𝑢)  without causing a 

simultaneous increase in at least one (out of 𝑘) criterion, under any scenario 𝑢: 

 
𝑓𝑖(𝑥, 𝑢) >  𝑓𝑖(𝑥∗, 𝑢) for at least one 𝑖 ∈ 𝐼, 𝐼 = {1, … , 𝑘} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} and ∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢𝑛} 
(3.3)  

where 𝑚 is the total number of candidate design solutions in the solution set 𝑋, and 𝑛 

is the total number of performance scenarios in the uncertainty set 𝑈. 

In particular, the steps for implementing the robust optimality criterion are: 

1) For each scenario 𝑢 in the uncertainty set 𝑈 (162 scenarios in total, resulting 

from the exhaustive combination of the performance variable values in table 

3.3), find the Pareto set of design solutions. 

 
17 That applies to a minimisation problem, as required for this thesis. 
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2) For each design option 𝑥 in the solution set 𝑋, count the number of scenarios 

for which the solution is Pareto optimal. If this is equal to the total number of 

scenarios (162 in this thesis), the robustness of the solution is maximum (for 

this problem). 

Through the application of this new approach to robust design optimization, the DMs 

are able to identify solutions that remain Pareto optimal when exposed to aleatoric 

uncertainty; that is, solutions which are ‘tolerant of variation’ (Parkinson et al. 1993). 

This variation is here quantified by means of extreme values that provide lower and 

upper limits on the deviation of performance variables about their nominal values (as 

described in section 3.1.1.2). After specifying these three values (i.e. lower bound; 

nominal value; and upper bound) for each performance variable, an exhaustive search 

method is applied to define the (162) performance scenarios. In order to characterise a 

design solution as robust, this should be immune to the realisation of all these a priori 

scenarios; that is, it should remain Pareto optimal when performance scenarios vary 

within the defined uncertainty set 𝑈. Given that the entire uncertainty set 𝑈 is here 

considered, such a solution could be characterised as globally robust (Doumpos et al. 

2016). 

Finding globally robust solutions that are immune to all the realisations of uncertain 

input data is a reasonable approach when uncertainty is not stochastic, or when the 

available data on the underlying distribution is not adequate (Bertsimas et al. 2011). 

However, as it is very unlikely that all fluctuations occur simultaneously in the worst 

possible combination (extreme scenario), a small number of ‘rejects’ (e.g. 1%) could 

be allowed, the magnitude of which needs to be decided by the DMs (Parkinson et al. 

1993) and applied in the form of constraints (as discussed in 3.1.4.2). Given the low 

probability of a worst-case combination, a more flexible notion of robustness could 

thus be applied during solution analysis (particularly at the early stages of the design 

process), this accounting for the risk perception and preferences of the DMs. 
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3.1.5 Solution analysis 

Solution analysis is the last step of the proposed robust building design optimization 

framework (figure 3.1), this referring to the visualisation of the performance outputs 

of candidate design solutions and the exploration of plausible what-if scenarios. The 

communication of performance results is vital for understanding the behaviour of the 

building and making informed design decisions, especially in the case of large design 

spaces (Kotireddy et al. 2018). Section 3.1.5.1 will describe how the visualisation of 

performance results can assist the DMs in increasing their understanding of how the 

building may behave in the real world. Section 3.1.5.2 will focus on the investigation 

of what-if scenarios that can assist the DMs in making informed decisions. 

3.1.5.1 Visualisation of performance results 

Visualising a multi-dimensional Pareto front is challenging (section 2.3.1). This is due 

to the difficulty in, firstly, calculating a multi-dimensional – that is, larger than three-

dimensional – Pareto optimal surface and, secondly, disseminating it in a user-friendly 

manner (Deb and Saxena 2005). Parallel coordinates plots are used in this thesis to 

visualise the (four) optimization objectives in a two-dimensional graph that provides 

a rigorous way of displaying the relationship between design solutions and objectives 

(Fleming et al. 2005). Scatter plots are also used to assist the DMs in gaining a better 

understanding of the relationship between design solutions and objectives and hence 

becoming aware of the consequences of design choices, by exploring the trade-offs 

between the (four) optimization objectives (Kollat et al. 2011). 

The analysis of the performance of Pareto optimal solutions can support the DMs in 

obtaining a deeper understanding of the problem and, in particular, identifying any 

‘commonality principles’ among all or many of these solutions (Deb and Srinivasan 

2006). Such principles will indicate properties that can ensure Pareto optimality (Deb 

et al. 2014). Knowledge is also obtained from the analysis of the set of sub-optimal 

solutions, which can reveal the characteristics that make this set differ from the rest of 

solutions, but also the constraints that trigger sub-optimality. Solution analysis can 

finally yield knowledge specific to the region of interest of the DMs, relating regions 

in the objective space with regions in the decision space in order to inform decision-

making (Bandaru et al. 2017). 
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Communicating the sources of uncertainty and the related magnitude of performance 

to the DMs is, however, necessary for making robust decisions (Paté-Cornell 1996). 

Being aware of the possible states and outcomes of each candidate solution is crucial 

when investigating the risk of potential decisions (Gärdenfors and Sahlin 1982). For a 

problem that is exposed to uncertainty, risk refers to ‘the probability of failure to 

satisfy some performance criterion’ (Haldar and Mahadevan 2000). In the context of 

building design problems though, ‘probability of failure’ cannot be easily quantified 

due to the difficulty of explicitly quantifying the probability of individual scenarios 

occurring (Rysanek and Choudhary 2013). Risk hence expresses ‘the consequence of 

failure’, this signifying unsatisfactory performance (Haldar and Mahadevan 2000). 

In this thesis, the performance of a design solution is characterised as unsatisfactory 

when the solution is not globally robust – that is, when it is not Pareto optimal under 

all (162) performance scenarios. Nevertheless, this worst-case approach may result in 

conservative decisions that are determined by rather unlikely events (Doumpos et al. 

2016). The new robust optimality criterion that is suggested in this thesis provides the 

DMs with the flexibility to specify their desired level of robustness (which is visually 

communicated with the help of parallel coordinates and scatter plots), based on how 

large risks they wish to take. The more risk-averse the DMs are, the higher the chosen 

level of robustness must be (Gärdenfors and Sahlin 1982); i.e. the higher the number 

of performance scenarios for which the design solution is Pareto optimal should be. 

3.1.5.2 Investigation of what-if scenarios 

What-if analysis is described as ‘a data-intensive simulation whose goal is to inspect 

the behaviour of a complex system (such as a building) under some given hypotheses 

called scenarios’ (Golfarelli et al. 2006). Such scenarios express potential approaches 

to addressing the formulated building design problem (Sears and Jacko 2009). Their 

investigation can therefore indicate the steps that are required for optimizing building 

performance (Lerum 2008), also driving design decisions towards the direction that 

satisfies the needs of the DMs (Sears and Jacko 2009). By demonstrating the positive 

and negative consequences of preferred design choices, what-if scenarios can support 

robust optimization and decision-making (Howell and Batcheler 2005). As discussed 



                                                                                                                                               

Methodology                                                                                                                                          86 

 

in section 3.1.4.2, stakeholder preferences inform the definition of what-if scenarios, 

which are then expressed as (a posteriori) constraints to the defined problem. 

Parallel coordinates are used to illustrate the articulation of stakeholder preferences, 

as they provide the possibility to zoom in on a region of interest and isolate solutions 

with satisfactory characteristics (Fleming et al. 2005). By adding constraints to the 

outputs (design objectives) or inputs (design variables), the DMs can explore the sub-

regions of the search space that satisfy their user-defined filter criteria (Østergård et 

al. 2017). Constraints are therefore here implied by the (hypothetical) preferences of 

stakeholders (as discussed in section 3.1.4.2), but also the requirements of standards 

and guides. As the applied exhaustive search method enables the re-focusing of the 

problem as a post-processing step, there is the possibility of effortlessly considering 

multiple sets of objective and constraint functions out of the initial simulated dataset 

(Rysanek and Choudhary 2013). This can lead to the discovery of solution ‘attributes’ 

which can further inform decision-making (Ware 2012). 

Given the fact that the search for robust design alternatives may return solutions that 

are different from those of the deterministic Pareto set (that is, the nominal optimum 

solutions) (Avigad and Branke 2008), accounting for aleatoric uncertainty is vital for 

predicting the impact of decisions with more confidence (Gokhale 2009). Visualising 

uncertainty is therefore important, although not always easy to achieve (Ware 2012). 

Box plots are used to visualise the variations in the predicted objective values (for the 

solutions that meet stakeholder preferences) due to the effect of aleatoric uncertainty 

(de Wilde and Tian 2009), this being expressed by the 162 scenarios that were defined 

in section 3.1.1.2. Box plots provide a simple way of visualising the distribution of 

possible values for each objective function (Min et al. 2005). However, note that, this 

distribution expresses the nominal and extreme values that were introduced in section 

3.1.1.2; its shape may thus change if additional values are considered. 

 

3.2 Experiments and case study buildings 

The proposed framework for robust building design optimization (figure 3.1) will be 

applied to two case study buildings in chapters 4 and 5. In more detail, chapter 4 will 

describe the experimental ‘proof of concept’ for the robust optimization approach, with 
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the objective of exploring the behaviour of the new robust optimality criterion (as 

discussed in chapter 1). The solution set that will be derived from the application of 

the criterion (introduced in section 3.1.4.3) will be analysed as well as compared with 

the solution sets that will be obtained from the application of existing robustness 

indicators (presented in section 2.5.2.1). Note that, such a comparison aims to cast 

light on the behaviour of the new criterion – and not to identify the best-performing 

indicator, as this is dependent on the (risk) preferences of the DMs. The experiment 

will be performed using the ‘test cell’ that is illustrated in figure 3.3. This is a single-

zone office space with a widely used geometry (Judkoff and Neymark 1995). Thanks 

to its simple geometry, the robust optimization problem can be easily formulated, thus 

drawing attention to the behaviour of the new robust optimality criterion. 

 

Chapter 5 will describe an example application of the robust optimization approach, 

with the objective of demonstrating its potential to support design exploration and 

decision-making under uncertain conditions within a real-world context (as discussed 

in chapter 1). This experiment will be performed using a community centre as an 

example building. This is planned to be constructed in London, incorporating a shop, 

café, visitor space and third-party offices. As it comprises a variety of building uses 

(and therefore of thermal zones and requirements), it is suitable for demonstrating the 

potential of the proposed approach in the case of complex real-life problems. Three 

alternative building forms will be considered (as conceived by the design team), thus 

also accounting for the complexity of building geometry, as illustrated in figures 3.4, 

3.5 and 3.6. 

Figure 3.3. Test cell – The building form. 
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Figure 3.4. Real-world building – Form A (source: Eco Design Partnership ©). 

Figure 3.6. Real-world building – Form C (source: Eco Design Partnership ©). 

Figure 3.5. Real-world building – Form B (source: Eco Design Partnership ©). 
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3.3 Summary 

Chapter 3 described the new robust building design optimization framework, which 

aims to handle building design problems that are exposed to uncertain conditions, thus 

supporting building design exploration under uncertainty (as discussed in chapter 1). 

Building design exploration is a complex multi-step process that aims to identify the 

best-performing design solution (chapter 2). This process was here translated into a 

multi-objective robust optimization problem, the definition of which is informed by 

the requirements of the regulations and any possible preferences of the stakeholders. 

The DMs are called to solve this optimization problem that is exposed to a defined 

uncertainty set, which contains possible performance scenarios associated with the 

behaviour of any defined uncertain conditions. 

To solve this problem, all decisions need to be taken prior to the realisation of any 

performance scenario, as the naturally unpredictable sources of aleatoric uncertainty 

cannot be eliminated during the design process. By using the new robust optimality 

criterion that was introduced in this chapter, the DMs can identify a set of Pareto 

optimal solutions whose optimality is unaffected by the entire uncertainty set, these 

being here characterised as globally robust solutions. In terms of mathematics, such a 

robust optimization problem is solved by generating the Pareto front for each of the 

defined performance scenarios and then spotting the solutions that appear in all these 

Pareto fronts. Note that, the robust optimality criterion provides the DMs with the 

flexibility to specify their desired level of robustness, and therefore select a solution 

that appears in a user-defined number of Pareto fronts. 

However, in terms of decision-making, the problem is considered to be solved only 

when a single, final solution is obtained. As multiple objectives need to be minimised 

(heating energy demand; winter thermal discomfort; summer thermal discomfort; and 

capital cost), the implementation of robust optimization will result in more than one 

design alternatives. This is due to the fact that, if the dimensionality of the objective 

space increases, the dimensionality of the resulted Pareto frontier also increases. The 

DMs are thus provided with the opportunity to make the final decision. In particular, 

during solution analysis, the performance results of candidate solutions are presented 

to the DMs who can then choose the most preferred option, this being referred in the 
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literature as a posteriori decision-making. This method can be further investigated in 

the future, as the focus of this thesis is primarily on the design exploration process – 

that is, the generation and evaluation of alternative designs – and not on the selection 

of the (single) design that will be refined later on in the design process. 

Finally, note that, the robust building design optimization framework does not currently 

include sensitivity analysis. This means that the selected design parameters represent 

sources of epistemic uncertainty that are influential based on the conducted literature 

review, not on the mapping from analysis inputs to analysis outputs for the given case 

study buildings. In the future, sensitivity analysis could be incorporated in the robust 

building design optimization framework to enable a customised list of the parameters 

that greatly influence performance prediction and should therefore attract the attention 

of stakeholders during the design exploration process. 

 

 

 

   

 

 

 



Chapter 4 

Test cell – Proof of concept 
 

 

 

 

 

Chapter 4 describes the application of the suggested framework for robust building 

design optimization to a test cell. The behaviour of the new robust optimality criterion 

is elucidated by analysing the solution set that is derived from the application of the 

new criterion and comparing it with the solution sets that result from the application 

of existing robustness indicators. 

 

4.1 Description of the building 

The ‘test cell’ that is used to validate the suggested framework is illustrated in figure 

4.1. This is a single-zone office building in London with a simple geometry that enables 

the smooth application of the framework, thus drawing attention to the behaviour of the 

new robustness indicator. The geometry of the building was derived from a Building 

Energy Simulation Test (BESTEST) that was developed by the International Energy 

Agency (IEA) for testing whole-building energy simulation software tools (Judkoff 

and Neymark 1995). The dimensions of the building are 8 m x 6 m x 2.7 m. The 

building has no doors and two south-facing windows (each of them with a maximum 

area of 6 m2) that are shaded by an overhang (with a maximum width of 1 m). 

 

 

 

 

 

 

Figure 4.1. Test cell – The building form. 
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4.2 Application of the robust optimization framework 

This section will focus on the application of the proposed robust design optimization 

framework (introduced in chapter 3) to the described test cell. The implementation of 

the five recommended steps to solving a robust optimization problem (summarised in 

figure 3.1) will be discussed in sections 4.2.1 to 4.2.5. 

 

4.2.1 Uncertainty quantification 

According to the suggested framework, the first step to solving a robust optimization 

problem is to specify the design and performance variables that represent its sources 

of epistemic and aleatoric uncertainty, respectively. Table 4.1 summarises the design 

variables and variable values that are considered in the case of the test cell. Regarding 

its building form, two variables are defined (due to their effect on design objectives, 

as revealed by the literature review in chapter 2): window-to-wall ratio (WWR) and 

overhang depth. Two WWRs of 55.6 % and 27.8 % are selected. The larger area is the 

default BESTEST case (Judkoff and Neymark 1995), with the smaller area being half 

the default case. Note that, the smaller area is achieved by halving the height of both 

windows (the width of both windows is fixed, and their upper edges also remain fixed). 

Two overhang depths of 1.0 m and 0.3 m are selected, these being informed by the 

default BESTEST case and the Spon’s book (AECOM 2015), respectively. 

Regarding the construction of the test cell, the defined variables and variable values 

are identical to those described in section 3.1.1.1, with the values being drawn from 

the two standards: the Passivhaus Standard (International Passive House Association 

2018) and the Building Regulations Part L (UK Government 2013a). Four variables 

are considered: external wall construction; roof construction; window construction; 

and infiltration rate. Concerning the wall and roof constructions, two options comply 

with the Passivhaus Standard and two options satisfy the Building Regulations. The 

two options that conform to each standard have similar U-values, but different levels 

of thermal mass (heavyweight and lightweight constructions). Two types of window 

construction and infiltration rate, are similarly defined: one meeting the requirements 

of the Passivhaus Standard and another one of the Building Regulations Part L. 
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Regarding the operation of the test cell, five heating setpoint values are considered, 

these expressing the air temperatures that are suggested by the activity database of the 

National Calculation Method (NCM) (BRE 2015). Design variables are assumed to 

have a uniform distribution. 

Table 4.1. List of design variables and variable values. 

Subcategories Variables Variable values References 

Form 

WWR (%) 
1) 55.6 

(Judkoff and Neymark 1995) 
2) 27.8 

Overhang 

depth (m) 

1) 1.0 (Judkoff and Neymark 1995) 

2) 0.3 (AECOM 2015) 

Construction 

External wall 

construction 

(W/m2K) 18, 19 

1) HW-PH (0.140) 
(IBO 2009, International Passive House 

Association 2018) 
2) LW-PH (0.143) 

3) HW-PL (0.342) 
(Neufert et al. 2012, UK Government 2013a) 

4) LW-PL (0.342) 

Roof 

construction 
(W/m2K) 

1) HW-PH (0.146) 
(IBO 2009, International Passive House 

Association 2018) 
2) LW-PH (0.144) 

3) HW-PL (0.243) 
(Neufert et al. 2012, UK Government 2013a) 

4) LW-PL (0.239) 

Window 

construction 

(W/m2K) 

1) PH (0.780) 
(IBO 2009, International Passive House 

Association 2018) 

2) PL (2.129) (Neufert et al. 2012, UK Government 2013a) 

Infiltration 

rate (ac/h) 

1) PH (0.050) (CIBSE 2006, McLeod et al. 2014) 

2) PL (0.500) (CIBSE 2006, ATTMA 2010) 

Systems and 
operation 

Heating 
setpoint (℃) 

1) 19 

(BRE 2015, International Passive House 
Association 2018) 

2) 20 

3) 21 

4) 22 

5) 23 

 

 
18 HW/LW denotes the thermal mass of each construction (heavyweight and lightweight construction, 

respectively). PH/PL signifies the standard each construction complies with (the Passivhaus Standard 

and the Building Regulations Part L, respectively). 
19 The U-value of each construction option is provided (in W/m2K). 
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Table 4.2 summarises all performance variables and variable values (as described in 

section 3.1.1.2). Regarding the weather, three weather files are defined: the monitored 

data of 1979 (CIBSE 1979); the test reference year (TRY) (CIBSE 2016); and the 

design summer year (DSY 3) for London (CIBSE 2016). Concerning the occupancy 

of the cell, two occupant densities (and internal heat gains) are specified: a nominal 

value that is informed by the NCM activity database (BRE 2015) and a lower bound 

that refers to a 50% reduction in sensible gains (MacDonald 2002). Regarding the 

actual performance of wall and roof constructions, nominal values express the values 

of table 4.1. Lower and upper bounds represent faster and slower responses of the 

thermal mass, respectively (Clarke et al. 1990, MacDonald 2002). Three infiltration 

rates are similarly defined: a nominal value (table 4.1) and two extreme values that 

indicate a ± 50% variation (MacDonald 2002); that is, plus and minus three standard 

deviations (𝜇 ± 3𝜎). All performance variables have a normal distribution. 

Table 4.2. List of performance variables and variable values. 

Subcategories Variables Variable values Description/ References 

Weather Weather file 

1) 1979 
Cold year: maximum heating degree days 

(CIBSE 1979) 

2) TRY Typical year (CIBSE 2016) 

3) DSY 3 
Hot year: long, less intense warm spell 

(CIBSE 2016) 

Occupancy 

 

Occupant 

density 

(persons/m2) 

 

1) Nominal - 50% (MacDonald 2002)  

2) Nominal  (BRE 2015) 

Construction 

(actual 
performance) 

External wall 

construction 
(W/m2K) 

1) Fast response 

Nominal values refer to the design 

variable values of table 4.1. The lower 

and upper bounds represent possible 

variations in the response of the thermal 

mass. The considered variations in the 

thermal properties of individual material 
layers depending on their general category 

(Clarke et al. 1990) are included in tables 

A.3, A.4 and A.5 of appendix A. 

2) Nominal 

3) Slow response 

Roof 

construction 
(W/m2K) 

1) Fast response 

2) Nominal 

3) Slow response 

Infiltration 

rate (ac/h) 

1) Nominal - 50% (MacDonald 2002) 

2) Nominal See table 4.1 

3) Nominal + 50% (MacDonald 2002) 
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4.2.2 Exhaustive search 

Based on the proposed framework, after having specified all design and performance 

variables, the next step to solving a robust optimization problem is to form all design 

solutions (𝑥1, … , 𝑥𝑚) and performance scenarios (𝑢1, … , 𝑢𝑛). Since this thesis makes 

use of an exhaustive search method, the total number of solutions (𝑚) and the total 

number of scenarios (𝑛) result from the exhaustive combination of the defined design 

variable values and performance variable values, respectively. In the case of the test 

cell, 𝑚 equals 1,280 (2 WWRs x 2 overhang depths x 4 external wall constructions x 

4 roof constructions x 2 glazing types x 2 infiltration rates x 5 heating setpoints) and 

𝑛 equals 162 (3 weather files x 2 occupant densities x 3 external wall constructions 

(actual performance) x 3 roof constructions (actual performance) x 3 infiltration rates 

(actual performance)). This results in 207,360 combinations (1,280 design solutions x 

162 performance scenarios) and associated building performance simulations (BPS). 

 

4.2.3 Building performance simulation 

The next step is to explore the design space, which is performed with the assistance of 

BPS and optimization methods. Prior to assessing the optimality of solutions, their 

performance is predicted (under all performance scenarios), using EnergyPlus (U.S. 

Department of Energy 2016a) as an engine. The modelling process was described in 

section 3.1.3. In summary, the geometry of the test cell is firstly built (figure 4.2) in 

SketchUp (Trimble Navigation 2016) using its OpenStudio plug-in (U.S. Department 

of Energy 2015). The model is then exported as an input data file (IDF) and imported 

into EnergyPlus, where any input data that refers to its construction and operation is 

defined (data is summarised in the tables in chapter 3 and appendix A). The test cell 

operates on weekdays between 8:00 and 18:00, with winter heating and ventilation 

being supplied by the Ideal Loads Air System of EnergyPlus (U.S. Department of 

Energy 2016b), which also enables sensible heat recovery when the zone exhaust air 

temperature is more favourable than the outdoor air temperature. The outdoor air flow 

is 0.01 m3/s per person (BRE 2015). In summer, the test cell is naturally ventilated 

(during working hours) and hence no cooling or mechanical ventilation system is used. 

Lighting loads are set at 9 W/m2 and electrical equipment loads at 11.77 W/m2, with 

their schedules also being informed by the NCM activity database (BRE 2015). 
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Since each run takes 12 seconds, 691 hours are needed to complete the experiment. 

However, thanks to a bespoke (Java) script that supports concurrent processing, 20 

simulations are run in parallel, with the total computational time thus being 35 hours. 

Simulation results are exported to a comma-separated file (CSV) which contains the 

predicted values for heating energy demand, winter thermal discomfort and summer 

thermal discomfort. Values have been cross-checked to validate the model, with table 

B.1 (appendix B) showing the results for a solution that complies with the Passivhaus 

Standard and a solution that just complies with the Building Regulations (under a given 

scenario). Thanks to a bespoke (Python) script and the Spon’s price book (AECOM 

2015), the capital cost of each solution is also calculated and added to the CSV file. 

 

4.2.4 Robust optimization 

After predicting the performance of solutions under all scenarios, the next step is to 

identify the optima through the Pareto ranking of solutions. Optimization is thus a post-

processing step, with the identification of robust solutions being then performed using 

the new robust optimality criterion. According to this criterion, a robust solution is one 

that remains Pareto optimal regardless of the uncertainty in the predicted building 

performance that is due to the variability in the behaviour of the uncertain conditions. 

As revealed by equation 4.1, a solution 𝑥∗ is robust, if it is Pareto optimal under all 

162 scenarios. That is, if there exists no solution 𝑥 which decreases a criterion 𝑓𝑖(𝑥, 𝑢) 

without causing an increase in at least one other criterion, under any scenario 𝑢: 

 
𝑓𝑖(𝑥, 𝑢) >  𝑓𝑖(𝑥∗, 𝑢) for at least one 𝑖 ∈ 𝐼, 𝐼 = {1, … ,4} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥1280} and ∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢162} 
(4.1)  

Figure 4.2. Test cell – The SketchUp model. 
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In particular, the steps for post-processing (in Python) the CSV file that contains all 

predicted performance values to apply the robust optimality criterion to the cell are: 

1) For each scenario 𝑢 in the uncertainty set 𝑈 (162 accumulatively), the Pareto 

set of design solutions is identified. 

2) For each solution 𝑥 in the solution set 𝑋 (1,280 accumulatively), the number 

of scenarios for which the solution is Pareto optimal, is counted. If it equals 

162, the robustness of the solution is maximum, as it remains Pareto optimal 

regardless of the behaviour of the uncertain conditions. 

As indicated by equation 4.1, four optimization objectives are considered: a) heating 

energy demand; b) winter thermal discomfort; c) summer thermal discomfort; and d) 

capital cost. Table 4.3 displays the metrics that are used to quantify the performance 

of each design solution with respect to these four objectives. Heating energy demand 

is calculated in kWh/m2.yr to reveal the normalised per conditioned floor area space 

heating energy demand within the occupied winter period. Winter thermal discomfort 

refers to the percentage of total occupied hours within the winter period that PMV 

(Fanger 1970)) is less than -0.5. Summer thermal discomfort refers to the percentage 

of total occupied hours within the summer period that acceptability (according to the 

adaptive model (ASHRAE 2013)) is less than 80%. These limits were specified upon 

the acceptable thermal conditions that are suggested by the ASHRAE Standard 55-

2013 (ASHRAE 2013). Optimization thus aims to minimise the number of occupied 

hours that thermal conditions are outside the comfort zone – i.e. minimise exceedance 

hours. Capital cost (of the building envelope only) expresses the sum of construction 

materials and labour hours (AECOM 2015) per treated floor area (in £/m2). 

Table 4.3. The four design objectives and the applied metrics. 

Design objective Metric Reference 

Heating energy 

demand 
kWh/m2.yr 

EnergyPlus  

(U.S. Department 

of Energy 2016a) 

Winter thermal 

discomfort 

% of total occupied hours 

that PMV < -0.5 

Summer thermal 

discomfort 

% of total occupied hours 

that acceptability < 80% 

Capital cost £/m2 
Spon’s price book 

(AECOM 2015) 
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4.2.5 Solution analysis 

Solution analysis is the last step of the proposed robust building design optimization 

framework which aims to assist the DMs in understanding how the designed building 

may behave and ultimately making informed design decisions. This can be achieved 

by visualising the performance results of candidate design solutions and investigating 

possible what-if scenarios which are informed by the requirements of regulations and 

the preferences of different stakeholders. Figures 4.3 to 4.6 illustrate the distribution 

of the predicted values for each design objective (in the case of the described test cell 

and problem formulation). Each distribution reflects the 207,360 simulations which 

resulted from the exhaustive combination of the specified 1,280 design solutions and 

162 performance scenarios. As both design and performance uncertainties are taken 

into account, such distributions can reveal how the test cell may behave in real life. 

The minimum heating energy demand is 0 kWh/m2.yr (figure 4.3). Not surprisingly, 

this value refers to a solution that is compliant with the Passivhaus Standard – and thus 

the U-values of its wall, roof and window constructions as well as its infiltration rate 

are low, compared with a solution that only satisfies the Building Regulations. Both 

wall and roof constructions are heavyweight. The WWR is on its highest value, and 

the overhang depth on its lowest value. The heating setpoint is expectedly set to 19 ℃ 

(the lowest considered value). With regard to the behaviour of the uncertain conditions, 

the minimum heating energy demand refers to a hot weather year, a high value of 

occupant density (and internal gains), a slow response of the thermal mass (for wall 

and roof constructions) and a lower than expected (i.e. the nominal) infiltration rate. 

The maximum predicted heating energy demand is 78 kWh/m2.yr. This is associated 

with heavyweight wall and roof constructions that are compliant with the Building 

Regulations, but not with the Passivhaus Standard. The window constructions and 

infiltration rate similarly only meet the requirements of the Building Regulations. The 

WWR is on its lowest value, while the overhang depth and heating setpoint on their 

highest values. The maximum predicted heating energy demand is associated with a 

cold weather year, a low value of occupant density and internal gains, a fast response 

of the thermal mass (for both wall and roof constructions) and a higher than expected 

infiltration rate. 
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Figure 4.3. The histogram of predicted values for heating energy demand. 

 

Concerning winter thermal discomfort, the minimum predicted value is 0% (figure 

4.4). 644 out of the 207,360 combinations of design and performance variable values 

lead to this percentage, with almost all of them including Passivhaus wall, roof and 

window constructions and infiltration rate as well as a heating setpoint of 23 ℃ and 

the highest value of occupant density and internal heat gains. The maximum predicted 

value is 99%. This refers to a solution that complies with the Building Regulations and 

has a heating setpoint of 19 ℃. 99% is observed under multiple scenarios, all including 

the cold weather year and lowest value of occupant density and internal heat gains. 

 

Figure 4.4. The histogram of predicted values for winter thermal discomfort.
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The minimum summer thermal discomfort is 0% (figure 4.5). 5,579 out of the 207,360 

combinations of design and performance variable values lead to this percentage, with 

all of them including the lowest WWR and the cold weather year and, most of them, 

the highest value of overhang depth as well as the lowest value of occupant density 

and internal heat gains. The maximum percentage of discomfort hours is 40%. This 

refers to a solution that is compliant with the Passivhaus Standard – and therefore has 

an airtight construction. As expected, 40% is observed when the hot weather year and 

highest value of occupant density and internal heat gains occur. 

 

Figure 4.5. The histogram of predicted values for summer thermal discomfort. 

 

 

Figure 4.6. The histogram of predicted values for capital cost. 
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Finally, the minimum capital cost is 230 £/m2 (figure 4.6). This refers to a design 

solution that complies with the Building Regulations Part L – and hence, compared 

with a Passivhaus solution, its wall and roof constructions have a less thick insulation 

and no airtightness membrane as well as its windows are double glazed, instead of 

triple glazed. The maximum cost value is 590 £/m2. This refers to lightweight (timber 

frame) wall and roof constructions that satisfy the requirements of the Passivhaus 

Standard, and the highest WWR (as the cost of the window construction is three times 

higher than the cost of the wall construction). Note that, this maximum cost value is 

observed under all (162) performance scenarios, as capital cost is not affected by the 

variability in the behaviour of the uncertain conditions. However, by comparing the 

distributions that are displayed in figures 4.3 to 4.6 with these in 4.7 (demonstrating 

deterministic values only), it is evident that aleatoric uncertainties can influence the 

performance of the test cell in terms of its heating energy demand, winter discomfort 

and summer discomfort, hence revealing the value of including such uncertainties in 

design exploration (in the case of winter thermal discomfort, this may be less apparent, 

as occupant comfort is remarkably affected by the selection of heating setpoint). 

 

Figure 4.7. The histograms of predicted deterministic values for all four design objectives. 
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By considering aleatoric uncertainties during design exploration, the DMs can hence 

become aware of the risk of unsatisfactory performance. This risk is revealed by the 

comparison between the number of nominal optimum solutions (as resulted from the 

deterministic Pareto ranking) and the number of robust solutions (as derived from the 

application of the robust optimality criterion). In particular, as shown in table 4.4, out 

of the 1,280 candidate design solutions, 217 solutions are found to be Pareto optimum 

under the nominal value of the uncertain conditions. However, only 68 of them are 

optimum under all (162) performance scenarios. In addition to these globally robust 

solutions, 254 solutions are Pareto optimal under one or more scenarios – that is, 322 

solutions (including the 217 solutions) are optimal under at least one scenario. 

 

Figure 4.8. Restricted (hypothetical) region of interest in the deterministic objective space. The 

shading signifies the number of design solutions in each region of the figure. 

 
Table 4.4. Number of solutions (for the described problem formulation). 

Type of solutions Number of solutions 

 Design space Region of interest 

Feasible  

(under all scenarios) 
1,280 51 

Nominal optimum 217 22 

Optimum under at 

least one scenario 
322 36 

Optimum under  

all scenarios  

(globally robust) 

68 19 
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The risk of sub-optimality – or even infeasibility – of candidate design solutions due 

to aleatoric uncertainties can be elucidated by restricting the (hypothetical) region of 

interest in the objective space. For instance, the DMs may consider 15 kWh/m2.yr and 

350 £/m2 as the maximum allowable values for heating energy demand and capital cost, 

respectively (figure 4.8). Out of the 243 feasible design solutions in the deterministic 

objective space (i.e. in the case of no aleatoric uncertainties), only 51 solutions remain 

feasible under all scenarios. 22 of them are optimum under nominal conditions, with 

19 of them remaining optimum under all scenarios. 36 solutions are optimal under at 

least one scenario (including the 19 solutions that are 100% robust). 

The scatter plot in figure 4.9 can assist the DMs in gaining a better understanding of 

the relationship between these 19 globally robust solutions (denoted with a rhombus) 

and the design objectives. 8 of these 19 solutions (no. 10, 11, 12, 13, 15, 16, 17 and 

18)20 fully comply with the Passivhaus Standard, all including concrete wall and roof 

constructions. They also include the lowest value of overhang depth. Solutions no. 10, 

11, 12 and 13 comprise the highest WWR, thus resulting in a higher percentage of 

summer discomfort hours, compared with solutions no. 15, 16, 17 and 18, which have 

the lowest WWR. Each group of four solutions refers to the same constructions but 

different heating setpoint (19, 20, 21 and 22 ℃, respectively), therefore leading to 

identical summer discomfort hours and costs, but different heating energy demands 

and winter discomfort hours. The remaining globally robust solutions include a roof 

and/or window construction which does not comply with the Passivhaus Standard. 

Since the robust optimality criterion provides the DMs with the flexibility to specify 

their desired level of robustness, figure 4.9 also displays (using a circle) the 2 design 

solutions which are 95% robust – i.e. remain optimal under at least 154 performance 

scenarios. Solution no. 14 is identical to solutions no. 10, 11, 12 and 13 in terms of its 

form and construction, but has a higher heating setpoint (23 ℃). Solution no. 332 

differs from solution no. 12 only in terms of its window construction, as this is not 

compliant with the Passivhaus Standard. If the DMs have a risk-taking attitude, they 

can decrease the number of scenarios for which the building remains Pareto optimal.  

 
20 The number refers to the solution “index” and as such, its magnitude does not imply a rank/ order of 

optimality – in fact, these solutions are all equal in terms of their level of robustness. 
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Figure 4.9. The trade-offs between the four optimization objectives under the nominal conditions. 

 

Figure 4.10. The box plots of compatible (for a hypothetical what-if scenario) solutions. 
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Note that, the objective values that are illustrated in figure 4.9 represent the predicted 

performance of the test cell under the nominal uncertain conditions. Such values are 

displayed in table 4.5 for the 19 solutions that remain optimum under all scenarios, in 

the described region of interest (illustrated in figure 4.8). The combinations of design 

variable values that led to these performance values (and were described above), are 

displayed in table 4.6. 

Table 4.5. The predicted objective values under the nominal conditions for the 19 solutions that 

remain optimum under all (162) scenarios, in the described region of interest (figure 4.8). Note that, 

the solution index does not imply a rank/ order of optimality – in fact, these solutions are all equal in 

terms of their level of robustness. 

Solution 

index 

Design 

objective 

 

Heating energy 

demand 

(kWh/m2.yr) 

Winter 

discomfort 

(% of hours) 

Summer 

discomfort 

(% of hours) 

Capital 

cost 

(£/m2) 

10 0.409 35.043 16.595 348.959 

11 0.691 13.439 16.547 348.959 

12 1.117 6.575 16.331 348.959 

13 1.704 1.879 16.355 348.959 

15 0.330 57.659 8.357 301.072 

16 0.739 23.772 8.836 301.072 

17 1.350 11.272 8.716 301.072 

18 2.121 1.951 8.477 301.072 

175 1.004 60.332 8.190 297.902 

176 1.695 37.066 8.118 297.902 

325 1.268 72.327 3.305 329.460 

326 2.046 44.075 3.257 329.460 

330 1.587 47.038 17.313 292.959 

331 2.347 23.555 17.265 292.959 

335 1.192 58.743 9.962 273.072 

336 1.933 34.104 10.177 273.072 

337 2.968 19.075 9.962 273.072 

485 2.122 73.916 3.807 326.290 

495 2.008 61.705 9.028 269.902 
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Table 4.6. The combinations of design variable values for the 19 solutions that remain optimum under 

all (162) scenarios, in the described region of interest (figure 4.8). Note that, the solution index does 

not imply a rank/ order of optimality – in fact, these solutions are all equal in terms of their level of 

robustness. HW denotes the thermal mass of the construction (that is, heavyweight construction). 

PH/PL signifies the standard each construction complies with (the Passivhaus Standard and the 

Building Regulations Part L, respectively). 

Solution 
index 

Form Construction Operation 

 

WWR 

(%) 

Overhang 
depth 

(m) 

Wall 
construction  

(–) 

Roof 
construction 

(–) 

Window 
construction  

(–) 

Infiltration 
rate 

(–) 

Heating 
setpoint 

(℃) 

10 55.6 0.3 HW-PH HW-PH PH PH 19 

11 55.6 0.3 HW-PH HW-PH PH PH 20 

12 55.6 0.3 HW-PH HW-PH PH PH 21 

13 55.6 0.3 HW-PH HW-PH PH PH 22 

15 27.8 0.3 HW-PH HW-PH PH PH 19 

16 27.8 0.3 HW-PH HW-PH PH PH 20 

17 27.8 0.3 HW-PH HW-PH PH PH 21 

18 27.8 0.3 HW-PH HW-PH PH PH 22 

175 27.8 0.3 HW-PH HW-PL PH PH 19 

176 27.8 0.3 HW-PH HW-PL PH PH 20 

325 27.8 1.0 HW-PH HW-PH PL PH 19 

326 27.8 1.0 HW-PH HW-PH PL PH 20 

330 55.6 0.3 HW-PH HW-PH PL PH 19 

331 55.6 0.3 HW-PH HW-PH PL PH 20 

335 27.8 0.3 HW-PH HW-PH PL PH 19 

336 27.8 0.3 HW-PH HW-PH PL PH 20 

337 27.8 0.3 HW-PH HW-PH PL PH 21 

485 27.8 1.0 HW-PH HW-PL PL PH 19 

495 27.8 0.3 HW-PH HW-PL PL PH 19 

 

Figure 4.10 can then notify the DMs of the possible variations in these deterministic 

objective values (due to the effect of uncertainty), and inform them of the possible 

consequences of their design decisions. In particular, the box plots in figure 4.10 

illustrate the distributions of possible objective values for design solutions no. 15, 16, 

17 and 18. Given a (hypothetical) what-if scenario in which the DMs wish to construct 

a building which complies with the Passivhaus Standard but also minimises investment 
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cost, these are the only 4 globally robust design options. Since they refer to the same 

construction but different heating setpoint (19, 20, 21 and 22 ℃, respectively), they 

result in (almost) identical summer discomfort hours, with their lowest percentage 

(1%) being observed in the case of the slow response of thermal mass (for both wall 

and roof constructions), the higher than expected infiltration rate, the cold weather year 

as well as the lowest value of occupant density (and internal heat gains). The highest 

summer discomfort is 27% and is observed in the case of the fast response of thermal 

mass, the lower than expected infiltration rate, the hot weather year and highest value 

of occupant density (and internal heat gains). As indicated by figure 4.10, such design 

solutions also result in an identical capital cost that is equal to 301 £/m2 under all 

scenarios (as capital cost is not affected by the natural variability in the behaviour of 

the uncertain conditions). As expected, the lower the setpoint, the lower the heating 

energy demand but also the higher the winter thermal discomfort. 

These solution characteristics are also reflected in figure 4.11 that displays the radar 

plots of solutions no. 15, 16, 17 and 18. These plots provide the DMs with useful 

information on the predicted performance of each design option under each scenario. 

Focusing on the scenarios that lead to the highest values of heating energy demand and 

winter discomfort, the displayed radar plots reveal the predicted objective values under 

the 54 performance scenarios which include the cold weather year. Out of these 54 

scenarios, scenarios no. 27 to 53 include the lower than expected occupant density, 

which is accompanied by a large decrease in internal gains and thus a great increase in 

annual heating energy demand. For all 4 design options, the highest heating energy 

demand is observed under scenario no. 45 – i.e. a fast response of the thermal mass 

(for both wall and roof constructions) and a higher than expected infiltration rate. 

Observing the solution characteristics that drive satisfactory performance can support 

the DMs in making informed decisions. For instance, for the examined building and 

problem formulation, all globally robust solutions (as derived from the application of 

the robust optimality criterion) include an external wall construction and an infiltration 

rate that meet the requirements of the Passivhaus Standard. They also include concrete 

wall and roof constructions. The majority of them include the lowest value of overhang 

depth. 19 ℃ and 20 ℃ are the two most commonly encountered values for the heating 
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setpoint. With the objective of demonstrating the potential of the new robust optimality 

criterion within a real-world context, chapter 5 will further discuss the identification 

of solution characteristics that can ensure Pareto optimality, with parallel coordinates 

plots providing a rigorous way of demonstrating the relationship between the resulted 

robust solutions and the defined objectives (as described in section 3.1.5.1). 

 

4.3 Comparison with common robustness indicators 

Since this chapter aims to explore the behaviour of the robust optimality criterion (as 

discussed in chapter 1), after having applied it to the test cell problem and analysed the 

Figure 4.11. The radar plots of compatible (for a hypothetical what-if scenario) solutions. 
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derived solution set (in section 4.2), the resulted robust design solutions are compared 

with the solutions that are obtained from the application of existing robustness rules 

(presented in section 2.5.2.1). This comparison does not, however, aim to reveal the 

best-performing rule, as the suitability of a robustness indicator for a design problem 

depends on the (risk) preferences of the DMs and is thus case-sensitive – and out of 

the scope of this thesis. 

As discussed in section 2.5, the different interpretations of the term ‘robustness’ has 

led to the development of various indicators by relevant studies. These are commonly 

classified into probabilistic and non-probabilistic methods (based on the probabilistic 

or not handling of inherent uncertainties). Given that, for building design exploration 

problems, the probability of occurrence of uncertain values is not known (or at least 

not defined with certainty), this thesis focuses on the non-probabilistic assessment of 

robustness. Wald’s rule (or minimax) (Wald 1945); Savage’s rule (or minimax regret) 

(Savage 1951); and range (or max-min) are common non-probabilistic indicators that 

are used in situations where uncertainties cannot be quantified in probabilistic terms. 

According to the minimax rule (equation 4.2), a robust solution is one that results in 

the least worst performance outcome across all scenarios. According to the minimax 

regret rule (equation 4.3), a robust solution is one that leads to the least worst regret21 

(or opportunity loss). According to the max-min rule (equation 4.4), a robust solution 

is one that results in the smallest difference between the worst and best performance 

outcomes across all scenarios: 

 
min max 𝑓(𝑥, 𝑈), 𝑈 = {𝑢1, … , 𝑢𝑛} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} 
(4.2)  

 
min max [𝑓(𝑥, 𝑢) − min 𝑓(𝑋, 𝑢)] 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} and ∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢𝑛} 
(4.3)  

    

 
min [max 𝑓(𝑥, 𝑈) −  min 𝑓(𝑥, 𝑈)] , 𝑈 = {𝑢1, … , 𝑢𝑛} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥𝑚} 
(4.4)  

 
21 For a given scenario, regret refers to the difference between the performance outcome of a solution 

and the best performance outcome across all solutions. 
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Table 4.7 summarises the number of solutions that are obtained from the application 

of these three robustness indicators (in the case of both the defined design space and 

described region of interest). Out of the 1,280 total design solutions, 242, 256 and 45 

solutions are found to be robust according to the minimax, minimax regret and max-

min rule, respectively. Minimax and minimax regret result in almost identical robust 

solution sets as they have 231 solutions in common, with 26 of them also appearing in 

the solution set that is derived from the application of the max-min rule. It is worth 

noting that all these 26 solutions are Pareto optimum under at least one performance 

scenario, with 6 of them remaining optimal under all scenarios (i.e. they are globally 

robust solutions based on the new robust optimality criterion). By applying multiple 

robustness rules together, the DMs can make risk-conscious decisions in the context 

of building design decision-making. However, in this thesis, comparing various robust 

solution sets aims to cast light on the behaviour of the new robustness indicator – and 

not to point out the most effective rule or combination of rules, or identify a single, 

best-performing design solution. 

Table 4.7. Number of solutions (for the described problem formulation). 

Type of solutions Number of solutions 

 Design space Region of interest 

Feasible  

(under all scenarios) 
1,280 51 

Nominal optimum 217 22 

Optimum under at 

least one scenario 
322 36 

Optimum under  

all scenarios  
(globally robust) 

68 19 

Minimax 242 35 

Minimax regret 256 35 

Max-min 45 3 
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Focusing on the hypothetical region of interest (illustrated in figure 4.8), figure 4.12 

shows all feasible robust solutions that are obtained from the application of the new 

indicator as well as of the three existing rules. Out of the 51 total feasible solutions, 

35, 35 and 3 solutions are calculated to be robust according to the minimax, minimax 

regret and max-min rule, respectively. These are sorted (in descending order) in terms 

of their level of robustness (i.e. the number of scenarios under which they are Pareto 

optimal) and are denoted with a black circle. A red circle with a cross indicates that the 

solution does not appear in the solution set that is derived from the application of the 

new robust optimality criterion. If the solution remains Pareto optimal under all (162) 

scenarios, it is denoted with a black rhombus. All 19 globally robust design solutions 

appear in the solution sets that are derived from the application of the minimax and 

minimax regret rules, with only 3 of them being robust based on the max-min rule. 

Figure 4.12. Feasible robust solutions as resulted from different robustness indicators. 
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Solutions no. 10, 13 and 325 are the 3 globally robust solutions that are also found to 

be robust according to the minimax, minimax regret and max-min rules. As already 

discussed in section 4.2, solutions no. 10 and 13 fully comply with the Passivhaus 

Standard, both including heavyweight (concrete) wall and roof constructions. They 

also comprise the lowest value of overhang depth and highest WWR. They thus refer 

to the same construction, but different heating setpoint (19 and 22 ℃, respectively). 

Not surprisingly, solution no. 10 results in lower heating energy demand, but higher 

winter discomfort (as displayed in figure 4.12). Solution no. 325 includes a window 

construction that violates the requirements of the Passivhaus Standard (its U-value is 

higher than the maximum allowable value), as well as the highest value of overhang 

depth and lowest WWR. Comparing it with solution no. 10 that includes the same 

heating setpoint, it leads to higher heating energy demand and winter discomfort, but 

lower summer discomfort and capital cost (as the cost of its window construction is 

two times lower, compared with the one that meets the Passivhaus Standard). 

 

Figure 4.13. The box plots of solutions no. 13 and 18. 
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Figure 4.12 implies that the solution sets that are derived from the application of the 

minimax and minimax regret rules are similar (for the examined building and given 

problem formulation) to the solution set that results from the implementation of the 

new robustness indicator. The figure also suggests that the max-min rule results in a 

robust solution set that differs from the other three sets, which indicates that the other 

three robustness indicators do not necessarily result in solutions that limit the range of 

performance. This can also be observed in figure 4.13 that illustrates the boxplots of 

solution no. 13 (which is robust according to all indicators) and solution no. 18 (which 

does not remain robust under the max-min criterion). Although solution no. 18 is robust 

according to the minimax and minimax regret rules as well as the robust optimality 

criterion, it results in the highest range of heating energy demand among all 51 feasible 

solutions. This observation needs to be taken into account during decision-making, the 

further discussion of which is, however, out of the scope of this thesis. 

 

4.4 Summary 

Chapter 4 described the application of the suggested framework for robust building 

design optimization to a ‘test cell’, with the objective of exploring the behaviour of the 

novel robustness indicator prior to its use within a real-world context (in chapter 5), as 

discussed in chapter 1. The examined test cell is a single-zone office building with a 

simple and widely used geometry that allows for the smooth implementation of the 

framework, therefore drawing attention to the behaviour of the new robust optimality 

criterion (introduced in chapter 3). 

Robust solutions were identified using the new criterion, with their performance being 

then analysed. As both epistemic and aleatoric uncertainties were taken into account, 

solution analysis revealed how the test cell may behave in real life. A wide range of 

objective function values was observed, resulting from both the differences in design 

solutions and performance scenarios. Comparing the distributions of objective values 

when aleatoric uncertainties are incorporated in the building design problem with the 

distributions of the deterministic objective values revealed the risk of unsatisfactory 

performance due to the effect of aleatoric uncertainties, and consequently the critical 

importance of assessing robustness within the context of building design exploration 
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problems. This was also revealed by the comparison between the number of nominal 

optimum solutions (as derived from the deterministic Pareto ranking) and the number 

of robust solutions (as resulted from the application of the robust optimality criterion). 

Scatter, box and radar plots elucidated the relationship between robust solutions and 

the four design objectives, which can inform decision-making. 

In order to gain a better understanding of the behaviour of the new robust optimality 

criterion, robust solutions were compared with the solutions that were obtained from 

the application of existing robustness rules (minimax, minimax regret and max-min). 

The solution sets that were derived from the application of the minimax and minimax 

regret rules were similar (for the examined building and given problem formulation) 

to the solution set that resulted from the application of the robust optimality criterion. 

The max-min rule produced a solution set that differed from the other sets, implying 

that the robust optimality criterion (so as other robustness rules in the literature) may 

not result in solutions that minimise the range of performance. By applying multiple 

robustness rules together, the DMs can improve the confidence in their decisions in 

the context of building design exploration and decision-making, with the selection of 

a single robustness indicator for addressing a given design problem being dependent 

on their (risk) preferences – which is, however, out of the scope of this thesis. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Real-world building – Example application 
 

 

 

 

 

Chapter 5 describes the application of the new robust optimization framework to the 

design optimization of a real-world building. The potential of the robust optimality 

criterion to support design exploration under uncertain conditions within a real-world 

context is elucidated by analysing the solution set that is derived from the application 

of the criterion. 

 

5.1 Description of the building 

A new community centre that will be constructed in London is used as a case study 

building. This incorporates a shop, café, visitor space and third-party offices. Since it 

comprises a variety of building uses (and thus of thermal zones and requirements), it 

is considered to be suitable for demonstrating the potential of the suggested approach 

in the case of complex real-life problems. As part of the design exploration process, 

three alternative forms are considered, as illustrated in figures 5.1, 5.2 and 5.3. These 

were conceived by the design team based on the brief that was agreed with the client. 

Their treated floor area is 935 m2, 665 m2 and 760 m2, respectively. 

 

Figure 5.1. Real-world building – Form A (source: Eco Design Partnership ©). 
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5.2 Application of the robust optimization framework 

This section will focus on the application of the proposed robust design optimization 

framework (introduced in chapter 3) to the example building described in section 5.1. 

The implementation of the five steps to solving a robust optimization problem (shown 

in figure 3.1) will be discussed in sections 5.2.1 to 5.2.5. 

 

5.2.1 Uncertainty quantification 

The rationale behind uncertainty quantification was described in section 3.1.1, with 

the design variables and variable values that are defined in the case of the community 

Figure 5.2. Real-world building – Form B (source: Eco Design Partnership ©). 

Figure 5.3. Real-world building – Form C (source: Eco Design Partnership ©). 
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centre being summarised in table 5.1. Compared with the test cell that was examined 

in chapter 4, the only difference lies in the handling of the building form. Three pre-

defined designs (A, B and C, Figures 5.1 – 5.3) are considered here, these expressing 

the conceptual ideas that were triggered by the brief (that was agreed with the client) 

and emerged from the collaborative brainstorming of the design team members. 

Table 5.1. List of design variables and variable values. 

Subcategories Variables Variable values References 

Form Form (-) 

1) A 

Eco Design Partnership © 2) B 

3) C 

Construction 

External wall 

construction 

(W/m2K) 22, 23 

1) HW-PH (0.140) 
(IBO 2009, International Passive House 

Association 2018) 
2) LW-PH (0.143) 

3) HW-PL (0.342) 
(Neufert et al. 2012, UK Government 2013a) 

4) LW-PL (0.342) 

Roof 

construction 

(W/m2K) 

1) HW-PH (0.146) 
(IBO 2009, International Passive House 

Association 2018) 
2) LW-PH (0.144) 

3) HW-PL (0.243) 
(Neufert et al. 2012, UK Government 2013a) 

4) LW-PL (0.239) 

Window 

construction 

(W/m2K) 

1) PH (0.780) 
(IBO 2009, International Passive House 

Association 2018) 

2) PL (2.129) (Neufert et al. 2012, UK Government 2013a) 

Infiltration 

rate (ac/h) 

1) PH (0.050) (CIBSE 2006, McLeod et al. 2014) 

2) PL (0.500) (CIBSE 2006, ATTMA 2010) 

Systems and 

operation 

Heating 

setpoint (℃) 

1) 19 

(BRE 2015, International Passive House 

Association 2018) 

2) 20 

3) 21 

4) 22 

5) 23 

 

 
22 HW/LW denotes the thermal mass of each construction (heavyweight and lightweight construction, 

respectively). PH/PL signifies the standard each construction complies with (the Passivhaus Standard 

and the Building Regulations Part L, respectively). 
23 The U-value of each construction option is provided (in W/m2K). 
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Table 5.2 summarises the considered performance variables and variable values (as 

described in section 3.1.1 and applied to the test cell in chapter 4). 

Table 5.2. List of performance variables and variable values. 

Subcategories Variables Variable values Description/ References 

Weather Weather file 

1) 1979 
Cold year: maximum heating degree days 

(CIBSE 1979) 

2) TRY Typical year (CIBSE 2016) 

3) DSY 3 
Hot year: long, less intense warm spell 

(CIBSE 2016) 

Occupancy 

 

Occupant 

density 

(persons/m2) 
 

1) Nominal - 50% (MacDonald 2002)  

2) Nominal  (BRE 2015) 

Construction 
(actual 

performance) 

External wall 
construction 

(W/m2K) 

1) Fast response 

Nominal values refer to the design 

variable values of table 5.1. The lower 

and upper bounds represent possible 

variations in the response of the thermal 
mass. The considered variations in the 

thermal properties of individual material 

layers depending on their general category 

(Clarke et al. 1990) are included in tables 

A.3, A.4 and A.5 of appendix A. 

2) Nominal 

3) Slow response 

Roof 
construction 

(W/m2K) 

1) Fast response 

2) Nominal 

3) Slow response 

Infiltration 
rate (ac/h) 

1) Nominal - 50% (MacDonald 2002) 

2) Nominal See table 5.1 

3) Nominal + 50% (MacDonald 2002) 

 

5.2.2 Exhaustive search 

Since this thesis makes use of an exhaustive search, the total number of solutions (𝑚) 

and the total number of scenarios (𝑛) result from the exhaustive combination of the 

defined design variable values (table 5.1) and performance variable values (table 5.2), 

respectively. 𝑚 hence equals 960 (3 forms x 4 external wall constructions x 4 roof 

constructions x 2 glazing types x 2 infiltration rates x 5 heating setpoints), and 𝑛 equals 

162 (3 weather files x 2 occupant densities x 3 external wall constructions (actual 

performance) x 3 roof constructions (actual performance) x 3 infiltration rates (actual 

performance)). This results in 155,520 combinations (960 design solutions x 162 

performance scenarios) and associated building performance simulations (BPS). 
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5.2.3 Building performance simulation 

The modelling process was described in section 3.1.3. In summary, the geometry of 

designs A, B and C is firstly built (figure 5.4, 5.5. and 5.6, respectively) in SketchUp 

(Trimble Navigation 2016) using its OpenStudio plug-in (U.S. Department of Energy 

2015) and following the drawings and information that were provided by the design 

team. The 3D models are then imported into EnergyPlus (U.S. Department of Energy 

2016a), where any additional data is defined prior to running all simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Real-world building – Form A – The SketchUp model. 

Figure 5.5. Real-world building – Form B – The SketchUp model. 

Figure 5.6. Real-world building – Form C – The SketchUp model. 
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The models are multi-zone buildings consisting of 18, 14 and 14 zones, respectively 

(appendix B). The difference in the number of zones stems from the vagueness of the 

brief and thus the uncertainty in problem formulation that must be further examined in 

future work. The zones incorporate a shop, café (main space and kitchen), visitor space 

and third-party offices, along with their secondary spaces (e.g. internal circulation).    

16, 11 and 11 respectively of the aforementioned zones are mechanically conditioned 

during working hours (as the remaining zones are storage rooms). Winter heating and 

ventilation are supplied to zones by the Ideal Loads Air System of EnergyPlus (U.S. 

Department of Energy 2016b), which also enables (sensible) heat recovery when the 

zone exhaust air temperature is more favourable than the outdoor air temperature. The 

outdoor air flow is 0.01 m3/s per person for all conditioned zones (BRE 2015), with 

the exception of the kitchen of the café (where it is 0.025 m3/s per person (BRE 2015)), 

and all toilets (where it is 5 ac/h (CIBSE 2006)). In summer, all zones are naturally 

ventilated (during working hours). Note that, working hours vary from one building 

use to another based on the brief (but are the same for all three models), these also 

affecting their secondary spaces (e.g. internal circulation): 

• Shop: every day between 9:00 and 18:00 

• Café: every day between 11:00 and 21:00 

• Visitor space: every day between 9:00 and 18:00 

• Third-party offices: on weekdays between 9:00 and 17:00 

Table 5.3. List of fixed parameter values in EnergyPlus, as determined by the activity database of the 

NCM (BRE 2015) for different building uses. 

  Value 

Object Field Shop Café 

Visitor 

space Offices 

People 

People per Zone Floor Area 

(persons/m2) 
0.1169 0.2 0.1256 0.111 

Sensible Heat Fraction 0.5 0.61 0.61 0.5935 

Lights 
Watts per Zone Floor Area 

(W/m2) 
13 3.5 5 9 

ElectricEquipment 

Watts per Zone Floor Area 

(W/m2) 
2524 024 5.4 11.77 

Fraction Latent 0 0 0 0.75 

 
24 These values are updated by the client, as electric equipment is known. 
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Table 5.3 displays the internal loads (occupancy, lighting and electrical equipment), 

for these building uses, based on the activity database of the NCM (BRE 2015). The 

internal loads of any secondary spaces are similarly informed by the NCM. Tables 5.4, 

5.5 and 5.6 demonstrate the schedules of these objects in EnergyPlus, as proposed by 

the NCM for shops, café and visitor spaces, respectively. Table 3.6 in section 3.1.3.1 

demonstrates the corresponding schedules for office spaces. 

Table 5.4. List of Schedule:Compact objects in EnergyPlus, as determined by the activity database of 

the NCM (BRE 2015) for shops. 

Activity Level People Lights Electric Equipment 

Through: 12/31 

For: AllDays 

Until: 24:00 

140 

Through: 12/31 

For: AllDays 

Until: 09:00 

0 

Until: 10:00 

0.8 
Until: 12:00 

1 

Until: 14:00 

0.8 

Until: 17:00 

1 

Until: 18:00 

0.8 

Until: 24:00 

0 

Through: 12/31 

For: AllDays 

Until: 09:00 

0 

Until: 18:00 

1 
Until: 24:00 

0 

Through: 12/31 

For: AllDays 

Until: 09:00 

0.048 

Until: 18:00 

1 
Until: 24:00 

0.048 

 

Table 5.5. List of Schedule:Compact objects in EnergyPlus, as determined by the activity database of 

the NCM (BRE 2015) for café. 

Activity Level People Lights Electric Equipment 

Through: 12/31 

For: AllDays 

Until: 24:00 

110 

Through: 12/31 

For: AllDays 

Until: 11:00 

0 

Until: 12:00 

0.2 

Until: 14:00 

1 
Until: 15:00 

0.8 

Until: 20:00 

1 

Until: 21:00 

0.8 

Until: 24:00 

0 

Through: 12/31 

For: AllDays 

Until: 11:00 

0 

Until: 21:00 

1 

Until: 24:00 

0 

Through: 12/31 

For: AllDays 

Until: 11:00 

0.0567 

Until: 21:00 

1 

Until: 24:00 

0.0567 
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Table 5.6. List of Schedule:Compact objects in EnergyPlus, as determined by the activity database of 

the NCM (BRE 2015) for visitor spaces. 

Activity Level People Lights Electric Equipment 

Through: 12/31 
For: AllDays 

Until: 24:00 

140 

Through: 12/31 
For: AllDays 

Until: 09:00 

0 

Until: 10:00 

0.2 

Until: 11:00 

0.8 

Until: 12:00 

1 

Until: 14:00 

0.4 
Until: 16:00 

1 

Until: 18:00 

0.4 

Until: 24:00 

0 

Through: 12/31 
For: AllDays 

Until: 09:00 

0 

Until: 18:00 

1 

Until: 24:00 

0 

Through: 12/31 
For: AllDays 

Until: 09:00 

0.0447 

Until: 18:00 

1 

Until: 24:00 

0.0447 

 

Since each run takes 89, 65 and 63 seconds25 for form A, B and C respectively, 3,125 

hours are needed to complete the experiment. However, thanks to a bespoke (Java) 

script that supports concurrent processing, 20 simulations are run in parallel, with the 

total computational time of BPS thus being 156 hours – that is, 6.5 days. Simulation 

results are exported to a CSV, which contains the predicted values for heating energy 

demand, winter thermal discomfort and summer thermal discomfort. Values have been 

cross-checked to validate the three models (form A, B and C), with table B.2 (appendix 

B) showing the results for a solution that complies with the Passivhaus Standard and 

a solution that just complies with the Building Regulations (under a given scenario). 

Thanks to a bespoke (Python) script and the Spon’s price book (AECOM 2015), the 

capital cost of each design solution is also calculated and added to the CSV file. 

 

5.2.4 Robust optimization 

Robust design solutions are here identified with the help of the new robust optimality 

criterion, which suggests that, a robust solution is one that remains Pareto optimal 

regardless of the uncertainty in the predicted building performance that is due to any 

 
25 The discrepancy in runtime is mainly attributed to the difference in the number of zones and associated 

heat transfer surfaces. 
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uncertain conditions. That is, a solution 𝑥∗ is robust, if there exists no 𝑥 in the solution 

set 𝑋 which decreases a criterion 𝑓𝑖 (𝑥, 𝑢) without causing an increase in at least one 

other criterion, under any scenario 𝑢 in the uncertainty set 𝑈: 

 

𝑓𝑖(𝑥, 𝑢) >  𝑓𝑖(𝑥∗, 𝑢) for at least one 𝑖 ∈ 𝐼, 𝐼 = {1, … ,4} 

∀ 𝑥 ∈ 𝑋, 𝑋 = {𝑥1, … , 𝑥960} and ∀ 𝑢 ∈ 𝑈, 𝑈 = {𝑢1, … , 𝑢162} (5.1)  

Table 5.7 summarises the four optimization objectives (as described in chapter 3 and 

applied to the test cell in chapter 4), as well as the metrics that are used to quantify the 

performance of each solution, in the case of the example building. Since this is a multi-

zone building, both winter and summer thermal discomfort criteria express the total 

discomfort hours (the sum across all conditioned zones) divided by the total occupied 

hours (the sum across all conditioned zones), converted to a percentage. 

Table 5.7. The four optimization objectives and the applied metrics. 

Design objective Metric Reference 

Heating energy 

demand 
kWh/m2.yr 

EnergyPlus  

(U.S. Department 

of Energy 2016a) 

Winter thermal 

discomfort 

% of total occupied hours 

that PMV < -0.5 

Summer thermal 

discomfort 

% of total occupied hours 

that acceptability < 80% 

Capital cost £/m2 
Spon’s price book 
(AECOM 2015) 

 

 

5.2.5 Solution analysis 

Solution analysis aims to assist the DMs in understanding how the designed building 

may behave and ultimately making informed design decisions. This is here achieved 

by visualising the performance results of candidate design solutions and investigating 

possible what-if scenarios which are informed by the requirements of regulations and 

the (hypothetical) preferences of different stakeholders. Analysis is divided into: the 

distribution of the predicted objective values across the range of design solutions and 

performance scenarios; an analysis of the Pareto optimality of design solutions; an 

investigation of the relationship between uncertainty and solution robustness; and an 

investigation into the impact of the preferences of the DMs. 
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Distribution of performance 

Figures 5.7 to 5.10 show the distribution of the predicted values for each optimization 

objective. Each distribution reflects the 155,520 simulations which resulted from the 

exhaustive combination of the defined 960 solutions and 162 scenarios. By including 

the complete range of (predicted) performance values across the entire design space 

and uncertain conditions, such distributions can reveal how the building may behave 

in real life, in the light of both epistemic and aleatoric uncertainties. 

The minimum heating energy demand is 0 kWh/m2.yr (figure 5.7). This is associated 

with a solution that complies with the Passivhaus Standard and includes heavyweight 

wall and roof constructions, and a heating setpoint of 19 ℃. Uncertain conditions 

include the hot weather year, the high value of occupant density and internal gains, the 

slow response of thermal mass and the lower than expected (or nominal) infiltration 

rate. The highest value is 66 kWh/m2.yr. This refers to a solution that is compliant with 

the Building Regulations and includes heavyweight wall and roof constructions, and a 

heating setpoint of 23 ℃. Uncertain conditions include the cold weather year, the 

lowest occupant density and internal gains, the fast response of thermal mass and the 

higher than expected infiltration rate. The lowest value is associated with form B and 

the highest with form A. Note that, solution analysis is here performed on a building 

level. Future work could focus on how to extend analysis to a zone level, in order to 

provide the design team with feedback on the zones that drive such values. 

 

 

 

 

 

 

 

Figure 5.7. The histogram of predicted values for heating energy demand. 
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The minimum winter discomfort is 0% (figure 5.8). This results from a solution that 

includes Passivhaus wall, roof and window constructions and infiltration rate as well 

as a heating setpoint of 23 ℃. Uncertain conditions are identical to those resulting in 

the lowest predicted heating energy demand value. The maximum winter discomfort 

is 58% and is associated with a solution that complies with the Building Regulations 

and comprises a heating setpoint of 19 ℃. Given that winter heating is supplied by an 

ideal loads air system which is guaranteed to maintain the temperature setpoint (as it 

adds heat at 100% efficiency), this high percentage of winter thermal discomfort is 

attributed to the low heating setpoint (19 ℃). Uncertain conditions are identical to 

those leading to the highest heating energy demand value as these detrimentally affect 

air temperature – and therefore thermal comfort. Both values are derived from form A 

and heavyweight wall and roof constructions. 

 

 

 

 

 

 

 

The minimum summer discomfort is 7% (figure 5.9). As expected, this is associated 

with a design solution that complies with the Building Regulations as the less airtight 

the building is, the less prone to summer discomfort it will be. Uncertain conditions 

comprise the cold weather year, the lowest occupant density and internal gains, the 

slow response of thermal mass and the higher than expected infiltration rate. The 

maximum discomfort is 55% and results from a solution that meets the requirements 

of the Passivhaus Standard and thus has airtight constructions. Uncertain conditions 

are identical to those resulting in the lowest predicted heating energy demand value. 

Figure 5.8. The histogram of predicted values for winter thermal discomfort. 
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Both percentages are associated with heavyweight wall and roof constructions, with 

the lowest percentage resulting from form A and the highest from form C. 

 

 

 

 

 

 

 

Finally, the minimum capital cost is 127 £/m2 (figure 5.10) and is associated with the 

same design solution that leads to the lowest percentage of summer discomfort hours. 

The maximum cost value is 269 £/m2. This refers to a solution that is compliant with 

the Passivhaus Standard and includes lightweight wall and roof constructions. Both 

values are derived from form A. Note that these values are observed under all (162) 

performance scenarios, as capital cost is not affected by the natural variability in the 

Figure 5.9. The histogram of predicted values for summer thermal discomfort. 

Figure 5.10. The histogram of predicted values for capital cost. 
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behaviour of the uncertain conditions. As in this thesis capital cost refers to the cost of 

the elements of the building envelope that are included in optimization (and not of the 

HVAC system), these values are also observed under any heating setpoint. 

The distributions of the objective values across the range of solutions and scenarios, 

reveal the possible range of performance for the example building due to the effect of 

epistemic and aleatoric uncertainties. Such distributions can make the DMs aware of 

the risk of unsatisfactory performance and hence support risk-conscious decisions. 

Pareto optimality 

Table 5.8 provides the DMs with feedback on the Pareto optimality of the 960 design 

alternatives under different performance scenarios. This information can support the 

DMs in gaining a better understanding of the performance of candidate solutions and, 

hence, making informed design decisions. It can also inform them of the risk of sub-

optimality due to the random nature of aleatoric uncertainties (as discussed in section 

2.5). Out of the 960 candidate solutions, 521 solutions are Pareto optimum under at 

least one scenario (out of the 162 considered scenarios). 229 of them are found to be 

optimum under the nominal (or deterministic) value of the uncertain conditions, with 

only 110 of them, however, remaining optimum under all scenarios – that is, being 

globally robust based on the new robust optimality criterion. Note that, these values 

are obtained from the trade-off between all four objective functions. 

 

 

 

 

 

 

 

Figure 5.11. Restricted (hypothetical) region of interest in the deterministic objective space. The 

shading signifies the number of design solutions in each region of the figure. 
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Table 5.8. Number of solutions (for the described problem formulation). 

Type of solutions Number of solutions 

 Design space Region of interest 

Feasible  

(under all scenarios) 
960 426 

Nominal optimum 229 151 

Optimum under at 

least one scenario 
521 203 

Optimum under  

all scenarios  

(globally robust) 

110 56 

 

The risk of sub-optimality – or even infeasibility – of candidate design solutions due 

to aleatoric uncertainties can be elucidated by restricting the (hypothetical) region of 

interest in the objective space. For instance, the DMs may consider 15 kWh/m2.yr and 

350 £/m2 as the maximum values for heating energy demand and cost, respectively 

(figure 5.11). Out of the 751 feasible solutions in the deterministic objective space (i.e. 

in the case of no aleatoric uncertainties), 426 solutions remain feasible under all (162) 

scenarios. 151 of them are optimal under the nominal conditions, with 56 of them 

remaining optimal under all scenarios. Restricting the objective space thus halved the 

number of globally robust solutions (as this dropped from 110 to 56), this showing the 

effect of constraint functions on solution optimality. 203 solutions are optimal under 

at least one scenario (including the 56 solutions that are 100% robust). 

As discussed in section 2.1, the generation of form (also called massing) expresses the 

design concept that is conceived by the design team as a response to the given problem. 

Such a concept affects how the building looks, as well as how it functions, therefore 

commonly preceding the definition of any construction and operation variables. In 

order to eliminate the risk of selecting a building form that is sensitive to aleatoric 

and/or epistemic uncertainties, the new robust optimality criterion can be used by the 

DMs to compare all (three) candidate building forms with respect to their degree of 

robustness. In more detail, in addition to the two steps that were presented in section 

3.1.4.3 (i.e. for applying the new criterion), the DMs also need to count the number of 

solutions for which each form is Pareto optimum under one or more scenarios (with 

the number of scenarios being dependent on the (risk) preferences of the DMs). 
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Figure 5.12 illustrates the frequency of each form – that is, A (green), B (blue) and C 

(red) – across the 521 solutions that are Pareto optimum under at least one scenario 

(left) and the 110 solutions that remain optimal under all 162 scenarios (right), in the 

design space. No candidate form appears to be optimal (under at least one scenario) 

for all the 320 design solutions that are associated with each form. However, form A 

remains optimal under at least one scenario for 270 solutions and under all scenarios 

for 98 solutions. Form B ranks second, as it is optimal under at least one scenario for 

182 solutions and under all scenarios for only 12 solutions. Form C is optimal under 

at least one scenario for 69 solutions, but is never globally robust. 

Figure 5.13 illustrates the frequency of each form across the 203 solutions that are 

optimum under at least one scenario (left) and the 56 solutions that remain optimum 

under all 162 scenarios (right), in the region of interest (that is shown in figure 5.11). 

Form A remains optimal under at least one scenario for 120 solutions and under all 

scenarios for 44 solutions. Form B ranks second, as it is optimal under at least one 

Figure 5.12. The form frequency across the 203 solutions that are optimum under at least one scenario 

(left) and the 56 solutions that are globally robust (right), in the region of interest. 

Figure 5.13. The form frequency across the 521 solutions that are optimum under at least one scenario 

(left) and the 110 solutions that are globally robust (right), in the design space. 
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scenario for 62 solutions and under all scenarios for 12 solutions. Form C is optimal 

under at least one scenario for 21 solutions, but does not remain optimal under all 

scenarios for any of these solutions. 

The comparison of the three building forms with respect to their degree of robustness 

indicates the following ranking: form A ranks first; form B second; and form C third. 

That is, form C tends to be dominated by the other forms, which can be attributed to 

its fully glazed façade that results in a higher number of summer discomfort hours. A 

detailed zone-level analysis could assist the DMs in further explaining this ranking and 

informing the form generation process, which is out of the scope of this thesis. 

Relationship between uncertainty and robustness 

As discussed in section 3.1.5, useful information can be obtained from the analysis of 

sub-optimal solutions, as this can assist the DMs in gaining a better understanding of 

the solution characteristics as well as the uncertain conditions that may trigger sub-

optimality. Figure 5.14 shows the radar plots of solutions no. 0, 320 and 64026, which 

belong to the 203 solutions that are optimal under at least one scenario, in the region 

of interest. Even though solutions no. 0 and 320 remain optimal under all scenarios, 

solution no. 640 remains optimal under 85 (out of the 162) scenarios, therefore not 

appearing at the globally robust solution set. As the radar plots display the predicted 

objective values of each design solution under each performance scenario, they can 

reveal the design characteristics but also the uncertain conditions that result in such a 

lack of robustness, thus assisting the DMs in making risk-conscious decisions. 

The three solutions have identical construction as well as operation variable values 

(heavyweight external wall and roof constructions that satisfy the requirements of the 

Passivhaus Standard; window constructions and infiltration rates that also comply with 

the Passivhaus Standard; and a heating setpoint of 19 ℃), but different building forms 

(A (green), B (blue) and C (red), respectively). The danger of sub-optimality for 

solution no. 640 is hence related to the design characteristics of form C. The radar 

plots display 27 (out of the 77) scenarios under which the solution is sub-optimal. In 

particular, out of the 54 displayed scenarios that all include the hot weather year, the 

 
26 The number refers to the solution “index” and as such, its magnitude does not imply a rank/ order of 

optimality. 
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solution is sub-optimal under scenarios no. 108 to 134 (that include the highest value 

of occupant density and hence the highest internal gains). As indicated by the figure, 

this is due to the fact that solution no. 640 (this referring to form C) is dominated by 

the other two solutions, as their performance is always better (under these scenarios). 

 

These radar plots also indicate the impact of performance scenarios (that is, sources of 

aleatoric uncertainty) on each optimization objective, therefore assisting the DMs in 

gaining an understanding of the conditions that can cause unsatisfactory performance. 

Figure 5.14. The radar plots of solutions no. 0, 320 and 640. 
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The displayed scenarios appear to have a greater impact on heating energy demand 

and winter discomfort, than summer discomfort – and no impact on capital cost. 

Preference articulation 

As also discussed in section 3.1.5, the new robust optimization framework allows for 

the a posteriori articulation of preferences, which are expressed as constraints to the 

formulated problem. For example, the DMs may wish to further restrict the described 

region of interest in the objective space, by defining 10% as the maximum allowable 

value for winter thermal discomfort. In order for a solution to be considered feasible, 

no more than 10% of total occupied hours (within the winter period) should hence be 

outside the comfort zone (under any scenario). Such a constraint drops the number of 

feasible solutions that are optimum under at least one scenario from 203 to 66, with 41 

of them being associated with form A, 20 with form B and the remaining 5 with form 

C (figure 5.15). Globally robust solutions are decreased from 56 to 21, with 17 of them 

being associated with form A and the remaining 4 with form B. 

 

As already observed in figures 5.12 and 5.13, form C is never globally robust, as it is 

dominated by the other two forms under the majority of performance scenarios. This 

can be attributed to its fully glazed façade that results in a higher number of summer 

discomfort hours compared to the other two forms – especially to form A, whose West 

façade has a much lower WWR (section 3.2). This can also be seen in table 5.9, which 

displays the objective values for solutions no. 3, 323 and 643 (all belonging to the 66 

solutions that are optimum under at least one scenario in the updated region of interest) 

under the scenario that results in the highest percentage of summer discomfort (for all 

Figure 5.15. The form frequency across the 66 solutions that are optimum under at least one scenario 

(left) and the 21 solutions that are globally robust (right), in the (updated) region of interest. 
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three solutions). Such solutions include identical construction and operation variable 

values, but different forms (A, B and C, respectively). The low Pareto frequency for 

solution no. 643 (that is, the low number of scenarios under which the solution is Pareto 

optimal) is hence related to the design characteristics of form C and, in particular, its 

fully glazed façade. Such information can support the DMs in making robust decisions 

during the design process, and ultimately designing a building that performs well with 

respect to the considered objectives and constraints in the light of different sources of 

uncertainty – with form A being here more likely to reduce the risk of sub-optimality.  

Table 5.9. The predicted objective values under the scenario that results in the highest percentage of 

summer discomfort for 3 (out of 66) solutions that are optimum under at least one scenario, in the 

(updated) region of interest. Note that, such solutions include identical construction and operation 

variable values, but different forms (A, B and C, respectively). 

Solution 

index 

Design 

objective 

Pareto 

frequency 

 

Heating energy 

demand 

(kWh/m2.yr) 

Winter 

discomfort 

(% of hours) 

Summer 

discomfort 

(% of hours) 

Capital 

cost 

(£/m2) 

 

3 1.235 0.172 45.854 177.752 162 

323 1.072 1.900 53.279 191.921 161 

643 1.730 1.922 55.053 188.803 50 

 

The scatter plot in figure 5.16 can assist the DMs in gaining a better understanding of 

the relationship between the 21 globally robust solutions (marked with a rhombus) and 

the four objectives. Note that, objective values express the predicted performance of 

the building under the nominal uncertain conditions. Table 5.10 displays such values, 

with table 5.11 then displaying the combinations of design variable values that led to 

these objective values. 9 of the 21 solutions fully comply with the Passivhaus Standard, 

with solutions no. 2, 3 and 4 (form A) only comprising heavyweight constructions and 

solutions no. 27 (form A) and no. 347 (form B) only lightweight constructions. The 

remaining (12) globally robust solutions include either one or two elements (wall, roof 

and/or window) that do not comply with the Passivhaus Standard. However, note that, 

their infiltration rate always meets the requirements of the Passivhaus Standard. 22 ℃ 

is the most commonly encountered value for the heating setpoint, whereas 19 ℃ and 

20 ℃ never appear in the robust solution set (as they result in a greater than 10% winter 

thermal discomfort, this showing the impact of the heating setpoint on comfort). 
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Figure 5.16. The trade-offs between the four optimization objectives under the nominal conditions. 

Figure 5.17. The box plots of compatible (for a hypothetical what-if scenario) solutions. 
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Table 5.10. The predicted objective values under the nominal conditions for the 21 solutions that 

remain optimum under all (162) scenarios, in the (updated) region of interest. Note that, the solution 

index does not imply a rank/ order of optimality – in fact, these solutions are all equal in terms of their 

level of robustness. 

Solution 

index 

Design 

objective 

 

Heating energy 
demand 

(kWh/m2.yr) 

Winter 
discomfort 

(% of hours) 

Summer 
discomfort 

(% of hours) 

Capital 
cost 

(£/m2) 

2 1.062 2.469 28.349 177.752 

3 1.477 0.396 28.353 177.752 

4 2.014 0.172 28.444 177.752 

7 1.102 2.345 28.120 232.674 

8 1.442 0.439 28.102 232.674 

13 2.999 0.883 25.814 173.047 

14 3.981 0.380 25.822 173.047 

18 2.862 0.871 25.913 212.587 

19 3.741 0.439 25.855 212.587 

27 1.127 2.213 27.462 269.424 

43 1.917 0.555 27.452 175.798 

44 2.532 0.180 27.517 175.798 

53 3.581 1.027 25.224 171.093 

54 4.723 0.392 25.126 171.093 

83 3.431 1.051 27.936 146.812 

84 4.533 0.384 27.987 146.812 

123 4.163 1.382 27.222 144.858 

327 0.587 2.637 34.681 229.547 

328 0.903 2.269 34.710 229.547 

347 0.630 2.729 34.489 264.886 

403 2.324 2.664 35.480 163.681 

 

Since the robust optimality criterion provides the DMs with the flexibility to specify 

their desired level of robustness, figure 5.16 also shows (using a circle) the 5 design 

solutions which are 99% robust – if, for example, the DMs decide to accept 1% of 

‘rejects’ (as discussed in section 3.1.4). Apart from solution no. 323 (table 5.9) which 

includes form B, the remaining solutions include form A – this again suggesting that 

form A is more likely to reduce the risk of sub-optimality in the light of uncertainty. 
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Table 5.11. The combinations of design variable values for the 21 solutions that remain optimum 

under all (162) scenarios, in the (updated) region of interest. HW/LW denotes the thermal mass of the 

construction (heavyweight and lightweight, respectively). PH/PL signifies the standard each 

construction complies with (Passivhaus Standard and Building Regulations Part L, respectively). 

Solution 

index 
Form Construction Operation 

 

Form 

(–) 

Wall 
construction  

(–) 

Roof 
construction 

(–) 

Window 
construction  

(–) 

Infiltration 
rate 

(–) 

Heating 
setpoint 

(℃) 

2 A HW-PH HW-PH PH PH 21 

3 A HW-PH HW-PH PH PH 22 

4 A HW-PH HW-PH PH PH 23 

7 A LW-PH HW-PH PH PH 21 

8 A LW-PH HW-PH PH PH 22 

13 A HW-PL HW-PH PH PH 22 

14 A HW-PL HW-PH PH PH 23 

18 A LW-PL HW-PH PH PH 22 

19 A LW-PL HW-PH PH PH 23 

27 A LW-PH LW-PH PH PH 21 

43 A HW-PH HW-PL PH PH 22 

44 A HW-PH HW-PL PH PH 23 

53 A HW-PL HW-PL PH PH 22 

54 A HW-PL HW-PL PH PH 23 

83 A HW-PH HW-PH PL PH 22 

84 A HW-PH HW-PH PL PH 23 

123 A HW-PH HW-PL PL PH 22 

327 B LW-PH HW-PH PH PH 21 

328 B LW-PH HW-PH PH PH 22 

347 B LW-PH LW-PH PH PH 21 

403 B HW-PH HW-PH PL PH 22 

 

As the scatter plot in figure 5.16 displays the predicted values of the four objectives 

under the nominal uncertain conditions only, it must be used in conjunction with the 

box plots in figure 5.17 in order to reveal the possible effect of aleatoric uncertainties 

on objective values. In particular, the box plots illustrate the distributions of possible 

objective values for solutions no. 2, 3 and 4. Given a (hypothetical) what-if scenario 

in which the DMs wish to construct a building which complies with the Passivhaus 
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Standard but also minimises capital cost, these are the only globally robust solutions – 

due to the fact that lightweight constructions result in a higher capital cost (table 5.10). 

Since they refer to the same construction but different heating setpoint (21, 22 and 23 

℃, respectively), they lead to (almost) identical summer discomfort hours, with their 

lowest percentage (21%) being observed in the case of the slow response of thermal 

mass (for wall and roof constructions), the higher than expected infiltration rate, the 

cold weather year and the lowest value of occupant density (and internal heat gains). 

The highest percentage is 46% and results from the fast response of thermal mass, the 

lower than expected infiltration rate, the hot weather year and the highest value of 

occupant density (and internal heat gains). As indicated by figure 5.17, these solutions 

also result in an identical capital cost that is equal to 178 £/m2 under all scenarios (as 

this is not affected by the variability in the behaviour of the uncertain conditions). As 

expected, the lower the setpoint, the lower the heating energy demand but also the 

higher the winter thermal discomfort. It is worth noting that solution no. 4 (which has 

a heating setpoint of 23 ℃) results in a negligible range of winter thermal discomfort, 

this demonstrating the impact of the heating setpoint on occupant comfort. 

The parallel coordinates plot in figure 5.18 can further assist the DMs in gaining an 

understanding of the relationship between these 21 globally robust solutions and the 

(four) design objectives. By displaying the combination of design variable values for 

each solution, this plot can support the DMs in obtaining a deeper understanding of 

the problem and identifying any ‘commonality principles’ among solutions – that is, 

any properties that are likely to ensure robust optimality. For instance, all solutions 

include an infiltration rate that satisfies the requirements of the Passivhaus Standard, 

with the majority of them including form A. The plot can also reveal the characteristics 

that are likely (for the given problem) to trigger sub-optimality, therefore assisting the 

DMs in minimising risk in the decision-making process. For example, in this region 

of interest, no globally robust solution includes form C, as this would result in a higher 

percentage of summer thermal discomfort compared to the other two forms, and thus 

a higher risk of sub-optimality. No globally robust solution has a heating setpoint of 

19 or 20 ℃, as this would result in a higher than 10% winter thermal discomfort under 

most of the scenarios, and consequently violate one of the defined constraint functions. 
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The plot also provides the DMs with the opportunity to update their region of interest 

(denoted with a grey rectangle) and interactively relate their preferred region in the 

objective space with the region in the decision space. For instance, if the DMs would 

wish to obtain a solution that results in a lower than 30% summer thermal discomfort 

under nominal conditions, they should select a solution that comprises form A, as the 

four globally robust solutions that include form B (in blue) are infeasible. In order to 

assess feasibility under all scenarios, the DMs must also use a radar plot (such as the 

one in figure 5.14), which comprehensibly displays the predicted objective values of 

each solution under each scenario, hence assisting the DMs in making risk-conscious 

design decisions.  

Finally, the parallel coordinates plot illustrates the Pareto frequency of each solution 

(that is, the number of scenarios under which a solution is Pareto optimal). Given that 

the applied exhaustive search method supports the re-focusing of the design problem 

as a post-processing step (section 3.1.5), the DMs are able to update their preferred 

degree of robustness. For example, they may decide to tolerate sub-optimality under 

one or two scenarios and select one of the design solutions which are 99% robust – 

that is, they have a Pareto frequency that is equal to 160 or 161. By providing the DMs 

with the opportunity to update and explore their region of interest, this including their 

desired level of robustness, such a plot can assist the DMs in gaining an understanding 

of what influences robustness and ultimately making informed design decisions. 

 

5.3 Summary 

Chapter 5 described the application of the new robust optimization framework to the 

design of a community centre, with the objective of demonstrating the potential of the 

new robust optimality criterion within a real-world context (as discussed in chapter 1). 

The five-step framework can support the DMs in formulating a design problem that is 

subject to design and performance uncertainties, assessing the optimality of candidate 

design solutions with respect to multiple objectives and ensuring their optimality under 

plausible uncertain conditions, with the assistance of the robust optimality criterion. 

The criterion can thus assist the DMs in not only minimising the values of multiple 

objective functions, but also dealing with any possible fluctuations that are caused by 
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the variability in the behaviour of any uncertain conditions and therefore increasing 

the confidence in the predicted objective values. 

Solution analysis demonstrated the potential of the new robust optimality criterion to 

reveal the possible impact of uncertainties on the predicted performance of candidate 

design solutions and hence reduce risk in decision-making. Radar plots were used to 

communicate in a comprehensible manner the predicted objective values of candidate 

solutions under different performance scenarios and point out the conditions that are 

likely to result in an unsatisfactory performance. Parallel coordinates plots were used 

to show the combinations of design variable values for robust solutions and indicate 

the design characteristics that are likely to make a building form immune to aleatoric 

uncertainties. Such plots were also used to demonstrate the ability of the new robust 

optimality criterion to support the a posteriori articulation of preferences, therefore 

enabling the DMs to update and explore their region of interest, this including their 

desired level of robustness – based on how large risks they are willing to take. 

 

 

 

 

 

 



Chapter 6 

Discussion and conclusions 

 

 

 

6.1 Discussion 

Despite the uniqueness of each building project, a number of generally-applied stages 

are suggested by the Royal Institute of British Architects (RIBA) (Sinclair 2013), in 

an effort to organise the procedure of briefing, designing, constructing and operating 

buildings. Zooming in on the concept and developed design stages, the RIBA Plan of 

Work (Sinclair 2013) mentions that these ‘may require a number of iterations of the 

design’, without however providing further guidance about the steps that should be 

followed by stakeholders to explore the design space and obtain a successful solution. 

Building performance simulation (BPS) can support the identification of a satisfactory 

solution by providing rapid, quantitative feedback on the performance of the defined 

design alternatives (Clarke and Hensen 2015). Integrating BPS in design exploration 

can thus support the designers in meeting the requirements of the brief that has been 

agreed with the client, as well as complying with the building regulations. However, 

the common trial-and-error process of identifying an ‘optimum’ design solution may 

be misleading and time-consuming (mainly in the case of a large design space), this 

revealing the need for a more efficient exploration method (Wang et al. 2005).  

This need has led to the integration of optimization into building design exploration 

over the last few years, as it supports the identification of solutions that best satisfy 

objective and constraint functions (Machairas et al. 2014). Optimization is therefore 

described as the process of identifying the best solution – or set of solutions – with 

respect to one or more objective and constraint functions. Accounting for multiple 

objectives can moderate the decision bias that characterises the conventional one- and 

two-objective problems, as it can provide the decision makers (DMs) with additional 
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trade-offs that increase the understanding of the consequences of decisions (Kollat et 

al. 2011). Pareto optimization can support the DMs in resolving multiple, conflicting 

objectives and finding non-dominated solutions, without having to determine weights 

that hinder the a posteriori articulation of any stakeholder preferences (Evins 2013). 

Given that the capabilities of optimization algorithms can affect the optimized trade-

offs (Wetter and Wright 2003), selecting a suitable algorithm is critical to finding the 

Pareto front for a given problem. Probabilistic optimization algorithms are fast in their 

convergence (especially if a high level of confidence is not necessary) but are subject 

to the number of objective and constraint functions (ur Rehman et al. 2017). They are 

also not guaranteed to find the global optimum (Brownlee and Wright 2015), hence 

being accompanied with an inherent uncertainty in optimization results. 

Accounting for uncertain factors (such as weather variations, the occupant behaviour 

and randomness of thermal properties) is crucial in analysing complex problems and 

informing decisions (Helton et al. 2010), although it further increases the complexity 

of calculating and visualising trade-offs (Tian et al. 2018). In more detail, (even small) 

perturbations in uncertain factors are able to affect performance prediction and shift 

nominal optimal solutions to sub-optimal, or even infeasible solutions that fail to meet 

any stakeholder preferences and/or the requirements of regulations (Ben-Tal et al. 

2009). Including uncertainty analysis (UA) in BPS and optimization is thus essential 

for demonstrating the consequences of decisions with a greater confidence (Gokhale 

2009). Despite its benefits though, it is not regarded as standard practice in building 

design exploration (Tian et al. 2018), which can be partly attributed to the lack of tools 

that deal with the various sources of uncertainty and can thus eliminate the associated 

risks in decision-making (Martani 2015). 

Robust optimization couples optimization and UA, acting as a decision support tool 

that accounts for the possibility that the nominal values of uncertain parameters may 

never occur, as a result of the randomness in their nature (Hopfe 2009). Combining 

such methods enables optimum, risk-conscious decisions, as optimization can ensure 

the identification of solutions that minimise the objective function values, and UA can 

improve the confidence in the optimality of solutions by evaluating their performance 

under a number of possible performance scenarios (Hopfe et al. 2012). Although robust 



                                                                                                                                                                                                    

Discussion and conclusions                                                                                                                  143 

 

optimization has been used over the last few years in other fields such as structural 

design (Doltsinis and Kang 2004, Martinez-Frutos et al. 2016), it is still not widely 

used in building energy studies, this suggesting the need for further investigation and 

implementation in building design optimization problems (Nguyen et al. 2014). 

It is hence still ambiguous how to quantify uncertainty and assess robustness, which is 

revealed by the existence of multiple definitions of robustness in the literature and the 

discrepancy in the types of uncertainty that are accounted for as well as their handling 

(Walsh et al. 2013). The majority of existing studies adopt a probabilistic handling of 

uncertainty, assuming that the probability of each uncertain value occurring is known 

and evaluating solutions upon the probability density functions of their performance 

indicators (Van Gelder et al. 2014). These probabilistic formulations of robustness are, 

however, infeasible if there is no adequate information on the probability of occurrence 

of each uncertain input value, this being the case for uncertainties such as the weather.  

A scenario-based approach can be alternately used when there are uncertainties that 

are ‘largely unquantifiable in probabilistic terms in the context of prediction’ (Dessai 

and Hulme 2004). Wald’s rule (or minimax) (Wald 1945); Savage’s rule (or minimax 

regret) (Savage 1951); and range (or max-min) are common scenario-based methods, 

which are used in situations where uncertainties cannot be quantified in probabilistic 

terms (Whalen and Churchill 1971). However, these robustness indicators may not be 

comprehensible to a non-specialist audience (Huang and Du 2007). In addition to this, 

their behaviour within multi-objective problems remains unknown, as they have not 

been extended to problems where multiple functions need to be minimised due to the 

entailed (computational) complexity (Rysanek and Choudhary 2013). 

Finally, existing robustness indicators appear to be rather conservative (Ehrgott et al. 

2014). Specifying the desired level of conservatism is, however, a fundamental step 

for assessing robustness (Hussain et al. 2016), this being subject to the state of mind 

of the DMs and in particular the risks they are willing to take (Whalen and Churchill 

1971). Although each classical decision rule represents a different state of mind that 

may express the perspective of the DMs, they do not offer a control of the level of 

conservatism and therefore of the degree of robustness, calling for a more flexible 

definition of robustness, which supports the articulation of the (risk) preferences of the 
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DMs. Given that a large number of scenarios may be needed to adequately capture 

uncertainties, a rationale must be developed for the selection of scenarios in order to 

keep the computational cost low when assessing robustness (Bertsimas et al. 2011). 

To sum up, additional studies are required to demonstrate how uncertainties must be 

quantified and how robustness must be assessed within the context of building design 

exploration. The literature review uncovered the need for a more flexible definition of 

robustness that enables the articulation of any stakeholder preferences. It also revealed 

the need to extend such a definition to multi-objective problems, as design solutions 

are commonly assessed with respect to only one or two criteria due to the associated 

computational complexity, this however restricting the number of optimization trade-

offs and consequently the exploration of the design space. 

 

6.2 Conclusions 

The issues that were summarised in section 6.1 were addressed in this thesis through 

the development of a robust building design optimization framework, which can assist 

designers in handling building design problems that are exposed to uncertainties. This 

was achieved by meeting the objectives that were defined in section 1.2, with the main 

conclusions drawn being here presented (directly responding to such objectives). 

• To investigate the different sources of uncertainty during the building design 

process and how they are quantified. 

Prior to developing a new framework for coupling optimization and UA, the different 

sources of uncertainty and how these are quantified, were investigated. Although the 

detailed classification of the different sources of uncertainty may vary from case to 

case due to the fact that there is still not a single, widely-applied categorisation, their 

analysis is reported (Paté-Cornell 1996, Dessai and Hulme 2004, Helton et al. 2006, 

Der Kiureghian and Ditlevsen 2009) to be most commonly performed based on their 

reducibility (that is, their capability of being reduced). In this way, uncertainties are 

divided into two principal categories: epistemic, ‘if the modeller sees a possibility of 

reducing them by gathering more data’, and aleatoric, ‘if he/she does not foresee the 

possibility of reducing them’ (Der Kiureghian and Ditlevsen 2009). 
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In more detail, in the context of building design exploration, epistemic uncertainties 

emerge from the lack of detailed information on the form, construction and operation 

of the building, this resulting in a (high) number of uncertain design parameters, and 

thus in a (broad) range of possible performance outcomes. While proceeding to more 

developed stages of the design process, however, the amount of design information 

increases thanks to the decisions that are taken by the DMs in order to successfully 

complete their building project. In this way, as the design progresses, the size of the 

design space – i.e. the number of solutions that need to be explored – decreases, this 

resulting in the gradual elimination of epistemic uncertainties. On the contrary, the 

increase in the design detail does not lead to the elimination of aleatoric uncertainties 

which stem from the assumptions that are taken with regard to uncertain conditions 

(such as the weather) that are random in their nature, hence reducing the confidence in 

BPS results and the robustness in decision-making. 

Any uncertain design parameters (i.e. sources of epistemic uncertainty) referring to 

building form, construction and operation that should be explored during the building 

design process, were presented. Any uncertain conditions (i.e. sources of aleatoric 

uncertainty) that can greatly affect building performance and should hence be taken 

into account to ensure satisfactory performance, were also described, these reflecting 

the three main sources that were identified in the literature (Ramallo-González et al. 

2015): weather variations, occupant behaviour and randomness of thermal properties. 

With regard to their quantification, uncertain design parameters were found to have a 

uniform distribution – if there are no preference weights and therefore each solution 

(i.e. combination of design parameter values) has equal chance of being chosen – and 

uncertain conditions to have a normal distribution (de Wilde and Tian 2009). 

• To develop an approach to formulating a multi-objective design problem that 

is exposed to uncertain conditions – this referring to the definition of design 

solutions, uncertain conditions, design objectives and constraints. 

In order to define the values of uncertain design parameters, the new robust building 

design optimization framework recommends using the limiting values of building 

standards, and in particular of the Passivhaus Standard (International Passive House 

Association 2018) and Building Regulations Part L (UK Government 2013a). Each 
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aleatoric uncertainty is advised to be expressed by a nominal value and two limiting 

values that represent ‘extreme’ – but possible – conditions, this providing a rationale 

for restricting the number of scenarios and hence keeping the computational cost low 

when assessing robustness later (Bertsimas et al. 2011). To eliminate any modelling 

uncertainty, an exhaustive search method is adopted by the framework to define all 

possible solutions (i.e. combinations of design parameter values) and scenarios (i.e. 

combinations of uncertain conditions). Given that all candidate design solutions are 

known, their Pareto optimality (within the defined problem) will be certain, as there is 

no doubt about the convergence behaviour of the search method – as might be the case 

for an optimization algorithm that could potentially fail to find the global optimum 

(Wetter and Wright 2004). As an exhaustive search method supports the evaluation of 

all solutions prior to the assessment of their optimality, its computational performance 

is not affected by the number of optimization objectives and constraints, thus enabling 

the identification of design solutions that are Pareto optimum with respect to multiple 

criteria (four in this study: heating energy demand; winter thermal discomfort; summer 

thermal discomfort; and cost). 

The constraints of the design problem represent the criteria that a design option needs 

to meet in order to be considered feasible. In this thesis, the building regulations and 

guides and possible stakeholder preferences are taken into account for the formulation 

of the design problem and, in particular, the specification of any constraint functions. 

To avoid the risk of ‘cognitive hysteresis’ (Gettys and Fisher 1979), in this thesis, the 

application of constraints to the objective functions is posterior to the implementation 

of optimization; i.e. it is part of solution analysis. This disburdens the exploration of 

the design space of the bias that characterises the highly constrained problems, where 

the resulted solution set is limited by the initial conceptions of the DMs (Reed et al. 

2013). These conceptions may however change along the way, with even small shifts 

being able to modify the resulted solution set (Robinson et al. 2016) and thus exclude 

well-performing solutions from exploration. Not applying a constrained optimization 

method also bolsters the direction of the search towards the truly optimum (Farmani 

and Wright 2003). However, note that, the framework that is presented in this thesis 

can also support the a priori application of constraints to the objective functions – in 

case the DMs are confident that the defined constraints will not change later on. 
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• To investigate existing robustness indicators and how they assess robustness. 

Prior to introducing the new robust optimality criterion, existing robustness indicators 

and how they assess robustness in the light of uncertain conditions, were investigated. 

Two main approaches to the robustness assessment of design solutions were found in 

the literature, these advocating the probabilistic or not handling of uncertainties. In 

probabilistic analysis, the probability of all uncertain values occurring is known and 

the robustness assessment of solutions is based on the probability density function of 

performance indicators (Van Gelder et al. 2014). In non-probabilistic analysis, the 

probability of occurrence of uncertain values is unknown (or at least not defined with 

certainty), this hindering the probabilistic treatment of output distributions (Rysanek 

and Choudhary 2013). 

A probabilistic approach is thus infeasible if there is an inadequacy of information on 

the probability of occurrence of uncertain values, this being the case for any aleatoric 

uncertainties such as the weather. Scenario analysis is proposed in the literature when 

there are uncertainties which are unquantifiable in probabilistic terms, with scenarios 

representing plausible combinations of uncertain values (Dessai and Hulme 2004). It 

is however reported that existing robustness indicators are not always comprehensible 

to a non-specialist audience (Huang and Du 2007), with their complexity increasing 

with the increase in the number of (objective and constraint) functions, this hindering 

their use in multi-objective formulations – which are however necessary to reflect the 

multi-dimensionality of real-life problems (Rysanek and Choudhary 2013). Another 

drawback of existing indicators is the lack of flexibility in specifying the degree of 

robustness of solutions, this being however vital for expressing the risk preferences of 

the DMs (Hussain et al. 2016).  

• To develop a new indicator for evaluating the robustness of design solutions 

and identifying optimum solutions that are insensitive to the behaviour of the 

considered uncertain conditions, while supporting the articulation of the (risk) 

preferences of the DMs. 

This thesis introduced the robust optimality criterion to support robustness assessment 

in the context of building design exploration and decision-making. The new robustness 
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indicator couples optimization and UA to provide the DMs with a set of globally robust 

solutions; that is, solutions that remain Pareto optimal regardless of the uncertainty in 

the predicted building performance that is due to the variability in the behaviour of any 

uncertain conditions – these reflecting the three main sources of aleatoric uncertainty 

that were found in the literature (Ramallo-González et al. 2015): weather variations, 

occupant behaviour and randomness of thermal properties. Given that each aleatoric 

uncertainty is expressed by a nominal value and two ‘extreme’ – but possible – values, 

globally robust solutions may be regarded as conservative solutions by the DMs, due 

to the fact that they need to preserve their optimality even under ‘extreme’ conditions. 

Since such a (worst-case) combination of extreme conditions has a low probability of 

occurring, a small number of ‘rejects’ could be allowed, the magnitude of which needs 

to be decided by the DMs in line with their (risk) preferences. In contrast to existing 

robustness indicators, the robust optimality criterion supports the DMs in determining 

that number of ‘rejects’ and hence the degree of robustness of candidate solutions. As 

an example, the DMs may decide to tolerate sub-optimality under one or two scenarios. 

Given that the applied exhaustive search method enables the re-focusing of the design 

problem as a post-processing step, such a preference can be effortlessly translated into 

a constraint function during solution analysis. 

• To explore the behaviour of the new robustness indicator. 

The robust optimality criterion was applied to the design optimization of a ‘test cell’, 

this being a single-zone office building in London, with the objective of exploring the 

behaviour of the new robustness indicator – prior to its use within a real-world context. 

Robust solutions were identified using the new criterion, with their performance being 

then analysed. As both epistemic and aleatoric uncertainties were taken into account, 

solution analysis revealed how the test cell may behave in real life. A wide range of 

objective function values was observed, resulting from both the differences in design 

solutions and performance scenarios. The distributions of the objective values when 

aleatoric uncertainties are incorporated in the building design problem, were compared 

with the distributions of the deterministic objective values. This comparison revealed 

the risk of unsatisfactory performance due to the effect of aleatoric uncertainties, and 

consequently the importance of assessing robustness in the context of building design 



                                                                                                                                                                                                    

Discussion and conclusions                                                                                                                  149 

 

exploration problems. The discrepancy between the number of nominal optimum 

solutions (as derived from the deterministic Pareto ranking) and the number of robust 

solutions (as resulted from the application of the robust optimality criterion), also 

revealed the need for robustness assessment. Scatter, box and radar plots elucidated 

the relationship between robust solutions and the four design objectives, which can 

inform decision-making. 

In order to gain a better understanding of the behaviour of the new robust optimality 

criterion, robust solutions were compared with the solutions that were obtained from 

the application of existing robustness rules (minimax, minimax regret and max-min). 

The solution sets that were derived from the application of the minimax and minimax 

regret rules were similar (for the examined building and given problem formulation) 

to the solution set that resulted from the application of the robust optimality criterion. 

The max-min rule produced a solution set that differed from the other sets, implying 

that the robust optimality criterion (so as other robustness rules in the literature) may 

not result in solutions that minimise the range of performance. By applying multiple 

robustness rules together, the DMs can improve the confidence in their decisions in 

the context of building design exploration and decision-making, with the selection of 

a single robustness indicator for addressing a given design problem being dependent 

on their (risk) preferences – which is, however, out of the scope of this thesis. 

• To demonstrate the potential of the new robustness indicator in a real-world 

context. 

The robust optimality criterion was also applied to the design optimization of a real-

world building, this being a new community centre that will be constructed in London, 

with the objective of demonstrating the potential of the new robustness indicator to 

support design exploration and decision-making under uncertain conditions in a real-

world context. Solution analysis demonstrated the potential of the robust optimality 

criterion to reveal the possible impact of uncertainties on the predicted performance of 

candidate design solutions and hence reduce risk in decision-making. Radar plots were 

used to communicate in a comprehensible manner the predicted objective values of 

candidate solutions under different performance scenarios and point out the conditions 

that are likely to lead to an unsatisfactory performance. Parallel coordinates plots were 
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used to illustrate the combinations of design variable values for robust solutions and 

indicate the design characteristics that are likely to make a building form immune to 

aleatoric uncertainties. Such plots were also used to highlight the ability of the robust 

optimality criterion to support the a posteriori articulation of preferences, therefore 

enabling the DMs to update and explore their region of interest, this including their 

desired level of robustness – based on how large risks they are willing to take. 

 

6.3 Contribution to knowledge 

This thesis introduced a robust building design optimization framework for handling 

building design problems that are exposed to uncertainties. The framework comprises 

five main steps, which can assist stakeholders in exploring the design space in the light 

of different sources of uncertainty, and obtaining a solution that performs satisfactorily 

with respect to the considered objectives and constraints: a) uncertainty quantification; 

b) exhaustive search; c) BPS; d) robust optimization; and e) solution analysis. The 

application of these steps to the design optimization of a real-world building indicated 

that the framework can assist practitioners in designing buildings that are optimal in 

the defined objectives and robust to the inherent uncertainties. 

In particular, by incorporating BPS and multi-objective optimization, the framework 

enables stakeholders to efficiently explore the design space (this being informed by 

the project brief and building standards) and reduce the uncertainty in the selection of 

an optimum design solution. By making use of an exhaustive search method (to assess 

all candidate solutions) that is independent of the number of objective and constraint 

functions, the framework can provide stakeholders with several optimization trade-

offs, which can reveal the consequences of design decisions. Given that an exhaustive 

search method is guaranteed to find the global optimum, the framework also reduces 

the uncertainty in optimization results (that accompanies optimization algorithms). 

By coupling multi-objective optimization and UA, the framework assists stakeholders 

in quantifying uncertain conditions and assessing the robustness of design solutions 

under such conditions, therefore demonstrating the consequences of decisions with a 

greater confidence and reducing risks in decision-making (such as failing to meet the 

requirements of the building standards). Robustness assessment is performed with the 
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help of a novel robustness indicator, called robust optimality criterion, which ensures 

the Pareto optimality of solutions under all uncertain conditions. In contrast to existing 

robustness indicators, the robust optimality criterion offers a control of the degree of 

robustness, which supports the articulation of the (risk) preferences of the DMs during 

solution analysis. That is, it provides the DMs with the flexibility to define their desired 

Pareto frequency; the more risk-averse they are, the higher the number of performance 

scenarios for which the design solution is Pareto optimal should be. 

By using scatter plots and parallel coordinates plots as part of its last step (i.e. solution 

analysis), the framework disseminates the degree of robustness of candidate solutions 

in a user-friendly manner, hence enabling the DMs to explore their region of interest 

based on how large risks they wish to take. Given that the applied exhaustive search 

method supports the re-focusing of the design problem as a post-processing step, the 

DMs are able to effortlessly update their preferred degree of robustness. This can assist 

them in gaining an understanding of what influences robustness and ultimately making 

risk-conscious decisions. Since the robust optimality criterion supports multi-objective 

optimization, it provides the DMs with robust solutions that are optimal with respect 

to a range of objective and constraint functions, thus assisting them in solving complex 

real-world problems that are exposed to various sources of uncertainty. 

 

6.4 Limitations and suggestions for future research 

This thesis adopted a worst-case approach to quantifying the aleatoric uncertainty in 

the behaviour of uncertain conditions, this implying that each uncertainty is expressed 

by a nominal value and two limiting values that signify extreme conditions. Adopting 

a rationale for restricting the number of values was vital for using an exhaustive search 

(selected here to enable the exploration of all possible solutions), as computational load 

increases exponentially with the number of values. In the future, commonly applied 

optimization algorithms (such as NSGAII) could be used to support the assessment of 

the optimality of solutions under a greater number of uncertain conditions – however, 

taking into account that such algorithms are not guaranteed to find the global optimum. 

Conclusions regarding modelling uncertainty could be drawn from the comparison of 
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the solution sets that are resulted from the application of an exhaustive search and an 

optimization algorithm to the same design problem. 

Using an optimization algorithm could also support the exploration of a larger design 

space at a much lower run-time (but also at the risk of not finding the global optimum), 

compared to an exhaustive search. Defining a larger design space would be necessary 

to enable the exhaustive generation and aesthetic evaluation of alternative forms which 

were out of the scope of this thesis. These are however inextricably linked to the form-

finding approach that characterises the parametric design tools often used by designers 

during concept design stages. To provide rapid feedback on the performance of design 

alternatives, the application of the robust building design optimization framework may 

be automated in the future through the development of a plug-in for parametric design 

tools. By integrating uncertainty analysis, multi-objective optimization and robustness 

assessment into parametric design tools, such a plug-in could support the performance-

based evaluation of design alternatives during concept design stages. 

This thesis also proposed an approach to quantifying the (epistemic) uncertainty in the 

choice of building form, construction and operation. In particular, the selected design 

parameters represent sources of epistemic uncertainty that, according to the literature, 

can greatly influence performance prediction and should therefore attract the attention 

of stakeholders during the design exploration process. In the future, sensitivity analysis 

could be part of the robust building design optimization framework, in order to enable 

a customised list of influential design parameters (based on the mapping from analysis 

inputs to analysis outputs). Focusing on the definition of their values, this is informed 

by the project brief and building standards, with the final selection being dependent on 

the preferences of stakeholders that are expressed during solution analysis. Interactive 

(parallel coordinates) plots could be created in the future to support the instantaneous 

articulation of preferences and expeditious exploration of the design space. 

The application of the framework to the design optimization of the real-world building 

revealed discrepancies between candidate building forms (such as the difference in the 

number of zones), this showcasing the vagueness of the project brief and therefore the 

uncertainty in problem formulation that should be further investigated in future work. 

The literature review also revealed the uncertainty in defining the design optimization 



                                                                                                                                                                                                    

Discussion and conclusions                                                                                                                  153 

 

problem, as several performance indicators and metrics are available (as an example, 

either the ASHRAE Standard 55-2013 or the British Standard 15251:2007 may be 

used to assess comfort). Conclusions regarding the uncertainty in problem formulation 

and how this affects solution robustness, could be drawn from the comparison of the 

solution sets that are resulted from the application of the robust optimality criterion 

when considering different combinations of objectives and constraints. 

Finally, this thesis focused on exploring the design space (i.e. generating and evaluating 

alternative design options), rather than on selecting the (single) design that would be 

refined later on in the design process. Such a selection is dependent on the preferences 

of the different stakeholders, hence requiring their active involvement in the decision-

making process. Stakeholder preferences also play an important role in indicating the 

most effective robustness indicator or combination of indicators for addressing a given 

design problem, as this is dependent on their risk perception. However, in this thesis, 

the reason for applying multiple robustness indicators together was not to select the 

best-performing indicator among them, but to cast light on the behaviour of the new 

robust optimality criterion within the context of building design exploration. Note that, 

solution analysis was here performed on a building level. Future work could focus on 

how to extend analysis to a zone level to provide designers with feedback on the zones 

that are likely to trigger unsatisfactory performance, therefore assisting them in making 

more risk-conscious decisions. 
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Table A.1. Material layers of external wall constructions: thermophysical properties (CIBSE 2006) 

and costs (AECOM 2015). 

   HW-PH LW-PH HW-PL LW-PL27 

Layer 1 

(outermost) 

Material  Plaster Shingles Plaster Shingles 

Thermophysical 

properties 

Thickness (m) 0.013 0.010 0.013 0.010 

Thermal 

conductivity 

(W/mK) 

0.220 0.120 0.220 0.120 

Density (kg/m3) 800 510 800 510 

Specific heat 

capacity (J/kgK) 
840 1260 840 1260 

Cost (£/m2)  12.190 35.480 12.190 35.480 

Layer 2 

Material  EPS28 Battens29 EPS Battens 

Thermophysical 

properties 

Thickness (m) 0.225  0.085  

Thermal 
conductivity 

(W/mK) 

0.033  0.033  

Density (kg/m3) 15  15  

Specific heat 

capacity (J/kgK) 
1450  1450  

Cost (£/m2)  17.390 12.250 9.290 12.250 

Layer 3 

Material  Concrete Chipboard Concrete Chipboard 

Thermophysical 

properties 

Thickness (m) 0.180 0.012 0.180 0.012 

Thermal 

conductivity 

(W/mK) 

1.300 0.140 1.300 0.140 

Density (kg/m3) 2000 600 2000 600 

Specific heat 

capacity (J/kgK) 
840 1700 840 1700 

Cost (£/m2)  23.320 9.470 23.320 9.470 

Layer 4 

Material   
Wool 

insulation 
 

Wool 

insulation 

Thermophysical 

properties 

Thickness (m)  0.190  0.075 

Thermal 

conductivity 

(W/mK) 

 0.039  0.039 

Density (kg/m3)  25  25 

Specific heat 

capacity (J/kgK) 
 1800  1800 

Cost (£/m2)   52.27030  20.690 

 
27 HW/LW denotes the thermal mass of each construction (heavyweight and lightweight construction, 

respectively); PH/PL signifies the standard each construction complies with (the Passivhaus Standard 

(International Passive House Association 2018) and the Building Regulations Part L (UK Government 

2013a), respectively). 
28 Expanded polystyrene board. 
29 In EnergyPlus (U.S. Department of Energy 2016a), this layer is simulated as an air gap. 
30 The cost of timber studs is also included. 
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   HW-PH LW-PH HW-PL LW-PL27 

Layer 5 

Material   Chipboard  Chipboard 

Thermophysical 

properties 

Thickness (m)  0.012  0.012 

Thermal 

conductivity 

(W/mK) 

 0.140  0.140 

Density (kg/m3)  600  600 

Specific heat 

capacity (J/kgK) 
 1700  1700 

Cost (£/m2)   9.470  9.470 

Layer 6 

Material   
Vapour 

barrier 
 

Vapour 

barrier 

Thermophysical 

properties 

Thickness (m)     

Thermal 

conductivity 

(W/mK) 

    

Density (kg/m3)     

Specific heat 

capacity (J/kgK) 
    

Cost (£/m2)   2.480  2.480 

Layer 7 

Material   
Wool 

insulation 
 

Battens 

(services) 

Thermophysical 

properties 

Thickness (m)  0.050   

Thermal 
conductivity 

(W/mK) 

 0.039   

Density (kg/m3)  25   

Specific heat 

capacity (J/kgK) 
 1800   

Cost (£/m2)   6.50031  3.500 

Layer 8 

(innermost) 

Material   
Plaster 

(board) 
 

Plaster 

(board) 

Thermophysical 

properties 

Thickness (m)  0.013  0.013 

Thermal 

conductivity 

(W/mK) 

 0.210  0.210 

Density (kg/m3)  700  700 

Specific heat 

capacity (J/kgK) 
 1000  1000 

Cost (£/m2)   19.530  19.530 

Total cost (£/m2) 52.900 147.450 44.800 112.870 

 

 

 

 

 

 
31 The cost of battens is also included. 
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Table A.2. Material layers of roof constructions: thermophysical properties (CIBSE 2006) and costs 

(AECOM 2015). 

   HW-PH LW-PH HW-PL LW-PL 

Layer 1 

(outermost) 

Material  Shingles Shingles Shingles Shingles 

Thermophysical 

properties 

Thickness (m) 0.010 0.010 0.010 0.010 

Thermal 

conductivity 

(W/mK) 

0.120 0.120 0.120 0.120 

Density 

(kg/m3) 
510 510 510 510 

Specific heat 

capacity 

(J/kgK) 

1260 1260 1260 1260 

Cost (£/m2)  50.190 50.190 50.190 50.190 

Layer 2 

Material  Battens Battens Battens Battens 

Thermophysical 

properties 

Thickness (m)     

Thermal 

conductivity 

(W/mK) 

    

Density 

(kg/m3) 
    

Specific heat 

capacity 
(J/kgK) 

    

Cost (£/m2)  17.500 17.500 17.500 17.500 

Layer 3 

Material  
Breather 
membrane 

Breather 
membrane 

Breather 
membrane 

Breather 
membrane 

Thermophysical 

properties 

Thickness (m)     

Thermal 

conductivity 

(W/mK) 

    

Density 
(kg/m3) 

    

Specific heat 

capacity 

(J/kgK) 

    

Cost (£/m2)  1.890 1.890 1.890 1.890 

Layer 4 

Material  Fibreboard Chipboard Fibreboard Chipboard 

Thermophysical 

properties 

Thickness (m) 0.019 0.012 0.019 0.012 

Thermal 

conductivity 

(W/mK) 

0.082 0.140 0.082 0.140 

Density 

(kg/m3) 
350 600 350 600 

Specific heat 

capacity 

(J/kgK) 

1300 1700 1300 1700 

Cost (£/m2)  9.880 9.470 9.880 9.470 
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   HW-PH LW-PH HW-PL LW-PL 

Layer 5 

Material  EPS 
Wool 

insulation 
EPS 

Wool 

insulation 

Thermophysical 

properties 

Thickness (m) 0.200 0.190 0.110 0.125 

Thermal 

conductivity 

(W/mK) 

0.033 0.039 0.033 0.039 

Density (kg/m3) 15 25 15 25 

Specific heat 

capacity (J/kgK) 
1450 1800 1450 1800 

Cost (£/m2)  13.460 59.920 10.290 42.170 

Layer 6 

Material  Concrete Chipboard Concrete Chipboard 

Thermophysical 

properties 

Thickness (m) 0.200 0.012 0.200 0.012 

Thermal 

conductivity 

(W/mK) 

1.300 0.140 1.300 0.140 

Density (kg/m3) 2000 600 2000 600 

Specific heat 

capacity (J/kgK) 
840 1700 840 1700 

Cost (£/m2)  21.880 9.470 21.880 9.470 

Layer 7 
Material   

Vapour 

barrier 
 

Vapour 

barrier 

Cost (£/m2)   2.480  2.480 

Layer 8 

Material   
Wool 

insulation 
 

Battens 

(services) 

Thermophysical 

properties 

Thickness (m)  0.050   

Thermal 

conductivity 

(W/mK) 

 0.039   

Density (kg/m3)  25   

Specific heat 

capacity (J/kgK) 
 1800   

Cost (£/m2)   6.500  3.500 

Layer 9 

(innermost) 

Material   
Plaster 

(board) 
 

Plaster 

(board) 

Thermophysical 

properties 

Thickness (m)  0.013  0.013 

Thermal 
conductivity 

(W/mK) 

 0.210  0.210 

Density (kg/m3)  700  700 

Specific heat 

capacity (J/kgK) 
 1000  1000 

Cost (£/m2)   16.990  16.990 

Total cost (£/m2) 114.800 174.410 111.630 153.660 
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Table A.3. Variations in the thermal properties of non-hygroscopic materials due to the impact of 1% 

moisture content (MacDonald 2002). 

 

Variation 

(non-hygroscopic materials) 

Thermal properties Fast response Slow response 
Thermal 

conductivity 
(W/mK) 

Nominal + 5% Nominal - 5% 

Density (kg/m3) Nominal - 13% Nominal + 13% 

Specific heat 

capacity (J/kgK) 
Nominal - 4% Nominal + 4% 

 

 

 

Table A.4. Variations in the thermal properties of inorganic-porous materials due to the impact of 4% 

moisture content (MacDonald 2002). 

 
Variation 

(inorganic-porous materials) 

Thermal properties Fast response Slow response 
Thermal 

conductivity 

(W/mK) 
Nominal + 15% Nominal - 15% 

Density (kg/m3) Nominal - 4% Nominal + 4% 

Specific heat 

capacity (J/kgK) 
Nominal - 19% Nominal + 19% 

 

 

 

Table A.5. Variations in the thermal properties of organic-hygroscopic materials due to the impact of 

7% moisture content (MacDonald 2002). 

 

Variation 

(organic-hygroscopic materials) 

Thermal properties Fast response Slow response 
Thermal 

conductivity 

(W/mK) 
Nominal + 25% Nominal - 25% 

Density (kg/m3) Nominal - 11% Nominal + 11% 

Specific heat 

capacity (J/kgK) 
Nominal - 8% Nominal + 8% 
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Table A.6. Material layers of internal wall, foundation slab, internal floor, and internal door 

constructions: thermophysical properties (CIBSE 2006) and costs (AECOM 2015). 

   

Internal 

wall 

Foundation 

slab 

Internal 

floor 

Internal 

door 

Layer 1 

(outermost) 

Material  
Plaster 

(board) 

Granular 

filling 

Plaster 

(board) 
Plywood 

Thermophysical 

properties 

Thickness (m) 0.013 0.150 0.013 0.012 

Thermal 

conductivity 

(W/mK) 

0.210 0.360 0.210 0.130 

Density 

(kg/m3) 
700 1840 700 500 

Specific heat 

capacity 

(J/kgK) 

1000 840 1000 1600 

Cost (£/m2)  19.530 28.780 16.990 15.280 

Layer 2 

Material  
Metal 

studs 

Cement 

screed 

Air 

(services) 
Air 

Thermophysical 

properties 

Thickness (m) 0.050 0.050 0.300  

Thermal 

conductivity 
(W/mK) 

 1.400   

Density 

(kg/m3) 
 2100   

Specific heat 

capacity 

(J/kgK) 

 650   

Cost (£/m2)  5.750 19.000   

Layer 3 

Material  
Plaster 

(board) 

Vapour 

barrier 
Concrete Plywood 

Thermophysical 

properties 

Thickness (m) 0.013  0.200 0.012 

Thermal 

conductivity 

(W/mK) 

0.210  1.300 0.130 

Density 

(kg/m3) 
700  2000 500 

Specific heat 

capacity 

(J/kgK) 

1000  840 1600 

Cost (£/m2)  19.530 2.480 21.880 15.280 

Layer 4 

Material   EPS   

Thermophysical 

properties 

Thickness (m)  0.200   

Thermal 

conductivity 

(W/mK) 

 0.033   

Density 

(kg/m3) 
 15   

Specific heat 
capacity 

(J/kgK) 

 1450   

Cost (£/m2)   13.460   
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Internal 

wall 

Foundation 

slab 

Internal 

floor 

Internal 

door 

Layer 5 
Material   

Vapour 

barrier 
  

Cost (£/m2)   2.480   

Layer 6 

(innermost) 

Material   Concrete   

Thermophysical 

properties 

Thickness (m)  0.200   

Thermal 

conductivity 

(W/mK) 

 1.300   

Density (kg/m3)  2000   

Specific heat 

capacity (J/kgK) 
 840   

Cost (£/m2)   21.880   

Total cost (£/m2) 44.810 88.080 38.870 30.560 
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Appendix B – Modelling the case study buildings
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Test cell 

Table B.1 shows the performance values (as predicted in EnergyPlus (U.S. Department 

of Energy 2016a)) for a solution that fully complies with the Passivhaus Standard (no. 

10) and a solution that only complies with the Building Regulations (no. 1170), in the 

case of the examined test cell. Note that, values refer to nominal uncertain conditions 

(i.e. the nominal values for (wall and roof) constructions, infiltration rate and occupant 

density as well as the TRY weather file). Both solutions include the highest WWR, the 

lowest value of overhang depth, heavyweight wall and roof constructions and a heating 

setpoint of 19 ℃. As expected, solution no. 10 leads to a lower heating energy demand 

and winter thermal discomfort compared to solution no. 1170 – as the U-values of its 

external wall, roof and window constructions as well as its infiltration rate are lower – 

but higher summer thermal discomfort and capital cost. 

Table B.1. The predicted objective values under the nominal conditions for a solution that fully 
complies with the Passivhaus Standard (no. 10) and a solution that only complies with the Building 

Regulations (no. 1170), in the case of the examined test cell. 

Solution 

index 

Design 

objective 

 

Heating energy 

demand 

(kWh/m2.yr) 

Winter 

discomfort 

(% of hours) 

Summer 

discomfort 

(% of hours) 

Capital 

cost 

(£/m2) 

10 0.409 35.043 16.595 348.959 

1170 12.789 73.988 10.177 251.157 

 

Real-world building 

Table B.2 similarly shows the predicted performance values under nominal uncertain 

conditions for a solution that fully complies with the Passivhaus Standard (no. 0, 320 

and 640) and a solution that only complies with the Building Regulations (no. 290, 

610 and 930), in the case of each of the three candidate forms (A, B and C, respectively) 

for the examined real-world building. Solutions include heavyweight wall and roof 

constructions and a heating setpoint of 19 ℃. As expected, solutions no. 0, 320 and 

640 lead to a lower heating energy demand and winter thermal discomfort compared 

to solutions no. 290, 610 and 930, but higher summer thermal discomfort and capital 

cost. 
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Table B.2. The predicted objective values under the nominal conditions for a solution that fully 

complies with the Passivhaus Standard (no. 0, 320 and 640) and a solution that only complies with the 

Building Regulations (no. 290, 610 and 930), in the case of each of the three candidate forms (A, B 

and C, respectively) for the examined real-world building. 

Solution 

index 
Form 

Design 

objective 

 

Form 

(–) 

Heating 
energy 

demand 

(kWh/m2.yr) 

Winter 

discomfort 

(% of hours) 

Summer 

discomfort 

(% of hours) 

Capital 

cost 

(£/m2) 

0 A 0.536 10.140 28.366 177.752 

290 A 13.504 42.283 16.176 125.784 

320 B 0.216 12.140 34.876 191.921 

610 B 8.910 38.310 26.512 144.172 

640 C 0.484 14.000 38.478 188.803 

930 C 11.011 39.522 27.141 142.257 

 

Figures B.1, B.2 and B.3 show the zoning diagrams for forms A, B and C, respectively. 

Note that, colours indicate the outside boundary conditions for all space surfaces (that 

is, blue – external air; green – interior air; and brown – ground). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.1. Real-world building – Form A – The Sketchup model (zoning diagram). 
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Figure B.2. Real-world building – Form B – The SketchUp model (zoning diagram). 

 

Figure B.3. Real-world building – Form C – The SketchUp model (zoning diagram). 
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