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Abstract: New technologies for manipulating biomembranes have vast potential to aid the
understanding of biological phenomena, and as tools to sculpt novel artificial cell architectures
for synthetic biology. The manipulation and fusion of vesicles using optical traps is amongst the most
promising due to the level of spatiotemporal control it affords. Herein, we conduct a suite of feasibility
studies to show the potential of optical trapping technologies to (i) modulate the lipid composition
of a vesicle by delivering new membrane material through fusion events and (ii) manipulate and
controllably fuse coexisting membrane domains for the first time. We also outline some noteworthy
morphologies and transitions that the vesicle undergoes during fusion, which gives us insight into
the mechanisms at play. These results will guide future exploitation of laser-assisted membrane
manipulation methods and feed into a technology roadmap for this emerging technology.

Keywords: optical traps; vesicles; artificial cells; membrane biophysics; phase separation; membranes

1. Introduction

Cell membranes are universal biological motifs that define cellular boundaries. They allow for
cells to compartmentalise content, control the influx/efflux of materials, and they act as a surface on
which biochemical reactions occur. Synthetic versions of cell membranes are not only used to shed
light on fundamental principles underlying the function of membranes away from the complex cellular
environment, but increasingly as components of artificial cells in the field of bottom-up synthetic
biology [1–3].

The fusion of two cell membranes is a ubiquitous event in biological systems. Cell fusion
is integral to a host of cellular processes, including endocytosis, exocytosis, cell division, cell-cell
communication, and neurotransmission [4]. Bioengineers are increasingly exploiting this phenomenon,
with synthetic membrane fusion events playing key roles in liposomal drug delivery [5], cell-like
microreactors [6,7], cell transfection [8], the creation of cell hybrids for vaccine generation [9], and
for therapeutic applications [10,11]. Membrane fusion is also being deployed in synthetic biology,
to initiate protein synthesis in artificial cells through the delivery of genetic material [12] and in
the creation of artificial cells that are capable of growing over time by subsuming new membrane
material [13].

Fusion techniques generally fall into two camps. The first is bulk fusion, where the inherent
biophysical properties of the membranes lead to stochastic fusion events in a vesicle population
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(e.g., through charge [14], membrane-bound DNA nanotechnology [15], and membrane mechanical
properties [16]). The second is externally triggered fusion, where defined vesicles are brought into
contact and fusion is initiated through applied forces (e.g., using electric fields [17,18] or lasers [12,19]).
The attraction of the latter is the full level of spatiotemporal control of the fusion process that is available.
Not only can a user define which vesicle will fuse with which, by the timing, spatial arrangement, and
the number of fusion events can also be controlled.

There have been several recent studies on techniques to fuse Giant Unilamellar Vesicles (GUVs;
enclosed cell-sized bilayer spheres) while using optical traps and membrane-bound gold nanoparticles
(AuNP) [12,19,20]. The underlying mechanism behind this process is AuNP absorbance at the laser
focus, followed by heat dissipation, local temperature elevation (>100 ◦C) in a region of characteristic
size that is equal to the NP diameter [21], membrane expansion, and then fusion [19,20]. Similar optical
tweezing technologies have recently been used to controllably manipulate co-existing membrane
domains (analogues of cellular lipid rafts) within the membrane [22].

Several applications of laser-assisted vesicle fusion technologies have been demonstrated,
including for the initiation of chemical reactions in vesicle microreactors [12], the creation of hybrid
cells [20], and sequential dilution of encapsulated aqueous material [12]. However, the full capabilities
of this technology have not been fully explored, and the potential for it to be used to modulate the
composition and spatial arrangements of the membrane itself (and not simply mixing the encapsulated
cargo) is largely an unchartered frontier.

Herein, we address this shortcoming through a series of proof-of-principle experiments on GUVs.
Firstly, we show for the first time that laser-mediated vesicle fusion can be used to dynamically modulate
the membrane composition and phase state by introducing new membrane material. Secondly, we
use this technology to controllably fuse individual coexisting membrane domains with one another.
Finally, we present a phenomenological account of some striking vesicle morphologies that the vesicle
adopts during fusion, which have the potential to inform the underlying biophysical rules governing
the fusion process. This work acts a roadmap for future work by highlighting the potential of optical
trapping in membrane manipulation for a range of soft-matter biotechnology applications.

2. Results and Discussion

2.1. Dynamic Modulation of Lipid Composition through Vesicle Fusion

The use of optical traps to select, manipulate, and fuse user-defined vesicles with another opens
the possibility of dynamically and controllably modulating membrane composition by introducing
new lipid cargo. Although fusion between Small Unilamellar Vesicles (LUVs; c. 100 nm diameter) and
GUVs has been used to introduce protein machinery into membranes [23] and induce GUV growth [13],
this method cannot be used to controllably alter the lipid composition due to the lack of control of the
number of fusion events. In principle, laser-assisted GUV fusion offers precise spatial and temporal
control which bypasses this limitation. The experimental setup (Figure 1) consists of a single-beam
optical trap that is built into an inverted epi-fluorescence microscope system allowing for the user to
select AuNP labelled vesicles, bringing them into contact to form an adhesion patch (laser: 20–100 mW
at trap), and induce fusion by increasing the laser power (>150 mW at trap). The adhesion patch is
formed due to the presence of 0.2 mM NaCl in the external solution which screens out electrostatic
repulsion between the vesicles, allowing attractive forces to dominate [12]. The fusion event is triggered
by the interaction of the continuous laser beam with the nanoparticles sitting in the adhesion patch.

What enabled the manipulation of the lipid vesicles using an optical trap was the difference in
molecular composition and, hence, refractive index between the vesicle interior (0.75 M sucrose) and
exterior (0.35 M glucose, 0.2 M NaCl). This refractive index mismatch was enough to facilitate trapping
and manipulation at laser powers above 20 mW at the trap.

We track changes in lipid composition post-fusion through the phase state of the membrane.
Membranes can exist in a fully liquid phase (Lα), gel phase (Lβ) or have co-existing
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phase-separated domains [24]. In our experiments, there are either gel/liquid coexisting domains,
or liquid-ordered/liquid-disordered (Lo/Ld) coexisting domains. The phase state is dependent on
the precise lipid composition of the membrane [24,25], and it can be visualised using fluorescence
microscopy through the incorporation of fluorescently labelled lipids (Rh-PE), which preferentially
partitions into the disordered phases.
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Figure 1. Schematic of the processes involved in laser-assisted vesicle adhesion and fusion.
(a) Experimental setup. By moving a motorized stage and the objective itself, a vesicle could be
manipulated in the x, y, and z direction relative to its surroundings. (b) Gold nanoparticles (AuNP)
labelled vesicles of defined composition are brought together using an optical trap where they adhere
due to the presence of NaCl in the external solution. Focussing the laser at the adhesion patch is used to
initiate fusion, forming a unified structure with lipids originating from two previously distinct vesicles.
Images of fluorescently labelled Giant Unilamellar Vesicles (GUVs) pre- and post-fusion, as shown.
Scale bar = 5 µm.

In these experiments, we use ternary lipid mixtures. The lipids we used were: DOPC, which
promotes the formation of a liquid phase (Lα) at room temperature; EggSM, which promotes the
formation of a gel phase (Lβ) at room temperature; and cholesterol, which promotes the formation
of the liquid-ordered (Lo) phase in ternary mixtures. Using the laser-assisted fusion technique,
we were able to move a vesicle from a gel/liquid coexisting regime to an Lo/Ld one, by delivering
cholesterol-rich membrane material (Figure 2). The ternary lipid composition used for this experiment
was DOPC/EggSM/Chol with the constituent lipids that were present in different ratios. Using
iso-osmotic conditions, we fused two vesicles of c. 5 µm diameter, one of which was a 1:1:0 GUV
(gel/liquid; small speckled non-spherical domains) with a 1:1:3 GUV (Lα; no domains, uniform
fluorescence). This changed the membrane composition to lie in the Lo/Ld region of the phase diagram
(large spherical domains) [24]. Assuming that the vesicles were identical in size, the final vesicle is
expected to have a DOPC/EggSM/Chol 2:2:3 composition.
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Figure 2. Changing membrane phase state through delivery of new lipid material. (a) Two giant vesicles
of different compositions and phase states are fused together using an optical trap. Adding a fully fluid
vesicle to one showing gel/fluid domain coexistence (irregularly shaped domains) yielded a vesicle
exhibiting liquid-ordered/liquid disordered domain coexistence (spherical domains). Scale bar = 5 µm.
(b) A schematic demonstrating adding lipid material from vesicle (1) to vesicle (2) leading to a new
vesicle (3) occupying a different part of the phase diagram. Note: this is not an empirical phase diagram;
it is an approximate one used for illustrative purposes only.
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2.2. Manipulation and Fusion of Defined Coexisting Domains

In addition to manoeuvring and fusing membrane compartments with each other, we demonstrate
that individual coexisting domains within a lipid membrane can be merged with spatiotemporal
control. The ability to manipulate domains using optical forces has previously been shown [22] but
using an optical trap to controllably fuse domains together has not. In a previous study [22], we have
shown how the difference in both membrane refractive index and thickness between the Lo and Ld

phase results in an optical gradient force that enables domain trapping and manipulation via a single
trap. An approximated expression of the optical trapping force that was exerted by the laser on a
trapped domain was also derived [22]. In the experiments below, we show that we can drag Ld

domains across the membrane surface, and bring them in contact with adjacent domains to initiate
fusion, by taking a DOPC/EggSM/Chol 1:1:1 vesicle and focussing the laser (0.23 W at trap) at the
Lo/Ld interface (Figure 3; Video S1). We were able to sequentially fuse nine isolated domains to yield a
domain of an incrementally increasing size using this method. We note that, with this composition,
domains did not naturally coalesce within the timescales of the experiment, due them having a ‘bulged’
morphology, where they protrude out the vesicle body. Domain bulging means that the total interface
length of the domain boundary is reduced, in turn reducing the total line tension, which is energetically
favourable [24,26,27]. Ordinarily, domains would collide and coalesce, eventually growing into one
large domain to reduce the total interface length. However, the bulged geometry creates repulsion
between domains, allowing for multiple domains to be stabilized in a kinetically trapped regime.
In our experiments, the repulsion between domains is overcome while using the optical trap through
two processes operating in tandem. The first is that the traps are used to bring the domains together,
overcoming the inter-domain repulsion. The second is through the heat emanating from the laser
focus and the resulting temperature increase (maximum increase estimated to be 4–6 ◦C while using
the laser powers used) [12]. This reduces the line tension, which in turn reduces the extent of domain
bulging and the lowering of the inter-domain repulsion.
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Figure 3. Controlled manipulation of membrane domains using optical traps. (a) Schematic showing
manipulation of liquid-disordered (Ld) domains within a liquid-ordered (Lo) matrix to induce domain
fusion. (b) Fluorescence image of a portion of a vesicle membrane showing an Ld domain being
dragged by an optical trap (yellow dot and arrow) towards an adjacent domain to induce fusion.
Lipid composition: DOPC/EggSM/Chol 1:1:1. (c) Time-course image showing eight sequential fusion
events that were user-defined through domain manipulation with an optical trap (yellow circle).
Scale bars = 5 µm.
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2.3. Morphological Transitions

Vesicles tended to go through a series of common morphological transitions during the fusion
process, which can give us insight into the underlying biophysical processes at play. The most common
of these are described below, together with speculation regarding their origins.

The first relates to a morphological change during vesicle adhesion, where the vesicles ‘zip-up’ to
form a straight interface membrane. When vesicles are generated, there is a large vesicle-to-vesicle
variation in the surface tensions, depending on how much lipid material ends up in the final structure.
On occasions where there is excess membrane surface area, protruding tubules are observed. When
such vesicles are brought into contact with other vesicles, the tubules disappear, and they are quickly
(<100 ms) subsumed into the main membrane body after adhesion (Figure 4a; Video S2). This is
because, during adhesion, the total vesicle surface area increases as it deforms away from a spherical
geometry. This leads to a corresponding increase in vesicle tension, as the encapsulated volume
remains the same, leading to a retraction of the tubule. Assuming identical vesicle size, the ratio of the
vesicle surface area increase due to membrane adhesion over the original vesicle area is given by

f (ϑ) =
3− cosϑ

22/3 (1 + cosϑ)1/3 (2− cosϑ)2/3
− 1 (1)

In our experiments, the contact angle ϑ, defined as the arcsine of the adhesion patch diameter
normalised with respect to the vesicle diameter, can vary between a few degrees up to c. 40◦, thus
resulting in relative increases of vesicle surface area of c. 1%. With a typical elastic expansion area
modulus of order 200 mJ/m2, the vesicle membrane tension can increase by up to few tens of µN/m,
which can be enough to destabilise the nanotubules that protrude from the vesicle surface.

After adhesion, the vesicles were fused with one another by exposing the vesicle/vesicle interface
to a continuous laser (>150 mW). Different behaviours were observed in iso-osmotic and osmotically
deflated vesicles (Figure 4b). In iso-osmotic conditions (0.75 M sucrose internally, 0.35 M glucose 0.2 M
NaCl externally), clean fusion events occurred 82% of the time (n = 50) with a single post-fusion vesicle
formed almost instantaneously (<100 ms) after exposure to the laser (Video S3). In contrast, when
the vesicles were osmotically imbalanced (0.75 M sucrose internally, 0.4 M glucose and 0.2 M NaCl
externally) and, hence, had lower membrane tensions, disorderly fusion morphologies were always
observed (Figure 4b, Video S4). These took the form of pearling instabilities, where tens of smaller
vesicles are generated (and retained inside) the post-fusion vesicle.

Micromachines 2020, 11, x 5 of 11 

 

fusion. (b) Fluorescence image of a portion of a vesicle membrane showing an Ld domain being 
dragged by an optical trap (yellow dot and arrow) towards an adjacent domain to induce fusion. 
Lipid composition: DOPC/EggSM/Chol 1:1:1. (c) Time-course image showing eight sequential fusion 
events that were user-defined through domain manipulation with an optical trap (yellow circle). Scale 
bars = 5 µm. 

2.3. Morphological Transitions 

Vesicles tended to go through a series of common morphological transitions during the fusion 
process, which can give us insight into the underlying biophysical processes at play. The most 
common of these are described below, together with speculation regarding their origins. 

The first relates to a morphological change during vesicle adhesion, where the vesicles ‘zip-up’ 
to form a straight interface membrane. When vesicles are generated, there is a large vesicle-to-vesicle 
variation in the surface tensions, depending on how much lipid material ends up in the final 
structure. On occasions where there is excess membrane surface area, protruding tubules are 
observed. When such vesicles are brought into contact with other vesicles, the tubules disappear, and 
they are quickly (<100 ms) subsumed into the main membrane body after adhesion (Figure 4a; Video 
S2). This is because, during adhesion, the total vesicle surface area increases as it deforms away from 
a spherical geometry. This leads to a corresponding increase in vesicle tension, as the encapsulated 
volume remains the same, leading to a retraction of the tubule. Assuming identical vesicle size, the 
ratio of the vesicle surface area increase due to membrane adhesion over the original vesicle area is 
given by 𝑓 𝜗 3 cos 𝜗2 /  1 cos 𝜗 /  2 cos 𝜗 / 1 (1) 

In our experiments, the contact angle 𝜗, defined as the arcsine of the adhesion patch diameter 
normalised with respect to the vesicle diameter, can vary between a few degrees up to c. 40°, thus 
resulting in relative increases of vesicle surface area of c. 1%. With a typical elastic expansion area 
modulus of order 200 mJ/m2, the vesicle membrane tension can increase by up to few tens of µN/m, 
which can be enough to destabilise the nanotubules that protrude from the vesicle surface. 

After adhesion, the vesicles were fused with one another by exposing the vesicle/vesicle interface 
to a continuous laser (>150 mW). Different behaviours were observed in iso-osmotic and osmotically 
deflated vesicles (Figure 4b). In iso-osmotic conditions (0.75 M sucrose internally,  
0.35 M glucose 0.2 M NaCl externally), clean fusion events occurred 82% of the time (n = 50) with a 
single post-fusion vesicle formed almost instantaneously (<100 ms) after exposure to the laser (Video 
S3). In contrast, when the vesicles were osmotically imbalanced (0.75 M sucrose internally, 0.4 M 
glucose and 0.2 M NaCl externally) and, hence, had lower membrane tensions, disorderly fusion 
morphologies were always observed (Figure 4b, Video S4). These took the form of pearling 
instabilities, where tens of smaller vesicles are generated (and retained inside) the post-fusion vesicle. 

 
Figure 4. Vesicle morphology changes under different osmotic conditions. (a) If vesicles have excess 
membrane area and low tension, they may contain tubules (white arrow). Upon adhesion, the vesicle 

Figure 4. Vesicle morphology changes under different osmotic conditions. (a) If vesicles have excess
membrane area and low tension, they may contain tubules (white arrow). Upon adhesion, the vesicle
deform to a non-spherical geometry, which increases its tension and leads to a retraction of the tubule
into the main vesicle body. (b) Images showing post-fusion morphologies under iso-osmotic (0.75 M
sucrose internally; 0.35 M glucose, 0.2 M NaCl externally) and osmotically deflated (0.75 M sucrose
internally; 0.4 M glucose, 0.2 M NaCl externally; low tension) conditions. In the former, a clean-merge
is seen; in the latter the vesicle slowly relaxes to a spherical shape and many smaller internal vesicles
are produced and retained inside (white arrow). Orange dot corresponds to area of laser focus.
Scale bars = 5 µm.
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One possible explanation for this is the creation of high energy exposed bilayers following laser
exposure. Because of the low-tension and flaccid nature of the membranes, these are free to deform
and reseal quickly with membrane segments that are in close proximity. This would lead to the
formation of further exposed membranes in an iterative process that results in the generation of
several internal vesicles. In principle, the internal membrane structures may be connected by small
membrane tubules that are below the resolution of the microscope. Furthermore, the merging of two
vesicles of identical size results in a post-fusion vesicle whose membrane area is c. 20% less than the
combined membrane area of the two original vesicles due to the conservation of the encapsulated
volume. This area reduction combined with the relatively large membrane excess area of the two
deflated merging vesicles might promote the formation of membrane structures other than a single
larger post-fusion vesicle, such as smaller vesicles and nanotubules.

However, several interesting ‘disorderly’ fusion events were also occasionally observed in
iso-osmotic conditions (Figure 5). There were instances when intermediate bodies formed that were
stable for c. 4 s before collapsing to generate internal membrane partitions (Figure 5a; Video S5).
The intermediate structures appeared to be membranes that possessed a visible hole >3 µm in diameter.
The hole resealed when the open membrane edges travelled along the surface of the vesicle, minimising
the size of the pore, until the two edges met and then formed a complete internal membrane. In other
instances, if the laser was continuously left on, multiple sequential opening and re-sealing events were
seen. In this case, one of the vesicles would get smaller over time, until only a single unified vesicle
was left (Figure 5b, Video S6). Finally, there were occasions where visible membrane pores would
appear, followed by membrane rearrangement in order to yield a single internal vesicle encapsulated
in a larger one (Figure 5c, Video S7).
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Figure 5. Post-fusion morphologies and intermediate structures. Under osmotically balanced conditions
(0.75 M sucrose internally; 0.35 M glucose and 0.2 M NaCl externally) several alternative non-clean fusion
events were occasionally observed after application of the laser (red dot and blue cone), including:
(a) A meta-stable pore of c. 3 µm diameter in the bilayer partition, which after c. 5s rearranged
(dotted arrow) to reform the interface membrane. (b) Quick opening and closing of a pore upon
continuous laser illumination, after each event a portion of the membrane of one vesicle was subsumed
into the other, with the formation of a single vesicle at the end. (c) An exposed pendant interface
membrane (white arrow), which rearranged and reconnected with itself to yield in an inner vesicle.
Scale bar = 5 µm.
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3. Materials and Methods

3.1. Optical Trapping and Microscopy Setup

An inverted epi-fluorescence dual-carousel microscope (Nikon TE2000-U, Nikon Instruments,
Tokyo, Japan) combined with an optical trapping system was used for imaging and optical manipulation,
as described previously [12,28]. Briefly, the setup involves a conventional single beam optical trap that
was based on a linearly polarised beam from an Ytterbium fibre laser source (20 W at 1070 nm; IPG
Photonics, Europe). A bespoke 30 mm cage optic and filter cube mount was machined and replaced
the upper carousel of the microscope. The laser collimator head was mounted in a cage plate and the
beam was expanded to fill the back aperture of a 60 × 1.4 NA oil-immersion objective with a pair of
opposing plano-convex lenses in a Keplerian arrangement along a cage optic rail. The IR dichroic
mirror and IR filter (Chroma, Bellows Falls, VT, USA) were fitted in a filter cube that was mounted in
the bespoke mount. The laser power at the back aperture was measured to be 9.9 ± 0.2% of the nominal
laser launch power. The laser focal point was aligned to coincide with the object plane and objects
were manipulated by the translation of the motorised microscope XY stage and the objective along
the z-axis. The sample was imaged while using the CCD camera (ORCA-ER Hamamatsu, Shizuoka,
Japan). A TRITC Nikon filter cube and a mercury-fibre illuminator (Nikon Intensilight CHGFIE, Tokyo,
Japan) were used for imaging the vesicles in fluorescence mode (50 ms exposure). Image acquisition
was controlled using a customised Labview (National Instruments Corp, TX, USA) interface. We note
that, in all our experiments, we manipulated vesicles one at a time using a single laser. Future work
concerning more advanced applications in which simultaneous trapping of multiple objects are needed
will require modifications to the setup, for example, through the integration of holographic optical
tweezers or time-sharing optical traps systems.

3.2. Vesicle Generation

All of the lipids were purchased from Avanti Polar Lipids (Alabaster, AL, USA) and, unless
otherwise specified, reagents purchased from Sigma Aldrich (Gillingham, UK). Unless otherwise
stated, all of the vesicles were composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC).
For domain experiments, other lipids used were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),
Egg Sphingomyelin (EggSM), and Cholesterol (Chol). GUVs were formed via electroformation in a
sucrose solution in DI water (0.75 M, unless otherwise specified in the text). Lipid solutions containing
various ratios of different lipids (given in the text) were prepared together with 1 mol% fluorescent
lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (RhPE).
These were prepared by dissolving appropriate amounts of lipid in chloroform to yield a 1 mg mL−1

solution. 40µL of this solution was then spread evenly on an indium tin oxide (ITO) slide, and a lipid
film was deposited as the chloroform evaporated. The slide was placed in a desiccator for a minimum
of 30 min to remove residual chloroform. A 5 mm thick polydimethylsiloxane (PDMS) spacer with a
central cut-out was sandwiched in between two ITO slides, one of which contained the lipid film, with
the conductive sides facing each other. This chamber was held together with clips, and it was filled
with the 0.75 M sucrose solution. An alternating electric field (1 V, 10 Hz) was applied across the ITO
plates while using a function generator (Aim-TTi, TG315, Huntingdon, UK). The sample was left to
electroform in a 60◦ oven to ensure that the lipid was in the fluid phase. After two hours, the electric
field was changed to 1 V, 2 Hz for a further hour, and the resulting vesicles collected.

3.3. Fusion Experiments

For vesicles fusion, there needed to be AuNPs present at the vesicle-vesicle interface. This was
achieved by functionalizing the vesicles by adding 2 wt.% 16:0 Biotinyl Cap PE to the initial lipid
film. After vesicle formation, 150 nm streptavidin-coated AuNPs (Nanopartz, CO, USA; product
C11-150-TS-50; 2.5 mg·mL−1) were added to the vesicles 1:9, with the sample being vortexed for 30 min
to drive conjugation. For the fusion experiments, the vesicles were deposited on a coverslip coated
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with a BSA monolayer to prevent interactions between the glass substrate and the vesicle membrane.
The coating was applied by depositing 300 µL of 1% BSA in DI water on a coverslip and leaving it to
evaporate in a 60 ◦C oven, leaving behind a protein film. The film was subsequently rinsed with DI
water and dried under a nitrogen stream. The vesicle assembly chambers were prepared by placing a
1 mm thick PDMS sheet with a 10 mm diameter hole on the coverslip.

For the fusion experiments, unless otherwise stated, all of the experiments were conducted under
iso-osmotic conditions. A sample of vesicles with 0.75 M sucrose internally, and 0.35 M glucose,
0.2 M NaCl externally were created by diluting the vesicles following electroformation with appropriate
volumes of NaCl and glucose solutions, all in DI water. The sample was then mixed by pipette
aspiration, the chamber sealed with a second coverslip, and then placed on the optical trapping setup.
Individual vesicles were trapped by switching the laser on (20 mW–100 mW at trap), and were moved
in three-dimensional (3-D) relative to the sample by moving the microscope stage (x,y) and changing
the focus of the objective (z). These relatively low powers were needed to avoid unintended fusion.
Once the vesicles were brought into contact with one another to form an adhesion patch, fusion was
initialised by applying a laser power of >150 mW (at trap) at the membrane patch.

4. Conclusions

We have conducted a series of feasibility experiments to demonstrate the potential of laser-assisted
membrane manipulation. Firstly, we show that optical trapping technologies can be used to dynamically
move across a membrane phase diagram by changing the composition of a bilayer through the delivery
of new membrane material. This is powerful, as it paves the way for systematic changes to the
lipid composition of the membrane while still retaining the encapsulated cargo. It also enables the
study of non-equilibrium dynamic processes, such as the kinetics of membrane rearrangement after
perturbations in lipid compositions are imposed. Unlike alternative methods (e.g., using reagents that
remove specific membrane molecular constituents) [29], this is a generic method, which, in principle,
allows for the introduction of any material (lipid, cholesterol, protein, etc.) embedded in vesicles,
as well as the controlled addition of non-biological material (e.g., block copolymers, dendrimers etc.) in
controlled quantities. Similar approaches based on electrofusion have been shown to bypass issues that
were associated with batch variation of vesicle lipid composition by changing the lipid composition
post-vesicle generation [18]. Despite the laser-induced fusion, NP-labelled membranes may result in
relatively larger temperature (>100 ◦C) that could compromise the functionality of biological material;
such a temperature increase is localised in a small region of a size that is comparable to the NP diameter
(100 nm). Since outside this region the temperature decreases as the inverse of the distance, it is
expected that the vast majority of the cargo remains unaffected.

Secondly, we show the controlled fusion of coexisting domains in a vesicle. This can unlock
applications for controlled chemical reactions on a membrane surface, for example, if reactive species
can be bound to defined domains, and it can be deployed in future in studies that concern the biophysics
of domain coalescence.

Finally, the fine spatiotemporal control that is associated with the use of laser has meant that
we were able to observe a repertoire of membrane transformations, including: (i) the formation of
large open membrane intermediate structures that appear to be metastable; (ii) the opening/resealing
of transient pores (<1 s); and, (iii) the generation of internal daughter vesicles post-fusion. Many
of these could be repurposed in a synthetic biology context. When coupled with microfluidic [30]
and related technologies [31,32], it could be used to sculpt new cell-mimetic motifs (e.g., synthetic
nuclei), replicate cellular processes (e.g., endocytosis), and gain insight into cell membrane biophysics
in a model environment. Taken together, these results serve as a feasibility roadmap to guide future
detailed studies and exploitation of laser-assisted membrane manipulation technologies.
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Disorderly vesicle fusion under osmotically deflated conditions. Video S5: Transient visible membrane pores
post-fusion. Video S6: Multiple pore opening and closing events upon laser exposure. Video S7: Post-fusion
generation of a single internal daughter vesicle.
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