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Abstract 
Safer roads and police enforcement are closely associated since the latter directly encourages 
road users to improve their behavior by complying with basic traffic rules and laws. 
Understanding the relationships between police enforcement, driving behavior, and traffic 
safety is a prerequisite for optimizing enforcement strategies. However, there is a dearth of 
research on the contemporaneous relationships between these three parameters. Using 
multivariate time series techniques, this study provides an in-depth analysis of 
contemporaneous relationships and dynamic interactions among police enforcement, traffic 
violations, and traffic crashes. The amount of police patrol time per day was used as a surrogate 
measure for police enforcement intensity. A vector autoregressive (VAR) model was first used 
to examine the influences of exogenous factors including weather conditions and holidays. 
Based on the findings of the VAR model, a structural vector autoregressive (SVAR) model was 
developed to determine contemporaneous effects; the Granger causality test was employed to 
detect any dynamic interactions between the three parameters. The results indicated that traffic 
crashes and violations had weekly variation and were significantly impacted by holiday and 
weather conditions, while police patrol time was not impacted. A contemporaneous negative 
impact of police patrol time was found in traffic crashes: each 1% increase in police patrol time 
was associated with a 0.15% decrease in contemporaneous crash frequency. The findings from 
the Granger causality test demonstrated that police patrol time did not Granger-cause traffic 
crashes, but crashes Granger-caused police patrol time. The significant bidirectional 
interactions in conditional variances of police enforcement, traffic violations, and traffic 
crashes further confirm the necessity to analyze the three simultaneously. The findings of this 
study are expected to assist the relevant traffic authorities in devising policies and strategies 
such as optimal police patrol scheduling. 
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1. Introduction 1 
Road traffic injury has become the 8th global cause of death in 2016, a fact that emphasizes 2 

the urgency of improving traffic safety (World Health Organization, 2018). Traditionally, 3 
countermeasures promoting traffic safety involve three aspects: engineering, education, and 4 
enforcement (Rothengatter, 1982). A great deal of engineering research has focused on the 5 
impact on traffic safety of roadway geometric features, traffic control strategies, and traffic 6 
operational characteristics by constructing safety performance functions (Lord and Mannering, 7 
2010; Savolainen et al., 2011), resulting in the publication of well-known guidelines for 8 
improving traffic safety from the perspective of engineering (Administration, 2009; Bonneson, 9 
2010; Harwood et al., 2010). However, research on traffic enforcement and its corresponding 10 
applications are scattered and require further investigation. 11 

Traffic enforcement is implemented by relevant government departments and applied to 12 
road users, with the purpose of maintaining desirable traffic behavior through a process of 13 
surveillance, prosecution, and penalization (Rothengatter, 1982). The traffic violation, that is, 14 
an undesirable driver behavior that is illegal, can be understood as a link between police 15 
enforcement and crashes, as violations are influenced by police enforcement and also have 16 
potential to cause crashes. During the traffic safety analysis work conducted by Shanghai’s 17 
police department, the relationships between police enforcement, traffic violations, and traffic 18 
crashes were found to be complex, as well as endogenous to each other, as demonstrated in 19 
Figure 1 (the causalities presented by arrows need to be investigated). 20 

Police patrol
enforcement

Low crash 
frequency

Low violation 
frequency

High violation 
frequency

High crash 
frequency

 21 
Figure 1. Possible relationships between police enforcement, traffic violations, and crashes 22 

 23 
As Figure 1 illustrates, there arise multiple combinations of high and low crash frequency, 24 

and high and low traffic violation frequency, with different potential causalities represented by 25 
arrows. For example, a road section with a high crash level and few violations might indicate 26 
a lack of police enforcement. On the other hand, a road section might have a high frequency of 27 
crashes as well as a high frequency of violations. This combination could imply that more 28 
frequent violations cause more frequent crashes, or it could imply that the high crash level 29 
motivates the traffic police to enhance their enforcement activities and subsequently apprehend 30 
more violators. These underlying interrelationships are contemporary and are referred to as 31 
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contemporaneous relationships in this study. 1 
Apart from the contemporaneous relationships, police enforcement, traffic violations, and 2 

traffic crashes are endogenous to each other, resulting in dynamic interactions between them. 3 
For instance, if freeway segments with high historical traffic crashes have attracted tougher 4 
police enforcement, the enhanced enforcement will result in further interaction between the 5 
police enforcement and traffic crash variables. While stricter enforcement may reduce 6 
contemporaneous crashes, it may also be a response to the higher historical crash rates 7 
(Makowsky and Stratmann, 2011). The interactions between the current value and the lags of 8 
police enforcement, traffic violations, and crashes are referred to in this study as dynamic 9 
interactions. 10 

Considering the contemporaneous relationships and dynamic interactions among police 11 
enforcement, traffic violations, and traffic crashes, these variables are best studied 12 
simultaneously. However, existing research has mainly investigated the impact of police 13 
enforcement either on crash data or on traffic violations, while it has rarely studied the three 14 
interconnected parameters simultaneously, nor has it considered endogeneity. Not controlling 15 
for the endogeneity may lead to a bias, and thus an inaccurate estimate of the effect of police 16 
enforcement. 17 

Time series data is a common data structure obtained when measuring the level of police 18 
enforcement with surrogate variables such as the amount of police patrol time (Tay, 2005; 19 
Makowsky and Stratmann, 2011; Terrill et al., 2016). Yet most previous studies have used 20 
cross-sectional models to analyze the effects of police enforcement on traffic safety within a 21 
single period. When applying cross-sectional models to time series data, the results can be 22 
misinterpreted because time series data usually suffer from serial correlation. To handle this 23 
problem, time series modeling is recommended to reveal the complex interrelationships that 24 
evolve over time (Lavrenz et al., 2018). Compared to traditional cross-sectional models, causal-25 
inference modeling or time series modeling based on time series data has shown better 26 
causality/inference capacity (Mannering et al., 2020). 27 

This study aims to examine the contemporaneous relationships and potential dynamic 28 
interactions between police enforcement, traffic violations, and traffic crashes using 29 
multivariate time series modeling techniques with daily as the temporal unit. The amount of 30 
police patrol time is used as a surrogate measurement for police enforcement intensity. A vector 31 
autoregressive (VAR) model is used to examine the influences of exogenous factors including 32 
weather conditions and holidays. A structural vector autoregressive (SVAR) model is then 33 
developed based on the VAR findings to determine contemporaneous relationships; and the 34 
Granger causality test is employed to detect any dynamic interactions between the three 35 
variables. 36 

In addition to weather conditions and holidays, however, a plethora of other exogenous 37 
factors may influence the endogenous variables, and the impossibility of accessing all such 38 
factors can lead to unobserved heterogeneity (Mannering et al., 2016). Unobserved 39 
heterogeneity can, in turn, result in heteroscedasticity, a common phenomenon in time series 40 
modeling in which the variance of error terms is time-dependent. In such circumstances, a 41 
multivariate generalized autoregressive conditional heteroscedasticity (GARCH) model is also 42 
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utilized to analyze the relationships between the variances of errors of the endogenous variables. 1 
 2 

2. Literature review 3 
2.1 Relations between police enforcement, driving behavior, and traffic safety 4 

The majority of previous studies have focused on the impact of police enforcement either 5 
on traffic safety or on driving behaviors, resulting in a dearth of research on the 6 
contemporaneous relationships between these three parameters as well as their inherent 7 
endogeneity. Some studies have used the number of traffic citations as a measure of traffic 8 
enforcement intensity to investigate the impact of enforcement on traffic safety. For instance, 9 
Terrill et al. (2016) used ordinal least squares to examine the relationship between citations and 10 
crashes; finding that the number of citations correlated with the number of crashes, they 11 
concluded that citing traffic violators is a preventive measure for crashes. Makowsky and 12 
Stratmann (2011) used municipal budgetary shortfalls as an instrumental variable to control for 13 
endogeneity while identifying the effects of traffic citations on traffic safety. They found that 14 
motor vehicle crashes and crash-related injuries decrease as the number of tickets written 15 
increases. Rezapour Mashhadi et al. (2017) classified traffic citations into ten categories and 16 
developed a negative binomial model to identify the causal impact of various violations on 17 
crash frequency. Their results showed that an increase in speeding and seat belt citations 18 
significantly reduced the number of crashes. 19 

In addition to traffic citations, other indices have also been selected as surrogates to analyze 20 
the effect of police enforcement. By developing a Poisson regression model, Tay (2005) found 21 
that the percentage of drivers apprehended and the number of breath tests administered for 22 
drunk driving had a negative impact on the number of serious injury crashes. Rezapour et al. 23 
(2018) used allocated enforcement budget, number of sworn officers, and time spent on 24 
patrolling as representatives of enforcement. The researchers employed simple linear 25 
regression models to analyze the influence of the three enforcement indicators on the highway 26 
fatality rate. Although a limitation of their study was that data was only obtained from eight 27 
states, i.e., their regression models were comprised of only eight observations, they found that 28 
time spent on patrolling was the best indicator of crashes. Abaza (2018) analyzed the 29 
relationship between highway police patrol time and traffic crashes using binary logistic 30 
models and Poisson models, and found that the number of crashes decreased with police 31 
presence. 32 

Connections between traffic enforcement and both traffic violations and aggressive driving 33 
behavior have been shown in a number of studies (Elliott and Broughton, 2005; Bendak, 2005; 34 
Walter et al., 2011; Montella et al., 2015). Stanojević et al. (2013) compared the attitude and 35 
behavior of drivers in two regions, one with traffic enforcement and the other without, and 36 
found that the lack of enforcement resulted in an increase in speeding, drunk driving, the 37 
committing of aggressive and ordinary violations, and failing to wear seat belts. Using a survey 38 
on speed choice, Ryeng (2012) found that substantially increasing enforcement has significant 39 
reducing effects on individual speed choice. By combining roadside surveys and web surveys, 40 
Johnson (2016) concluded that a high-visibility enforcement campaign can reduce driving after 41 
drinking. Work by Pantangi et al. (2019) provides some evidence that a high-visibility 42 
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enforcement program also has the ability to decrease the likelihood of speeding behavior. 1 
Findings reported by Stanojević et al. (2018) indicate that an absence of police enforcement 2 
was a significant predictor of aggressive and risky driving, leading the authors to suggest 3 
spending limited resources on police enforcement rather than on publicity campaigns. 4 

Most of the aforementioned research has found that enhancing police enforcement can 5 
reduce traffic crashes or undesirable driving behavior, while neglecting to consider endogeneity 6 
can lead to inaccurate estimation of the effect of police enforcement. 7 

 8 
2.2 Time series modeling 9 

The widely used cross-sectional models in the above research consider the effect of 10 
enforcement on traffic safety within a single period. However, time series data is a common 11 
data structure obtained when assessing the effects of enforcement (Tay, 2005; Makowsky and 12 
Stratmann, 2011; Terrill et al., 2016; Abaza, 2018). In the previously mentioned study by 13 
Makowsky and Stratmann (2011), both crash and enforcement data were aggregated to a 14 
monthly level and collected for 22 months. Tay (2005) used the percentage of drivers 15 
apprehended and the number of breath tests to represent enforcement intensity, and included in 16 
the study’s Poisson regression model a series of dichotomous variables to manage the monthly 17 
seasonal effects on crashes; the results were found to be statistically significant. Since serial 18 
correlation is often present in time series data, however, using cross-sectional models may 19 
cause inefficient estimates of the parameters (Quddus, 2008). Therefore, single-equation 20 
autoregressive methods such as autoregressive moving average (ARMA) and autoregressive 21 
integrated moving average (ARIMA) models have been adopted in traffic safety research, 22 
especially for determining the effects of an intervention (Vernon et al., 2004; Masten, 2007; 23 
Neyens et al., 2008; Carnis and Blais, 2013; Lavrenz et al., 2018). 24 

The vector autoregressive (VAR) model was derived (Sims, 1986) from univariate time 25 
series models to account for the interactions among multiple endogenous time series variables, 26 
but its application in traffic safety research is rare. Beenstock and Gafni (2000) proposed a 27 
theoretical framework based on the VAR model to investigate the effect of national policy on 28 
the downward trend in Israel’s crash rate. Serhiyenko et al. (2014) applied a VAR model to four 29 
pedestrian crash injury levels and found significant effects of time trends and seasonal 30 
variations on pedestrian crashes. However, the VAR model has a limitation, which is the 31 
inability to capture the contemporaneous relations between endogenous variables. To make up 32 
for this shortcoming, the structural vector autoregressive (SVAR) model was developed and 33 
has been widely used (Pfaff, 2008; Hu et al., 2018). Because they account for endogeneity, the 34 
VAR and SVAR models are helpful for examining the dynamic interactions and 35 
contemporaneous relations between police enforcement, traffic violations, and crashes. 36 

Theoretically, the error terms of endogenous variables in the above time series models are 37 
assumed to be identically and normally distributed with zero mean and time-invariant variance. 38 
In reality, however, most time series data have heteroscedasticity; that is, the variance of error 39 
terms is time-dependent (Tsay, 2013). In financial analysis, forecasting the future volatility (i.e., 40 
variance) of a series is usually vital to assess the risk associated with certain assets (Lütkepohl, 41 
2005). Ignoring the heteroscedasticity can cause inferior predictive performance. To this end, 42 
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the generalized autoregressive conditional heteroscedasticity (GARCH) model (Bollerslev, 1 
1986), derived from the autoregressive conditional heteroscedasticity (ARCH) model (Engle, 2 
1982), has been widely applied in economics in order to allow past residuals and past 3 
conditional variances to be predictors of the current conditional variances. This method of risk 4 
assessment and prediction has also found application in traffic safety management. Ye et al. 5 
(2012) and Quddus (2018), for example, used an extension of the univariate GARCH model to 6 
improve traffic safety prediction. 7 

In the case of multiple time series, especially those series that have a close relationship, it 8 
can be intuitively conjectured that the volatility of one series has an impact on the volatility of 9 
another series (Lütkepohl, 2005). In such cases, multivariate extensions of ARCH and GARCH 10 
models are of more interest. Commonly used multivariate models for conditional 11 
heteroscedasticity include the exponentially weighted moving average (EWMA) model (Tsay, 12 
2013), the BEKK model (Engle and Kroner, 1995), and the dynamic conditional correlation 13 
(DCC) model (Tse and Tsui, 2002). Readers are referred to Asai et al. (2006) and Bauwens et 14 
al. (2012) for more detail. 15 

  16 
3. Data preparation 17 
3.1 Endogenous variables 18 

This study focused on the entire freeway system in Shanghai, China. Police patrolling time, 19 
traffic violation, and crash data for the year 2018 were collected from the Shanghai Traffic 20 
Police Department. Patrol time was used to represent police enforcement intensity: all traffic 21 
police have a portable Global Positioning System (GPS) electronic equipment that updates their 22 
positions’ information every five seconds as they patrol freeways. Patrol time was thus 23 
extracted from officers’ positioning data, and calculated by multiplying the number of updated 24 
GPS coordinates. 25 

Traffic violations were classified into two categories according to their sources. The first 26 
is the technology-detected violation, which is identified automatically by the electronic 27 
policing system. The technology is installed along certain segments of the freeway system, and 28 
operates 24 hours a day. The second is the police-detected violation, which is identified by 29 
traffic police officers during their daily patrolling activities. Both technology-detected and 30 
police-detected violations are considered to be only samples of violations, as it is not possible 31 
to capture all the violations on the entire freeway system. The difference is that technology-32 
detected violations are captured at fixed locations and monitored the whole day, while police-33 
detected violations are captured on random sites, and their detection is influenced by the time 34 
of traffic police officers spent on patrol. Therefore, technology-detected violations are more 35 
representative of all driver violations, while police-detected violations are more reflective of 36 
traffic police enforcement intensity. 37 

Traffic crashes, technology-detected violations, police-detected violations, and police 38 
patrol time were set as endogenous variables since they are dependent on each other. These 39 
four time series variables were obtained from 1 January to 31 December 2018, and were 40 
aggregated at the daily level, that is, the number of crashes, number of detections of the two 41 
types of violation, and number of hours police spent patrolling Shanghai’s freeways were 42 
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counted for each day. Table 1 gives the descriptions or units of the four variables. Of the 365 1 
observation days, the mean crash frequency was 106.8, the mean frequencies of technology-2 
detected violations and police-detected violations were 2,965 and 3,523 respectively, and the 3 
average police patrol time was 340.24 hours. 4 

Table 1. Descriptions or units of four endogenous variables 5 
Endogenous variable Description or unit 

Traffic crashes Daily number of traffic crashes 

Technology-detected violations Daily number of technology-detected violations 

Police-detected violations Daily number of police-detected violations 

Police patrol time Daily number of hours spent on patrolling freeways 

  6 
Figure 2 shows the daily distribution of the four endogenous variables, presented in 7 

percentages because of data confidentiality. Officers’ patrol time shows an obvious downtrend 8 
over the year, which was the result of staff shortage. For the same reason, police-detected 9 
violations also shows a downward trend. Traffic crashes and technology-detected violations 10 
were relatively stable. 11 

  
(a) Traffic crashes (b) Police patrol time 

  
(c) Technology-detected violations (d) Police-detected violations 

Figure 2. Daily distributions of traffic crashes, police patrol time, technology-detected 12 

violations, and police-detected violations 13 

 14 
3.2 Exogenous variables 15 

In addition to the four endogenous variables, holiday and weather conditions were also 16 
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obtained for the study period. These two conditions were used as exogenous variables because 1 
they may affect the endogenous variables, but are not directly affected by them. 2 

Holiday was selected as a variable because additional vacation travel results in increased 3 
traffic volume, making the presence of a holiday an important factor in traffic safety and 4 
enforcement. In this study, seven statutory public holidays, periods that encompass 27 days in 5 
total, were taken into consideration. They are New Year's Day, Spring Festival, Qingming 6 
Festival, Labour Day, Dragon Boat Festival, Mid-Autumn Festival, and National Day. 7 

Weather is also a significant factor contributing to traffic crash frequency (Xing et.al., 8 
2019). The Shanghai daily weather in the study period from January 1 to December 31, 2018, 9 
was obtained from an online weather database 10 
(http://www.tianqihoubao.com/lishi/shanghai.html), and was initially classified as sunny, 11 
cloudy, rainy, and snowy. Pavement conditions, however, are closely related to weather 12 
conditions and are important in traffic safety. Ahmed et al. (2011) observed that the increased 13 
crash risk in the snowy season was related to snowy, icy, and slushy pavement conditions; in 14 
2012, Ahmed et al. (2012) found that the likelihood of a crash could, indeed, be doubled in 15 
these conditions. Based on numerous crash samples, Sun et al. (2019) also found that icy 16 
pavement was one of the primary causes of Chinese freeway tunnel crashes. 17 

The winter temperature in Shanghai is rarely below freezing. Consequently, the freeway 18 
pavement conditions on snowy days (mostly light snow) with temperatures above 0℃ are 19 
more similar to those on rainy days, while the pavement on snowy days with temperatures 20 
below 0℃ is more consistent with the snowy and icy conditions in previous research. In 21 
Shanghai freeways’ 2018 data, the average traffic crash frequency on icy days was 1.78 times 22 
the frequency on sunny days, indicating the significant influence of the icy pavement. 23 
Therefore, days with snow were classed as snowy if the temperature was over 0℃; if the 24 
temperature was below 0℃, both snowy and rainy days were classed as icy. In 2018, 2 of 25 
Shanghai’s 5 snowy days, but none of its 105 rainy days, were below 0℃. Consequently, 105 26 
days were classified as rainy, 3 as snowy, and 2 as icy. Since icy and snowy pavement is a 27 
significant hazard for traffic safety, these conditions were included in the model despite their 28 
small sample size. Descriptive statistics on holiday and weather conditions are shown in Table 29 
2. 30 

Table 2. Descriptive statistics of holiday and weather conditions 31 
Variables Description Summary Statistics 

Holiday 
0: not holiday Observations: 338 

1: holiday Observations: 27 

Weather 

1: sunny Observations: 50 

2: cloudy Observations: 205 

3: rainy Observations: 105 

4: snowy Observations: 3 

5: icy Observations: 2 

Note: As observations were made once per day, the total number of holiday observations is 365, as is the total 32 
number of weather observations. 33 
 34 

http://www.tianqihoubao.com/lishi/shanghai.html
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4. Methodology 1 
4.1 Vector autoregressive model 2 

The vector autoregressive (VAR) model was first introduced by Sims (1986) to examine 3 
the dynamic interactions among interrelated time series data. VAR models include an equation 4 
for each variable, which explain each variable’s evolution with its own lags and the lags of 5 
other variables, so that all the variables are symmetrically treated as endogenous (Alsaedi and 6 
Tularam, 2019). The VAR model can be expressed as: 7 

 8 
1 1 1, 2, ,t t p t p t t    t T− −= + + + + =y A y A y Bx ε                    (1) 9 

 10 
where ty   is a vector of k   endogenous variables, pA   is a matrix of k   autoregressive 11 

coefficients at lag p , tx  is a vector of d  exogenous variables, and B  is a matrix of d  12 

coefficients on tx . tε  is a ( )1k ×  vector of reduced form shocks or error terms, which are 13 

assumed to contain no serial correlation and which are identically and normally distributed. T  14 
is the sample size. For clarity, Eq. (1) can also be expressed as: 15 
 16 

1,1, 1, 1 1, 2 1, 1,

2,2, 2, 1 2, 2 2, 2,
1 2

, , 1 , 2 , ,,

t pt t t t t

t pt t t t t
p

k t k t k t d t k tk t p

yy y y x
yy y y x

      
y y y xy

ε

ε

ε

−− −

−− −

− − −

          
          
          = + + + + +          
                              

A A A B
    

1,2, ,   t T=     (2) 17 

 18 
Selecting the optimal lag length p   before constructing the VAR model is important 19 

because a trade-off is always involved in the selection of the number of lags. Specifically, too 20 
few lags may lead to poor model specification, while too many may lead to the loss of degrees 21 
of freedom (Alsaedi and Tularam, 2019). The Akaike information criterion (AIC) was used to 22 
determine the optimal lag length, as suggested by Lütkepohl (2005). 23 

Establishing a stationary time series is a precondition of developing a VAR model, as the 24 
estimation of the econometric model based on non-stationary time series may cause misleading 25 
results (Koitsiwe and Adachi, 2015). Before developing the VAR model, the augmented 26 
Dickey-Fuller (ADF) test (Dickey and Fuller, 1981) was used to check the stationarity 27 
properties of the endogenous variables. The time series is believed to be stationary when the 28 
ADF t-statistic is lower than the Mackinnon critical value at the 5% significance level. 29 
 30 
4.2 Granger Causality Test 31 

An advantage of the VAR model is its ability to perform the Granger causality test to 32 
examine the direction of causality among the endogenous variables (Granger, 1969). Granger 33 
causality assesses whether one variable precedes another in a time series. If the lags of a 34 
variable, for example 2Y , help predict another variable 1Y , then 2Y  is said to Granger-cause 35 

1Y   (Alsaedi and Tularam, 2019). This method requires estimation of the multivariate VAR 36 
model (Damos, 2016). Taking two variables as an example: 37 

 38 
1, 1 1 1, 1 1, 1, , 1, 2, ,t t p t p r tY Y Y    t Tα α ε− −= + + + = ，                  (3) 39 

1, 1,1 1, 1 1, 1, 2,1 2, 1 2, 2, , 1, 2, ,t t p t p t p t p u tY Y Y Y Y    t Tα α α α ε− − − −= + + + + + + =          (4) 40 
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 1 
where ,r tε   and ,u tε   are uncorrelated disturbances-residuals and p   is the maximum 2 

number of lagged observations included in the VAR model. 1,nα  and ( )2, 1, ,n  n pα =   are 3 

coefficients of the model. If 2,1 2,2 2, 0pα α α= = = = , variable 2Y  does not Granger-cause 4 

variable 1Y ; otherwise, variable 2Y  Granger-causes variable 1Y . To identify the significance 5 
of Granger causality, the Wald-test has been widely used: 6 
Null hypothesis: 2,1 2,2 2, 0pα α α= = = =  7 

Alternative hypothesis: 2 0,jα ≠ , for at least one value of ,j   1 j p≤ ≤  8 

The 2χ  statistic is: 9 

( ) ( )0 1 2

1

~
T RSS RSS

S p
RSS

χ
−

=                    (5) 10 

where 2
0 ,

1

ˆ
T

r t
t

RSS = ε
=
∑   and 2

1 ,
1

ˆ
T

u t
t

RSS = ε
=
∑  . If S   is greater than the 2

pχ   critical value, the 11 

null hypothesis is rejected, that is, variable 2Y  Granger-causes variable 1Y ; otherwise, the 12 
null hypothesis cannot be rejected. The Granger causality test was used in this study to examine 13 
the dynamic interactions that may exist among police enforcement, traffic violations, and 14 
crashes. 15 
 16 
4.3 Structural vector autoregressive model 17 

The Granger causality test can assess the influence of the lags of many variables, but has 18 
limitations in measuring contemporaneous relationships among endogenous variables. These 19 
relationships are hidden in the error term tε   of the VAR model and cannot be interpreted 20 
directly. To identify the contemporaneous relationships, structural restrictions are required 21 
(Lütkepohl, 2005). The structural vector autoregressive (SVAR) model can be expressed as 22 
follows: 23 

0 1 1 1, 2, ,t t p t p t    t T− −= + + + =A y Γ y Γ y u                       (6) 24 

 25 
To estimate the SVAR model, the reduced form is determined by multiplying Eq. (6) by an 26 
inverse matrix 1

0
-A : 27 

 28 
1 1 1

0 1 1 0 0

* *
1 1 1, 2, ,

- - -
t t p t p t

t p t p t    =                                  t T
− −

− −

= + + +

+ + + =

y A Γ y A Γ y A u

A y A y ε



 
           (7) 29 

 30 
where ( )* 1

0 1,...,j j  j p−= =A A Γ  and 1
0t t
−=ε A u , so the reduced form shocks tε  are linear 31 

combinations of the structural shocks tu . Matrix 0A  captures the contemporaneous effects 32 
of one variable on another, that is, 33 
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12 1

21 2
0

1 2

1
1

1

k

k

k k

a a
a a

a a

 
 
 =
 
 
 

A





   



                             (8) 1 

To make the SVAR model identifiable, in other words, to ensure precise inference is 2 
possible, it is necessary to impose restrictions such as assuming that specific endogenous 3 
variables have no contemporaneous effects on the other endogenous variables, or that some 4 
contemporaneous effects can be determined based on experience. If there are k  endogenous 5 
variables, ( )1 / 2k k −   restrictions are required to make the SVAR model identifiable. 6 

Cholesky decomposition is the most commonly used restriction method, in which 0A   is 7 
identified as a lower triangular matrix. When adopting Cholesky decomposition, the ordering 8 
of endogenous variables requires special attention. 9 

In this study, there are four endogenous variables, so 4k= . Because the main purpose of 10 
this study is to investigate the influence of police enforcement on traffic safety, the endogenous 11 
variables are ordered as follows: police patrol time, technology-detected violations, police-12 
detected violations, and traffic crashes. In this way, the impact of patrol time and violations on 13 
crashes can be explored. Following Cholesky decomposition, elements above the diagonal in 14 

0A  are set to be zero, that is, 12 13 14 23 24 34 0a =a =a =a =a =a =  (Lütkepohl, 2005). Matrix 0A  is 15 
thus expressed as: 16 

21
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31 32
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a a
a a a

 
 
 =
 
 
 

A                             (9) 17 

The off-diagonal elements in this matrix capture the contemporaneous effects of one 18 
variable on another. For instance, 21a  measures the contemporaneous impact of police patrol 19 

time on technology-detected violations, whereas 12a  measures the contemporaneous impact 20 

of technology-detected violations on police patrol time. All other elements in 0A  are defined 21 
analogously. 22 

 23 
4.4 Test for heteroscedasticity 24 

In VAR models, the errors ( 1, 2,..., )t t= Tε  are assumed to be identically and normally 25 
distributed with a zero mean and a time-invariant covariance matrix. However, autocorrelation 26 
may exist in the squared errors; this conditional heteroscedasticity makes the errors still serially 27 
dependent. To test for conditional heteroscedasticity, the ARCH Lagrange Multiplier (ARCH-28 
LM) test and the Ljung-Box Q test are frequently employed. 29 

 30 
4.4.1 ARCH-LM test 31 

The Lagrange multiplier test procedure was introduced by Engle (1982). Define the return 32 
residual series as ˆ ( 1, 2,..., )t t te y y  t= T= − , whereupon the regression is: 33 

 2 2 2
0 1 1t t m t m te e e zα α α− −= + + + +                       (10) 34 

where tz  is a white noise process. The null hypothesis of the ARCH-LM test is that there is 35 
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no conditional heteroscedasticity in the return residuals; that is, 0 1 0mα α α= = = =  . 1 
Referring to Tsay (2005), the test statistic is: 2 

0 1

1

( ) /
/ ( 2 1)

SSR SSR mF
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− −
                          (11) 3 
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1
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ˆ
T

t
t m

SSR = z
= +
∑  . The F   statistic asymptotically 4 

follows a 2χ   distribution with m   degrees of freedom. If F   is greater than the 2
mχ  5 

critical value, the null hypothesis is rejected, and the return residual series is confirmed to have 6 
conditional heteroscedasticity. 7 

 8 
4.4.2 Ljung-Box Q test 9 

The Ljung-Box Q test, named after Ljung and Box (1978), tests for autocorrelation at 10 
multiple lags. For a Ljung-Box Q test based on the Q-statistic at lag m , its null hypothesis is 11 
that the time series being tested has no autocorrelation up to order m . The Q-statistic at lag 12 
m  of the return residual series te  is calculated as: 13 
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where T  is the number of observations and ˆtρ  is the autocorrelation at lag t . Under the null 16 

hypothesis, the Q-statistic asymptotically follows a 2χ   distribution with m  degrees of 17 
freedom. Therefore, the null hypothesis will be rejected if the ( )Q m  exceeds the 2

mχ  critical 18 

value. By replacing te  with 2
te  in Eq. (13), the autocorrelations in the squared residuals can 19 

be tested. 20 
 21 

4.5 BEKK-GARCH model 22 
The ARCH-LM and Ljung-Box Q test results (shown in Section 5) indicate that return 23 

residuals of this study’s VAR model have conditional heteroscedasticity. To handle the 24 
conditional heteroscedasticity and examine the relationships between volatilities of the four 25 
endogenous time series variables, the BEKK-GARCH model was adopted. 26 

The BEKK-GARCH model is a multivariate extension of the univariate GARCH model. 27 
For the univariate GARCH (p, q) model, let tε  denote the return residuals of a time series. 28 

The tε  is split into a time-dependent standard deviation tσ  and a stochastic piece tz , that is, 29 

t t t= zε σ  . tz   is a strong white noise process. The current variance 2
tσ   is modeled as a 30 

function of the ARCH terms 2ε  (past squared return residuals) and the GARCH terms 2σ  31 
(past conditional variances): 32 

 33 
2 2 2 2 2

1 1 1 1t t q t q t t p t p=cσ α ε α ε β σ β σ− − − − −+ + ⋅⋅⋅ + + + ⋅⋅⋅ +                  (14) 34 
 35 

where p is the order of GARCH terms and q is the order of ARCH terms. Previous researchers 36 
have proved that the GARCH(1,1) model often provides a parsimonious description of the data 37 
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(Bollerslev, 1986; McCurdy and Morgan, 1988). In other words, the univariate GARCH(1,1) 1 
model is sufficient for most conditions. 2 

To investigate the four endogenous variables in this study, the multivariate BEKK-3 
GARCH(1,1) model was more appropriate. In the BEKK-GARCH(1,1) model, the error term 4 

tε  of the mean model (i.e., the VAR model) is written as: 5 
1/2

t t t=ε H z                                 (15) 6 
 7 

where tH  is the conditional covariance matrix of tε , 1/2
tH  is the positive-definite square-8 

root matrix of tH , and tz  is a sequence of independent and identically distributed random 9 

vectors that (0, )t k~N  z I . The variance equation of the BEKK-GARCH(1,1) model with four 10 
time series is: 11 

' ' ' '
1 1 1t t t t= − − −+ +H C C D ε ε D E H E                       (16) 12 
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 15 
where C  is an upper triangular matrix, and D  and E  are 4 4×  matrices. The diagonal 16 
elements of D  examine the ARCH effects, and the diagonal elements of E  evaluate the 17 
GARCH effects. In the off-diagonal elements of D  and E , ijd  and ( )ije  i j≠  estimate 18 
the ARCH and GARCH effects of time series i  on time series j . 19 

 20 
5. Modeling results 21 

The vars package in R® was used to develop the VAR and SVAR models, and the aod 22 
package was adopted to conduct the Granger causality test. The BEKK-GARCH model was 23 
estimated using WinRATS®. Results of the VAR model are discussed first to reveal the impact 24 
of the exogenous variables on the endogenous variables. The VAR results subsection is 25 
followed by the results of the SVAR model, which demonstrate the contemporaneous relations 26 
between endogenous variables. This subsection is followed by the results of the Granger 27 
causality test, which capture the dynamic interactions between endogenous variables. Finally, 28 
the relationships between conditional variances of the endogenous variables are examined 29 
through results of the BEKK-GARCH model. 30 

 31 
5.1 VAR modeling results 32 

Before modeling, the plots of the autocorrelation function (ACF) (Tsay, 2005) were used 33 
to test any serial correlation in the endogenous variables. As is obvious in the left-side panel of 34 
Figure 3, the four endogenous time series are autocorrelated, emphasizing the necessity of 35 
achieving stationarity in time series modeling. To detect the components, the four endogenous 36 
time series were decomposed, and were found to have constants, time trends, and evidence of 37 
weekly variation. After removing the trend component and weekly variation, the remaining 38 
random parts of the four variables became stationary, as confirmed by the ACF plots and the 39 
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ADF test. Therefore, when determining the lag order for the VAR model, the time trends and 1 
weekly variations were considered. The lag length of 3, that is, the VAR model with lag 1, lag 2 
2 and lag 3, was found to have the lowest AIC value and was thus selected as optimal. 3 

The four-variable VAR model was initially developed by including the constants, time 4 
trends, weekly variations, the exogenous variables (holiday and weather conditions), and 3 lags 5 
of each endogenous variable (police patrol time, technology-detected violations, police-6 
detected violations, and traffic crashes) simultaneously. However, several variables were found 7 
to be statistically nonsignificant. To make the model more accurate, the restrict function in the 8 
vars package was used to set a restriction matrix to constrain the coefficients of nonsignificant 9 
variables to zero. Finally, all the variables included in the VAR model showed statistical 10 
significance. The VAR modeling results are displayed in Table 3. Based on these results, the 11 
ACF plots were redrawn for the return residuals, as illustrated in the right-side panel of Figure 12 
3. Now, the time series show no autocorrelation. In addition, the results of the ADF test also 13 
show that the return residuals have no unit roots. Consequently, the VAR(3) model produces 14 
white noise here, which indicates its rationality. 15 

 16 
     Before Modeling   After Modeling 

 
(a) Police patrol time  

 
(b) Technology-detected violations  

 
(c) Police-detected violations 

 
(d) Traffic crashes 

Figure 3. ACF plots of the four endogenous variables before and after modeling 17 
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Table 3. Parameter estimates of the VAR(3) model 1 

Variable Police patrol 
time 

Technology-detected 
violations 

Police-detected 
violations 

Traffic 
crashes 

Constant 85.374*** 603.829*** 1524.445*** - 
Trend -0.122*** - -1.382*** 0.058*** 

Weekly variation (reference: Sunday) 
Monday 32.754*** 673.939*** 647.006*** 26.069*** 
Tuesday - 723.422*** 654.161*** 22.459*** 
Wednesday 20.528*** 551.382*** 476.662*** 24.255*** 
Thursday - 389.464*** 328.093*** 14.389*** 
Friday 9.459* 558.752*** 463.765*** 37.397*** 
Saturday - - - 6.213* 

Holiday (reference: not holiday) 
Holiday - 133.767* - 4.192*** 

Weather condition (reference: sunny) 
Cloudy - - - -6.487** 
Rainy - -156.897*** -183.348*** - 
Snowy - - -454.833** -20.449* 
Icy - -1109.791*** -1415.637*** 92.207*** 

Lags of endogenous variables 
Police patrol time.lag1 0.680*** - - - 
Police patrol time.lag2 - -0.124** -0.618* - 
Police patrol time.lag3 0.119** - - - 
Technology-detected violations.lag1 - 0.606*** - - 
Technology-detected violations.lag2 - - - 0.001** 
Technology-detected violations.lag3 - - - - 
Police-detected violations.lag1 - - 0.487*** 0.011*** 
Police-detected violations.lag2 - 0.159*** 0.229*** - 
Police-detected violations.lag3 - - - - 
Traffic crashes.lag1 - - - 0.318*** 
Traffic crashes.lag2 - - - 0.166*** 
Traffic crashes.lag3 0.040** - - 0.112** 

Note: *** indicates significance at the 1% level.  2 
  ** indicates significance at the 5% level. 3 
  * indicates significance at the 10% level.4 
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The VAR model results show a significant constant for police patrol time, evidence that 1 
Shanghai traffic police officers patrolled the freeway system every day. The significant 2 
downward trend in patrol time over the year, reflected by the negative trend parameter, was 3 
due to inadequate resources or staff shortage. The dummy variables for weekly variation show 4 
that compared to Sunday, police officers spent more time patrolling freeways on Monday, 5 
Wednesday, and Friday, but the impact of holidays and adverse weather conditions on patrol 6 
time were not statistically significant. Among the endogenous variables, only the lags of traffic 7 
crashes (and of course, patrol time) were useful for predicting patrol time; both technology-8 
detected violations and police-detected violations turned out to be unhelpful. 9 

The technology-detected violation variable also has a positive constant term, indicating 10 
that its mean is significantly different from zero. Its nonsignificant trend term means that 11 
technology-detected violations have no deterministic time trend. The positive coefficients of 12 
Monday to Friday variables imply that technology-detected violations are more likely to occur 13 
on weekdays than on Sunday, whereas the nonsignificant coefficient of Saturday signals that 14 
drivers break fewer traffic laws on Saturday and Sunday, which might be due to the absence of 15 
work or time pressure on the weekend. More violations tend to occur on holidays, possibly 16 
owing to increased traffic volume because of vacation travel. The negative coefficients of rainy 17 
and icy days may be due to drivers concerned about traffic safety in adverse weather curtailing 18 
their car travel; a related reason may be that drivers who must travel in adverse weather are 19 
more willing to obey traffic rules. The endogenous variables found to help predict technology-20 
detected violations were police patrol time and police-detected violations. 21 

Similar to technology-detected violations, the police-detected violation variable also has a 22 
significant constant term. The negative coefficient of the trend term demonstrates that police-23 
detected violations had a significant downward trend, which is logically consistent with the 24 
downward trend in police patrol time because police-detected violations are identified by police 25 
officers during their daily patrols. The weekly variation in police-detected violations is similar 26 
to that of technology-detected violations: Monday to Friday were likely to have more police-27 
detected violations than Saturday and Sunday. In addition to the weekday work and time 28 
pressure that likely affected drivers’ tendency to aggressive driving behavior, another potential 29 
reason for the weekly variation in police-detected violations is the smaller number of traffic 30 
police officers on duty on weekends. Rainy, snowy, and icy days also had significantly negative 31 
influences on police-detected violations. The lags of police-detected violations, traffic crashes, 32 
and police patrol time were somewhat helpful for predicting police-detected violations. 33 

Traffic crashes showed a positive trend over the year, with a significant coefficient of 0.05. 34 
The six dummy variables for weekly variation were all significant, meaning that compared to 35 
Sunday, more traffic crashes were likely to occur from Monday to Saturday. Holidays had a 36 
significantly positive relationship with crashes, that is, the Shanghai freeway system tended to 37 
have more crash occurrences during holidays. When compared with sunny days, cloudy days 38 
had fewer traffic crashes, which is possibly due to more moderate sunlight reducing associated 39 
glare. Contrary to popular belief, rainy days did not show any significant impact on crashes. 40 
Potential reasons are that drivers are more cautious on rainy days, or that commuters choose 41 
subways rather than driving because of concerns about traffic jams. Snowy days show similar 42 
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results, but the small sample of snowy days might be the reason for the negative relationship. 1 
Icy days were found to be significantly and positively related to crashes, as expected, as icy 2 
pavement reduces friction and makes it difficult to control a vehicle. Of the endogenous 3 
variables, the coefficients of the lags of technology-detected violations and police-detected 4 
violations were significant, meaning that past violations of both types are helpful traffic crash 5 
predictors. 6 

 7 
5.2 SVAR modeling results 8 

Matrix 0A , introduced earlier, was added on the left side of the VAR model. Thus, the 9 

coefficients in matrix 0A  change signs when they are moved to the right side of Eq. (6). That 10 

is, a negative coefficient in matrix 0A  implies a positive contemporaneous effect, and vice 11 

versa. Table 4 displays the inverse value of parameter estimates of matrix 0A  in the SVAR 12 
model: a negative coefficient in Table 4 means a negative contemporaneous effect. 13 

Table 4. Contemporaneous interactions 14 

Variable Police patrol 
time 

Technology-
detected 

violations 

Police-detected 
violations 

Traffic 
crashes 

Police patrol time 1 0 0 0 

Technology-detected violations 0.102 1 0 0 

Police-detected violations 0.887 0.671 1 0 

Traffic crashes -0.150 0.012 -0.017 1 

 15 
The contemporaneous relationship between police patrol time and technology-detected 16 

violations is interesting, in that as patrol time increases, technology-detected violations also 17 
increase. This positive relationship might be the result of traffic officers’ experience, 18 
specifically, that they increase their patrols on those days that have incurred more violations in 19 
the past. Police-detected violations are more strongly and positively affected by police patrol 20 
time because they are directly identified by traffic police officers, so they can to some extent 21 
reflect traffic police enforcement intensity. The two types of traffic violations have a positive 22 
contemporaneous relationship. 23 

Table 4 shows that traffic crashes are negatively impacted by contemporaneous police 24 
patrol time and police-detected violations. Each 1% increase in police patrol time tends to 25 
generate a 0.15% decrease in contemporaneous crash frequency. One possible reason is that 26 
more traffic violations are intercepted before they cause a crash, and another is that drivers 27 
break fewer traffic rules when they are aware of patrolling traffic police. In contrast to police-28 
detected violations, technology-detected violations were found to have a positive influence on 29 
crashes. As stated in the data preparation section, technology-detected violations are less 30 
influenced by police visibility. Even though the detector positions of the electronic policing 31 
system are possibly known to the public, technology-detected violations are more 32 
representative of drivers’ ordinary behaviors than are police-detected violations. Consequently, 33 
the contemporaneous positive relationship between technology-detected violations and traffic 34 
crashes is reasonable because traffic violations are usually the causes of crashes. 35 
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 1 
5.3 Granger causality test 2 

The Granger causality test was used to identify the dynamic interactions between police 3 
patrol time, technology-detected violations, police-detected violations, and traffic crashes. 4 
Table 5 presents the test results. When the 2χ statistic is greater than its critical value at the 5 
significance value of 10%, the corresponding null hypothesis can be rejected, that is, the 6 
Granger causality is significant. Figure 4 illustrates the dynamic interactions: solid arrows 7 
represent significant Granger causality, while dotted arrows mean that the results are not 8 
statistically significant. 9 

Table 5. Granger causality test results 10 

Causal  
Variable Null Hypothesis 

2χ  
statistic 

p-
value Conclusion 

Police patrol 
time 

Police patrol time does not Granger-cause technology-detected 
violations 7.5 0.059 Reject 

Police patrol time does not Granger-cause police-detected 
violations 6.8 0.078 Reject 

Police patrol time does not Granger-cause traffic crashes 1.1 0.79 Accept 

Technology-
detected 

violations 

Technology-detected violations do not Granger-cause police 
patrol time 3.7 0.3 Accept 

Technology-detected violations do not Granger-cause police-
detected violations 6.5 0.089 Reject 

Technology-detected violations do not Granger-cause traffic 
crashes 6.4 0.093 Reject 

Police-
detected 

violations 

Police-detected violations do not Granger-cause police patrol 
time 2.4 0.49 Accept 

Police-detected violations do not Granger-cause technology-
detected violations 7.1 0.069 Reject 

Police-detected violations do not Granger-cause traffic crashes 15 0.0018 Reject 

Traffic 
crashes 

Traffic crashes do not Granger-cause police patrol time 7.9 0.049 Reject 
Traffic crashes do not Granger-cause technology-detected 
violations 2.3 0.51 Accept 

Traffic crashes do not Granger-cause police-detected violations 3.7 0.3 Accept 
Note: In the Wald-test, the degree of freedom is 3. 11 
 12 

Traffic police 
patrol time

Traffic 
crashes

Police-detected 
violations

Technology-detected 
violations

The variable at the start of the arrow Granger-causes the variable at the end of the arrow.
The Granger causality is not significant.

Note:

 13 

Figure 4. Granger causalities 14 
 15 
Granger causality assesses whether changes in one variable are potentially the cause of 16 
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changes in another; that is, Granger causality reflects the dynamic interactions between 1 
endogenous variables. As can be seen in Figure 4, there is a two-way Granger causality between 2 
technology-detected violations and police-detected violations. Additionally, both violation 3 
types Granger-cause traffic crashes, meaning that a change in the number of violations can 4 
affect crash frequency. As expected, traffic crashes do not Granger-cause technology-detected 5 
violations and police-detected violations, because traffic crashes are usually the results of 6 
violations, not the causes. 7 

Interestingly, police patrol time does not Granger-cause traffic crashes, but Granger 8 
causality exists in the opposite direction: crashes Granger-cause traffic police patrolling. The 9 
significant coefficient of the lag of crashes in the model for police patrol time (as presented in 10 
Table 3) is positive, meaning that an increase in crashes will cause an increase in subsequent 11 
traffic law enforcement. As previously conjectured, the probable reason is that police officers 12 
adjust their daily patrols according to historical traffic crash information. 13 

The two types of violations do not Granger-cause police patrol time, but police patrol time 14 
Granger-causes changes in both. The significant coefficients of the lags of police patrol time in 15 
the models for technology-detected violations and police-detected violations are negative, 16 
indicating that increased police patrol intensity can reduce subsequent traffic violations. 17 
 18 
5.4 BEKK-GARCH model 19 

Table 6 displays results of the ARCH-LM test and Ljung-Box Q test, which were applied 20 
to detect conditional heteroscedasticity. The ARCH-LM test statistics of police patrol time, 21 
police-detected violations, and traffic crashes show rejected null hypotheses; that is, return 22 
residuals of these three time series exhibit conditional heteroscedasticity. The Ljung-Box Q 23 
statistics demonstrate that, in all four endogenous time series, there is no autocorrelation in 24 
return residuals. These results are the same as those of the post-modeling ACF plots in Figure 25 
3, but the squared return residuals of police patrol time and technology-detected violations are 26 
autocorrelated. These test results confirmed the necessity of establishing the GARCH model. 27 

 28 
Table 6. Conditional heteroscedasticity test results for return residuals of the VAR model 29 

Statistics Police patrol time Technology-detected 
violations 

Police-detected 
violations Traffic crashes 

ARCH-LM(1) 7.832 (0.005)*** 1.066 (0.302) 5.391 (0.020)** 10.37 (0.001)*** 

Q(10) 6.546 (0.767) 10.184 (0.424) 9.933 (0.446) 3.499 (0.967) 

Q(20) 13.749 (0.843) 18.925 (0.527) 22.777 (0.299) 9.509 (0.976) 

Q2(10) 18.524 (0.047) ** 22.705 (0.008) *** 15.854 (0.104) 15.427 (0.117) 

Q2(20) 32.881 (0.035) ** 28.044 (0.076) * 24.842 (0.208) 20.964 (0.399) 

Note: Q is the Ljung-Box Q statistics of return residuals.  30 
Q2 is the Ljung-Box Q statistics of squared return residuals. 31 
Values in parentheses are the corresponding p values. 32 
*** Rejected the null hypothesis at the 1% level. 33 

  ** Rejected the null hypothesis at the 5% level. 34 
  * Rejected the null hypothesis at the 10% level. 35 
      36 
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The results of the BEKK-GARCH(1,1) model are shown in Table 7. In matrix D , the 1 
significant diagonal elements 11d  (-0.510) and 22d  (0.148) reveal that past squared return 2 
residuals of police patrol time and technology-detected violations have significant impact on 3 
their own current conditional variance, while the ARCH effects were not found in police-4 
detected violations and traffic crashes. Similarly, in matrix E , diagonal elements 11e , 22e , 5 

33e  , and 44e   are all significant at the 1% level, demonstrating the existence of significant 6 
GARCH effects in the four time series. The past conditional variances of police patrol time, 7 
technology-detected violations, police-detected violations, and traffic crashes are shown to 8 
have significant impact on their current conditional variances. 9 

The significant off-diagonal elements of matrices D   and E   reflect the ARCH and 10 
GARCH effects between the four endogenous time series. For instance, the off-diagonal 11 
element 12e  (-1.982) of matrix E   means that the change in past conditional variance of 12 
technology-detected violations has a negative influence on the current conditional variance of 13 
police patrol time. To detect the interactions between conditional variances of the four time 14 
series, the joint significance test was conducted for off-diagonal elements of matrices D  and 15 
E  . Results in Table 8 show that there are significant bidirectional interactions in the 16 
conditional variances of police patrol time, technology-detected violations, police-detected 17 
violations, and traffic crashes. 18 

The ARCH-LM test and Ljung-Box Q test were conducted again on the residuals of the 19 
BEKK-GARCH model to assess the adequacy of the BEKK model. As can be seen in Table 9, 20 
the results show no conditional heteroscedasticity nor autocorrelation in the residuals, which 21 
demonstrates the rationality of the BEKK-GARCH(1,1) model. 22 

 23 
Table 7. Parameter estimates of the BEKK-GARCH model 24 

Matrix Parameter estimates 

C  

3.261 [0.838]  -92.367 [-2.601] *** -78.555 [-2.314] *** -8.016 [-2.384] *** 

 0.031 [0.0002] 0.095 [7.199] 0.013 [0.001] 

  -0.022 [-0.0002] -0.002 [-0.0002] 

   0.0007 [0.000] 

D  

-0.510 [-5.343] *** -0.187 [-0.265] -1.199 [-1.873] * -0.147 [-2.743] *** 

-0.007 [-1.262] 0.148 [2.144] ** -0.036 [-0.588] -0.014 [-2.624] *** 

0.015 [2.136] ** -0.243 [-2.882] *** -0.088 [-1.314] -0.001 [-0.075] 

-0.084 [-0.918] -0.989 [-0.963] -1.151 [-1.309] -0.002 [-0.030] 

E  

0.826 [20.072] *** -1.982 [-9.865] *** -1.374 [-4.366] *** -0.256 [-7.838] *** 

0.028 [5.609] *** 1.140 [25.379] *** 0.267 [6.085] *** 0.010 [2.520] ** 

-0.009 [-1.551] -0.309 [-5.407] *** 0.754 [16.126] *** -0.007 [-1.521] 

0.241 [4.807] *** -3.096 [-5.087] *** -2.224 [-4.527] *** 0.844 [18.978] *** 

Note: Values in square brackets are the corresponding T statistics. 25 
 *** indicates significance at the 1% level.  26 

  ** indicates significance at the 5% level. 27 
  * indicates significance at the 10% level. 28 
 29 
 30 
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 1 
Table 8. Test results for bidirectional interactions in conditional variances 2 

Bidirectional interactions between conditional variances Test result 

Police patrol time and technology-detected violations H0: 12 12 21 21= = = =0d e d e ; =2χ 109.067*** 

Police patrol time and police-detected violations H0: 13 13 31 31= = = =0d e d e ; =2χ 47.752*** 

Police patrol time and traffic crashes H0: 14 14 41 41= = = =0d e d e ; =2χ 71.178*** 

Technology-detected violations and police-detected violations H0: 23 23 32 32= = = =0d e d e ; =2χ 55.699*** 

Technology-detected violations and traffic crashes H0: 24 24 42 42= = = =0d e d e ; =2χ 30.021*** 

Police-detected violations and traffic crashes H0: 34 34 43 43= = = =0d e d e ; =2χ 25.521*** 

Note: *** Rejected the null hypothesis at the 1% level. 3 
 4 
Table 9. Conditional heteroscedasticity test results for residuals of the BEKK-GARCH model 5 

Statistics Police patrol time Technology-detected 
violations 

Police-detected 
violations Traffic crashes 

ARCH-LM(1) 0.207 (0.649) 1.136 (0.287) 0.018 (0.893) 0.101 (0.750) 

Q(10) 6.019 (0.814) 8.924 (0.539) 11.037 (0.355) 2.212 (0.994) 

Q(20) 9.419 (0.978) 17.328 (0.632) 22.056 (0.338) 10.420 (0.960) 

Q2(10) 1.706 (0.998) 6.144 (0.803) 8.512 (0.579) 5.727 (0.838) 

Q2(20) 4.103 (0.999) 15.736 (0.985) 19.148 (0.512) 13.427 (0.858) 

Note: Values in parentheses are the corresponding p values. 6 
 7 
6. Discussion 8 
6.1 Inconsistent responses to exogenous factors 9 

The VAR model results revealed that the four endogenous variables had inconsistent 10 
responses to the exogenous factors including time trends, weekly variation, holiday, and 11 
weather conditions. First, crash frequency had a slightly upward trend over the year, while 12 
police patrol time had a downward trend. Second, the occurrences of traffic crashes and 13 
violations significantly increased on weekdays, while patrol time only showed a significant 14 
increase on Monday, Wednesday, and Friday. Third, significant changes in crash and violation 15 
frequency were found as holiday and weather conditions varied, while police patrol time 16 
showed no change. These results indicate that traffic crashes and violations are more volatile 17 
in response to external factors, while police enforcement intensity is relatively stable. As 18 
enhanced police patrol intensity was found to help reduce contemporaneous traffic crashes, the 19 
discordance between police patrol time and traffic safety emphasizes the necessity for traffic 20 
police to strengthen their enforcement and adjust their daily patrol strategy according to the 21 
temporal distributions of crashes and violations. 22 

 23 
6.2 Significance of Granger causality 24 

It is important to emphasize that Granger causality assesses whether the lags of one 25 
variable, X, help predict another variable, Y. The presence of Granger causality does not 26 
guarantee that X causes Y, but suggests that X may be causing, or is at least significantly 27 
correlated with Y (Lavrenz et al., 2018). For instance, police-detected violations and 28 
technology-detected violations are certainly not the cause of each other; thus the two-way 29 
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Granger causality between them is believed to be the result of their high correlation, reflected 1 
by the correlation coefficient of a significant 0.77. Traffic crashes were found to be the Granger-2 
cause of police patrol time, but this finding is not due to the correlation between them, which 3 
is not significant at only -0.05. It is more reasonable to assume that the change in patrol time 4 
results from police departments taking notice of recent changes in crashes, and consequently 5 
making adjustments to their next patrols. In other words, past crashes have a significant 6 
influence on current patrol time. Using the VAR model to test Granger causality is thus a useful 7 
way to examine the various dynamic interactions among traffic enforcement, violations, and 8 
crashes. 9 

 10 
6.3 Technology-detected violations vs. police-detected violations 11 

The close connection between traffic police patrols and police-detected violations 12 
motivated the division, in this study, of violations according to their sources. As stated in the 13 
data preparation section, technology-detected violations are more representative of drivers’ 14 
ordinary behaviors, while police-detected violations can somewhat reflect police enforcement 15 
intensity. The contemporaneous relationships between traffic crashes and both technology-16 
detected and police-detected violations differ with the presence of police officers: more 17 
technology-detected violations are contemporaneous with more crashes, while more police-18 
detected violations are contemporaneous with fewer crashes. The degree to which increases in 19 
technology-detected violations and crashes occur contemporaneously reveals the causal 20 
relationship from traffic violations to crashes, while the increase in police-detected violations 21 
coinciding with a decrease in crashes points to the important role of police patrolling, and 22 
explains why more intense police patrolling can reduce contemporaneous traffic crashes. 23 

 24 
 25 

6.4 Unobserved heterogeneity, temporal instability, and heteroscedasticity 26 
Just as Bhat and Zhao (2002) noted that spatial heteroscedasticity is heterogeneity in the 27 

variance of the unobserved component across spatial units, the temporal heteroscedasticity in 28 
return residuals in this study is due in part to those unobserved factors in each daily unit. In 29 
other words, not accounting for unobserved heterogeneity has, in some part, led to this study’s 30 
heteroscedasticity in return residuals. For example, unannounced police department 31 
inspections might not be included in the model because of data unavailability, but may 32 
nevertheless result in a larger than normal variation of traffic police patrol time on those days. 33 
Temporal instability is another possible reason for conditional heteroscedasticity. Drivers may 34 
experience, for instance, cognitive shifts in their attitudes towards traffic safety and 35 
enforcement over time, as they gather more information about their driving environment 36 
(Mannering, 2018). Their propensity to aggressive driving such as speeding or drunk driving 37 
can change with these shifts, which can result in variation in the frequency of traffic crashes. 38 
Consequently, the relationships between traffic enforcement intensity and crashes can vary over 39 
time. 40 

The BEKK-GARCH modeling showed significant bidirectional interactions between 41 
conditional variances of police patrol time, technology-detected violations, police-detected 42 
violations, and traffic crashes. These bidirectional interactions point to the existence of 43 
important factors, such as traffic volume, that simultaneously influenced the four endogenous 44 
variables but were not included in the VAR model. Knowing this was a limitation of the current 45 
study, the dummy variable representing holidays was used in an effort to supplement the level 46 
of traffic volume. Although the present work has utilized the statistical method to compensate 47 
for the lack of an exposure variable, there is still the possibility of the persistence of unobserved 48 
heterogeneity and temporal instability. Therefore, it should be noted that conclusions with 49 
regard to the model’s results are obtained under these conditions, so ought to be carefully 50 
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interpreted. If, in future studies, more data on currently unobserved factors become available, 1 
it is recommended to include them in the models. Improvement of the model structure is an 2 
alternative approach to relieve heteroscedasticity. For example, random effects or random 3 
parameters can be introduced to manage unobserved heterogeneity (Mannering et al., 2016). 4 
To address temporal instability, Mannering (2018) also proposes a method that allows a 5 
parameter to be a function of factors that impact its time-variant characteristics. However, these 6 
methods significantly increase the complexity of the modeling process, especially in time series 7 
modeling. 8 

 9 
7. Conclusions 10 

To our knowledge, this study, for the first time, aims to reveal the dynamic interactions and 11 
contemporaneous relationships between police enforcement, traffic violations, and traffic 12 
crashes using vector autoregressive models. To summarize, traffic police patrol time was used 13 
to represent police enforcement intensity, and traffic violations were classified as technology-14 
detected and police-detected violations. Seven Granger causalities have been identified 15 
between police patrol time, technology-detected violations, police-detected violations, and 16 
traffic crashes. Differing from the traditional concept of causality, these Granger causalities are 17 
usually reflections of the dynamic interactions hidden within the system of the four endogenous 18 
variables, in which traffic police officers and drivers play an important role. This deeper 19 
understanding of dynamic interactions is conducive to further optimization of police 20 
enforcement. 21 

Conditional heteroscedasticity, which can to some extent be attributed to unobserved 22 
heterogeneity and temporal instability, was found in return residuals of the VAR model. The 23 
significant bidirectional interactions between the conditional variances of police patrol time, 24 
technology-detected violations, police-detected violations, and traffic crashes further confirm 25 
the necessity to analyze the three simultaneously. At the same time, these interactions imply 26 
the absence of factors that simultaneously impact the four time series. Investigating such 27 
influencing factors can be accomplished with more exposure data availability and improvement 28 
in model structure. 29 

The exogenous variables including time trend, weekly variation, holidays, and weather 30 
conditions were also investigated, and were found to significantly impact traffic crashes and 31 
violations. Since both crashes and violations increase on holidays, the authors of this study 32 
make the recommendation to control holiday traffic volume or adjust traffic distribution on 33 
freeways through management measures such as ramp metering or variable message signs. 34 
Although driver concern about traffic congestion on rainy and snowy days seems to lead to less 35 
travel, icy weather conditions pose another great threat to freeway traffic safety. To alleviate 36 
the influence of icy pavement, icy road warnings should be issued to the public in advance, and 37 
freeway maintenance authorities are advised to deal with these conditions promptly. 38 

As police patrol has been found to significantly reduce contemporaneous crashes, freeway 39 
traffic safety can be further improved by enhancing the role of traffic enforcement. From the 40 
temporal aspect, deployment of more police to patrol freeways on Tuesdays and Thursdays is 41 
encouraged, as is adjusting the vacations of police officers to ensure sufficient patrol intensity 42 
during holidays. Making full use of the electronic police system is another measure for 43 
consideration. The Shanghai Traffic Police Department has recently gained the ability to 44 
quickly query driver information from its internal database. Once a traffic violation such as an 45 
illegally parked vehicle is detected by surveillance cameras, the monitoring police officer can 46 
immediately contact and warn the driver by phone call. With the full use of the electronic police 47 
system, traffic police officers are recommended, from the spatial aspect, to patrol more on those 48 
freeway segments that lack surveillance cameras. 49 

This study enhances the understanding of the interactions between enforcement, traffic 50 
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violations, and crashes, an important step toward guiding police strategies given limited 1 
resources. The findings from this study are expected to assist any traffic police department in 2 
developing strategies and guidelines for optimizing resources and enforcement in traffic safety 3 
management. 4 
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