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Abstract 
Dynamic interfacial fracture is the branch of fracture mechanics that considers the 

fracture behaviour of structures with an interface under dynamic loads, such as laminated 

composites and adhesively bonded or welded structures. In this work, a new and 

completely analytical framework is developed to determine the dynamic energy release 

rate (ERR) of pure mode-I and -II fractures in double cantilever beam (DCB) and end-

loaded split (ELS) specimens, respectively. For the first time, structural vibration and 

flexural-wave propagation are accounted for. It is shown that the effect of vibration on 

interfacial fracture behaviour is significant and cannot be neglected as it conventionally 

has been. The developed analytical framework is successfully used to study stationary 

and propagating cracks, cracks at non-rigid elastic interfaces, and to investigate the mode 

mixity by combining it with a quasi-static mode-partition theory. 

The developed analytical framework is established based on the mode-I stationary 

crack of a DCB and the classical dynamic beam theory with time-dependent boundary 

conditions. The transverse motion is decomposed into a quasi-static one and a local 

vibration resulting in three ERR components due to the strain and kinetic energies of 

quasi-static motion, and the kinetic energy due to motion coupling. It is found that the 

conventional global approach accounting for the global energy balance method to 

determine the ERR cannot be used, as it results in non-physical divergence of the 

vibrating ERR amplitude with addition of more vibration modes. It is discovered that 

accounting for wave propagation and dispersion of flexural waves and considering the 

energy flux through a small crack-tip contour solves this divergence, leading to 

dispersion-corrected global approach. For a mode-I propagating crack, the ERR is 

derived by incorporating an energy-conservation condition and a correction for the 

Doppler effect. The crack-propagation behaviour and the limiting crack-propagation 

speed are thereby determined. 

Building on this developed analytical framework, an elastic foundation is 

introduced to represent a crack at a non-rigid elastic interface. This boundary condition 

not only significantly improves the vibration-phase agreement between the analytical 

theory and results of the finite-element-method (FEM) simulations but also allows a study 

of the relationship between dynamic effects and foundation stiffness. For the dynamic 

mode-II interfacial fracture in an ELS specimen, the dynamic ERR is derived using the 

vibrating crack-tip loads. It is found that the ith modal contribution is dependent on the 
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ratio of the crack length to the total length of the ELS specimen and that for a given ratio, 

there is a vibration mode with a zero contribution to the ERR. 

The developed theory is verified against the results of the FEM simulations and 

experiments and is in excellent agreement for all the cases considered. The resulting 

analytical expressions are relatively short, mathematically elegant, physically 

understandable and convenient-to-use by engineers and researchers. The developed 

analytical framework provides a detailed physical understanding of dynamic interfacial 

fracture behaviour. Among other potential uses, it can be employed to predict the extent 

of interfacial fracture in a dynamically-loaded structure, to post-process the test data on 

high-loading-rate fracture to determine the loading-rate-dependent interfacial fracture 

toughness for crack initiation and propagation, and potentially provides solutions for the 

verification of numerical software. 
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Chapter 1:  Introduction 

1.1 Background 

The aviation industry has experienced a fast-increasing application of carbon-fibre-

reinforced plastics (CFRPs) for the last few decades. This trend is catering for the need 

to save weight and thus to reduce the fuel consumption thanks to CFRPs’ superior 

properties in terms of their strength and stiffness-to-weight ratios over their metallic 

counterparts. The examples can be seen in Boeing 787, with more than 50% composite 

components saving 20% weight, and a CFRP central wing box in Airbus A380, saving 

1.5 tons [1]. However, one of the major challenges associated with CFRPs is the 

prevention of interlaminar delamination, which is reckoned as the most critical 

damage [2]; it is caused by the interfacial weakness between composite plies. This is also 

usually the case for other laminated materials, for instance, fibre-metal laminates [3]. 

The successful prediction and prevention of delamination or interfacial fracture, in 

general, require an accurate evaluation of a crack-driving force and a crack-resisting 

force. In fracture mechanics, the former is investigated with the stress intensity factors 

(SIFs) (Sections 3.2.3 and 3.3.1) or the energy release rate (ERR) (Sections 3.2.2 and 

3.3.2), while the latter is called fracture toughness or critical ERR. For engineering 

applications, however, the fracture phenomenon can be complicated due to the structural 

intricacies and complex loading conditions. A feasible and prevalent design guideline for 

composite structures is the building-block approach (see Figure 1.1a) [4], which studies 

the properties of composite structures from generic specimens (e.g. coupons), with 

increasing structural complexity, to non-generic specimens (e.g. a particular component). 

Fundamentally, the studies for coupon test specimens provide a general understanding in 

respective physical and mechanical aspects and also a method of determining material 

properties, which lays out the foundation for the whole design process. In the fracture 

aspect, the most fundamental engineering structures (Figure 1.1b) for the coupon test for 

composites in pure fracture modes are double cantilever beam (DCB), end-loaded split 

(ELS) and end-notched flexure (ENF) specimens, which are usually studied with beam 

theory (vibration of beam theory is revisited in Chapter 2). These fundamental structures 

isolate the fracture phenomena, allowing them to be studied without unnecessary 

interference from other unrelated components. They are therefore suitable for an 

advanced in-depth mechanical study or experimental test of fracture behaviours. 
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Figure 1.1 (a) Schematic diagram of building-block design approach [4]; (b) 

fundamental engineering structures for investigation of fracture behaviour in CFRPs 

In addition, although the structures in Figure 1.1b are fundamental, they can also 

represent many real engineering structures (not limited to CFRP structures). For example, 

the DCB (the geometry of which may also be loaded in the ELS, ENF or otherwise mixed 

configuration) can represent the domain around a crack tip in a real beam structure with 

appropriate boundary conditions for the structure where the crack is embedded in. This 

also applies for narrow (plane-stress) or wide (plane-strain) plates with through-width 

cracks. In the former case, this can be used to model narrow cross-sectional segments in 

progressively propagating blisters [5] (Figure 1.2a), for example in telephone cord 

blisters, worm blisters and varicose blisters. An axisymmetric formulation of the DCB 

can represent a circular crack, which occurs in many engineering simulations, for 

example, drilling [6] (Figure 1.2b), impact [7] (Figure 1.2c), spallation of coatings [8] 

(Figure 1.2d), and even potentially biological cells under needle puncture. Moreover, the 

DCB as a layered structure can represent a composite laminate with two sub-laminates 

above and below a delamination, for example, delamination in a wind turbine blade [9] 

(Figure 1.2e), or a delamination between a stiffened stringer/plate assembly in aero 

structures. 



Chapter 1 Introduction 

  3 

 
Figure 1.2 One-dimensional fractures: (a) coating blister on aero-engine turbine blades 

[5] Reproduced with permission from Yuan et al. , Theor. Appl. Mech. Lett., 8, 2018 © 

Elsevier; (b) drilling-induced push-out delaminations [6] Reproduced with permission 

from Deng et al. , Compos. Struct., 216, 2019 © Elsevier; (c) delamination of CFRP 

under impact [7] Reproduced with permission from Aymerich and Priolo, Int. J. Impact 

Eng., 35, 2008 © Elsevier; (d) Spallation of a thin layer [8] Reproduced with permission 

from Behnamian et al., J. Supercrit. Fluids, 119, 2017 © Elsevier; (e) delamination in 

wind turbine blade [9] Reproduced with permission from Park and Sohn, Compos. Sci. 

Technol, 100, 2014 © Elsevier 

For a quasi-static loading regime, there were extensive investigations using these 

fundamental engineering structures – DCB, ELS and ENF configurations – to study 

fracture behaviours and assess the crack-driving force to measure the crack-resisting force 

with the fracture criteria; the respective standard testing methods were developed 

[10][11][12][13][14]. But in the dynamic loading regime, there were few investigations 

and, therefore, few methods of addressing the dynamic effect. Some studies extended the 

quasi-static analytical solutions to assess the dynamic fracture toughness, although the 

oscillating external load was well witnessed as one aspect of the dynamic effect, it was 

treated as noise, for example in [15][16]. Other investigations aimed at developing new 

analytical solutions accounting for the kinetic-energy contribution by including the quasi-

static motion to study the dynamic effect; this was mostly done without considering 

structural vibration, with ‘smoothed’ ERR solutions obtained. Usually, the dynamic effect 

was found to be not significant and could be neglected in these studies, for instance, in 
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[17][18][19][20] (details in Section 4.2). Still, the oscillating ERR rather than the 

smoothed one was observed in experiments [21] and numerical simulations [22] due to 

structural vibration. Therefore, without account for vibration, the assessment of ERR may 

not be accurate or the fracture toughness measured correctly. Consequently, a new 

analytical framework is required to study the interfacial fracture under dynamic loads in 

the context of fundamental engineering structures (Figure 1.1b), i.e. dynamic interfacial 

fracture, and it is the aim of this thesis. It is referred to as a ‘framework’ since the 

collection of techniques, in general, allows applications to new configurations and 

fracture phenomena. 

1.2 Aim and objectives 

This thesis aims to establish a new analytical framework with account for structural 

vibration and wave propagation to study the dynamic interfacial fracture behaviour in the 

context of fundamental engineering structures with pure fracture modes. To accomplish 

this aim, four objectives are suggested: 

1. To develop a new analytical framework based on the mode-I stationary crack in 

DCBs with account for structural vibration and wave propagation to understand the 

dynamic effects associated with these two phenomena; 

2. To develop analytical solutions for the mode-I propagating crack in DCBs based 

on the established analytical framework to study the dynamic effect in crack propagation; 

3. To develop analytical solutions for dynamic interfacial fracture for non-rigid 

interfaces by introducing elastic foundation to the established analytical framework and 

to investigate the dynamic effects associated with the elastic interface; 

4. To develop analytical solutions for dynamic mode-II fracture in ELS specimens 

based on the established analytical framework to investigate the dynamic effect in mode-

II interfacial fracture. 

1.3 Thesis structure 

To achieve the aim and objectives, corresponding investigations were conducted 

and arranged into the following chapters. 

Chapter 2 The essential background theories of dynamics are presented for structural 

vibration and wave propagation. 
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Chapter 3 The key concepts of fracture mechanics are revisited for both linear-elastic 

fracture mechanics (LEFM) and elastodynamic fracture mechanics. 

Chapter 4 The conventional studies for dynamic interfacial fracture are reviewed. This 

includes the conventional analytical approach for interfacial fracture in pure fracture 

modes with account for quasi-static motion together with brief discussions of 

experimental findings and numerical methods for the interfacial fracture. 

Chapter 5 The original work starts in this chapter. The new analytical framework is 

established for the dynamic mode-I stationary cracks in DCBs. The classical dynamic 

beam theory is used to solve the problem of the time-dependent boundary with 

decomposing the dynamic response into a quasi-static motion and a local free vibration. 

The ERR components are derived based on these two motions and their coupling. The 

global approach (Section 3.3.2.1) is used together with the consideration of structural 

vibration to derive the ERR, but the ERR amplitude is found to be divergent with addition 

of more vibration modes. A correction factor is introduced considering the wave 

propagation and dispersion to address this issue, and results of this dispersion-corrected 

global approach are verified and confirmed against results from FEM simulations. 

Chapter 6 The established analytical framework in Chapter 5 is used to derive analytical 

solutions for the ERR of the mode-I propagating cracks in DCBs with further assumptions 

of energy-conservation and a modification due to the Doppler effect to solve the problem 

of moving boundary. A limiting crack-propagation speed is also proposed and studied. 

The analytical solutions are verified against the results from experiments as well as FEM 

simulations. 

Chapter 7 The elastic foundation is introduced to the established analytical framework 

to study the dynamic interfacial fracture at a non-rigid elastic interface. The relation 

between the dynamic effect and the foundation stiffness is studied. The mode-mixity is 

also investigated by applying the quasi-static partition theory. The crack propagating on 

the elastic foundation is also studied by extending the analytical technique and the 

solution developed in Chapter 6. The analytical solutions are verified against the results 

from FEM simulations. 

Chapter 8 The dynamic mode-II interfacial fracture is studied based on the established 

analytical framework for ELS specimens using crack-tip loads. The dynamic effects for 

these specimens are related to the crack-length ratio (the ratio between the crack length 

and the total ELS specimen’s length), and the crack-tip loading condition is studied with 
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normal modes and their slopes; the dominant vibration mode is identified. The analytical 

solutions are verified against the results from FEM simulations. 

Chapter 9 Conclusions are made according to the main findings, and some important 

future work is outlined. 

The original work is in Chapter 5 to Chapter 8 with original theoretical developments 

serving each objective. 

 



 

Chapter 2:  Vibration and wave propagation 

2.1 Introduction 

The dynamic fracture studied in the context of fundamental engineering structures 

(Figure 1.1b) under dynamic loads, for example, suddenly applied displacement or 

impact, usually involves structural vibration as a direct observation. And this is the case 

when a bounded structure is subjected to dynamic loads, structural vibration will form in 

the long run. To study the vibration phenomenon, equation of motion (Section 2.2.1) is 

always derived first, which describes the dynamic behaviour of the given structures by 

providing the relation between forces – both external and inertial – and motions as a 

function of time. Two essential parameters for structural vibration are the natural 

frequency and normal modes (Section 2.2.2.2), and the total response of the structure is a 

superposition of these normal modes with respective modal displacement 

(Section 2.2.2.3). The main technique to solve the vibration problem is the method of 

separation of variables, which decomposes the total response into the time and the space 

domains. The derivation of equation of motion, conventional boundary conditions and 

method of separation of variables in this chapter can be found in classical book such as 

[23][24]. 

However, for transient response of the structure under dynamic loads, the structural 

vibration theory is not sufficient, since vibration as a standing wave needs time to form, 

and, therefore, the theory of wave propagation is required. This is also the case for 

unbounded structures, such as infinite plate, where the waves due to external excitation 

will propagate towards infinity without forming vibration. The most important parameters 

in wave propagation theory are the wave propagation speeds and their relation to the 

natural frequencies, which is essential to understand the characteristics of wave 

propagation, and this relation is referred to as dispersion. 

The vibration and wave propagation theories are associated with the concept of 

standing waves. In wave propagation analysis, the wave equation shares the same 

expression of the equation of motion in vibration analysis. The generic solution using 

d’Alembert’s method for the wave equation, for instance, Eq. (2.38), is 

 ( ) ( ) ( ), ,w x t f x ct g x ct= − + +  (2.1) 

where f (x – ct) represents the disturbance travelling to the positive x direction and 

g (x + ct) represents the disturbance travelling to the negative x direction. Unlike the wave 
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propagation in unbounded structure, the wave will be reflected by the boundaries in the 

bounded structures. Therefore, the wave travelling to the positive x direction will be 

reflected to travel to the negative x direction when it arrives at the boundary; and wave 

travelling to the negative x direction will be reflected to travel to the positive x direction 

by the boundary. When these two reflected travelling waves meet under certain 

conditions, the superposition of these two waves can generate standing waves, and the 

structure begins to vibrate. 

In this chapter, the vibration theory for the classical beam theory is briefly reviewed, 

including the derivation of the equation of motion, method of separation of variables to 

solve the free vibration and an approach to solve the time-dependent boundary conditions. 

Then, the theory of wave propagation in beams is covered with essential concepts, such 

as phase speed, group speed and dispersion. In addition, the wave propagation is also 

reviewed for the infinite media, also known as 3D elastodynamic problems, based on 

which, elastodynamic fracture mechanics is developed; the wave propagation in semi-

infinite and doubly-bounded media are also revisited. The wave-propagation related 

concept in this chapter can be found in classical book such as [25][26]. 

2.2 Vibration of beams 

Usually the fundamental engineering structures, such as DCB and ELS specimens, 

shown in Figure 1.1b are slender [11][14], where the thickness of beams are smaller than 

the other two dimensions, i.e. length and width, and, therefore, the classical Euler-

Bernoulli beam theory applies, which ignores the rotational inertia and shear. But the 

notion should be given that the frequency predicted by Euler-Bernoulli beam theory is 

not correct for higher-order vibration modes, since the frequency goes to infinity with 

increasing mode numbers (see Figure 2.9 for flexural wave); instead, when the rotational 

inertia and shear are taken into account, i.e. in Timoshenko beam theory, there exists a 

cut-off frequency for higher-order vibration modes [27]. However, Euler-Bernoulli beam 

theory still applies when the lower-frequency vibration modes are dominant where the 

higher-frequency vibration modes can be ignored, and this is case found in Chapter 5.  

Another aspect to note is that normally CFRPs are brittle without significant plastic 

deformation, and, in addition, the viscoelasticity is usually low (see Section 5.4.1), and, 

therefore, the material is assumed to be linearly elastic. Currently, in order to generate a 

fundamental understanding of the effects of structural vibration and wave propagation on 
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dynamic fracture, small deflection is assumed, i.e. structural linearity, and this is also in 

accordance with conventional studies (see Section 4.2). 

2.2.1 Equation of motion 

Consider a beam resting on an elastic foundation with a constant foundation 

stiffness of k and subjected to a distributed force f (x, t) as Figure 2.1a demonstrates. This 

configuration is a fundamental 1D structure for studying 1D fractures (for example 

Figure 1.2), which is used to carry out the investigation in the later chapters for theoretical 

development such as for DCB and ELS specimens; in addition, the elastic foundation can 

represent adhesives and allows the adhesively bonded structure under dynamic load to be 

studied, which also gives an advantage that the crack tip can rotate automatically (see 

Chapter 7). The thickness of the beam is h, width is b and the length is L. It is assumed 

that thickness is small compared to the length, where h << L, and the Euler-Bernoulli 

beam theory applies, that the effects of rotational inertia and shear are not significant and 

can be ignored. 

 
Figure 2.1 (a) Beam on elastic foundation; (b) infinitesimal element for deriving the 

equation of motion 

An infinitesimal element of the beam with the length of dx is considered with its 

free-body diagram shown in Figure 2.1b, where Q (x, t) is the shear force, M (x, t) is the 

bending moment and w (x, t) is the transverse deflection. The vertical dynamic force 

equilibrium can, therefore, be written as Eq. (2.2) with ( ),Adxw x tρ   being the transverse 

inertia force. 

 ( ) ( ) ( )1, ,
2

Q dQ f x t dx Q k w w dw dx Adxwρ− + + + − + + =   (2.2) 
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where ρ  is the density and A is the area of the cross-section of the beam with A = bh. 

Since the rotational inertia is assumed to be small and negligible, the dynamic moment 

equilibrium about the y axis is 

 ( ) ( ) ( ) ( )1, 0.
2 2 2
dx dxM dM Q dQ dx f x t dx k w w dw dx M+ − + + − + + − =  (2.3) 

Combining Eqs. (2.2) and (2.3), together with the relation between the shear force 

and bending moment, that is, Q (x, t) = M(1) (x, t), and the relation between deflection and 

bending moment, that is, M (x, t) = EIw(2) (x, t), the equation of motion for the thin beam 

on elastic foundation with external applied distributed force f (x, t) is derived: 

 ( ) ( ) ( ) ( ) ( )4 , , , , ,EIw x t Aw x t kw x t f x tρ+ + =  (2.4) 

where I is the second moment of inertia with I = bh3/12. Note that Lagrange’s notation is 

used to represent the differentiation with respect to the x  coordinate, and ‘over-dot’ 

notation is used to represent the differentiation with respect to time, and these notations 

are kept through the thesis. 

With the absence of external force f (x, t), Eq. (2.4) becomes the equation of motion 

for free vibration: 

 ( ) ( ) ( ) ( )4 , , , 0,EIw x t Aw x t kw x tρ+ + =  (2.5) 

and for the free vibration of a free beam without the support from an elastic foundation, 

the equation of motion is 

 ( ) ( ) ( )4 , , 0.EIw x t Aw x tρ+ =  (2.6) 

2.2.2 Free vibration 

The general solution of the equation of motion for the free vibration, i.e. Eq. (2.6), 

is a linear combination of all the characteristic motions, which can be expressed by the 

separation of variables, and the transverse deflection of the free vibration is of the form 

as 

 ( ) ( ) ( )
1

, i i
i

w x t W x T t
∞

=

=∑  (2.7) 

where Wi (x) is the ith normal mode and Ti (t) is a time-dependent function called the ith 

modal displacement.  
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Combining Eqs. (2.6) and (2.7), and introducing the ith mode natural frequency ωi, 

and rearranging to have 

 
( ) ( )
( )

( )
( )

4
2 .i i
i

i i

W x T tEI
A W x T t

ω
ρ

= − =


 (2.8) 

Therefore, two governing equations for the normal mode and modal displacement are 

obtained: 

 ( ) ( ) ( )4 4 0,i i iW x W xβ− =  (2.9) 

 ( ) ( )2 0,i i iT t T tω+ =  (2.10) 

where βi is the ith mode wavenumber and is related to the natural frequency ωi as  

 4 2 .i i
A

EI
ρβ ω=  (2.11) 

Note that the method of separation of variables decomposes the dynamic response of the 

beams into the space domain represented by normal mode and the time domain 

represented by modal displacement. The parameters link these two domains are the 

wavenumber βi and natural frequency ωi via Eq. (2.11). 

The solution for normal modes depends on the boundary conditions. The 

conventional boundary conditions for the deflection and corresponding normal modes are 

given in Table 2.1. 
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Table 2.1 Conventional boundary conditions 

Boundary condition Mechanical interpretation Free vibration Normal mode 

Free 

Bending moment = 0 

( ) ( )2 0, 0EIw t =  or 

( ) ( )2 , 0EIw L t =  

( ) ( )2 0 0iW =  or 

( ) ( )2 0iW L =  

Shear force = 0 

( ) ( )3 0, 0EIw t =  or 

( ) ( )3 , 0EIw L t =  

( ) ( )3 0 0iW =  or 

( ) ( )3 0iW L =  

Pinned 
(simply supported) 

Deflection = 0 
( )0, 0w t =  or 

( ), 0w L t =  

( )0 0iW =  or 

( ) 0iW L =  

Bending moment = 0 

( ) ( )2 0, 0EIw t =  or 

( ) ( )2 , 0EIw L t =  

( ) ( )2 0 0iW =  or 

( ) ( )2 0iW L =  

Fixed 

(clamped/built-in) 

Deflection = 0 
( )0, 0w t =  or 

( ), 0w L t =  

( )0 0iW =  or 

( ) 0iW L =  

Slope = 0 

( ) ( )1 0, 0w t =  or 

( ) ( )1 , 0w L t =  

( ) ( )1 0 0iW =  or 

( ) ( )1 0iW L =  

 

2.2.2.1 Orthogonality of normal modes 

Orthogonality of normal modes is of great importance to determine normal modes 

and to understand the characteristics of the vibration. And it is derived as follows. 

Multiplying Eq. (2.9) by Wj (x) and integrating twice by parts over the beam length 

(0, L) to have 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

0

3 1 2 2 2

00 0
.

L

i i j

L L L

j i j i i j

AW x W x dx

EI W x W x EI W x W x EI W x W x dx

ω ρ

   = − +   

∫

∫
 (2.12) 

With any combination of the conventional boundary conditions listed in Table 2.1, 

Eq. (2.12) simplifies to 

 ( ) ( ) ( ) ( ) ( ) ( )2 22

0 0
.

L L

i i j i jAW x W x dx EI W x W x dxω ρ =∫ ∫  (2.13) 

Exchanging subscripts i and j in Eq. (2.13) and subtracting itself give 
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 ( ) ( ) ( )2 2

0
0.

L

i j i jAW x W x dxω ω ρ− =∫  (2.14) 

The natural frequency is unique, that is, ωi ≠ ωj for i ≠ j, and therefore 

 ( ) ( )
0

0.
L

i jAW x W x dxρ =∫  (2.15) 

Now, including the case for i = j and normalising Eq. (2.15), the orthogonality condition 

for the normal modes is 

 ( ) ( )
0

.
L

i j ijAW x W x dxρ δ=∫  (2.16) 

Another form for the orthogonality can be derived by combining Eqs. (2.13) and 

(2.16) for i ≠ j as 

 ( ) ( ) ( ) ( )2 2

0
0.

L

i jW x W x dx =∫  (2.17) 

2.2.2.2 Normal modes and frequency equation 

Normal modes are the spatial distribution of a vibration. The normal modes are 

derived by solving the governing equation Eq. (2.9). The general solution of Eq. (2.9) 

takes the form of 

 ( ) ( ) ( ) ( ) ( )1 2 3 4cosh cos sinh sin ,i i i i i i i i iW x C x C x C x C xβ β β β= + + +  (2.18) 

where Ci1, Ci2, Ci3 and Ci4 are coefficients to be determined by boundary conditions and 

orthogonality condition. 

Fixed-pinned beam 

For a beam with fixed-pinned boundary conditions, i.e. fixed at x = 0 and pinned at 

x = L, using the boundary conditions in Table 2.1 and solving Eq. (2.18) gives 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

4

1 1 0 0 0
0 0 1 1 0

.
cosh cos sinh sin 0
cosh cos sinh sin 0

i

i

i i i i i

i i i i i

C
C

L L L L C
L L L L C

β β β β
β β β β

     
    
    =
    
    − −    

 (2.19) 

For the system of the linear equations above to have nonzero solutions, the determinant 

of the coefficient matrix should be zero, giving 

 ( ) ( )tanh tanh 0,i iλ λ− =  (2.20) 
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where i i Lλ β= . And then the natural frequencies can thus be determined accordingly 

using Eq. (2.11), i.e. ( ) ( )2 2 2
i i iEI A L EI Aω β ρ λ ρ−= = , and therefore, Eq. (2.20) is 

also referred to as the frequency equation. 

Returning to the normal mode solution for fixed-pinned beams, with the boundary 

conditions applied, it can then be written as 

 ( ) ( )1 ,i i iW x C xφ=  (2.21) 

where ( )i xφ  is the mode shape given as 

 ( ) ( ) ( ) ( ) ( )cosh cos sinh sin ,i i i i i ix x x x xφ β β σ β β= − − −        (2.22) 

with ( ) ( ) ( ) ( )cosh cos sinh sini i i i iσ λ λ λ λ= − −       . And recall the orthogonality in 

Section 2.2.2.1, the coefficient Ci1 can be derived by combining Eqs. (2.16) and (2.21) 

(Appendix A), and its solution is 

 
( )

1 2

0

1 1 .i L

i

C
ALA x dx ρρ φ

= =
  ∫

 (2.23) 

The mode shapes for the first three vibration modes in Eq. (2.22) are shown in 

Figure 2.2. 

 
Figure 2.2 First three mode shapes for beams with fixed-pinned boundary conditions 
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Fixed-fixed beam 

For another set of boundary conditions of fixed-fixed, solving the general solution 

for normal modes in Eq. (2.18) using corresponding boundary conditions in Table 2.1 

gives 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

4

1 1 0 0 0
0 0 1 1 0

.
cosh cos sinh sin 0
sinh sin cosh cos 0

i

i

i i i i i

i i i i i

C
C
C
C

λ λ λ λ
λ λ λ λ

     
    
    =
    
    −    

 (2.24) 

Therefore, the frequency equation for the beam with fixed-fixed boundary conditions can 

be derived by setting the determinant of the coefficient matrix of Eq. (2.24) to zero, giving 

 ( ) ( )cosh cos 1 0.i iλ λ − =  (2.25) 

The mode shapes for the first three vibration modes for beams with fixed-fixed 

boundary conditions are shown in Figure 2.3. 

 
Figure 2.3 First three mode shapes for beams with fixed-fixed boundary conditions 

Pinned-pinned beam 

For beams with boundary conditions of pinned-pinned, solving the general solution 

for normal modes in Eq. (2.18) using corresponding boundary conditions in Table 2.1 

gives 
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 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

4

1 1 0 0 0
1 1 0 0 0

.
cosh cos sinh sin 0
cosh cos sinh sin 0

i

i

i i i i i

i i i i i

C
C
C
C

λ λ λ λ
λ λ λ λ

     
    −     =
    
    − −    

 (2.26) 

Therefore, the frequency equation for beams with pinned-pinned boundary conditions can 

be derived by setting the determinant of the coefficient matrix of Eq. (2.26) to zero, giving 

 ( )sin 0.iλ =  (2.27) 

The mode shapes for the first three vibration modes for beams with pinned-pinned 

boundary conditions are shown in Figure 2.4. 

 
Figure 2.4 First three mode shapes for beams with pinned-pinned boundary conditions 

2.2.2.3 Modal displacement 

The general solution for the time-dependent modal displacement in Eq. (2.10) is 

 ( ) ( ) ( ) ( ) ( )0
0 cos + sin ,i

i i i i
i

T
T t T t tω ω

ω
=



 (2.28) 

where ( )0iT  and ( )0iT  are the initial modal displacement and initial modal velocity for 

the ith vibration mode, respectively. The initial modal displacement and velocity are 

related to the initial conditions of the beam, and they can be determined in the following 

procedure.  

The initial deflection of the beam according to Eq. (2.7) is 
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 ( ) ( ) ( )
1

,0 0 .i i
i

w x W x T
∞

=

=∑  (2.29) 

Multiplying Eq. (2.29) by ρAWj (x) and integrating over beam length (0, L) to have 

 ( ) ( ) ( ) ( ) ( )
0 0

1
,0 0 .

L L

j j i i
i

AW x w x dx AW x W x T dxρ ρ
∞

=

= ∑∫ ∫  (2.30) 

Applying the orthogonality in Eq. (2.16) to Eq. (2.30), the initial modal displacement is 

found to be 

 ( ) ( ) ( )
0

0 ,0 .
L

i iT AW x w x dxρ= ∫  (2.31) 

Following this procedure again, the initial modal velocity is  

 ( ) ( ) ( )
0

0 ,0 .
L

i iT AW x w x dxρ= ∫

  (2.32) 

2.2.3 Time-dependent boundary conditions 

For dynamic case, such as suddenly applied displacement or impact, the boundary 

conditions can be time-dependent rather than the conventional boundary conditions listed 

in Table 2.1, and solving the vibration with time-dependent boundary conditions is 

essential to understand the dynamic response of the system and to further investigate the 

dynamic fracture associated. 

Grant [28] introduced shifting functions and assumed that the total dynamic 

response (i.e. deflection) can be expressed by a combination of free-vibration component 

and quasi-static component determined by extrapolating the time-dependent boundary 

conditions via this shifting function along the beam. And corresponding equations of 

motion and boundary conditions for the free-vibration component and shifting function 

are obtained by enforcing homogeneous conditions, so that non-homogeneous boundary 

conditions are avoided, and instead the non-homogeneous (time-dependent) boundary 

conditions are converted to homogeneous boundary (conventional) conditions. 

In [28], Grant provided an illustrative instance that a cantilever beam is subjected 

to a constant-accelerating displacement w0 (t) = pt2 at its free end and the total deflection 

was assumed to be 

 ( ) ( ) ( ) ( ) ( )2
fv 1 2 3, , 2 2 ,w x t w x t F x pt F x pt F x p= + + +  (2.33) 
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where wfv (x, t) is the free-vibration component, and F1 (x), F2 (x) and F3 (x) are the 

shifting functions. Combining Eqs. (2.6) and (2.33), and enforcing homogeneous 

conditions, the equation of motion for the free-vibration component is found to be 

 ( ) ( ) ( )4
fv fv, , 0 ,EIw x t Aw x tρ+ =  (2.34) 

and system of differential equations for shifting functions are 

 

( ) ( )
( ) ( )

( ) ( ) ( )

4
1

4
2

4
3 1

0

0 .

0

F x

F x

EIF x AF xρ

 =
 =
 + =

 (2.35) 

The corresponding boundary conditions can be derived from the deflection 

assumption in Eq. (2.33) and by enforcing homogeneous conditions, and thus the shifting 

functions can be solved as well as the free-vibration component as per Section 2.2.2. The 

only notion should be given to is the treatment of the initial modal displacement and 

velocity of the free-vibration component: they are determined by the initial displacement 

( )fv ,0w x  and initial velocity ( )fv ,0w x  by combining Eq. (2.33) and given as 

 ( ) ( ) ( )fv 3,0 ,0 2 ,w x w x F x p= −  (2.36) 

 ( ) ( ) ( )fv 2,0 ,0 2 .w x w x F x p= −   (2.37) 

Therefore, Grant’s method is reckoned to convert the non-homogeneous boundary 

conditions to homogeneous boundary conditions by introducing shifting functions, and 

the function of these shifting functions is to distribute the applied displacement or velocity 

along the beam; and this distribution of the applied displacement and the velocity affects 

the free-vibration component through the initial modal displacement and velocity as 

Eqs. (2.31) and (2.32) suggest. By combining Eqs. (2.31), (2.32), (2.36) and (2.37), the 

modal displacement in Eq. (2.28) can be solved, and then according to Section 2.2.2, the 

free-vibration component.  
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2.3 Wave propagation 

2.3.1 Waves in 1D waveguides 

1D waveguides are the most fundamental waveguides in solid mechanics, such as 

rods, strings and beams, and relevant concepts important to understanding wave 

propagation are reviewed in the context of these 1D waveguides.  

The analysis of wave propagation provides two essential relations, namely, 

spectrum relation and dispersion relation. The spectrum relation is the relation for 

wavenumber and natural frequency, and an example of this for flexural wave in beams is 

given in Eq. (2.11), i.e. ( )4 2
i i A EIβ ω ρ= . The dispersion relation indicates at what speed 

an excitation travels in the waveguides, and it is a relationship between natural frequency 

and wave propagation speed, which will be revisited in Section 2.3.1.1 along with other 

important concepts. 

The aforementioned analysis of wave propagation requires solving the wave 

equation, which is the partial differential equation for the description of motion for a 

waveguide; in this regard, the wave equation shares the same expression as the equation 

of motion in vibration analysis (Section 2.2.1). The wave equations for 1D waveguides 

are usually second-order or fourth-order. For flexural waves in beams, the wave equation 

is fourth-order as demonstrated in Eq. (2.6). For longitudinal waves in rods and transverse 

wave in strings, the wave equation is second-order, and a general form is given in 

Eq. (2.38).  

 ( ) ( ) ( )2
2

1, , .u x t u x t
c

=   (2.38) 

The second-order system described in Eq. (2.38) is the simplest form for 

understanding wave propagation behaviour, and important concepts such as phase speed, 

group speed and modulation are discussed in the context of this second-order system in 

Section 2.3.1.1, but these concepts are rather general and apply to other systems by slight 

modifications, for instance, the fourth-order system for flexural waves in beams.  

2.3.1.1 Phase speed, group speed and modulation 

Consider the second-order wave equation Eq. (2.38) with a characteristic wave 

speed of c and note that c is the wave speed as shown later in Eq. (2.41). By the method 
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of separation of variables introduced in Section 2.2.2 and trigonometric transformations, 

the general solution of Eq. (2.38) by d’Alembert’s method is 

 
( ) ( ) ( )

( ) ( )
1 2

3 4

, sin sin

cos cos ,

u x t C x t C x t

C x t C x t

β ω β ω

β ω β ω

= + + −

+ + + −
 (2.39) 

where β = ω/c is the wavenumber. 

Consider a typical term in Eq. (2.39) with unit amplitude, given by 

 ( ) ( ), cos ,u x t x tβ ω= −  (2.40) 

where the term (βx – ωt) is called the phase of the wave. And Eq. (2.40) shows that this 

wave is propagating towards the positive x direction. If the wave travels at constant phase, 

and speed of this wave is called phase speed, which can be determined by 

 p .dxC c
dt

ω
β

= = =  (2.41) 

Eq. (2.41) shows that for a typical wave equation written in the form of Eq. (2.38), the 

parameter c is the wave propagation speed or phase speed of that wave. If Eq. (2.38) 

represents the longitudinal wave propagation in a rod, the longitudinal wave speed is 

found to be 0C E ρ= . 

Now consider the superposition of two waves with slightly different wavenumbers 

and frequencies in the form of Eq. (2.42). 

 ( ) ( ) ( )1 1 2 2, cos cos .u x t x t x tβ ω β ω= − + −  (2.42) 

By trigonometric relations, and introducing Δω = ω2 – ω1, Δβ = β2 – β1, 

ω = (ω1 + ω2)/2 and β = (β1 + β2)/2, Eq. (2.42) can be written as 

 ( ) ( ) 1 1, 2cos cos .
2 2

u x t x t x tβ ω β ω = − ∆ − ∆ 
 

 (2.43) 

Hence the superposition of two waves with different frequencies results in two 

waves: one travels at phase speed of ω/β; and the other travels at speed of Δω/Δβ, which 

is called group speed and denoted Cg, where 

 g .dC
d

ω ω
β β

∆
= =
∆

 (2.44) 
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The relationship between phase speed Cp and group speed Cg according to 

Eq. (2.43) is shown in Figure 2.5. 

 
Figure 2.5 Phase speed and group speed of 1D propagating wave 

In Eq. (2.43), the first cosine term with the average wavenumber β and frequency 

ω has a high frequency, and it propagates at the phase speed of Cp shown in Figure 2.5 

with the grey line; the second cosine term with the wavenumber difference Δβ and 

frequency difference Δω has a low frequency, and it propagates at the group speed Cg and 

as an envelope of the high-frequency wave shown in the black line in Figure 2.5. In this 

manner, the low-frequency wave acts like a carrier to modulate the high-frequency wave. 

2.3.1.2 Wave propagation of flexural waves in beams 

Now consider the flexural waves in beams. The fourth-order equation of motion 

Eq. (2.6) is also the wave equation for flexural wave in beams. The spectrum relation 

between wavenumber βi and natural frequency ωi is given in Eq. (2.11). 

The solution for wavenumber βi in Eq. (2.11) are ( )4
i i A EIβ ω ρ= ±  and 

( )4
i ii A EIβ ω ρ= ± : the first two real roots of βi are the propagating modes, and they 

correspond to the sine and cosine terms in normal mode solution in Eq. (2.18); however, 

the other roots of βi are imaginary, and waves with imaginary wavenumbers do not 

propagate, and they are called evanescent modes. The imaginary roots correspond to the 

hyperbolic sine and hyperbolic cosine terms in Eq. (2.18). 

For the ith mode propagating flexural wave, the phase is 

 ,i i ix tϕ β ω= ±  (2.45) 
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where the waves with phase φi = βix – ωit travel towards the x positive direction, and 

waves with phase φi = βix + ωit travel towards the negative x direction. The amplitude of 

these waves is determined by the general solution of vibration analysis in Eq. (2.7). 

2.3.1.3 Dispersion of flexural waves in beams 

Now consider the speed for the flexural waves to travel in beams as a type of 1D 

waveguides. The ith mode flexural wave travels at its phase speed, which, combining 

Eqs. (2.11) and (2.41), is 

 4p ,i i
i

i

EIC
A

ω ω
β ρ

= =  (2.46) 

where the superscript i on p
iC  indicates that it is for the ith mode flexural wave. Eq. (2.46) 

indicates that the phase speeds are different among all the flexural waves in beams since 

they have different natural frequencies, and waves with higher frequencies travel faster. 

The group speed for the ith mode flexural wave, combining Eqs. (2.11) and (2.44), 

is 

 4g p2 2 ,i ii
i

i

d EIC C
d A
ω ω
β ρ

= = =  (2.47) 

where the superscript i on g
iC  indicates that it is for the ith mode flexural wave. 

Eqs. (2.46) and (2.47) suggest that for the beams as a 1D waveguide with the fourth-order 

wave equation, the group speed is always twice of the phase speed, and this leads to a 

phenomenon called dispersion. 

Dispersion happens when p g
i iC C≠ , such as in flexural waves in beams, in which 

the high-frequency flexural waves travel faster than low-frequency ones, and thus the 

wave shape or profile will extremely alter as it propagates. And these waves are called 

dispersive waves. The waves without dispersion are called non-dispersive waves, and 

their phase speed is equal to the group speed, that is, ω/β = dω/dβ, leading to a linear 

dispersion, that is, the linear relationship between the wavenumber and frequency. 

Illustrations of dispersive waves and non-dispersive waves are in Figure 2.6. 
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Figure 2.6 Illustration for (a) non-dispersive waves; (b) dispersive waves 

Non-dispersive waves will retain their wave profiles while they are travelling 

(Figure 2.6a), but this is not the case for dispersive waves that their wave profiles undergo 

extreme distortion as they propagate (Figure 2.6b). Most second-order systems with a 

hyperbolic wave equation, such as transverse vibration of a string and longitudinal 

vibration of a rod, are non-dispersive. But the fourth-order system, such as flexural waves 

in beams, are highly dispersive. 

2.3.1.4 Energy transmission speed 

For non-dispersive waves, apparently, the speed of energy transmission by these 

waves is the phase speed or group speed since they are equal. However, for dispersive 

waves, the speed of energy transmission by these waves should be further investigated. 

Consider the same instance for the two waves with slightly different wavenumbers 

and frequencies shown in Eq. (2.42), the total energy per length is 

 0 0 0 02 ,E U K K= + =  (2.48) 

where U0 is the strain energy per length and K0 is the kinetic energy per length, 

respectively. Ref. [26] shows that when U0 and K0 are considered in a time-averaged 

concept, they have the same value, U0 = K0, where K0 is 

 ( ) 2
0

1 , .
2

K u x tρ=     (2.49) 
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Examining the velocity ( ),u x t  derived from Eq. (2.42) and neglecting the higher-order 

term with Δω, and combining Eqs. (2.48) and (2.49), E0 is obtained as 

 ( )2 2 2
0

1 14 cos sin .
2 2

E x t x tρω β ω β ω = ∆ − ∆ − 
 

 (2.50) 

Eq. (2.50) suggests that the total energy per length has two variating terms: one with 

the high frequency ω and the other with the low frequency Δω/2. To avoid the high-

frequency influence, consider the time-averaged energy per length for 0E  over a period 

with T = 2π/ω. For the high frequency term sin2(βx – ωt), it is found that 

( )2

0
sin 1 2

T
x t dt Tβ ω− =∫ . Therefore, Eq. (2.50) can be approximately simplified to 

Eq. (2.51), for Δω << ω, and since integration over T = 2π/ω does not change the low-

frequency term much. 

 2 2
0

1 12 cos .
2 2

E x tρω β ω ≈ ∆ − ∆ 
 

 (2.51) 

It is demonstrated in Eq. (2.51) that the time-averaged energy travels at a speed of 

Δω/Δβ, and this is the group speed according to Eq. (2.44). Therefore, the derivation for 

Eq. (2.51) shows that for dispersive waves, the energy transmits at the group speed Cg 

rather than phase speed Cp. 

2.3.2 Waves in infinite, semi-infinite and doubly-bounded media 

Wave propagation in infinite, semi-infinite and doubly-bounded elastic media are 

essential for the investigation of classical elastodynamic fracture problems, such as semi-

infinite crack and central crack in infinite sheets.  

2.3.2.1 Waves in infinite elastic media 

There are two types of waves, namely dilatational and shear waves, in an infinite 

3D elastic structure. Consider the Navier’s equation and replace the Laplacian of the 

displacement vector ( )2u u u∇ =∇ ∇⋅ −∇×∇×  to have 

 ( ) ( ) ,u u uλ µ µ ρ+ ∇ ∇⋅ − ∇×∇× =   (2.52) 

where λ and μ are the Lamé constants. Relations between the Lamé constants and the 

Young’s modulus and Poisson’s ratio are λ = Eν/[(1 + ν)(1 – 2ν)] and μ = E/[2(1 + ν)]. 
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Consider the irrotational deformation by setting the rotation =0u∇× , Eq. (2.52) 

becomes 

 2
2
d

1u u
C

∇ = ， (2.53) 

where 

 d
2 .C λ µ
ρ
+

=  (2.54) 

Eqs. (2.53) and (2.54) show that the dilatational deformation follows a typical wave 

equation (recall Eqs. (2.38) and (2.41)), and the corresponding wave speed is Cd, which 

is called dilatational wave speed or irrotational wave speed. 

Now consider the rotational deformation by setting the dilatation 0u∇⋅ = , 

Eq. (2.52) becomes 

 2
2
s

1u u
C

∇ = ， (2.55) 

where 

 s .C µ
ρ

=  (2.56) 

Eqs. (2.55) and (2.56) show that the rotational deformation also follows the wave 

equation, and the corresponding wave travels at a speed of Cs, which is called shear wave 

speed or equivoluminal wave speed. 

2.3.2.2 Waves in semi-infinite elastic media 

For a semi-infinite elastic media, that is, with a traction-free surface introduced to 

the infinite elastic media, a surface wave exists, which can travel near this traction-free 

surface. This type of wave is Rayleigh wave, first investigated by Lord Rayleigh [29], 

after whom it is named.  

Rayleigh wave is due to the interaction between dilatational and shear waves and is 

confined on the traction-free surface, and it decays exponentially when the depth into the 

elastic media from the traction-free surface increases. Consider the dilatational and 

rotational motions at this free surface, by applying the traction-free boundary condition, 



Chapter 2 Vibration and wave propagation 

  26 

the Rayleigh function is derived with the solution being the phase speed of the Rayleigh 

wave: 

 

1 122 2 22 2
R R R
2 2 2
s d s

2 4 1 1 0.C C C
C C C

     
− − − − =     

     
 (2.57) 

Note that Eq. (2.57) indicates that the Rayleigh wave speed CR is determined by the 

dilatational and shear wave speeds and is independent of wavenumber. Therefore, the 

Rayleigh wave is non-dispersive. 

An approximation of the solution for Rayleigh wave speed CR [30] of Eq. (2.57) is  

 R s
0.862 1.14 .

1
C Cν

ν
+

=
+

 (2.58) 

The Rayleigh wave speed can also be written in terms of longitudinal wave speed for 1D 

wave propagation (with Cs given in Eq. (2.56)) as 

 
( ) ( )R 0

0.862 1.14 ,
1 2 1

C Cν
ν ν

+
=

+ +
 (2.59) 

where 0C E ρ=  is the longitudinal wave speed for 1D wave propagation. 

2.3.2.3 Waves in doubly-bounded elastic media 

Upon the semi-infinite elastic media in Section 2.3.2.2, if another traction-free 

surface is introduced parallel to the existing one, such as for a thick plate, Rayleigh wave 

degenerates to Lamb wave, which is also called Rayleigh-lamb wave or quasi-Rayleigh 

wave. But Lamb wave has two modes: symmetric and asymmetric as shown in Figure 2.7. 

 
Figure 2.7 Lamb wave modes: (a) symmetric mode; (b) asymmetric modes 
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In Lamb’s original publication [31], the frequency equation for the symmetric 

modes was derived as shown in Eq. (2.60): 

 ( )
( )

( )22 2

2

tan
,

tanh 4
qpd

qd pq
ξ

ξ

−
= −  (2.60) 

and frequency equation for the asymmetric modes as in Eq. (2.61): 

 ( )
( ) ( )

2

22 2

tan 4 ,
tan

pd pq
qd q

ξ

ξ
= −

−
 (2.61) 

where ξ  is the wavenumber, d is the half-thickness of the plate, 2 2 2 2
dp Cω ξ= −  and 

2 2 2 2
sq Cω ξ= − . Since the wavenumber and frequency do not have a linear relationship, 

these symmetric and asymmetric waves are dispersive. 

The numerical solutions for Eqs. (2.60) and (2.61) for a given plate configuration 

provide the wavenumbers for the symmetric and asymmetric modes, but the number of 

roots for these two equations depends on the product of frequency f = ω/(2π) and half-

thickness of the plate d. An example of this for aluminium plate is shown in Figure 2.8 

from [32]. 

 
Figure 2.8 Wave speed dispersion for Lamb waves [32]. Reproduced with permission 

from T. Kamas, V. Giurgiutiu, and B. Lin, Smart Mater. Struct. 24, 2015 © IOP 

Publishing. 

Figure 2.8 implies that for low fd value, only S0 and A0 Lamb waves exist, and 

they are called zero-order modes. Correspondingly S0 is also known as the extensional 
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mode, and A0 is the flexural mode. This is important to note for the case of a thin plate 

with small d, only S0 and A0 mode exist. 

A comparison of the dispersion relations (i.e. relation between the wave speed and 

the natural frequency) for axial, flexural, Lamb waves is presented in Figure 2.9 

from [33]. 

 
Figure 2.9 Comparison of dispersion relation for axial, flexural, Lamb waves [33]. 

Reproduced with permission from A. M. Kamal, B. Lin and V. Giurgiutiu, J. Intell. 

Mater. Syst. Struct., 25, 2014. © SAGE Publications 

In Figure 2.9, the axial wave speed is calculated by 0C E ρ= , which is the 

longitudinal wave for rod aforementioned. The Lamb wave A0 mode and S0 mode share 

the same asymptotes, which has the Rayleigh wave speed (although not noted in the 

original figure), indicating at high frequency the motion of these Lamb waves is restricted 

to the surface and therefore they travel with Rayleigh wave speed. 

2.4 Conclusion 

In this Chapter, the fundamental theories of vibration and wave propagation are 

briefly reviewed, based on which the following chapters are developed. First, the 

vibration analysis and method of separation of variables are studied, and Grant’s 

method [28] to solve time-dependent boundary condition is reviewed, which is used 

through the thesis to determine the dynamic response of respective fundamental 
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engineering structures. Second, the wave propagation theory with concepts, such as phase 

speed, group speed and dispersion are presented, which are also widely used in later 

chapters for understanding the energy transmission property of beams as waveguides to 

study the fracture mechanics. 

The wave propagation in infinite elastic media is also revisited, based on which, the 

classical elastodynamic fracture is developed, and this is reviewed in Chapter 3.  

 



 

Chapter 3:  Key concepts of fracture mechanics 

3.1 Introduction 

Fracture mechanics is a relatively new scientific discipline dedicated to 

investigating fracture behaviour of a cracked structure, such as crack initiation and 

propagation, and aiming at remaining the structural integrity to prevent structural failure 

with the existence of cracks. Classical books can be found in [34][35] for quasi-static 

fracture mechanics, and [36][37] for dynamic fracture. 

In this chapter, the fundamental concepts of fracture mechanics are presented, both 

in LEFM (Section 3.2) and elastodynamic fracture mechanics (Section 3.3). 

3.2 Linear-elastic fracture mechanics 

LEFM assumes the material to be elastic to study the fracture behaviour of cracked 

structures based on energy or stress criteria. Griffith [38] pioneered the energy-based 

investigation (Section 3.2.2) for studying crack behaviour of brittle material using global 

energy balance (Section 3.2.1) and theorem of minimum energy. Irwin [39] studied the 

crack-tip stress field and gave a stress-based fracture criterion (Section 3.2.3). 

Cherepanov [40] and Rice [41] focused on the crack-tip local energy and derived the J-

integral (Section 3.2.4), which is not only important in LEFM but also is widely used in 

elastic-plastic fracture problems. 

3.2.1 Global energy balance 

Global energy balance is important to understand Griffith’s approach to study 

fracture phenomenon, which has been widely used in LEFM. Consider a crack with the 

area A0 in an elastic structure, and according to the law of energy conservation [35] 

without plastic or viscous dissipations 

 ext ,W U K= + +Γ     (3.1) 

where extW  is the instantaneous power of the external forces; U  and K  are the changing 

rates of strain and kinetic energies, respectively; and Γ  is the rate of energy dissipation 

due to the increment of crack area. Based on this energy balance, and using the relation 

of 0 0 0 0t A t A A A∂ ∂ = ∂ ∂ ⋅∂ ∂ = ⋅∂ ∂ , Eq. (3.1) can be written as 
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 ext

0 0 0 0

.W U K
A A A A

∂∂Γ ∂ ∂
= − −

∂ ∂ ∂ ∂
 (3.2) 

For the elastic structure under quasi-static loads and slow crack growth, where the 

kinetic-energy contribution is not significant, Eq. (3.2) becomes 

 ( )ext
0 0

.W U
A A
∂Γ ∂

= −
∂ ∂

 (3.3) 

3.2.2 The Griffith theory and strain energy release rate 

Griffith [42], based on the global energy balance and theorem of minimum energy, 

proposed a criterion of rupture (fracture) with consideration of equilibrium, that is, the 

phenomenon of rupture happens with a decrease in potential energy, and this reduction 

of potential energy transforms to potential surface energy to advance the crack. Griffith 

studied an infinite plate with a straight crack with a crack length of 2a, under constant 

normal stress σ, which is perpendicular to the crack. By applying Inglis’ result [43], the 

strain energy of the system with the crack is 

 
2 2

0 .aU U
E
σπ= −  (3.4) 

where U0 is the potential energy of the uncracked plate. The work required to create new 

surface is 4aγs, where γs is the surface energy for brittle material, representing the cohesive 

forces of the molecules. Therefore, the energy dissipated to advance the crack is 

 s4 .aγΓ =  (3.5) 

The total energy of the system is 

 
2 2

0 s4 .aU U a
E
σπ γ+ Γ = − +  (3.6) 

Using theorem of minimum energy, d(U + Г)/dA0 = 0, under constant applied stress 

σ, a critical crack length ac can be determined, under which crack shall not propagate. 

 s
c 2

2 .Ea γ
πσ

=  (3.7) 

Similarly, for a given crack length 2a, a critical applied normal stress σc is found to 

be 
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 s
c

2 .E
a
γσ

π
=  (3.8) 

Combining Eqs. (3.3) and (3.6), Griffith’s fracture criterion can be written as 

 ( )ext
c s

0

2 .
W U

G G
A

γ
∂ −

= = =
∂

 (3.9) 

In the right-hand side of Eq. (3.9) Gc = 2γs, the coefficient 2 is due to two new material 

surfaces are formed during crack growth, and Gc is called critical ERR or fracture 

toughness and is an inherent property of materials that crack growth must overcome and 

is deemed as the crack-resisting force. The left-hand side of Eq. (3.9) 

( )ext 0G W U A= ∂ − ∂  represents the available energy that can be dissipated from the 

cracked system for crack growth, and is called ERR, also known as the crack-driving 

force. If the external work Wext is zero, for instance, the system under ‘fixed-grips’ 

condition when the loaded surface of the cracked structure maintains at a given 

displacement during crack growth, the ERR becomes 0G U A= −∂ ∂ , in this manner, the 

crack-driving force G comes from the reduction of the strain energy of the cracked 

system, and thus this G in quasi-static loading regime is also referred to as the strain ERR. 

Irwin [39] furthered Griffith’s criterion of brittle material to ductile material by 

incorporating the dissipation due to plastic deformation of γp to the fracture toughness, 

giving 

 ( )c s p2 .G γ γ= +  (3.10) 

3.2.3 Stress intensity factor 

An alternative method to investigate the fracture behaviour is to examine the crack-

tip stress field by using linear elasticity. 

Several early analytical studies [39][44][45][46] provided closed-form expressions 

for the crack-tip stress fields, and in a polar coordinate system, the stress field around a 

crack tip can all be written as 

 ( ) ( ) ,
2ij ij
K f r

r
σ θ ο

π
= +  (3.11) 
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where ( )ijf θ  is a dimensionless function of θ and ( )rο  is higher-order term; and K is 

a constant, which is the SIF defined by Irwin [39]. 

The SIF in Eq. (3.11) implies it is related with the corresponding stress components, 

that is, normal stress σxx and two shear stress τxy and τxz, and thus SIF can be categorised 

into three modes of fracture as Figure 3.1 shows: opening (mode-I), in-plane shear or 

sliding (mode-II), and out-of-plane shear or tearing (mode-III); and the SIFs are denoted 

KI, KII and KIII for the respective fracture modes. 

 
Figure 3.1 Three basic fracture modes: (a) opening (mode-I); (b) in-plane shear or 

sliding (mode-II); (c) out-of-plane shear or tearing (mode-III) 

And therefore, the corresponding SIF of each fracture mode can be determined by 

 
( )
( )
( )

I

II 0

III

, 0
= lim 2 ,0 .

,0

xx

xyr

xz

K r
K r r
K r

σ
π τ

τ
→

  
   
   
   
   

 (3.12) 

Irwin also identified the ERR according to each fracture mode in Figure 3.1, and 

derived the relationships between SIFs and ERRs as 

 
( )

2
I I

2
II II

2
III III

= .
2

G K E
G K E
G K µ

  
  

   
   
   

 (3.13) 

Eq. (3.13) is for plane-stress condition, and for plane-strain condition, the Young’s 

modulus E in Eq. (3.13) is replaced by E/(1 – ν2). 

Turning to the fracture criterion, for the pure fracture mode, for example, fracture 

mode-I, the fracture criterion is 
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 I Ic ,K K≥  (3.14) 

where KIc is the mode-I fracture toughness. Fracture toughness is a material property, 

which can be determined by testing, and the standardised testing method can be found 

in [10]. 

Similarly, for energy-based fracture criterion using ERR, in pure mode-I, it is 

 I Ic .G G≥  (3.15) 

But for mixed-mode fracture, there are several fracture criteria, and simplest is the 

linear fracture criterion shown in Eq. (3.16). Comprehensive reviews of fracture criteria 

can be found in [47][48]. 

 I II III

Ic IIc IIIc

1,G G G
G G G

+ + =  (3.16) 

where GIc, GIIc and GIIIc are critical ERR in the three respective fracture modes.  

3.2.4 The J-integral 

Another local approach is the J-integral developed by Cherepanov [40] and 

Rice [49] using a crack-tip contour integral. This fracture parameter is important not only 

in linear elastic fracture but also in nonlinear elastic and elastic-plastic fracture. 

 
Figure 3.2 Crack-tip contour Ω for J-integral 

For a two-dimensional crack shown in Figure 3.2 with a contour Ω around the crack 

tip, the expression for J-integral is 

 2
1

,i
i

uJ Wdx T ds
xΩ

 ∂
= − ∂ 
∫  (3.17) 
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where W is the strain energy density, and Ti is the traction component acting on the surface 

of contour. Rice [49] demonstrated that J-integral is path-independent. In addition, the 

relation between J-integral and potential energy is given 

 
0

,dJ
dA
Π

= −  (3.18) 

where Π = (U – Wext) is the potential energy. And by comparing the ERR definition in 

Eq. (3.9), J-integral has the same value of ERR, that is 

 .J G=  (3.19) 

Note that Eq. (3.19) is derived with the assumption that the material is elastic and crack 

propagates in a self-similar manner. 

Eq. (3.19) has an important implication that ERR calculated by global energy 

balance (Section 3.2.1) equals to the one calculated by local crack-tip energy quantities. 

Therefore, the energy-based global approach and energy-based local approach are 

equivalent in LEFM. 

3.2.5 Compliance method 

To determine the ERR in Eq. (3.9), the potential energy of a cracked structure must 

be calculated first. A convenient method of determining the potential energy of a given 

cracked structure is the compliance method. Consider a general force P acting on a 

cracked elastic structure, and its induced general displacement w. The potential energy 

can be calculated as follows, which can be therefore used to determine the ERR via 

Eq. (3.9). 

For an elastic plate of uniform thickness b with a crack length a subjected to an 

external force P, without crack growth, the displacement w is found to be 

 ,w CP=  (3.20) 

where C is the compliance of the cracked elastic plate. 

Therefore, the infinitesimal external work increment is found to be dWext = Pdw, 

and infinitesimal elastic strain energy increment is dU = (Pdw + wdP)/2, and considering 

the definition of ERR in Eq. (3.9), the ERR is found to be 

 1 ,
2

Pdw wdPG
b da da
 = − 
 

 (3.21) 
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and substituting the total derivation of displacement w, that is, dw = CdP + PdC, the ERR 

can be written as 

 
2 2

2

1 .
2 2
P dC w dCG

b da b C da
= =  (3.22) 

Therefore, the ERR G of this cracked elastic structure can be calculated by 

externally applied load P or displacement w, providing the compliance of the structure 

C (a), which is a function of crack length a, is known. 

Three most common fundamental engineering configurations to study the fracture 

behaviour and to measure the fracture toughness in pure fracture modes are DCB 

(Figure 3.3a), ELS (Figure 3.3b) and end-notched flexure (ENF) (Figure 3.3c) 

specimens. DCB specimens are for mode-I fracture, while ELS and ENF specimens are 

for mode-II fracture. These three types of specimens are the most common configurations 

to study the fracture in CFPRs to provide a fundamental understanding of fracture 

behaviour and a measurement of fracture toughness for building-block design process 

(also see Section 1.1).  

 
Figure 3.3 Specimen configurations: (a) DCB; (b) ELS; (c) ENF 

The compliance for a DCB specimen is a function of crack length a and it is in 

accordance with power law [50] of C = Acan, which can be determined by fitting the 

experimental data. And then combining Eq. (3.22), the ERR for a DCB is 

 
2

0 .w PP dCG n
b da ba

= =  (3.23) 
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With an effective boundary condition (Figure 5.1b) to assume one DCB arm is fixed at 

crack tip as a cantilever beam, together with the classical beam theory, the compliance is 

found to be C = a3/(3EI), and therefore the ERR solution for a DCB in Eq. (3.23) can be 

written as 

 
2 2 2

0 0
4

3 9 .w P EIw P aG
ba ba bEI

= = =  (3.24) 

Note that this compliance is derived from the Euler-Bernoulli beam theory and 

assumed a fixed boundary condition at the crack tip, further correction for crack-tip 

rotation is required, and this is discussed in Section 5.5. 

For a DCB under constant-rate opening displacement in quasi-static loading regime, 

where w0 = vt, the ERR in Eq. (3.24) can be written as a function of time t, given by 

 
2 2

4

9 .EIv tG
ba

=  (3.25) 

The compliance for the ELS specimen (Figure 3.3b) is derived in [51] as 

C = (4a3 + 3a2L + 3aL2 + L3)/(24EI) , and combining Eq. (3.22), the mode-II ERR in ELS 

specimen is 

 
( )

2 2
0

23 2 2 3

108 ,
3 3 4

EIa wG
b L L a La a

=
+ + +

 (3.26) 

where I = bh3/12. Similarly as the DCB above-mentioned, in quasi-static loading regime 

with applied constant-rate displacement, w0 is replaced by vt directly and ERR becomes 

a function of time. 

The compliance for ENF specimen is C = (2L3 + 3a3)/(96EI), according to [52], and 

combining Eq. (3.22), the mode-II ERR in ENF specimen as 

 
( )

2 2
0

23 3

432 .
2 3

EIa wG
b L a

=
+

 (3.27) 

Note that since dG/da < 0 for the ERR solution in Eq. (3.27) for the ENF specimens, 

indicating that the crack growth is unstable, ENF specimens are only suitable to study the 

crack initiation and measure the crack initiation toughness. 
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3.2.6 Fracture mode mixity 

The crack in brittle material tends to propagate in pure mode-I despite being under 

mixed-mode loading conditions due to the ‘criterion of local symmetry’ [53], that is, a 

mixed-mode crack growth can change to mode-I by kinks. But when a crack propagates 

along an interface, its path may be confined due to the weakness of the interface and the 

crack remains under mixed-mode propagation. For an elastic structure with an interfacial 

crack, the total ERR can be determined, for instance, by compliance method as per 

Section 3.2.5, the partition of total ERR is vital to understand fracture behaviour 

considering the fracture criterion, for instance, Eq. (3.16).  

Williams [54] pioneered the mode-partition investigation on the asymmetric DCB 

with the classical beam theory and found that the partition depends on the thickness ratio 

of the two DCB arms. Schapery and Davidson [55] studied the same problem but no pure 

modes could be achieved opposite to findings of Williams [54]. Hutchinson and Suo [56] 

applied SIFs to determine the partition based on the classical beam theory and 2D 

elasticity for various configurations, among which the partition for a thin-layer-on-thick-

substrate (also known as spalling of a surface layer) due to the end bending is 

KII/KI = 0.7793, coincided with [57]. The partition for anisotropic material can be found 

in [58][59].  

Wang and Harvey [60][61] derived two orthogonal pairs of locally pure modes 

based on the classical and the Timoshenko beam theories, and based on same analytical 

scheme, comprehensive partition theories were developed, such as for rigid interface in 

composite laminates [62], for the non-rigid interface in isotropic materials [63], for the 

rigid bi-material interface [64], for orthotropic laminates based on 2D elasticity [65][66]. 

Using this theoretical development, particularly for a thin-layer-on-thick-substrate 

configuration, the 2D elasticity partition [67] gives GII/GI = 0.6059, very close to the 

partition in [56] for GII/GI = (KII/KI)2 with KII/KI = 0.7793. 

Note that these partition theories were developed in the quasi-static regime, where 

the inertia and kinetic energy were not considered explicitly. But examination into the 

two orthogonal pairs of locally pure modes proposed by Wang and Harvey [60][61] 

reveals the mode partition depends on the crack-tip loading condition and since the crack-

tip loads in dynamic regime include inertial effects implicitly, the partition theory may 

well be further applied in dynamic fracture regime, and this is studied and confirmed in 

Chapter 7. 
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3.3 Elastodynamic fracture mechanics 

As laid out in [35], there are mainly two aspects in dynamic fracture, that is, one 

with fast crack propagation and the other with rapidly varying load, such as impact. For 

impact on composite structure, Davies and Olsson [68] classified the loading rates into 

low velocity (4 -8 m s-1, for example dropped tool), high velocity (300 -2500 m s-1, for 

example ballistic impact) and hyper-velocity (30 -70 km s-1, for example impact for 

satellites and spacecraft). With decreasing of the impact velocities, the response of 

composite structures changes from dilatational-wave dominant to flexural-wave 

dominant, and eventually approaches to quasi-static. Therefore, in general, for fracture 

associated with the dilatational-wave and flexural-wave dominant response, dynamic 

fracture mechanics have to be applied. Nevertheless, this depends on assessment of each 

individual case due to complexity for the wave propagation in various structures with 

different material properties. For the flexural-wave dominant response for dynamic 

fracture in DCB and ELS configurations, for instance, the dynamic effect can be studied 

quantitatively using dynamic factor developed in Sections 5.2.3, 7.2.4 and 8.2.3. 

Elastodynamic fracture mechanics is the counterpart of LEFM in the dynamic field, 

which assumes the material is linear elastic. The classical elastodynamic fracture is 

reviewed in this section, which is developed by including the inertial effect or kinetic 

energy into account for the elastic cracked structures. Two key concepts in elastodynamic 

fracture mechanics are dynamic SIF and dynamic ERR, respectively. 

3.3.1 Dynamic stress intensity factor 

Following Irwin’s approach (Section 3.2.3), the near-crack-tip stress field in 

elastodynamics is time-dependent and for each fracture mode it can be expressed as 

 ( ) ( ) ( ) ,
2ij ij

K t
t f

r
σ θ

π
=  (3.28) 

where K (t) is time-dependent elastic SIF as the counterpart to the quasi-static SIF in 

Section 3.2.3, and it is usually referred to as dynamic SIF. The determination of dynamic 

SIF requires a fundamental understanding of stress wave propagation (Section 2.3). 

The classical dynamic problem in [36] is a semi-infinite stationary crack under a 

suddenly applied pressure with the magnitude of σ at t = 0 as shown in Figure 3.4a. 
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Figure 3.4 Semi-infinite crack problem: (a) crack under sudden pressure with the 

magnitude of σ, (b) wavefronts generated by suddenly applied pressure, solid lines for 

dilatational wave and dashed line for shear waves 

Far from the crack tip, dilatational waves with their wavefronts parallel to the crack 

plane are emitted due to the suddenly applied pressure. But near the crack tip, both 

dilatational and shear waves are generated concentrically, with their radii being Cdt and 

Cst. By Green’s method or the Wiener-Hopf technique, the dynamic crack-tip stress field 

can be solved, and, therefore, the dynamic mode-I SIF is given as 

 ( ) ( )
( )

d
I

1 2
2 .

1
C t

K t
ν π

σ
ν
−

=
−

 (3.29) 

For the same semi-infinite crack setting, if two opposite and equal tractions with 

the magnitude of τ are applied suddenly to the two crack planes within the x-y plane from 

t = 0, the dynamic mode-II SIF is given as 

 ( ) ( )II
22 .
1

sC tK t τ
π ν

=
−

 (3.30) 

And if these two tractions are applied in the x-z plane, which indicates the out-of-

plane shear condition, the dynamic mode-III SIF is 

 ( )III
22 .sC tK t τ
π

=  (3.31) 

For a mode-I propagating crack, Freund [69] provided a dynamic SIF solution as 

 ( ) ( ) ( )0
I I, , , ,K t a a k a K t a=   (3.32) 

where ( )0
I ,K t a  is the dynamic SIF for the stationary crack and ( )k a is the universal 

function given by 
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 ( ) R

d

1 .
1

a Ck a
a C

−
≈

−







 (3.33) 

3.3.2 Dynamic energy release rate 

3.3.2.1 Dynamic ERR using global approach 

Early attempt to derive dynamic ERR by extending Griffith’s method dates back to 

Mott [70], where kinetic energy is thought to be significant. Using the global energy 

balance in Section 3.2.1, the dynamic ERR with account for kinetic energy is 

 global ext

0 0 0

,dW dU dKG
dA dA dA

= − −  (3.34) 

where K is the kinetic energy assessed by 2i iV
K u u dVρ= ∫   . And this dynamic ERR was 

used to study the classical Griffith’s problem of a central crack with the crack length of 

2a0 in an infinite plate subjected to uniform tension σ. The kinetic energy calculated with 

a crack-propagation a  is given as 

 
2

2 2
0

1 ,
2

K k a a
E
σρ  =  
 

  (3.35) 

where k0 is a constant, and its value was given in [71] that 02 0.38kπ ≈  for a Poisson’s 

ratio ν = 0.25. 

Therefore, the dynamic ERR and fracture criterion is 

 
2 2 2

global 2 2
s2

1 1 2 .
2 2

d aG k a a
da E E

πσ σρ γ
 

= − = 
 

  (3.36) 

Note that before crack initiation 0a =  and at crack initiation a0 = ac, which is given in 

Eq. (3.7), and therefore, the crack-propagation speed can be derived: 

 0
00.38 1 ,aa C

a
 = − 
 

  (3.37) 

where 0C E ρ=  is the speed of the longitudinal wave in 1D wave propagation. 

Eq. (3.37) indicates that there exists a maximum crack-propagation speed, for 

a >> a0, and this limiting crack-propagation speed is 0.38C0. Examining Rayleigh wave 

speed in Eq. (2.59) with the Poisson’s ratio ν = 0.25, gives CR = 0.58C0, and then the 
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limiting crack-propagation speed estimated by [71] in Eq. (3.37) employing the global 

energy balance is 0.66CR, which is smaller than the Rayleigh wave speed. 

3.3.2.2 Dynamic ERR using local approach 

Alternatively, the dynamic ERR can be determined by crack-tip local quantities, 

using a contour integral and including the kinetic-energy contribution, the development 

for dynamic ERR can be found in [72][73][74]. 

The inclusion of kinetic contribution is by introducing the kinetic-energy density, 

given by 2i iu uρ   . Now consider the rate of change of mechanical energy for the region 

R around the crack tip shown in Figure 3.5, the summation of the rate of change of elastic 

strain energy U  and rate of change of kinetic energy K  is 

 ( )1 .
2 ij ij i iR

dU K u u dA
dt

σ ε ρ+ = +∫ 

   (3.38) 

 
Figure 3.5 Crack-tip contour for determination of energy flux integral 

To exclude the singularity at the crack tip, a small contour Ω is made around the crack tip 

and the total mechanical energy in the region R excluding the region encompassed by the 

contour Ω is 

 ( )1 .
2 ij ij i iR R

dU K u u dA
dt

σ ε ρ
Ω−

+ = +∫ 

   (3.39) 

If the crack propagates towards the x1 direction with a constant speed a , by Reynolds 

transport theorem and divergence theorem, the amount of energy flowing out of the region 

R and into the crack-tip region through the contour Ω is 

 ( ) ( ) 1
1 .
2ij j i ij ij i iF n u u u an dsσ σ ε ρ

Ω

 Ω = + +  ∫      (3.40) 
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The dynamic ERR, therefore, representing the mechanical energy flowing into the 

crack tip per unit time for crack propagation per unit time, is defined as 

 ( ) ( )local
10 0

1 1lim lim .
2ij j i ij ij i i

F
G n u u u an ds

a a
σ σ ε ρ

ΩΩ→ Ω→

Ω  = = + +  ∫    

 

 (3.41) 

Note that the definition of dynamic ERR in Eq. (3.41) is based on the local approach and 

its counterpart in LEFM is the J-integral in Section 3.2.4 rather than the ERR derived by 

reduction of the potential energy of Griffith’s global approach in Section 3.2.2. 

For a steady-state propagation, the energy flux in Eq. (3.41) is path-independent, 

and, therefore, 

 ( )local .
F

G
a
Ω

=


 (3.42) 

Now consider the velocity iu  in Eq. (3.41), for a steady state in the moving coordinate 

system when the partial time derivative is zero, the following relationship with crack-

propagation speed a  can be obtained: 

 ( ) ( ) ( )
1 1

, , ,
.i i i idu x t u x t u x t ua a

dt t x x
∂ ∂ ∂

= − ≈ −
∂ ∂ ∂

   (3.43) 

Combining Eqs. (3.40), (3.42) and (3.43) and rearranging, the dynamic ERR using 

local approach can be written as 

 local

1

1 1 .
2 2

i
ij ij i i i

uG u u T ds
x

σ ε ρ
Ω

 ∂
= + − ∂ 
∫    (3.44) 

where iT  is the traction vector given as i ij jT nσ= . 

Comparing the J-integral in Eq. (3.17) and dynamic ERR determined by the local 

approach in Eq. (3.44), if the kinetic-energy contribution is small and can be neglected, 

which is the case in quasi-static fracture process, the dynamic ERR in Eq. (3.44) becomes 

the classical J-integral in Eq. (3.17), demonstrating the dynamic ERR defined by local 

approach is the counterpart of J-integral in LEFM. 

The relationship between dynamic ERRs determined by local approach and 

dynamic SIFs in Section 3.3.1 was derived and given in [36] as 
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 ( ) ( ) ( )
2

local 2 2 2
I I II II III III

1 1 ,
2

G A a K A a K A a K
E
ν

µ
−  = + +     (3.45) 

where ( )IA a , ( )IIA a  and ( )IIIA a  are universal functions given as 

 ( ) ( ) ( ) ( ) ( )
2 2

d s
I II III2 2

s s s

1, , ,
1 1

a aA a A a A a
C D C D
α α

ν ν α
= = =

− −
 

    (3.46) 

with 2 2
d d1 a Cα = −  , 2 2

s s1 a Cα = −   and ( )22
d s s4 1D α α α= − + . 

Combining Eqs. (3.32), (3.33), (3.45) and (3.46) and applying the fracture criterion 

of Glocal = Gc, with Gc = 2γs, the following relation for a propagating crack is derived 

in [36]: 

 
( ) ( )

( ) ( ) 2s
I22 0

RI

2 1 .
1 ,

E aA a k a
CK t a

γ

ν
= ≈ −  

 −  



   (3.47) 

Eq. (3.47) has a very important implication that crack-propagation speed a  cannot 

exceed the Rayleigh wave speed CR. This limiting crack-propagation was also proposed 

by [75][76]. 

3.4 Conclusion 

Key concepts of fracture mechanics are presented in this chapter, which lays out 

the foundation of this thesis. In LEFM, there are two approaches to study the fracture 

behaviour: global approach and local approach. Global approach considers the total 

energy of the system and reckons the energy required to advance a crack is from the 

reduction of the potential energy of the system and the ERR is defined. Local approach 

considers crack-tip quantities, and two fracture parameters are therefore developed: the 

investigation of stress field near the crack tip leads to SIFs, and study of energy-based 

crack-tip contour integral gives the J-integral. The relations between ERR and SIF 

indicates the equivalence between energy-based and stress-based approaches. Also, the 

relations between ERR and J-integral demonstrates the equivalence between global and 

local approaches. 

In elastodynamic fracture mechanics, the corresponding fracture parameters are 

developed in a similar way to LEFM to study the dynamic fracture. But these parameters 

SIFs and ERRs are time-dependent. For dynamic ERR, there are two approaches, i.e. 
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global and local approaches, to assess its value. The global approach considers the global 

energy balance as an extension of Griffith’s approach, and the dynamic ERR is reckoned 

as the reduction of the total mechanical energy; the local approach defines dynamic ERR 

by examining the energy flux flowing into a crack-tip contour as a counterpart of the J-

integral in LEFM. However, unlike the equivalence between ERR and J-integral in 

LEFM, the relation for dynamic ERR using these two approaches (global and local) 

remains unknown in elastodynamic fracture mechanics, that is, whether Gglobal equals to 

Glocal has not been demonstrated. But it is shown that these two approaches predict 

different limiting crack-propagation speeds at least: 0.66CR in global approach and CR in 

the local approach. This gap will be partially studied in Chapter 5 (for equivalence 

between the global and the local approaches) and Chapter 6 (for the limiting crack-

propagation speed). 

As for the mode-mixity, the partition theories to decompose the total ERR into 

respective fracture modes has been extensively studied in LEFM, but there is few 

investigations of partition theory in the dynamic field, and this will be studied by 

extending a quasi-static partition theory to elastodynamic fracture problem in Chapter 7. 

 



 
Chapter 4:  Conventional dynamic interfacial fracture 

4.1 Introduction 

The dynamics of interfacial fracture significantly affects fracture behaviour 

including crack initiation, propagation and arrest, and material properties such as dynamic 

fracture toughness. There are therefore strong motivations for analytical modelling of 

dynamic interfacial fracture to achieve a mechanical understanding, or to facilitate post-

processing of experimental fracture data for assessment of material properties, vital for 

maintaining structural integrity and preventing dynamic fracture. 

Early investigations into dynamic interfacial fracture did not fully consider the 

dynamic regime in their analytical models, assuming instead a quasi-static motion. This 

led to contradictory findings reported in the literature concerning rate effects on fracture 

toughness. Aliyu and Daniel [77], for instance, conducted tests using DCBs to measure 

the mode-I fracture toughness of AS4/3501-6 epoxy/carbon-fibre composites at loading 

rate between 8.5×10-6 and 8.5×10-3 m s-1, and concluded fracture toughness increased 

with increasing loading rates. Mall et al. [78] , however, measured the fracture toughness 

of PEEK/carbon-fibre composite at loading rate between 8.5×10-6 and 16.67×10-3 m s-1 

and found the opposite, with fracture toughness decreasing with increasing loading rates. 

At first thought, material properties might seem a possible explanation, since PEEK as a 

thermoplastic is relatively ductile compared to the brittle epoxy, with the materials having 

different rate-dependencies. This is not always the case, however, as when the same 

material AS4/3501-6 epoxy/carbon-fibre composite was tested in [17] at loading rate 

range between 4.2×10-6 and 6.7×10-1 m s-1, the fracture toughness was found to be 

decrease with increasing opening rates, opposite to the conclusion in [77] for the same 

material. Comprehensive reviews on the loading effect on fracture toughness can be 

found in [79][80][81], but no conclusions concerning rate effects on it could be drawn. 

Experimental studies for the rate effects on mode-II fracture toughness can be found 

in [18][82][83][84][85][86][87][88] and in a comprehensive review [89], but – just as for 

the mode-I investigations – there were no unanimous conclusions regarding fracture-

toughness rate effects. 

In general, a conventional analytical approach to modelling interfacial fracture is 

based on [70] (see Section 3.3.2.1). The kinetic energy is considered as significant for the 

‘crack-driving force’ or ERR and so included in a global energy-balance approach using 
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Eq. (3.34), following Griffith (see Section 3.2.1), but based on quasi-static motion 

without any consideration of vibration. This conventional analytical approach, however, 

only provides a ‘smoothed’ dynamic ERR. Moreover, the kinetic-energy contribution to 

the dynamic ERR is simply a baseline shift from its quasi-static component. Surprisingly, 

experimental data post-processed using this approach appear to show that the dynamic 

effect under high loading rates is negligible [17][18][20][88]. This contradicts other 

experimental and numerical investigations [21][90], demonstrating that the dynamic is, 

in general, oscillating and significant. Meanwhile, in the absence of an analytical 

modelling capability to properly address the dynamic effect, hybrid experimental-

numerical approaches were also used.  

In this chapter, the conventional analytical approach for dynamic interfacial fracture 

is reviewed in Section 4.2; and general numerical method for fracture problem is 

reviewed briefly in Section 4.3 with an emphasis on numerical techniques for interfacial 

fracture in Section 4.3.2. Conclusions are given in Section 4.4. 

4.2 Conventional analytical approach to modelling dynamic interfacial 

fracture 

The conventional analytical approach to modelling dynamic interfacial fracture 

accounts for kinetic energy in the global energy balance (Section 3.2.1). Fundamental 

structures such as those shown in Figure 3.3 are typically considered, including DCB, 

ELS and ENF specimens. The applied loading velocity is extrapolated along the specimen 

and then used to determine the kinetic energy. The ERR is subsequently determined using 

Eq. (3.34) as Gglobal = d(Wext – U – K)/dA0. 

4.2.1 Mode-I fracture 

4.2.1.1 Stationary cracks in DCBs 

Smiley and Pipes [17] were the first to account for kinetic energy and derived an 

expression for the dynamic ERR of a DCB under the opening displacement of constant 

rate. They used their solution to post-process the experimental data to measure the 

interlaminar fracture toughness of epoxy/carbon-fibre and PEEK/carbon-fibre 

composites, and to investigate the effects of loading rates on fracture toughness. 

Their analytical model incorporates the kinetic energy of the quasi-static motion of 

the DCB arms by extrapolating the applied constant-opening velocity v at the free end 
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along the length of the DCB arm. This extrapolation gave the distribution of applied 

constant-opening velocity along the one DCB arm as 

 ( )
2 3

2 3

3 ,
2 2

x xw x v
a a

 
= − 

 
  (4.1) 

where w (x) is the deflection of the DCB arm with an effective boundary condition (see 

Figure 5.1b), and ( )w x  is the transverse velocity of the DCB arm, a is the crack length 

and x is the coordinate along the length of the arm from the crack tip towards the free end 

with x = 0. The kinetic energy for one DCB arm is then calculated as 

 ( ) 2 2

0

1 33 ,
2 280

a
K A w x dx Avρ ρ= =  ∫   (4.2) 

where ρ is the material density, and A is the cross-sectional area. The contribution to the 

total ERR from the kinetic energy of the quasi-static motion is then 

– 2dK/(bda) = – 33ρAv2/(140b), where a factor of two was introduced due to the 

symmetry of the DCB, and b is the beam width. The total dynamic ERR by the global 

approach, by combining Eqs. (3.24) and (3.34), is therefore 
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bEI b

ρ
= −  (4.3) 

where P is the external load at the location of the applied opening displacement.  

Smiley and Pipes used this analytical solution to determine the dynamic ERR in 

their experiments, but found that the kinetic-energy contribution of –33ρAv2/(140b) was 

negligible. 

Blackman et al. [20], using the same technique, derived an equivalent expression 

for the dynamic ERR of the DCBs under constant-opening-rate displacement as 
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EIv t AvG
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ρ
= −  (4.4) 

Eqs. (4.3) and (4.4) are theoretically equivalent as shown by Eq. (3.24) (Section 3.2.5), 

but they imply a difference of what experimental data should be recorded in DCB tests to 

determine the fracture toughness (or critical ERR). In Smiley and Pipes’s work, the 

critical load Pc for crack initiation was supposed to be recorded and used in Eq. (4.3), 

whereas Blackman et al. [20] proposed that the time for crack initiation should be 
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employed instead. This argument came from experimental observations of a considerable 

oscillation in the externally applied force at high loading rates (Figure 4.1), and so this 

load could not be accurately recorded for crack initiation. Smiley and Pipes’s approach 

was nevertheless suitable for their own study [17] since the maximum opening rate was 

0.67 m s-1 whereas the maximum opening rate in Blackman et al.’s study was up to 

15 m s-1. 

 
Figure 4.1 Typical external load versus time curves for PEEK/carbon-fibre composite 

DCB tests conducted at a constant opening rate of (a) 3.3×10-5 m s-1, (b) 1×10-2 m s-1, 

(c) 5×10-1 m s-1, (d) 2 m s-1 [19]. Reproduced with permission from B. R. K. Blackman, 

J. P. Dear, A. J. Kinloch, H. Macgillivray, Y. Wang, J. G. Williams, and P. Yayla, J. 

Mater. Sci., 30, 1995. © Springer Nature 

4.2.1.2 Propagating cracks in DCBs 

Based on the same theoretical principle of including the kinetic energy of the quasi-

static motion in the global energy balance, Blackman et al. [20] proposed a dynamic ERR 

solution for a propagating crack in DCBs. The kinetic energy was calculated from the 

transverse velocity, but this time including a contribution from crack propagation, that is, 

 ( ) ,dw dww x a
dt da

= +   (4.5) 
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where a  is the crack propagation speed and adw da  is the contribution from the crack 

propagation.  

This method seems plausible, but it depends on how the crack-propagation speed 

a  is determined. Blackman et al. [20] assumed the continuous crack propagation with 

G = Gc at all the times after initiation, and constant fracture toughness. According to the 

quasi-static solution by Eq. (3.25), these assumptions give a crack propagation speed of 

( )2a a t= . Based on this crack-propagation speed, the total kinetic energy (with a factor 

of two due to symmetry) is 
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2 280
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ρ ρ = ⋅ + = 
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Thus, using the global approach via Eq. (3.34), the total dynamic ERR for a propagating 

crack is 
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Comparing Eqs. (4.4) and (4.7) demonstrates that the ERR of a steadily propagating crack 

is less than that of a stationary crack due to higher kinetic energy of the former.  

This method to determine the ERR of a propagating crack has some intrinsic 

shortcomings. One is that fracture toughness can be rate-dependent under high loading 

rates, and another is that experimental observations of DCB tests at high loading rates 

show that crack propagation is not continuous but, in fact, non-smooth with a mixture of 

stable growth, fast unstable growth and arrest. This crack-propagation behaviour is 

referred to as ‘stick-slip’ propagation, and was widely observed in many studies 

[19][82][91][92][93][94][95]. Together, this means that the crack-propagation speed will 

not in general follow ( )2a a t= . That said, however, the kinetic-energy contribution in 

the second term of Eq. (4.7) is small compared to the strain-energy contribution (first 

term), and so the method could still be applicable for the low opening rates. In any case, 

the conventional approach to modelling dynamic interfacial fracture cannot capture stick-

slip propagation and instead provides a ‘smoothed’ dynamic ERR. 
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4.2.2 Mode-II fracture 

Dynamic mode-II interfacial fracture, compared to mode-I, received less research 

attention. The most common configurations to study mode-II fracture in the quasi-static 

loading regime are ENF [12][93][96] and ELS [14][97][98] specimens. Other specimen 

configurations can also be used, for instance, centre notch flexural (CNF) specimens 

[99][100]. 

The conventional analytical approach to study the dynamic effect in mode-II 

fracture is to include the kinetic energy of the extrapolated quasi-static motion, similar to 

as described for mode-I fracture. In this way, ENF [18], ELS [88] and CNF [86] 

configurations were considered. A crack growth in the ENF configuration is unstable 

(Section 3.2.5) and, thus, it can only be used to investigate crack initiation. For ELS 

specimens, as reported in [88], the dynamic effect was negligible, contributing less than 

1% to the measured fracture-toughness value. It was therefore assumed in [88] that the 

dynamic contribution was also negligible for propagating cracks in ELS specimens, and 

so no analytical model for propagating cracks was developed. 

4.2.2.1 Stationary cracks in ENF specimens 

Smiley and Pipes [18] conducted tests using ENF specimens to study the rate 

sensitivity of mode-II interlaminar fracture toughness. To support this, they developed 

the following analytical solution for the dynamic ERR accounting for the kinetic-energy 

contribution for the ENF specimen with the crack-length ratio a/L = 0.5 (Figure 3.3c): 

 
2 2 23 0.078 .

64
P a AvG
bEI b

ρ
= +  (4.8) 

Eq. (4.8) was still based on global approach Gglobal = d(Wext – U – K)/dA0, with the kinetic 

energy determined by extrapolating the externally applied constant velocity v from the 

crosshead speed of the test machine. 

The kinetic-energy contribution to the fracture toughness measured in their 

experiments using Eq. (4.8) was, however, negligible [18]. It contributed less than 0.01% 

for applied velocities between 4.6×10-6 and 9.2×10-2 m s-1. Kusaka et al. [84] conducted 

a mode-II fracture test using Hopkinson bars. They measured the kinetic energy term in 

Eq. (4.8) as ranging from 0.2 to 3%, and concluded that the dynamic effect could be 

ignored. Cantwell [101] came to the same conclusion as the second term in Eq. (4.8) 

contributed less than 0.05% in their experiments with loading rates up to 3 m s-1. 
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4.2.2.2 Stationary cracks in ELS specimens 

The conventional dynamic ERR solution for the ELS specimen was given by [88]. 

The same analytical approach was applied, but the kinetic-energy contribution due to the 

extrapolated quasi-static motion from the applied constant loading velocity was derived 

as a function of crack-length ratio η, where η = a/L0 (Figure 3.3b). The total ERR was 

derived as 
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 (4.9) 

The kinetic-energy contribution to the ERR – the last term in Eq. (4.9) – is still very 

small compared to the ERR component due to the quasi-static component, the first term 

in Eq. (4.9). As reported in [88], for the epoxy/carbon-fibre composite specimen under 

5 m s-1 loading rate and with crack length ratio η = 0.6, the kinetic-energy contribution 

from the second term in Eq. (4.9) was only 5 N m-1, while the quasi-static component 

from the first term in Eq. (4.9) was 800 N m-1. It was therefore concluded in [88] that the 

kinetic-energy contribution could be ignored. Note that the kinetic-energy contribution to 

the total dynamic ERR in Eq. (4.9) was not always positive or negative but dependent on 

the crack length ratio η. A plot of normalised kinetic contribution to the ERR against η 

with the ranging from 0.025 to 0.975 is shown in Figure 4.3, which demonstrates the 

kinetic contribution to the ERR is (–0.18 ~ 0.15)ρAv2/b approximately. 

 
Figure 4.2 Normalised kinetic-energy contribution to ERR versus crack length ratio 
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4.2.2.3 Stationary cracks in CNF specimens 

Maikuma et al. [86] conducted experiments using the CNF specimen (Figure 4.3) 

under impact loading to study the dynamic mode-II fracture behaviour of CFRPs and 

developed an analytical solution for the ERR to post-process the experimental data. 

 
Figure 4.3 Configuration of CNF test specimen 

The dynamic ERR solution for the CNF specimen with crack-length ratio a/L = 0.5 

is 

 
2 2 23 0.633 ,

256
P a AvG

bEI b
ρ

= −  (4.10) 

where P is determined by the impact load history, and v is the impact velocity. The latter 

ranged in their experiments from 1.25 m s-1 to 3.00 m s-1, and within this range, they 

found the kinetic-energy contribution from the second term in Eq. (4.10) to be less 

than 1%. 

4.3 Numerical method 

The numerical method, as the third method to study physical and mechanical 

problems, is a compensation for the limitations of analytical and experimental methods. 

And computational fracture mechanics as a branch of solid mechanics is established 

including various numerical techniques to solve the relevant problems in fracture 

mechanics field [102][103][104]. 

4.3.1 Numerical methods for fracture mechanics 

The numerical method in solid mechanics requires discretising the continuous 

structure, and there are mainly two methods of doing so: mesh-related methods and 

meshfree methods (or meshless methods). And then by solving the general equilibrium 

equations of Eq. (4.11), the displacement field can be obtained and then used to calculate 

relevant parameters for fracture mechanics. 
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 [ ]{ } [ ]{ } [ ]{ } { } ,M u C u K u R+ + =   (4.11) 

where [M], [C], [K] are the mass matrix, damping matrix, and stiffness matrix; {R} is the 

external load vector; {u} is the displacement vector. Note that for quasi-static problems, 

the mass matrix and damping matrix are zero; and for linear elastodynamics, the damping 

matrix is zero. 

4.3.1.1 Meshfree method and fracture mechanics 

One of the major incentives of using meshfree methods is to overcome the difficulty 

in mesh-related methods to address the large deformation associated with mesh distortion 

in crack propagation, material damage, impact and penetration, etc. In fracture modelling, 

for instance, the FEM does not allow the crack to propagate through the element (except 

XFEM) and requires re-meshing and mapping, which can be computationally expensive 

and inaccurate.  

Meshfree methods originated from 1977 with the development of smoothed particle 

hydrodynamics (SPH), which was aimed for modelling astrophysics [105], and has been 

applied in fluid dynamics and solid mechanics [106].  

Generally, the meshfree method discretises the continuous structure into nodal 

points, which carry the field variables. After discretion, an approximation method is used 

to estimate the field variable of a particular nodal point through the other nodal points 

around. For instance, SPH takes the weighted average of the field variables of the other 

nodal points around within a spatial domain Ω shown in Figure 4.4 via kernel function 

Eq. (4.12), and the field variable for the given nodal points can be determined as  

 ( ) ( ) ( )' ', ' ,f x f x W x x h dx
Ω

= −∫  (4.12) 

where ( )',W x x h−  is the kernel function, and h is the smoothing length. As shown in 

Figure 4.4, ( )',W x x h−  is used to assess the field variables of the particle i using 

weighted averaged summations over particle j within the support domain within cut-off 

distance related to smoothing length h. 
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Figure 4.4 SPH particle approximations in a 2D domain Ω with a surface S [107]. 

Reproduced with permission from M. B. Liu and G. R. Liu, Arch. Comput. Methods 

Eng, 17, 2010 © Springer Nature 

The kernel domain in SPH is truncated by the cut-off distance shown in Figure 4.4, 

and this can result in inaccuracy when solving fracture problem. Modifying the kernel 

function to address this issue leads to modified SPH [108] and continuous SPH 

method [109], and they were used to derive dynamic SIFs for a central crack in a plate 

subjected to dynamic tensile loading, showing great potential.  

Other meshfree methods consider different approximations. For example, using 

moving least squares (MLS) method leads to element-free Galerkin method 

(EFGM) [110], and this method was applied to simulate and solve various fracture 

problems, such as static and dynamic SIFs [111][112][113], mode-mixity [114], 

delamination in composites [115], impact fracture [116]. 

4.3.1.2 Finite-element method and fracture mechanics 

The FEM is the dominant method in mesh-related numerical methods among the 

other methods, such as finite-difference method (FDM), finite-volume method (FVM), 

and it has been integrated into several commercial codes. 

In FEM, unlike the meshfree method, the structure is discretised into elements and 

these elements are connected by nodes. The field variables, for instance, displacements 

of the nodes are derived by Eq. (4.11) first, and then are used to interpolate inside each 

element via shape functions in contrast to the kernel function in meshfree methods. 

In the field of fracture mechanics, several numerical techniques were developed and 

well-incorporated into FEM to solve fracture problems, such as quarter-point elements 
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[117][118], the virtual-crack-extension method [119][120], the virtual-crack-closure 

technique (VCCT) [121], the extended-finite-element method (XFEM) [122][123], etc. 

Quarter-point elements shown in Figure 4.5 were developed with the possibility to 

simulate the singularity exactly at the crack tip by shifting mid-side nodes to quarter-side 

position and modifying isoparametric elements with a quadratic shape function, the 

application of quarter-point elements in the dynamic fracture field to generate dynamic 

SIFs can be found in [124].  

 
Figure 4.5 Quarter-point elements: (a) 8-noded quadrilateral element; (b) 6-noded 

triangular element 

Virtual-crack-extension method considers a perturbation of crack-tip location Δl as 

if crack advanced and calculates the response of stiffness matrix, that is, the derivative of 

stiffness matrix with respect to the crack length perturbation, and this derivative is used 

to calculate the global energy change, which is the ERR. The limitation of this method is 

the determination for the length of this virtual extension Δl and derivative of the stiffness 

matrix needs additional computational process. 

XFEM introduces enrichment functions into classical finite elements based on the 

partition of unity method, and the combined displacement vector becomes 

 ( ) ( ) ( )
4

1 1
,

N

i i i i
i

u N x u H x a F x bα
α

α= =

 = + +  
∑ ∑  (4.13) 

where ( )iN x  is the classical shape function, iu  is the continuous displacement derived 

from classical FEM solution, ia  and ibα  are the nodal enriched degree of freedom vector, 

H(x) is the discontinuous function, ( )F xα  is the elastic asymptotic crack-tip function. 

XFEM allows the crack to propagate ‘through’ the classical elements as in Figure 4.6. 
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The various general dynamic fracture problems have been studied by XFEM 

[125][126][127][128][129], such as generating dynamic SIFs, dynamic ERRs, dynamic 

crack propagation and arrest. 

 
Figure 4.6 Enrichment scheme for XFEM: the circled nodes are enriched with 

discontinuous function and the squared nodes are enriched with crack-tip enrich 

functions 

4.3.2 Numerical techniques for interfacial fracture mechanics 

4.3.2.1 Virtual-crack-closure technique (VCCT) 

The VCCT is based on Irwin’s crack closure integral that the energy dissipated with 

crack extension Δa is equal to the amount of work needed to close the crack. In Cartesian 

coordinates, for a 2D problem, the mode-I and mode-II crack closure integrals are 
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To directly incorporate Eqs. (4.14) and (4.15) into FEM, the nodal force at the 

crack-tip node before crack extension and the nodal displacement after crack extension 

for the original crack-tip node are needed, and this is referred as “two-step VCCT”. To 

simplify this process, Rybicki and Kanninen [121] proposed that displacement before 

crack extension behind the crack-tip node can be used to replace the displacement at the 

crack-tip node after crack extension, assuming crack propagation is self-similar. In the 

quadrilateral elements shown in Figure 4.7, the mode-I and mode-II ERR components are 

 ( )*I
1 ,

2
y

i l l
G F v v

a
= − −

∆
 (4.16) 

 ( )*II
1 ,

2
x

i l l
G F u u

a
= − −

∆
 (4.17) 



Chapter 4 Conventional dynamic interfacial fracture 

  58 

where Δa is the element length, y
iF  and x

iF  are the force components at the crack-tip 

node i, lv  and lu  are the displacement components for the node l, *l
v  and *l

u  are the 

displacement components for the node *l . 

 
Figure 4.7 VCCT for 2D quadrilateral elements 

Note that if the displacements and nodal forces are solved in the dynamic 

equilibrium as per Eq. (4.11), the displacements and nodal forces will carry the dynamic 

(inertial) effects implicitly and thus the VCCT has a potential to calculate dynamic ERRs 

or dynamic SIFs. Jih and Sun [130] used the VCCT to study the dynamic SIF for a central 

crack in a panel under transient loading, and an excellent agreement with the classical 

analytical result [36] was achieved. Tsai et al. [131] used the VCCT to calculate dynamic 

mode-II ERR for ENF specimen using experimentally determined the crack length curve 

to determine the dynamic fracture toughness. Qian and Xie [132] developed a VCCT 

interface element to study the dynamic fracture behaviour for the mode-mixity. 

4.3.2.2 Cohesive zone modelling (CZM) 

The cohesive zone concepts were believed originated by Dugdale [133] and 

Barenblatt [134]: Dugdale studied a plastic zone ahead of the crack tip of steel slits and 

assumed the stress is constant as the yield strength, whereas Barenblatt believed that in 

this softening zone, the stress varies. Hillerborg et al. [135] were the first to incorporate 

this concept into FEM to study the crack in a concrete beam. Their assumption was that 

the crack will begin to initiate when the stress at crack tip reaches tensile strength σmax, 

but this stress will not drop to zero immediately; rather, it will fall, for instance, linearly 

with crack opening width and reach to zero for a given opening width of δf as shown in 

Figure 4.8a, where δf represents opening displacement at complete failure. This 
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constitutive behaviour is referred to as bilinear traction-separation law. Other types of 

traction-separation laws were also developed, such as trapezoidal law [136] (Figure 4.8b), 

perfectly plastic law [137] (Figure 4.8c), polynomial law [138], exponential law [139] 

(Figure 4.8d). 

 
Figure 4.8 Traction-separation laws 

Another important aspect of these traction-separation laws is the area that they form 

represents the energy absorbed by the crack until the complete failure, and in this sense, 

it is also the critical ERR or fracture toughness, given by 

 f

c 0
,G d

δ
σ δ= ∫  (4.18) 

where δ is the crack opening displacement.  

Therefore, the advantage of CZM over VCCT is that it can predict both crack 

initiation and propagation. The implementation of CZM into FEM can be achieved by 

spring elements, cohesive elements and contact algorithms. One of the issues with CZM 

is the determination of its mesh size, that is, for the accuracy of the simulation the mesh 

size must be efficiently small than a critical length, and this has been extensively studied, 

such as in [140][141]. For further application of CZM concepts in dynamic fracture field, 

rate-dependent cohesive model [142] and time-dependent cohesive segments 

method [143] were developed.  

But a recent study [22] used both rate-independent and rate-dependent CZM to 

simulate the DCB tests in [19][20] and it is found that CZM could not reproduce the 

‘stick-slip’ crack propagation behaviour (see Section 4.2.1.2) observed in experiments, 
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and the researchers then resorted to the interfacial thick-level-set modelling (ITLSM), 

which demonstrates the ability to capture this non-smooth crack propagation behaviour. 

4.3.2.3 Interfacial thick-level-set modelling (ITLSM) 

The original motivations to include level-set method [144] to investigate fracture 

problems numerically are: (1) to overcome the mesh size limitation of CZM for larger 

elements to be used; (2) to simulate non-self-similar crack propagation in contrast to the 

VCCT, and related studies can be found in [145][146]. 

The thick-level-set method was first proposed by Moёs et al. [147] in 2011, in which 

they introduced a fixed damaged band length lc for the damage zone. A comparison of 

this damage zone to a cohesive zone is given in Figure 4.9 from [148], and a 

comprehensive comparison of these two methods is also given in the same reference. By 

the non-local treatment for this damage zone within the length lc, thick-level-set model 

avoids spurious localisation; inside the damaged band, a damage function is assigned to 

determine the damage variable d with respect to the level-set field, and this distributed 

damage variable is used to calculate the ERR over the length lc [149], whereas in CZM 

the ERR is calculated locally. 

 
Figure 4.9 Comparison for an opening crack with (a) cohesive zone; (b) thick level set 

damage zone [148]. Reproduced from permission from A. Gómez, N. Moës, and C. 

Stolz, Adv. Model. Simul. Eng. Sci, 2, 2015. © Springer Nature 

Recently, the ITLSM incorporates the thick-level-set concept to study the 

interfacial fractures [22][149], showing great potential over CZM, especially for the 

capture of fracture behaviour such as ‘stick-slip’ crack propagation behaviour in DCBs 

with crack arrest phenomenon. Liu et al. [22] applied rate-independent and rate-

dependent CZM to simulate the experimentally observed crack propagation in DCBs 

under high loading rate from [19][20] as well as using the ITLSM. The comparisons of 
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experimental and numerical results showed that the rate-dependent CZM improved 

simulation result compared to the rate-independent CZM, but, still, they both cannot 

capture the crack arrest phenomenon observed in experiments; the ITLSM, however, 

demonstrated an excellent agreement with the experimental results.  

4.3.2.4 Experimental-numerical hybrid method 

The experimental-numerical hybrid method is usually used when there are no 

available analytical solutions to post-process the experimental data. Experimentally 

measured parameters, such as external force, crack length versus time curve, crack-

propagation speed, are incorporated into numerical models, and the desired fracture 

parameters, e.g. ERR and fracture toughness, are calculated by FEM simulations. 

Nishioka and Atluri [150] introduced an experimentally obtained crack length-time 

curve for a wedge-loaded DCB into finite-element models with their developed singular 

elements to determine the dynamic SIF. Guo and Sun [151] incorporated a similar curve 

for a DCB into a finite-element model and developed a scheme of sequentially releasing 

nodes to calculate the dynamic ERR as 

 ( )1 ALLSE ALLKE ,G
a

= − ∆ + ∆
∆

 (4.19) 

where ALLSE is the total elastic strain energy and ALLKE is the total kinetic energy, 

both directly obtained in FEM simulations. Tsai et al. [131] followed the same approach 

to study mode-II fracture in ENF specimen. They used the VCCT to calculate the dynamic 

ERR and obtained results, which were demonstrated to be equivalent to that derived with 

Eq. (4.19). Kumar and Kishore [152] studied DCBs under impact loading, and used the 

experimentally measured deflection and crack-propagation speed to calculate the J-

integral to determine the fracture toughness. Liu et al. [21] conducted DCB tests under 

impact using Hopkinson bars, and incorporated experimental data into finite-element 

model with the VCCT to determine the fracture toughness. Subsequently, Liu et al. [90] 

also used the CZM to post-process experimental data to determine the fracture toughness.  

Note that Refs. [21][90] also confirmed the oscillating characteristic of ERR before 

crack initiation, which the conventional analytical approaches (Section 4.2) do not 

capture with their developed ‘smoothed’ ERR solution. 



Chapter 4 Conventional dynamic interfacial fracture 

  62 

4.4 Conclusion 

The conventional analytical approaches for dynamic interfacial fracture are 

reviewed in this chapter, which are based on the global approach (Section 3.3.2.1) 

including kinetic energy to account for the dynamic effect. This kinetic energy only 

considers the quasi-static motion by extrapolating the applied velocity along the beam 

section of DCB, ENF and ELS configurations. This method provided a ‘smoothed’ 

dynamic ERR, and the kinetic-energy contribution is a baseline shift for the dynamic ERR 

from its quasi-static component. But surprisingly post-processing the experimental data 

using these conventional analytical solutions shows that the dynamic effects under high 

loading rates are negligible. Other experimental and numerical investigations, however, 

show that the dynamic ERR, in general, is oscillating, which the conventional analytical 

approaches do not capture. This oscillation of dynamic ERR is important to understand 

the contrary rate effects on measured fracture toughness as well as to understand the 

fracture behaviour, such as crack initiation, propagation and arrest. Therefore, a new 

analytical framework, which accounts for structural vibration and wave propagation for 

dynamic interfacial fracture, is required. And this analytical framework is developed in 

Chapter 5. 

In additional, numerical techniques for interfacial fracture are reviewed. The 

numerical results from these techniques, such as VCCT, CZM and ITLSM, with their 

ability to study dynamic fracture problems, are used to verify and confirm the developed 

analytical theories in the later chapters. For a stationary crack, VCCT and CZM are 

demonstrated adequate to provide accurate numerical results for dynamic ERR; but for a 

propagating crack, VCCT and CZM could not capture crack arrest behaviour accurately 

and, therefore, are reckoned not to provide accurate dynamic ERR, and results from 

ITLSM are desirable. 

 



 
Chapter 5:  Dynamic mode-I interfacial fracture for 

stationary crack 

5.1 Introduction 

DCBs are the most fundamental engineering structures to study the mode-I fracture 

behaviour. The analytical framework for investigating the dynamic interfacial fracture is 

developed and established on the mode-I stationary cracks in DCBs in this chapter. This 

is for the first time that structural vibration and wave propagation are taken into 

consideration to study the dynamic interfacial facture in DCBs. The dynamic response of 

the DCB is studied analytically by solving the equation of motion together with the time-

dependent boundary condition using Grant’s method (but derivation is completely new), 

which allows the dynamic effect due to kinetic energy to be studied; the theoretical 

development with vibration is found to be erroneous by overlooking the wave propagation 

properties, i.e. dispersion; to correct this, the energy supplied to the crack-tip for crack 

propagation is examined in the context of flexural wave propagation, giving dispersion-

corrected global approach.  

5.2 Theoretical development with vibration 

To study the dynamic effect on mode-I ERR, equal and opposite time-dependent 

displacement w0 (t) are applied to the free-ends of DCB arms (Figure 5.1a). The widely 

used method for analysing DCB considers the crack region of DCB arm and assumes an 

effective boundary condition for the crack tip (Figure 5.1b). This condition does not allow 

the crack tip to rotate and is discussed in Section 5.5. The DCB arm is assumed to be thin, 

where h << a, and a classical idea of Euler-Bernoulli beam applies; the displacement is 

small, and no longitudinal forces are developed. In addition, no interfacial contact is 

assumed between two DCB arms, and the DCB arm with the effective boundary condition 

(Figure 5.1b) can vibrate freely. 
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Figure 5.1 DCB configuration for stationary crack: (a) symmetric double cantilever 

beam; (b) effective boundary condition and prescribed coordinates 

The dynamic response of the DCB arm under time-dependent displacement w0 (t) 

is solved by Grant’s method for time-dependent boundary condition as per Section 2.2.3, 

which lays the foundation for the analytical framework to study dynamic interfacial 

fracture. 

5.2.1 Dynamic response of thin beam 

For the DCB arms under constant-opening rate v with the corresponding 

displacement w0 (t) = vt, the dynamic transverse response (deflection) of the DCB arm 

shown in Figure 5.1b can be derived by introducing a shifting function, the transverse 

deflection of the beam is of the form 

 ( ) ( ) ( )fv, , ,w x t w x t F x vt= +  (5.1) 

where wfv (x, t) is the free-vibration component and F (x) is the shifting function. Note 

that the product of applied displacement w0 (t) = vt and shifting function F (x) represents 

the quasi-static motion of the DCB arm, and, therefore, the total dynamic response is 

deemed to be a combination of free vibration and quasi-static motion. 

Combining Eqs. (2.6) (the equation of motion for vibration) and (5.1), and 

enforcing homogeneous conditions, the equation of motion for the free-vibration 

component wfv (x, t) and governing equation for the shifting function F (x) are obtained 

as 

 ( ) ( ) ( )4
fv fv, , 0 ,EIw x t Aw x tρ+ =  (5.2) 

 ( ) ( )4 0.F x =  (5.3) 
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The boundary conditions for total deflection w (x, t) are w (0, t) = 0, w(1) (0, t) = 0, 

w (a, t) = vt and w(2) (a, t) = 0. Using these boundary conditions for w (x, t) in Eq. (5.1) 

and forcing homogeneous conditions again, the boundary conditions for the free-vibration 

component wfv (x, t) and the shifting function F (x) are obtained in Table 5.1. 

Table 5.1 Boundary conditions for total deflection and its components 

Boundary 
Total deflection 

( ),w x t  

Free-vibration component 

( )fv ,w x t  

Shifting function 

( )F x  

0x =  

( )0, 0w t =  ( )fv 0, 0w t =  ( )0 0F =  

( ) ( )1 0, 0w t =  ( ) ( )1
fv 0, 0w t =  ( ) ( )1 0 0F =  

x a=  

( ),w a t vt=  ( )fv , 0w a t =  ( ) 1F a =  

( ) ( )2 , 0w a t =  ( ) ( )2
fv , 0w a t =  ( ) ( )2 0F a =  

 

Note that the boundary conditions for the free-vibration component wfv (x, t) 

represent a fixed-pinned beam in free vibration. 

5.2.1.1 Solution for free-vibration component 

The solution for the free vibration for a fixed-pinned beam is a product of normal 

mode Eq. (2.21) and modal displacement Eq. (2.28) by the method of separation of 

variables via Eq. (2.7). The only parameters needed now are the initial displacement 

( )fv ,0w x  and initial velocity ( )fv ,0w x  for the free vibration to the determine the initial 

modal displacement and velocity, respectively.  

At t = 0, the DCB arm in Figure 5.1b is at rest and thus the transverse deflection at 

that moment is ( ),0 0w x =  and the transverse velocity is ( ),0 0w x = . These initial 

conditions, together with Eq. (5.1), give the initial conditions for the free-vibration 

component as ( )fv ,0 0w x =  and ( ) ( )fv ,0w x vF x= − . The ith initial modal displacement 

and velocity can thus be determined by Eqs. (2.31) and (2.32), and ith initial modal 

displacement ( )0iT  is found to be zero, and ith initial modal velocity ( )0iT  depends on 

the shifting function. Now consider the solution for the shifting function. 
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5.2.1.2 Solution for shifting function 

Solving the governing equation for shifting function F (x) in Eq. (5.3) with the 

boundary conditions in Table 5.1 gives the shifting function as 

 ( ) 3 2
3 2

1 3 .
2 2

F x x x
a a

= − +  (5.4) 

The shifting function together with the applied velocity of v gives a velocity 

distribution along the beam length for the crack region as Figure 5.2 indicates. This 

velocity distribution vF(x) is also the quasi-static motion of the DCB arm; it has the same 

expression with the solution for quasi-static motion Eq. (4.1) in the conventional 

analytical approach, such as in Smiley and Pipes’ work [17]. 

 
Figure 5.2 Velocity distribution along the DCB arm for the crack region due to applied 

opening velocity 

Therefore, with the initial velocity for the free vibration ( ) ( )fv ,0w x vF x= − , using 

Eq. (2.32), the ith initial modal velocity is found to be 

 ( ) ( ) ( )fv0
0 ,0 ,

a i
i i

i

T AW x w x dx v Aaρ ρ
λ
Λ

= =∫

  (5.5) 

where λi is the solution for frequency equation Eq. (2.20) and 

( ) 2 21 1 1i
i i iσ σΛ = − + + −  with ( ) ( ) ( ) ( )cosh cos sinh sini i i i iσ λ λ λ λ= − −       . Note 

that the integration for Eq. (5.5) uses the formulas in Appendix A. The solutions for λi, σi 

and Λi are given in Table 5.2. 
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Table 5.2 Modal parameters for fixed-pinned beam in free vibration 

Mode number λi σi Λi 

1 3.92660231 1.000777304 -1.375327127 

2 7.06858275 1.000001445 1.415914585 

3 10.21017612 1.000000000 2−  

4 13.35176878 1.000000000 2  

5 16.49336143 1.000000000 2−  

i > 5 (4i + 1)π/4 1.0 ( )1 2i−  

 

5.2.1.3 Solution of total deflection 

Now, combining solutions in Sections 5.2.1.1 and 5.2.1.2, the total deflection of a 

DCB arm under the constant-opening rate v at its free end from t = 0 is obtained: 

 

( ) ( ) ( )

( ) ( )

2 3 2
3 3 2

1

2 3 2
3 3 2

1

1 3, sin
2 2

1 3sin ,
2 2

i
i i

i i

i
i i

i i

Aw x t va x t x x vt
EI a a

Av a x t x x t
EI a a

ρ φ ω
λ

ρ φ ω
λ

∞

=

∞

=

Λ  = + − + 
 

 Λ  = + − +  
  

∑

∑
 (5.6) 

where ( )i xφ  is the ith mode shape given in Eq. (2.22) and ωi is the ith mode natural 

frequency given in Eq. (2.11) for ( )2 2
i i a EI Aω λ ρ−=  with i iaλ β= . 

Note that rather than only accounting for quasi-static motion in the conventional 

analytical approach in Eq. (4.1), the dynamic response now in Eq. (5.6) also considers the 

free vibration due to the applied time-dependent displacement, and the significance is that 

the transverse motion now is a combination of local free vibration and quasi-static motion; 

their interaction or coupling should also be also considered to study dynamic fracture. 

Another notion is that the total transverse deflection is proportional to the applied 

constant-opening rate v, and terms in the bracket in Eq. (5.6) are an inherent property of 

a given DCB configuration. 
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5.2.2 Dynamic energy release rate and amplitude divergence 

The total transverse deflection in Eq. (5.6) is therefore used to calculate the strain 

and kinetic energies of the vibrating DCB arm under the applied time-dependent 

displacement as required to determine the ERR by the global approach in Eq. (3.34) 

similar to the conventional analytical approach. 

5.2.2.1 Strain energy 

The strain energy of one DCB arm in Figure 5.1b is ( ) ( )2

0
, 2

a
U M x t dx EI= ∫ , 

where M (x, t) = EIw(2) (x, t), which is the internal bending moment. The strain energy of 

the vibrating DCB arm with constant-opening rate displacement at its free end by 

combining the total deflection Eq. (5.6) is therefore 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 22 2 2 2
fv fv0

1 , 2 , .
2

a
U EIw x t EIw x t F x vt F x vt dx

EI
   = + +   ∫  (5.7) 

Let Uloc, Ucp and Ust correspond in order to each of the three terms in Eq. (5.7), 

representing the strain energy component due to the local vibration, the strain energy 

component due to the coupling between the local vibration and the quasi-static motion, 

and the strain energy component due to the quasi-static motion (in the form of the product 

of the shifting function F (x) and applied velocity v), respectively. 

The strain energy component due to the local vibration Uloc expands to 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
22

loc 30
1

2
21

1 13
1

2 21
1 13 3

21

2
24 2 2

2 23
2

2 22
2 23 3

32

2
3

1 sin
2

sin

2 sin sin

1 lim sin
2

2 sin sin

sin

a i
i i

i i

n
j

j j
j j

n

n
j

j j
j j

n
n n

n

U a v AEI x t dx
EI

x t

x t x t

Aa v x t

x t x t

x t

ρ φ ω
λ

φ ω
λ

φ ω φ ω
λ λ

ρ φ ω
λ

φ ω φ ω
λ λ

φ ω
λ

∞

=

=

→∞

=

 Λ
=  

 

 Λ
 
 

ΛΛ
+

 Λ
= +  

 
ΛΛ

+

Λ
+ +

∑∫

∑

∑



0

2

.
a

dx

 
 
 
 
 
 
 
  
 
 
 
 
 
 
  
  

   

∫
 (5.8) 

By the orthogonality condition in Eq. (2.17), Uloc simplifies to 
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 ( )
2

2 2
loc 2

1

1 sin .
2

i
i

i i

U Aav tρ ω
λ

∞

=

Λ
= ∑  (5.9) 

Eq. (5.9) suggests that the total strain energy component due to the local vibration 

is a summation of each orthogonal vibration mode’s strain energy, and there is no 

coupling between different vibration modes for the total strain energy due to the local 

vibration.  

Next, by expanding the strain energy component due to the coupling between the 

local vibration and the quasi-static motion, it is found to be zero, i.e. Ucp = 0 (the formulas 

in Appendix A are applied). This shows that for this strain energy component, the local 

vibration does not affect the quasi-static motion, and vice versa, and their synergy is zero.  

And then, by expanding the strain energy component due to the quasi-static motion, 

Ust is found to be 

 
2 2

st 3

3 .
2

EIv tU
a

=  (5.10) 

Thus, the total strain energy is as follows: 

 ( )
2 2 2

2 2
2 3

1

1 3sin .
2 2

i
i

i i

EIv tU Aav t
a

ρ ω
λ

∞

=

Λ
= +∑  (5.11) 

5.2.2.2 Kinetic energy 

The kinetic energy of one DCB arm in Figure 5.1b is ( ) 2

0
, 2

a
K A w x t dxρ=   ∫  , 

and by combining Eq. (5.6), the total kinetic energy is 

 ( ) ( ) ( ) ( )2 2 2
fv fv0

1 , 2 , .
2

a
K A w x t w x t F x v v F x dxρ  = + + ∫    (5.12) 

Note that ( )fv ,w x t  is the transverse velocity of the local vibration, and the product 

of vF (x) is transverse velocity due to the quasi-static motion. In a similar way to before 

as for the strain energy, let Kloc, Kcp, and Kst correspond in order to each three terms in 

Eq. (5.12), representing the kinetic energy component due to the local vibration, the 

kinetic energy component due to the coupling between the local vibration and the quasi-

static motion, and the kinetic energy component due to the quasi-static motion, 

respectively. 
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The local vibration kinetic energy component Kloc expands to 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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loc 0
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2
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2
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2
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=
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=  
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 ΛΛ +


  Λ= +  

 
 ΛΛ +


  Λ
+ +  

 
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∑

∑



0
.

a
dx

















 
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∫
 (5.13) 

As the same for the strain energy, by applying the orthogonality of normal modes 

in Eq. (2.16), the kinetic energy component due to the local vibration simplifies to 

 ( )
2

2 2
loc 2

1

1 cos .
2

i
t

i i

K Aav tρ ω
λ

∞

=

Λ
= ∑  (5.14) 

By expanding the remaining terms, the kinetic energy component due to the 

coupling between the local vibration and the quasi-static motion is obtained as 

 ( )
2

2
cp 2

1
cos ,i

i
i i

K Aav tρ ω
λ

∞

=

Λ
= − ∑  (5.15) 

and the kinetic energy component due to the quasi-static motion is derived as 

 2
st

33 .
280

K Aavρ=  (5.16) 

Note that the kinetic energy component due to the quasi-static motion Kst is the total 

kinetic energy used in the conventional analytical approach in Eq. (4.2). In this study, the 

kinetic energy component due to vibration is also included, which is (Kloc + Kcp). 

Therefore, the total kinetic energy is as follows: 

 ( ) ( )
2 2

2 2 2 2
2 2

1 1

1 33cos cos .
2 280

i i
t i

i ii i

K Aav t Aav t Aavρ ω ρ ω ρ
λ λ

∞ ∞

= =

Λ Λ
= − +∑ ∑  (5.17) 
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5.2.2.3 Dynamic energy release rate 

The dynamic ERR of the DCB shown in Figure 5.1a (i.e. comprising two single 

arms in Figure 5.1b with equal and opposite displacements) is now obtained using the 

global approach in Eq. (3.34) Gglobal = d(Wext – U – K)/dA0, accounting for a global 

energy balance together with Eqs. (5.11) and (5.17) (under displacement control 

Wext = 0), which gives 

 

( )

( ) ( )

ext

2 2

4

2 2
2 2

2 2
1 1

2
2

2
1

2

1

9

4 sin 2 cos
1 .

33
140

i
i i i

i i i

i

i i

dG W U K
b da

EIv t
a

AEIv t t Av t
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b
Av

Av

ρ
ω ρ ω

λ

ρ
λ

ρ

∞ ∞

= =

∞

=

= − −

 
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+ Λ + 
 =  

Λ − 
 
 −  

∑ ∑

∑

 (5.18) 

Note that the natural frequency ωi is a function of crack length a via Eq. (2.11) with 

i iaλ β=  giving ( )2 2
i i a EI Aω λ ρ−= , and this was taken into account when 

differentiating the corresponding energy terms to derive dynamic ERR in Eq. (5.18).  

In Eq. (5.18), the ERR components with their sources are: (1) the first term is the 

contribution of the strain energy of the quasi-static motion denoted as U
stG ; (2) the second 

and third terms are due to the kinetic energy of coupling between the local vibration and 

the quasi-static motion, and the fourth term is due to the strain and kinetic energies of the 

local vibration, and therefore, these three terms are grouped together and denoted vibG  

since they are vibration-related ERR component; (3) the last term is the ERR component 

due to the kinetic energy of the quasi-static motion and denoted K
stG . Thus, the total 

dynamic ERR now can be written accordingly as 

 st vib
U K
st st vib ,

G G G
G G G

= +

= + +
 (5.19) 

where Gst is the ERR component due to quasi-static motion for U K
st st stG G G= + . Note that 

K
stG  is also the kinetic-energy contribution in the conventional analytical approach and 

Gst has the same expression as the conventional analytical studies in Eq. (4.4); therefore, 
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actually, in the conventional analytical studies, only the ERR due to quasi-static motion 

was derived by neglecting the vibration-related ERR component Gvib. 

5.2.2.4 ERR divergence and ERR with first-vibration-mode accuracy 

The total dynamic ERR in Eq. (5.18) is based on the global approach 

(Section 3.3.2.1) accounting for kinetic-energy contribution via Eq. (3.34) 

Gglobal = d(Wext – U – K)/dA0, which was used extensively in LEFM and the conventional 

analytical approach for dynamic interfacial fracture; thus, it was supposed to be able to 

predict the ERR accurately. But a close examination of the ERR derived in Eq. (5.18), 

particular for the ERR component due to vibration Gvib, reveals that the ERR determined 

in Eq. (5.18) provides a non-physical and non-mechanical solution, since the amplitude 

of the ERR component due to vibration Gvib shows a divergent fashion with adding more 

vibration modes, and its amplitude is with no bound. 

This divergence in the ERR amplitude with including more vibration modes comes 

from the term of ( )2 2 2
1

4 sini ii
AEIv ta tρ ω∞−

=
Λ∑  in Gvib. For the ith vibration mode, the 

amplitude of this ERR component is proportional to 2
iΛ . As Table 5.2 shows, the value 

of Λi can be approximately taken as ( )1 2i
iΛ ≈ − , so 2 2iΛ ≈ , and this leads to the 

phenomenon that by adding more vibration modes the amplitude of Gvib keeps increasing. 

This phenomenon of divergence is also shown in Figure 5.8 (Section 5.4.2). But the 

verification demonstrates that the dynamic ERR with only the first vibration mode can 

capture the oscillation in the result from FEM and seems to be the envelope, and, 

therefore, the dynamic ERR with the first-vibration-mode accuracy is proposed as 

 
( ) ( )

2 2
2

4

2 2 2
2 2 21 1
1 1 12 2 2

1 1

9 33
1401 .

4 sin 2 cos

EIv t Av
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G
b AEIv t t Av t Av

a
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ω ρ ω ρ

λ λ

 
− 

 =  
Λ Λ + Λ + −

  

 (5.20) 

Note that the first vibration mode has the lowest natural frequency, and therefore 

Eq. (5.20) is approximately applicable when the duration of the external load is long for 

low-frequency vibration mode is significant. 
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5.2.3 Dynamic factor 

Based on the derived dynamic ERR in Eq. (5.20), a dynamic factor can be defined 

to investigate the dynamic effects. 

In the derived dynamic ERR with the first-vibration-mode accuracy in Eq. (5.20), 

the first term is the ERR component due to the strain energy of the quasi-static motion 
U
stG , which is also the strain ERR in the quasi-static loading regime without any dynamic 

effect (see Eq. (3.25)), and accordingly, the remaining terms can be grouped together as 

the dynamic component Gdyn, so that the total dynamic ERR is U
st dynG G G= + , where 
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 (5.21) 

Therefore, the dynamic factor fdyn is defined by U
dyn dyn stf G G= . A characteristic time can 

be introduced to study the property of fdyn, that is, ( )2ta EI Aτ ρ−= . Then the dynamic 

factor can be written as a function of this characteristic time: 
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 (5.22) 

Based on the above definition, the total dynamic ERR is then given by 

( )U
st dyn1G G f= + . The ERR is proportional to the static ERR with the dynamic factor, 

which is determined by the characteristic time only. Note that the characteristic time is 

an inherent and universal property of the DCB with given material properties and 

structural configuration. And thus, the dynamic factor defined by Eq. (5.22) is also 

inherent and universal for DCBs. 

As the Eq. (5.22) suggests, the dynamic factor fdyn attenuates significantly with 

respect to the characteristic time τ with oscillation, and it is plotted against the 

characteristic time as the solid line in Figure 5.3 together with dynamic factor in the 

conventional analytical approach represented by the dashed line. The conventional 

dynamic factor is derived from Eq. (4.4) and related to the characteristic time τ, which is 
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found to be 2
dyn 11 420f τ −= − , and this is also the last term of Eq. (5.22). As expected, 

the dynamic factor due to structural vibration oscillates, while the dynamic factor defined 

by the conventional analytical approach is an inverse function of time without any 

oscillation; both dynamic factors decay with time. 

 
Figure 5.3 Dynamic factor versus characteristic time 

The oscillating dynamic factor is less than -1 during parts of the first two vibration 

periods, which leads to the negative ERR. This finding is consistent with conventional 

analytical investigations by Smiley and Pipes [17] and Blackman et al. [20], although an 

infinite negative dynamic factor at t = 0 or τ = 0 are seen based on their analytical 

solutions, whereas thanks to the dynamic ERR with the first-vibration-mode accuracy in 

Eq. (5.22) the dynamic factor is always finite. In the literature, a negative ERR was also 

witnessed in the test for DCB under impact load [152] before crack initiation. According 

to the energy consideration, the negative ERR impedes crack propagation [153], because 

in this case the crack growth increases the potential energy rather than decreasing it [154]. 

At τ = 0, the dynamic effect is at its maximum, and the limit of fdyn at τ = 0 is 

 ( )dyn0
lim 9.721.f
τ

τ
→

≈  (5.23) 

The dynamic factor, however, decays to –1.0 < fdyn < 1.0 after one characteristic time 

period. It then continues to drop steadily. After around 10 characteristic time periods, the 

dynamic factor reduces to –0.1 < fdyn < 0.1, which can be regarded as insignificant. Note 

that this dynamic factor is independent of the applied opening rate. Also note that the 

dynamic factor is a direct quantitative measurement of dynamic effect, and, in general, is 
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a function of characteristic time, and, therefore, it can be employed to study the dynamic 

effect under different loading rates: for low loading rate, the dynamic factor is associated 

with large characteristic time and dynamic effect is small; and for high loading rate, the 

dynamic is with low characteristic time and dynamic effect large. 

5.3 Theoretical development with wave propagation 

5.3.1 ERR divergence and energy flux 

In Section 5.2.2.4, the ERR determined with the global approach (Section 3.3.2.1), 

that is, Gglobal = d(Wext – U – K)/dA0 (Eq. (3.34)) to include the contribution to ERR from 

kinetic energy, is shown to be divergent in the ERR amplitude as more vibration modes 

are added. This is contrary to the physical and mechanical reality that the unbounded ERR 

would lead to immediate rupture for any applied loading rate. This phenomenon of 

divergent ERR therefore implies that the global approach is not viable to study the 

dynamic fracture mechanics with beams or 1D waveguides in the context of wave 

propagation. This is an interesting finding since the global approach, or global energy 

balance proposed by Griffith has long been used to study the fracture behaviour in the 

quasi-static loading regime of LEFM. Moreover, the strain ERR derived from the global 

energy balance is equivalent to the crack-tip related magnitudes of SIF and J-integral. 

Smiley and Pipes [17] and Blackman et al. [20] extended the approach to include 

kinetic energy in the global energy balance, as proposed by Mott [70] (Section 3.3.2.1), 

to study the dynamic interfacial fracture. They did not, however, include vibration and, 

thus, they did not encounter this divergent ERR issue since their ERR is ‘smoothed’ and 

not oscillating. 

Recall the alternative definition of dynamic ERR based on a crack-tip energy flux 

integral with Eq. (3.42), that is, ( )local
0G F A= Ω  , which is a local approach 

(Section 3.3.2.2). If this local approach provides the correct dynamic ERR, as 

demonstrated in this section, and the global approach provides an unbounded non-

physical ERR since the amplitude is divergent as more vibration modes are added, then 

the following inequality can be written: 

 
( ) ( )ext

1 1 .
F d W U K

b a b da
Ω

< − −


 (5.24) 
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This inequality of Eq. (5.24) shows that the actual amount of energy flowing into the 

crack tip (the left-hand side) is less than the amount of energy that can be potentially 

dissipated from the system (the right-hand side). In dynamics, beams are 1D waveguides 

and have a dispersive property, that is, flexural waves with higher frequencies travel faster 

(Section 2.3.1.3). The global approach for the global energy balance needs to be 

reconsidered in consideration of this, since it treats the energy term from each vibration 

mode (flexural wave) indiscriminately by reckoning they can be dissipated 

simultaneously. This, however, is not the case when looking at the crack tip for an 

infinitesimal time interval. The energy supplied to the crack tip by each vibration mode 

(flexural wave) is highly dependent on the speed of the flexural wave. 

A further analytical theory to address this issue with consideration for dispersion of 

wave propagation is developed, and it is called the dispersion-corrected global approach. 

5.3.2 Dynamic energy release rate 

Combining Eqs. (5.11) and (5.17), the total mechanical energy П of the half DCB 

at a given time t is 

 ( )
2 22 2 2 2

2
3 2 2

1 1

3 33 cos .
2 280 2

i i
i

i ii i

U K
EIv t Aav Aav Aav t

a
ρ ρ ρ ω

λ λ

∞ ∞

= =

Π = +

Λ Λ
= + + −∑ ∑  (5.25) 

Note that the first and second terms in Eq. (5.25) are the strain and kinetic energies, 

respectively, due to the quasi-static motion; and last two terms are the energy due to 

vibration. To aid in the following analytical development, these contributions are denoted 
U
stΠ , K

stΠ  and vibΠ , respectively. 

5.3.2.1 ERR components due to quasi-static motion 

Since the quasi-static motion is not dispersive, the ERR component due to the strain 

energy of the quasi-static motion can be directly derived using U U
st st 0G d dA= − Π , and so 

does the ERR component due to the kinetic energy of the quasi-static motion with 
K K
st st 0G d dA= − Π . These give the same solutions as the global approach provides in 

Eq. (4.4), where ( )U 2 2 4
st 9G EIv t ba=  and ( )K 2

st 33 140G Av bρ= −  (a factor of two is 

applied for the symmetry). 
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5.3.2.2 ERR component due to vibration 

The ERR component due to vibration Gvib cannot be determined by vib 0d dA− Π , 

which leads to divergence as discussed before. Considering the definition in the local 

approach (Section 3.3.2.2) for dynamic ERR in Eq. (3.42) ( )local
0G F A= Ω  , where 

F (Ω) is the energy flux into a contour around the crack tip, and accordingly, the ERR 

component due to vibration Gvib is calculated as 

 
( )vib

vib
0

,
F

G
A
Ω

=


 (5.26) 

where Fvib (Ω) is the energy flux due to vibration through the contour Ω shown in 

Figure 5.4 where ε << a. 

 
Figure 5.4 Crack-tip contour Ω for DCB to determine ERR component due to vibration 

The energy flux due to vibration through the contour Ω can be calculated as 

 ( ) 1
vib vib p ,F E CΩ =  (5.27) 

where Evib is the total energy density due to vibration and 1
pC  is the phase speed of the 

first-mode flexural wave, since the first-mode flexural wave modulates all the other 

waves with higher frequencies (Section 2.3.1.1), and, therefore, the average speed of total 

energy flux is 1
pC . 

To determine the total energy density due to vibration Evib, a small region 0 < x < ε 

in front of the crack tip is considered (the energy density in the small region –ε < x < 0 

behind the crack tip is zero due to the effective boundary condition). The sign of the 

spatial distribution (represented by the normal modes) of the free vibration in this region 

is proportional to Λi, which alternates with vibration mode numbers since ( )1 2i
iΛ ≈ −  
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(Table 5.2). Note that for each vibration mode (flexural wave), its free-vibration 

component has contributions from both the space and time domains. The contribution 

from the space domain is the spatial distribution of free vibration, which is proportional 

to Λi; and the contribution from the time domain oscillates with sin (ωit). Therefore, 

( )1 2i
iΛ ≈ −  means that the contribution of vibration modes (flexural waves) with odd 

mode numbers tend to close the crack and decrease the total energy density in the space 

domain, while those with even mode numbers tend to open the crack and increase the 

total energy density. The total energy density due to vibration Evib in the contour is 

therefore 

 ( )vib vib
1

1 ,i i

i
E E

∞

=

= −∑  (5.28) 

where vib
iE  is the energy density due to the ith mode flexural wave (ith vibration mode). 

Note that Λi comes from the initial modal velocity Eq. (5.5), which is the coupling 

of the normal mode Wi (x) (representing the free vibration) and the quasi-static motion 

vF (x) along the beam. The physical interpretation of Eq. (5.28) is therefore that when the 

spatial velocity of free vibration (flexural wave), represented by the normal mode, is in 

the same direction as the applied opening velocity, this vibration mode (flexural wave) 

opens the crack and increases the energy density in the contour in the space domain. 

Likewise, when the spatial velocity of free vibration (flexural wave), represented by the 

normal mode, is in the opposite direction to the applied opening velocity, this vibration 

mode (flexural wave) closes the crack and decreases the energy density in the contour in 

the space domain. 

The energy flux of the ith mode flexural wave ( )vib
iF Ω  is ( )vib vib g

i i iF E CΩ = , where 

g
iC  is the wave’s group speed, since the energy of a wave propagates at its group speed 

(Section 2.3.1.4). Now, combining Eqs. (5.27) and (5.28) gives  

 ( ) ( ) ( )vib vib
1

1 ,i i
i

i
F F f

∞

=

Ω = − Ω∑  (5.29) 

where 1
p g

i
if C C= . The ith mode flexural wave energy flux is ( )vib vib

i iF d dtΩ = − Π , 

where ( )2 2 2 2 2 2
vib 2 cosi

i i i i iAav Aav tρ λ ρ λ ωΠ = Λ − Λ  from Eq. (5.25) (but with a factor 
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of two applied since Eq. (5.25) is for a half DCB). Substituting these results into 

Eq. (5.29) and combining Eq. (5.26) gives the ERR component due to vibration as 

 
( ) ( )

( ) ( ) ( )

2
2

vib 2
1

2 22 2

2 2
1 1

4 1 sin

2 1 cos 1 .

i
i i i

i

i ii i
i i i

i ii i

AEIv tG f t
ba
Av Avf t f
b b

ρ
ω

ρ ρω
λ λ

∞

=

∞ ∞

= =

= − Λ

Λ Λ
+ − − −

∑

∑ ∑
 (5.30) 

5.3.2.3 Correction factor for dispersion 

In deriving the ERR component due to vibration in Section 5.3.2.2, a factor fi is 

introduced in Eqs. (5.29) and (5.30), which is used to address the dispersive property of 

beams as highly dispersive waveguides. This factor is for accurate assessment of the 

amount of energy supplied to the crack tip to determine ERR based on the global 

approach. Note that the global approach accounting for global energy balance 

overestimates the energy supplied to the crack tip, and fi corrects this by considering the 

dispersive property of wave propagation. Therefore, this factor is called the correction 

factor for dispersion. 

The phase speed of the first-mode flexural wave is ( )1 4
p 1C EI Aω ρ=  from 

Eq. (2.46), group speed of the ith mode flexural wave is ( )4
g 2i

iC EI Aω ρ=  from 

Eq. (2.47); the relationship between the natural frequencies and frequency parameters iλ  

is ( )2 2
i i a EI Aω λ ρ−= , so the correction factor for dispersion can be written as 

 
1
p 1 1

g

1 .
2 2i i

i i

C
f

C
ω λ
ω λ

= = =  (5.31) 

The value for the correction factor for dispersion fi is presented in Table 5.3 for 

different vibration mode numbers. 

Table 5.3 Correction factor for dispersion for stationary crack 

Mode number 1 2 3 4 5 i > 5 

Correction factor fi 0.5 0.27775 0.19229 0.14704 0.11904 ( )
2.49975

4 1i +
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The correction factor for dispersion fi decreases with increasing mode number as 

Table 5.3 shows. Also, note that the amplitude of each mode for the ERR component due 

to vibration Gvib is proportional to fi as shown in Eq. (5.30). This allows the amplitude 

ratio to be studied, for instance, the amplitude of the fifth vibration mode is only 12% of 

that for the first mode. This indicates that the dominant mode is the first, which partially 

justifies approximation for the ERR with first-mode-accuracy in Section 5.2.2.4; in 

addition, higher modes (i.e. i > 5) are not significant and can be reckoned as noise since 

the amplitudes are smaller and frequencies are higher than for the first five vibration 

modes. 

Another important aspect of this correction factor for dispersion is that it 

characterises the energy transmission ability of beams as waveguides to generate the 

ERR, and it is an inherent property of beams with a given set of boundary conditions as 

Eq. (5.31) suggests. The effective boundary assumption to study DCB gives fixed-pinned 

boundary conditions, and the correction factor for dispersion fi is dimensionless and 

universal for DCBs with its value given in Table 5.3. 

5.3.2.4 Total dynamic ERR 

By combining results from Sections 5.3.2.1 to 5.3.2.3 for each ERR component and 

the correction factor for dispersion, for a stationary crack in DCBs, the total dynamic 

ERR is, therefore: 

 
( ) ( )

( ) ( ) ( )

22 2 2
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stationary 4 2

1
2 22 2

2 2
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AEIv tEIv t AvG f t
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ρρ ω
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∑ ∑
 (5.32) 

Note that this ERR expression was derived based on global approach accounting for 

global energy balance along with a correction for the dispersive properties of beams as 

waveguides; it is therefore referred to as dispersion-corrected global ERR, and this 

approach is called dispersion-corrected global approach to distinguish it from the global 

approach in Section 3.3.2.1. 
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5.3.3 Simplified dynamic ERR with vibrational deflection 

5.3.3.1 Local approach with vibrational deflection 

For a DCB under quasi-static loads, the ERR can be calculated by 

G = M2 (a, t)/(bEI), where M (a, t) = EIw(2) (a, t) is the crack-tip bending moment. The 

static ERR is a local quantity related to the crack tip since it is only a function of the 

crack-tip bending moment. 

Similarly, for a crack propagating in a DCB under dynamic loads, Freund derived 

the ERR using the crack-tip energy flux integral Eq. (3.41) as 

 ( )2 2
local
propagation 2

0

,
1 ,

M a t aG
bEI C

 
= − 

 



 (5.33) 

where C0 is the longitudinal wave speed with 0C E ρ= . The dynamic ERR of a 

propagating crack is only a function of the crack-propagation speed a  and the crack-tip 

bending moment. 

Since the ERR under quasi-static loads and the ERR of a propagating crack under 

dynamic loads can both be determined by the crack-tip local quantities, it is an interesting 

question whether the dynamic ERR of stationary crack can be determined by setting 0a =  

in Eq. (5.33) and using the vibrational deflection in Eq. (5.6) derived in this study to 

determine ( ),M a t . This would give a simplified solution for dynamic ERR for a 

stationary crack compared to Eq. (5.32). 

It should be recognised that Eq. (5.6) is a vibrational solution, which assumes 

adequate time for all the flexural waves to form standing waves. Eq. (5.33), however, 

considers the actual values of the crack-tip quantities at a given time. This means that the 

stationary dynamic ERR calculated with Eqs. (5.6) and (5.33) together can only become 

accurate after a certain period of time after t = 0, at least after the establishment of all the 

standing waves. Furthermore, the calculated ERR is overestimated during this initial 

period since the calculation assumes that the energies of all flexural waves are 

immediately available at the crack tip, when, in fact, flexural waves need time to travel 

along the beam (with lower-frequency ones travelling more slowly due to the dispersive 

property of flexural waves in 1D waveguides). By comparison, the dispersion-corrected 

global ERR in Eq. (5.32) accounts for wave dispersion (by considering the energy flux 
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into a contour around the crack tip), even though it is also based on the vibrational 

deflection of Eq. (5.6). 

By combining Eqs. (5.6) and (5.33) and setting 0a = , the simplified dynamic ERR 

for a stationary crack of a DCB under dynamic loads is 

 ( ) ( )
222 2 2

local
stationary 4 2

1 1

129 4sin sin .i i
i i

i ii i

AEIv tEIv t AvG t t
ba ba b

ρ ρω ω
λ λ

∞ ∞

= =

 Λ Λ
= + +  

 
∑ ∑ (5.34) 

This dynamic ERR is referred to as local ERR in this study since it is determined by the 

crack-tip bending moment only and derived by the local approach in Section 3.3.2.2 but 

with the assumption that vibrational deflection is applicable. It consists of three 

components: the first term is the ERR component due to the quasi-static motion, the 

second term is the ERR component due to the coupling between the local vibration and 

the quasi-static motion, and the third term is the ERR component due to the local 

vibration. Note that Eq. (5.34) will overestimate ERR for a short period of time in the 

beginning as discussed, since it assumes all the flexural waves are immediately available 

at the crack tip using the vibrational deflection when actually flexural waves need time to 

travel, and ones with lower frequencies travel slower due to dispersion. 

5.3.3.2 Equivalence of local and dispersion-corrected global approaches 

Now consider the equivalence between the simplified ERR with the local approach 

in Eq. (5.34) in Section 5.3.3.1 and dispersion-corrected global ERR in Eq. (5.32) in 

Section 5.3.2.4, that is, under which condition Eq. (5.34) is applicable and potentially 

equivalent to Eq. (5.32). To achieve this, a relative ERR difference between local
stationaryG .and 

global
stationaryG  is defined as 

 
( )local global

stationary stationary
U U
st st

.
G GG

G G
−∆

=  (5.35) 

It is the difference between the ERRs from the two methods, divided by U
stG  (the ERR 

component due to strain energy of quasi-static motion, or equivalently, the static ERR 

without any dynamic effect). Both methods give the same ( )U 2 2 4
st 9G EIv t ba= , which 

makes it an appropriate choice as the normalisation factor when defining the relative ERR 

difference. 
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To study the characteristics of this relative difference, a relative time scale n is also 

defined: ( )2 1
0 1n t a t EI Aτ λ ρ−= = . It is the time t divided by the time taken for the 

first-mode flexural wave to travel the crack length a. The phase speed of the first-mode 

flexural wave is ( )1 1
p 1C a EI Aλ ρ−=  (combining Eqs. (2.11) and (2.46)) and the time 

for this wave to travel from the excitation point (i.e. the free end of the beam) to the crack 

tip is 1
0 pa Cτ = . 

Based on Eqs. (5.32), (5.34) and (5.35) as well as the definition for relative time 

scale n above, the relative ERR difference becomes 
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 (5.36) 

Eq. (5.36) is dimensionless and universal for DCBs. Evolution of the relative ERR 

difference U
stG G∆  with the relative time scale n is shown in Figure 5.5a based on the 

first ten mode flexural waves (or vibration modes). Figure 5.5b shows the same data, but 

with the y axis transformed to enhance low-amplitude variations of the relative ERR 

difference for both positive and negative values. 

 
Figure 5.5 Evolution of the relative ERR difference between local and global methods 

with n 

Apparently, the relative ERR difference is mainly positive. This indicates that the 

local ERR is larger than the dispersion-corrected global ERR, consistent with the 
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discussion in Section 5.3.3.1. The most significant overestimation happens in the range 

0 < n < 5; for n > 5, it rapidly decreases to close to zero. For n > 12, the relative ERR 

difference is within approximately U
st0.7% 1.9%G G− < ∆ < . The dispersion-corrected 

global and local ERR solutions can, therefore, be considered as equivalent for predicting 

the dynamic ERR provided that enough time has passed, with 0 ≤ n ≤ 12 being the 

transition period for the vibrational solution to be applicable. Note that when n = 2, the 

first-mode flexural wave returns to the free end, with all the standing waves established 

(also the establishment of vibration). The local ERR solution, however, still needs time 

to ‘even out’ the additional ‘artificial’ energy in comparison to the dispersion-corrected 

global ERR solution, explaining the duration of the transition period beyond n = 12. 

Another important aspect of this equivalence is that it provides some insight into 

whether global (Section 3.3.2.1) and local approaches (Section 3.3.2.2) give an 

equivalent assessment of dynamic ERR. Generally, in dispersive waveguides, as 

demonstrated in this chapter, the global approach (Section 3.3.2.1) using Eq. (3.34) 

Gglobal = d(Wext – U – K)/dA0 does not provide a physically and mechanically sound 

definition of dynamic ERR. In dispersive waveguides, the dynamic ERR should be 

defined with the dispersion-corrected global approach instead, accounting for dispersion 

of the waveguides. It is demonstrated in this section that dynamic ERR defined by the 

dispersion-corrected global approach is equivalent to that defined by the local approach. 

5.3.3.3 Simplified dynamic ERR for stationary crack 

One further simplification can be made to Eq. (5.34) for its third term: since 

( ) ( )22

1 1
sini i i i ii i

tλ ω λ∞ ∞

= =
 Λ ≤ Λ ∑ ∑ , with the value of Λi and λi given in Table 5.2, 

this third term of Eq. (5.34) can be no larger than 0.2295ρAv2/b. This term is therefore 

small in comparison to the second term of Eq. (5.34) when n > 12 , in which case the 

dynamic ERR further simplifies to 

 ( )
22 2
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i i
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ρ
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λ

∞

=

Λ
= + ∑  (5.37) 

Eq. (5.37) provides the simplified dynamic ERR based on the local bending moment and 

vibrational deflection. When n > 12, it is equivalent to Eq. (5.32), but for an accurate 

calculation of ERR when n < 12, it is advisable to use Eq. (5.32) instead, which accounts 

for wave dispersion. 
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5.4 Numerical verification 

5.4.1 Finite-element model and verification case 

To verify the analytical solutions for ERR of stationary crack with vibration in 

Section 5.2 and with wave propagation in Section 5.3, the symmetric DCB (Figure 5.6) 

was considered; its width is 1 mm. An isotropic elastic material was used with the 

Young’s modulus of 10 GPa, the Poisson’s ratio of 0.3, and the density of 103 kg m-3. 

 
Figure 5.6 DCB geometry for FEM verification 

A 2D finite-element model was built employing plane-stress elements (CPS4R) in 

Abaqus/Explicit solver, which includes the inertia effects. All the viscous parameters 

were set to zero to avoid unnecessary damping. This is in accordance with literature, that 

the damping factor of CFRPs is found to be very low due to the low viscoelastic nature 

of carbon fibre [155][156]; and this is also in line with the conventional studies (see 

Section 4.2) and standardised testing methods such as ASTM D5528, D7905, that the 

damping is not accounted for. The VCCT was used to determine the dynamic ERR 

numerically. The uncracked region was formed by sharing nodes of two DCB arms, and 

no contact was modelled. A FEM model can be seen in Figure B.1 in Appendix B. 

Uniform squared elements were used, and the effects of element size were studied 

for 4 levels of elements sizes, (i.e. 1 mm, 0.5 mm, 0.2 mm and 0.1 mm) and no significant 

improvement was seen by decreasing mesh size from 1 mm to 0.1 mm, and ERR solution 

with 0.1 mm element size is shown in Figure 5.7a. There was a very slight frequency shift 

with decreasing the element size, since with increasing continuous of the structure, the 

natural frequency deceases. To study the element size convergence, the amplitudes of the 

first vibration mode were used, which were derived by performing fast Fourier Transform 

on the ERRs derived with 4 levels of element sizes. The element size convergence is 

shown in Figure 5.7b, where the amplitudes of first vibration mode are plotted against the 

inversed element size. 
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Figure 5.7 (a) ERR solution with element size of 0.1 mm; (b) element size convergence 

It is seen that the ERR shows convergence for the element smaller than 0.2 mm, 

and, therefore, the ERR from the finite-element model with the mesh size of 0.1 mm is 

used, which also provides ERR with more accurate frequency, to verify the analytical 

results both for the theories with vibration and wave propagation. 

5.4.2 Verification for developed theory with vibration 

As discussed in Section 5.2, the ERR derived directly from the global approach 

with consideration of vibration accounting for the global energy balance shows a 

divergent amplitude, and only the ERR with the first-vibration-mode accuracy can be 

used; this result is compared to the FEM result in Figure 5.8a. 

 
Figure 5.8 Comparison of ERR from results of FEM simulation (grey line) and from the 

developed analytical theory (black line) using global approach with first (a) and first 

two (b) vibration modes 

The results based on the developed analytical theory with vibration and with the 

first-vibration-mode accuracy are in good agreement with the results from the numerical 
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simulation: the analytical results capture the amplitude and frequency of ERR variation 

predicted by the FEM. The analytical theory is slightly out-of-phase with the FEM result, 

which is due to the difference in boundary conditions: the finite-element model simulates 

a full DCB, whereas the developed theory models the effective boundary condition shown 

in Figure 5.1b. The effective boundary condition does not allow crack tip to rotate as 

illustrated in Figure 5.9a, but in reality for 2D FEM or experiments, the crack tip can 

rotate as shown in Figure 5.9b. 

 
Figure 5.9 Illustration of crack-tip rotation: (a) no crack-tip rotation under effective 

boundary condition; (b) crack-tip rotation in 2D FEM model 

It is worth noting that the ERR with dynamic effects oscillates about a mean value 

of U
stG  (the ERR component due to strain energy of quasi-static motion or static ERR 

without any dynamic effect). In Eq. (5.22), the dynamic factor decays quickly with time, 

but in Figure 5.8a, the oscillating amplitude actually increases with time. This indicates 

that the dominant contribution to this vibration amplitude is the increasing of U
stG .When 

the first two vibration modes are included in the analytical result as shown in Figure 5.8b, 

the amplitude of ERR oscillation begins to diverge as predicted.  

A quantitative measurement of the deviation of analytical result from that of FEM 

can be made by regressing the analytical result against FEM result for every time point 

as shown in Figure 5.10, using the data from Figure 5.8. Ideally, if analytical agrees FEM 

completely, the slope of the regression line should be 1, and R2 indicates the extent of 

analytical solution deviating from FEM solution, which can be taken as a measurement 

of the frequency difference. 
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Figure 5.10 Regression of ERR from results of developed analytical theory against FEM 

simulation using global approach with first (a) and first two (b) vibration modes 

Clearly, for both subfigures of Figure 5.10, the analytical solution provides a higher 

ERR solution as the slopes are larger than 1 since the analytical model is stiffer than the 

FEM model due to effective boundary condition. In addition, comparison between 

Figure 5.10a and b shows that by adding the contribution of the second vibration mode 

the analytical solution deviates from FEM solution even more with an increased slope 

and a decreased R2. 

5.4.3 Verification for developed theory with wave propagation 

The theory developed based on the dispersion-corrected global approach in 

Eq. (5.32) in Section 5.3, is compared against results from FEM in Figure 5.11 for the 

first vibration mode (a) and first five vibration modes (b). 

 
Figure 5.11 Comparison of ERR from results of FEM simulation (grey line) and from 

the developed analytical theory (black line) using dispersion-corrected global approach 

with first (a) and first five (b) vibration modes 
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Apparently, the divergence of ERR amplitude as more vibration modes are added 

is resolved by accounting for dispersion (Figure 5.11b); this contrasts with Figure 5.8b, 

calculated using the conventional global approach. By adding more vibration modes, the 

ERR from the analytical theory approaches the FEM simulation results, as expected. This 

can also be seen in the regression of ERR from analytical solution against FEM solution 

in Figure 5.12. The slope of the regression for the first five vibration modes using 

dispersion-corrected global approach shown in Figure 5.12 is smaller than that for first 

vibration modes using global approach shown in Figure 5.10b.  

 
Figure 5.12 Regression of ERR from results of developed analytical theory against FEM 

simulation using dispersion-corrected global approach with first (a) and first five (b) 

vibration modes 

Recall that the ERR amplitude from each vibration mode is proportional to the 

correction factor for dispersion fi given in Table 5.3. Based on this, the first five vibration 

modes are reckoned sufficient to predict the amplitude of the ERR. This is confirmed by 

Figure 5.11b; adding more vibration modes does not significantly alter the ERR although 

may provide more details of the ERR. 

By examining Figure 5.11, a slight phase difference between the analytical and 

FEM simulation results is observed, which can also be seen by comparing Figure 5.12a 

and b, that adding more vibration modes leading to significant decline in R2. In addition, 

the analytical results are slightly higher than the FEM simulation results, which can also 

be seen in Figure 5.12a and b with a slope larger than 1. Both these discrepancies are due 

to the effective boundary condition. This can be resolved either by using an effective 

crack length for crack-tip-rotation compensation, as per Section 5.5, or by treating the 

intact section of the beam as resting on an elastic foundation; the latter is one of the 

motivations for Chapter 7. 
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5.5 Crack-tip-rotation compensation for stationary crack 

5.5.1 Conventional method for compensation of crack-tip rotation 

When using the effective boundary condition, the dynamic ERR result is slightly 

overestimated, and the frequency is not accurately predicted; crack-tip-rotation 

compensation can be used to resolve this. In this section, the viability of making the 

required compensation by using an additional crack length Δ is investigated. This Δ is 

determined in the quasi-static regime following the modified compliance calibration 

(MCC) method from ASTM D5528 [11], originally from [157].  

In DCB tests under quasi-static loading condition, MCC method measures the 

external forces at various crack lengths and calculated the corresponding compliances. 

These compliances are then plotted against corresponding crack lengths, and, based on 

the relation ( )1 3 3 3C a EI= + ∆  from beam theory, the negative intercept corresponding 

to the zero compliance is the additional crack length Δ for crack-tip-rotation 

compensation. This experiment-based method to compensate for crack-tip rotation has 

been widely used in the quasi-static regime and incorporated into standard testing 

methods, such as ASTM D5528. 

There are two methods of implementing this additional crack length Δ in ASTM 

D5528: one method increases the crack length by Δ to give an effective crack length of 

aeff = a+Δ, while the other method uses an effective flexural modulus of 

Eeff = a3E/(a+Δ)3; and it is believed that these two methods, using effective crack length 

aeff and using effective flexural modulus Eeff, give the equivalent ERR solution under 

quasi-static loads. 

However, in dynamic DCB test, this compensation method has two difficulties: 

(1) Oscillating compliance: 

The cube root of the compliance C1/3 is not linear related to the crack length in 

dynamic DCB test, as the externally applied load oscillates dramatically (as shown in 

experimental observation in Figure 4.1) under high opening rates, giving oscillating 

compliance; this is also demonstrated by the analytical solution using vibrational 

deflection Eq. (5.6), for a given crack length, the compliance is 
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The MCC method requires to measure the external load with respect to each crack 

length to derive compliance for DCB, but with the indication in Figure 4.1 and Eq. (5.38), 

the compliance calculated for each crack length is not accurate due to the oscillation of 

the external force. 

(2) Contradicting solutions for natural frequency: 

The natural frequency for the DCB arm is ( )2 2
i i a EI Aω λ ρ−=  with its 

uncorrected crack length a. If the effective crack length aeff = a+Δ is applied, the modified 

natural frequency is ( ) ( )22
i i a EI Aω λ ρ−= + ∆ ; however, using the effective flexural 

modulus gives the natural frequency as ( ) ( ) ( )22
i i a EI a Aaω λ ρ−= + ∆ + ∆ . Note that 

these two solutions of natural frequencies are not equal, and thus the implementation of 

the MCC method to address the crack-tip rotation needs further investigation. 

5.5.2 Crack-tip rotation compensation for DCB under dynamic loads 

The MCC method must be used in the context of quasi-static cases to avoid 

oscillating compliances. In this section, the viability of using Δ determined by the MCC 

method quasi-statically to the dynamic case is assessed by using the effective crack length 

as well as the effective flexural modulus against FEM results. 

Following the quasi-static MCC method to determine Δ, the external force acting 

on the DCB at various crack lengths under constant-opening rate is measured. Quasi-

static FEM simulation is used (using Abaqus/Standard, where the inertia of the DCB is 

not accounted for), and the compliances are calculated for each crack length. Then, 

according to the MCC method, the cube root of compliance is plotted against the 

corresponding crack length. The results for the verification case in Section 5.4.1 are 

shown in Figure 5.13, and linear regression is used to find the additional crack length 

corresponding to zero compliance: Δ = 1.34 mm. 
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Figure 5.13 Regression analysis of cube root of compliance with respect to crack length 

from quasi-static FEM simulation 

Considering the verification case in Section 5.4.1, two methods for implementing 

additional crack length Δ, that is, using effective crack length and effective flexural 

modulus, are tried, first replacing a in Eq. (5.32) with effective crack length aeff, and then 

replacing E in Eq. (5.32) with effective flexural modulus Eeff. The ERR results for these 

two methods are compared against the results of FEM simulation in Figure 5.14. 

 
Figure 5.14 Implementation of Δ for compensation of crack-tip rotation: (a) by effective 

crack length aeff; (b) by effective flexural modulus Eeff 

Apparently, employing the effective crack length aeff is more accurate than the use 

of the effective flexural modulus Eeff. This can also be seen in the regression of analytical 

solution against FEM solution in Figure 5.15 that R2 with aeff is larger than that with Eeff 

indicating a better agreement in frequency. For the former, there is still a very small 

difference between the analytical solution and the results from FEM simulation. Note that 

the two methods are proposed in ASTM D5528 and deemed equivalent for quasi-static 

loads, but as shown, they are not equivalent for dynamic fracture. 
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Figure 5.15 Regression of ERR from results of developed analytical theory against FEM 

simulation with Δ implemented by (a) by effective crack length aeff; (b) by effective 

flexural modulus Eeff 

Including the additional crack length Δ for crack-tip rotation compensation also 

allows accurate calculation of the ERR contribution from each vibration mode. The 

analytical results based on the effective crack length aeff for the first one, two, three, four, 

five, ten, 15 and 20 vibration modes (or flexural waves) are shown in Figure 5.16a-h, 

respectively. As more vibration modes are included, analytical solution becomes 

increasingly close to the FEM results in terms of the overall magnitude of ERR as well 

as the frequencies. It also demonstrates that the first five vibration modes (Figure 5.16e) 

are adequate to capture the dynamic ERR accurately. 
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Figure 5.16 Dynamic ERR for stationary crack versus time results from developed 

theory with effective crack length (black line) and from FEM (grey line) with increasing 

numbers of vibration modes 
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Figure 5.17 Regression values for slope and R2 with increasing numbers of vibration 

modes 

The regression of analytical solution against FEM solution with the increasing 

numbers of vibration is conducted and results are shown in Figure 5.17a for the slope and 

in Figure 5.17b for R2. In Figure 5.17a, the slope of regression does not change 

significantly after the fifth vibration mode indicating the contribution from higher 

vibration mode is not significant. But there is a decline in R2 with increasing vibration 

mode number as shown in Figure 5.17b, where it decreases monotonically in the first five 

vibration mode and change then becomes insignificant after. This is due to the very slight 

frequency difference between the analytical and numerical solutions, but the general 

agreement is still excellent. 

Note that the additional crack length Δ cannot be determined using compliance 

calibration and results of DCB tests under dynamic loads because the compliance 

measured in such experiments is not accurate due to oscillation of the external loads. 

Parallel quasi-static experiments or FEM simulations must therefore be conducted to 

derive the additional crack length Δ to use this method for experiments under dynamic 

loads. Further analytical models are desirable to allow the crack tip to rotate rather than 

the effective boundary condition, and this is one of the motivations of introducing elastic 

foundation in Chapter 7. 

5.6 Conclusion 

In this chapter, the analytical framework for dynamic interfacial fracture is 

established for a mode-I stationary crack in DCBs by considering vibration and wave 

propagation. The analytical framework is based on solving the equation of motion with 
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time-dependent boundary conditions, which represents the applied displacement; and 

strain and kinetic energies can be thus calculated. 

By global approach, the strain and kinetic energies are therefore used to determine 

the dynamic ERR, which leads to a non-physical divergent ERR for including more 

vibration modes. Examination of this reveals the limitation of global approach accounting 

for global energy balance assuming all the flexural waves arrive at crack tip 

simultaneously, but this is not the case for Euler-Bernoulli beams as 1D waveguides, 

which are highly dispersive that waves with different frequencies travel at different 

speeds. Therefore, a correction factor for dispersion is derived to account for the 

dispersive properties of Euler-Bernoulli beams by investigating the energy flux into the 

crack tip, and this method is called dispersion-corrected global approach. And 

dispersion-corrected dynamic ERR by this factor shows good agreement with results from 

FEM. But the analytical solution is slightly out-of-phase with numerical results due to the 

effective boundary condition, which assumes a perfectly fixed boundary condition at the 

crack tip allowing no rotation, and this is addressed by extending the quasi-static MCC 

method, and analytical solution shows excellent agreement with numerical results. But 

the MCC method cannot be directly used for DCB tests under dynamic load and parallel 

quasi-static experiments or FEM simulations are needed. Further analytical model 

allowing the crack tip to rotation is still desirable, and this is achieved in Chapter 7. 

In addition, the findings in this chapter also help answer the question left in 

Chapter 3, whether dynamic ERR defined by global approach (Section 3.3.2.1) is 

equivalent to the one defined by local approach (Section 3.3.2.2) in elastodynamic 

fracture. Clearly, for the dynamic ERR derived in the context of dispersive waveguides, 

e.g. Euler-Bernoulli beams, these two approaches are not equivalent; and rather, the 

dynamic ERR defined by global approach is erroneous. Instead, dispersion-corrected 

global approach must be used, and this dispersion-corrected global approach is 

demonstrated to be equivalent to the local approach. 

 



 
Chapter 6:  Propagation of dynamic mode-I interfacial 

crack 

6.1 Introduction 

In Chapter 5, the dynamic ERR of a stationary crack was derived and the framework 

to study dynamic interfacial fracture is developed and established. The equation of motion 

was solved with a time-dependent boundary condition, and the global approach including 

kinetic energy with correction for dispersion was used, forming the dispersion-corrected 

global approach. According to the fracture criterion, the crack begins to propagate when 

the dynamic ERR reaches the crack-initiation toughness. Then, while the crack 

propagates, the dynamic ERR equals or exceeds the crack-propagation toughness. These 

criteria are, however, complicated by the fact that dynamic fracture toughness is not, in 

general, constant. 

It is generally believed that dynamic fracture toughness is dependent on crack-

propagation speed based on experimental observations and results, that is, ( )cG f a=  . In 

early experimental results from experiments with a low crack-propagation speed, fracture 

toughness was shown to be approximately constant, but with increasing crack-

propagation speed the dynamic fracture toughness increased exponentially after a limiting 

value of La . A comprehensive review of these early experiments is given in [158], and it 

was concluded that the relationship between the dynamic fracture toughness and the 

crack-propagation speed might be a material property. 

Zhou et al. [142] reported their experimental results for the dynamic fracture 

toughness of PMMA versus crack-propagation speed and fitted the respective relation as 

 ( ) L
c 0

L

log ,aG a G
a a

 
=  − 





 

 (6.1) 

where G0 and La  are the fitting parameters. The microstructures of failure for various 

crack-propagation speeds were also examined to explain the relationship between Gc and 

a  together with the failure mechanisms. 

Based on the literature discussed, the fracture toughness for slow crack propagation 

can be considered as approximately constant, but for fast crack propagation, the fracture 

toughness depends on the crack-propagation speed or rate. Therefore, here, for mode-I 
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crack propagation, two scenarios of constant and rate-dependent fracture toughness are 

investigated separately, with analytical solutions developed for each. 

6.2 Theoretical development 

6.2.1 Analytical theory for constant fracture toughness 

For a steadily propagating crack, consider the fracture criterion of G – Gc = 0, and 

its total derivative at a given time t, and corresponding crack length a is 

 
( ) ( )c c 0.
G G G G

da dt
a t

∂ − ∂ −
+ =

∂ ∂
 (6.2) 

Rearranging Eq. (6.2), the crack-propagation speed at this given time t is 

 
( )
( )

c

c

.
G G tdaa

dt G G a
∂ − ∂

= = −
∂ − ∂

  (6.3) 

Assuming that the contribution to strain and kinetic energies due to the crack-propagation 

speed is small, the ERR solution for the stationary crack can be used to study the crack-

propagation speed derived in Eq. (6.3). Since the analytical ERR solution with the first-

mode accuracy in Eq. (5.20) predicts the envelope of ERR compared to results from FEM 

simulation, it can be used to obtain crack-propagation speed in Eq. (6.3) approximately. 

Evaluating respective terms in Eq. (6.3): cG a∂ ∂  and cG t∂ ∂  are found to be zero 

due to the constant Gc, and terms G a∂ ∂  and G t∂ ∂  are derived from Eq. (5.20), giving 

the approximate crack-propagation speed as 

 .
2

G t aa
G a t
∂ ∂

= − =
∂ ∂

  (6.4) 

For oscillating ERR in Eq. (5.20), the crack-propagation speed does not oscillate as 

Eq. (6.4) shows, since all of the oscillatory terms in G t∂ ∂  and G a∂ ∂  cancel out. Note 

that Eq. (6.4) only applies under the steady and slow crack propagation without contact. 

Physically it means that during crack propagation, the time-oscillation of the ERR is 

balanced by the gradient of ERR. 

The crack-propagation speed in Eq. (6.4) is the same as that obtained for a DCB 

under quasi-static loads. Nevertheless, it was derived using the theory developed for 

dynamic interfacial fracture and is therefore also valid for dynamic crack propagation 
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under the stated assumptions and limitations. Integrating Eq. (6.4) gives the solution for 

a crack length versus time curve as 

 0 1 0 ,a a A t t− = −  (6.5) 

where a0 is the initial crack length, t0 is the time for crack initiation. The crack-initiation 

time can be determined using the condition for the stationary crack of G = Gc, and 

therefore, the coefficient A1 is determined accordingly by crack-initiation condition. Note 

that Eq. (6.4) has an interesting implication that the crack-propagation speed is 

independent of fracture toughness once it starts to propagate and crack extension follows 

a fixed pattern as Eq. (6.5) indicates. But the coefficient A1 is dependent on fracture 

toughness Gc. 

Eqs. (6.4) and (6.5) are only applicable to brittle materials with a moderate material 

density and a constant fracture toughens Gc. If the material density is high, the inertial 

effect can cause the crack surfaces to close, causing crack arrests. This theory for constant 

Gc, however, cannot predict crack arrest phenomenon for two reasons: (1) The condition 

used in deriving Eqs. (6.4) and (6.5) is that G = Gc at all times after crack initiation, 

meaning that the crack must always propagate. (2) The theory does not consider contact 

between crack surfaces, and furthermore, the interpenetration of crack surfaces gives non-

zero ERR. For materials with high density, Eq. (6.5) can still accurately predict the slope 

of the crack length-time curve. 

6.2.2 Analytical theory for rate-dependent fracture toughness 

6.2.2.1 Problem description 

For a DCB of a material with a rate-dependent fracture toughness ( )cG a , that is, 

the fracture toughness depends on the crack-propagation speed, the fracture criterion is 

( ) ( )c, , 0G a a t G a− =  , where the dynamic ERR is treated as a function of crack length a, 

crack-propagation speed a  and time t. Considering the total derivative of this fracture 

criterion and differentiating it with regard to t, give 

 
( ) ( ) ( ) ( )c, , , , , ,

0 ,
G a a t G a a t G a a t dG a

a a a
a a t da

∂ ∂ ∂
+ + − =

∂ ∂ ∂

   

  

 

 (6.6) 

where a  is the acceleration of crack propagation.  
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Note that the last term in Eq. (6.6) is the contribution of dynamic interfacial fracture 

toughness, and it is neither always known nor with mature constitutive models, that is, 

for different materials they can take different forms and expressions. Therefore, solving 

Eq. (6.6) analytically to derive a solution for crack-propagation speed and then crack-

length curve is generally infeasible in contrast to the case with constant fracture toughness 

in Section 6.2.1. Rather, the theory developed hereby is to provide analytical solutions to 

determine the dynamic ERR, and then to measure and study the dynamic interfacial 

fracture toughness and fracture behaviours accordingly. 

To achieve this, the assumption is made that crack length a is a given parameter, 

which can be measured in experiments. And since the crack propagates, Freund’s formula 

in Eq. (5.33) can be applied to determine the dynamic ERR; however, it depends on the 

crack-tip bending moment. This requires solving partial differential equations with a 

moving boundary condition to determine the deflection at the crack tip and then the crack-

tip bending moment as the crack propagates. This cannot be achieved by rigorous 

mathematics due to the unknown expression for crack length a (t) [159][160][161]; 

however, a general analytical engineering solution is developed, which can be applied for 

a given crack-length curve, for example, from experimental results. 

6.2.2.2 Theoretical derivation 

Consider the DCB in Figure 6.1a and one DCB arm with effective boundary in 

Figure 6.1b with prescribed coordinate, so that the crack can propagate in the x positive 

direction. 

 
Figure 6.1 DCB configuration for propagating crack: (a) symmetric DCB; (b) effective  

boundary conditions and prescribed coordinates 

The deflection of the DCB arm in Figure 6.1b is obtained by coordinate 

transformation of the solution in Eq. (5.6) as 
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For a propagating crack of instantaneous length a1, by assuming the deflection given in 

Eq. (6.7) holds, the bending moment at the crack tip is M (a1, t) = EIw(2) w(a1, t). Then by 

combining Eqs. (5.33) and (6.7) and employing the simplification described in 

Section 5.3.3.3, the dynamic ERR is 

 ( )
22 22 2

local 1 1
propagation 4 2 2 2

10 1 0

129 1 1 sin .i
i

i i

AEIv ta aEIv tG t
ba C ba C

ρ
ω

λ

∞
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 (6.8) 

The first term is due to the strain energy of quasi-static motion and its expression keeps 

the same for any given crack length, and, therefore, does not need to be adjusted for 

dispersion. The second term, however, is related to vibration and wave propagation, and 

so does need to be adjusted to account for dispersion and the Doppler effect [162].  

By combining Eqs. (5.26) ( ( )vib vib 0G F A= Ω  ) and (6.8) for a crack length of a1, 

the vibration energy flux into a contour around the crack tip (Figure 6.2) is 

 ( ) ( )1 1 vib 11
,i

i
F a b G a∞

=
Ω = ∑  (6.9) 

where ( ) ( ) ( ) ( )2 2 2 2 2
vib 1 0 1 1 012 sini

i i iG a AEIv t C a t ba Cρ ω λ= − Λ . 

 
Figure 6.2 Crack propagation from a1 to a2 over the time interval Δt 

Now consider crack propagation from a1 to a2 over the time interval Δt. Ahead of 

the initial crack-tip position at x = a1, a new beam section of length (a2 – a1) is formed as 

shown in Figure 6.2, with the total energy related to vibration (or wave propagation) 

supplied to this new beam section being F1 (Ω)Δt. Following the same arguments and 

techniques developed for consideration of dispersion in Section 5.3.2.3, the energy flux 

due to F1 (Ω)Δt at the new crack-tip position at x = a2 is 
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 ( ) ( )2 1 vib 11
' ,i

ii
F a b f G a∞

=
Ω = ∑  (6.10) 

where 'if  is the correction factor that accounts for the dispersion of flexural waves in the 

new beam section of (a2 – a1); it is a function of the new beam section’s boundary 

conditions only. 

By combining Eqs. (5.26) ( ( )vib vib 0G F A= Ω  ) and (6.10), the ERR component due 

to vibration at the new crack length of a2 is therefore 

 ( ) ( ) ( )
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The ratio 'if  or correction factor for dispersion for propagating crack is determined in the 

same way as if  in Section 5.3.2.3. Note that the boundary conditions for the new beam 

section of (a2 – a1), formed by crack propagation, are different to the boundary conditions 

for the stationary crack in Section 5.3.2.3, 'if  must be different to if . If (a2 – a1) is small 

then 1 2a a≈   and the boundary conditions for the new beam section can be taken as 

approximately fixed-fixed, where the deflections and slopes at both x = a1 and x = a2 are 

all zero. From Section 5.3.2.3, 'if  is still derived as ( )1' ' 2 'i if λ λ= , but now 'iλ  is 

determined from the frequency equation of a beam with fixed-fixed boundary condition, 

that is, ( ) ( )cos ' cosh ' 1 0i iλ λ − =  (Eq. (2.25)). The value of 'iλ  and the corresponding 

correction factor for dispersion for propagating crack are given in Table 6.1. 

Table 6.1 Correction factor for dispersion for propagating crack 

Mode number 1 2 3 4 5 i > 5  

Frequency solution 'iλ   4.73004 7.85320 10.99561 14.13717 17.27876 ( )2 1
2

i π+  

Correction factor 'if  0.5 0.30115 0.21509 0.16729 0.13687 ( )
1.50562

2 1i +
 

 

The frequency of the ith mode flexural wave is ( )2 2
i i a EI Aω λ ρ−=  (from 

Eq. (2.11) with i iaλ β= ). The excitation point is at the free end of the DCB arms, and 

these waves travel toward to crack tip; since the crack propagates, the frequency of each 
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flexural wave that the crack tip observes needs to be modified due to the Doppler effect. 

The frequencies of flexural waves observed at the crack tip decrease with increasing 

crack-propagation speeds. For a propagating crack, the actual frequency of the ith mode 

flexural wave observed at the crack tip is 

 
p

' 1 .i ii

a
C

ω ω
 

= −  
 



 (6.12) 

Combining Eqs. (6.8), (6.11) and (6.12), the total dynamic ERR for a propagating crack 

is 
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6.2.2.3 Limiting speed of crack propagation in DCBs 

For the first term of Eq. (6.13), which is the ERR component due to the strain 

energy of quasi-static motion, the crack propagation speed a  should be no larger than 

0C E ρ= . This component of ERR would otherwise become negative, inhibiting crack 

propagation. For the second term of Eq. (6.13), which is the ERR component due to 

vibration, there is another constraint in addition to 0a C≤ : the crack propagation speed 

a  must be no greater than 1
pC , that is, 1

pa C≤ . Vibration energy would otherwise not be 

supplied to the propagating crack tip (recall that 1
pC  is the phase speed of the first-mode 

flexural wave, which carries all the other higher mode waves). This speed is 

 1 1 1
p ,

12
EI EC r

a A
λ λ

ρ ρ
= =  (6.14) 

where r = h/a is the aspect ratio the half DCB, and so the limiting speed of crack 

propagation in DCBs is proportional to r; and λ1 ≈ 3.9266 (Table 5.2). 

Freund [36] derived that for mode-I fracture, the crack-propagation speed cannot 

surpass the Rayleigh wave speed CR, where CR = (0.862 + 1.14ν)Cs/(1 + ν) in Eq. (2.58) 

approximately (see Section 3.3.2.2). The ratio of these two limiting speeds, 1
pC  and CR, 

is 
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These two different limiting speeds, 1
pC  and CR, are not in contradiction to each other: 

instead, 1
pC  is a development of CR when applied to a DCB with a given aspect ratio. 

Freund’s original derivation of the limiting crack-propagation speed as the Rayleigh wave 

speed CR was based on a crack in an infinite sheet (see Eq. (3.47)). The crack provides a 

traction-free surface on a semi-infinite medium, where Rayleigh waves can form 

(Section 2.3.2.2). If, however, additional structural constraints are included, for example, 

in the form of another traction-free surface imposed parallel to the existing one, the semi-

infinite medium develops into a plate. For a thick plate, Rayleigh waves become 

Rayleigh-Lamb waves, which are the superposition of A0 (asymmetric mode) and S0 

(symmetric mode) Lamb waves [163] (Section 2.3.2.3). A0 Lamb waves resemble 

flexural waves and S0 Lamb waves resemble axial waves [26]. For a thin plate, A0 Lamb 

waves become the 2D counterpart of flexural waves in Euler-Bernoulli beams [164] 

(Figure 2.9), and, if axial motion is absent, the influence of S0 Lamb waves can be 

ignored. 

For the increasingly constrained structure described above, as it develops from a 

semi-infinite sheet to an Euler-Bernoulli beam, Rayleigh waves develop into flexural 

waves in a beam, and accordingly, the Rayleigh wave speed drops to the phase speed of 

flexural waves. This leads to a reduction in the limiting speed of crack propagation, as 

determined by Eq. (6.15). 

 
Figure 6.3 Effect of aspect ratio on limiting crack-propagation speed for various 

Poisson’s ratios 
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According to the assessment in Eq. (6.15), the limiting crack-propagation speed 

decreases with decreasing aspect ratio and decreasing Poisson’s ratio as shown in 

Figure 6.3. The limiting speed of crack in a DCB, therefore, decreases with the increasing 

crack length. For the conventional DCB test employed to determine the mode-I fracture 

toughness in CFRPs, the aspect ratio magnitude typically ranges from 0.01 to 0.1 [11], 

and so, from Eq. (6.15), the corresponding limiting speed of crack propagation is 

therefore in the range from 0.02CR to 0.25CR. 

There are currently relatively few experimental data on dynamic crack propagation 

available in the literature [81] for CFRPs in DCBs, at least partly due to the challenges 

such as tests pose for experimental setup design. Experimental data for high loading rates 

are available in [19] and [20], which used a servo-hydraulic test machine with a ‘lost 

motion device’ to achieve opening rates up to 15 m s-1 and in [90], that employed an 

electromagnetic Hopkinson bar to obtain opening rates up to 30 m s-1. 
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Figure 6.4 Comparison of experimentally measured crack-propagation speeds under 

various opening (loading) rates [19][20] against theoretically predicted limiting speed 
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The crack-propagation speeds measured in [19] and [20] under various loading rates 

for two kinds of CFRPs, PEEK/carbon-fibre and epoxy/carbon-fibre composites, are 

plotted in Figure 6.4. The theoretical limiting speed of crack propagation, predicted by 

Eq. (6.14), is also plotted. The measured crack-propagation speeds are well below the 

predicted limiting speed for all the opening rates up to 15 m s- 1. Note that the 

experimentally measured crack-propagation speeds are in a distance to the proposed 

limiting crack-propagation speed, the reason for this distance is due to the low applied 

loading rate. To investigate this, the crack-propagation speeds for each loading rate are 

regressed against the corresponding aspect ratios, and results for PEEK/carbon-fibre 

composite and epoxy/carbon-fibre composite are shown in Figures 6.5a and b, 

respectively. Note that according to Eqs. (6.4) and (6.5), which provides a mean value for 

crack-propagation speed, as well as the relationship r = h/a, the crack-propagation speed 

is proportional to the aspect ratio, and, therefore, the crack-propagation speed is linearly 

regressed against the aspect ratio. 

 
Figure 6.5 Crack-propagation speeds regressed against aspect ratio: (a) PEEK/carbon-

fibre composite and (b) epoxy/carbon-fibre composite 

Apparently, crack-propagation speeds increase with loading rates, and decrease 

with reduced aspect ratios, which is in accordance with the proposed limiting crack-

propagation speed in Figure 6.3; based on the tendency shown in Figure 6.5, it is sensible 

to predict that with an increasing loading rate, the crack-propagation speed can increase 

closer to the proposed crack-propagation speed reducing the distance shown in Figure 6.4; 

and if the applied loading rate is adequate high, the crack-propagation speed can approach 

to the proposed limiting crack-propagation speed but cannot surpass it, since when crack 

propagates faster than limiting crack-propagation speed, the energy cannot be supplied to 

the crack tip for crack growth. 
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Ref. [90] reports crack-propagation speeds for 18 specimens of unidirectional 

epoxy/carbon-fibre composite, ranging from 108 m s-1 to 253 m s-1. For the given opening 

rates of up to 30 m s-1, the lowest predicted the limiting crack propagation speed from 

Eq. (6.14) is 385 m s-1, and so the measured crack-propagation speeds are also within the 

predicted limit. 

A further two points should be noted concerning Eq. (6.15). First, for aspect ratios 

in the range from 0.4 to 0.5 when the thickness and crack length are of the same order, it 

might appear that the limiting crack-propagating speed can reach CR as Rayleigh waves 

can form [30]. The Euler-Bernoulli beam assumption, however, requires that r = h/a < 0.1. 

Second, when the aspect ratio approaches zero, it might appear that the limiting crack-

propagation speed should also approach zero, which would mean that crack cannot 

propagation. For zero aspect ratio, however, the structure instead behaves like a string 

and is unable to bear compression or bending loads. This should not be the case with real 

DCB configurations. 

6.3 Experimental verification 

Fracture toughness is generally rate-dependent as shown by the slip-stick non-

smooth propagation behaviour under high loading rates; this is also demonstrated by the 

experimental results in [19] and [20], which are used to verify the analytical solution for 

rate-dependent fracture toughness developed in Section 6.2.2. 

There are relatively few experimental studies of DCBs under high loading rates in 

the literature [81]. Blackman et al. [19][20], however, performed a comprehensive series 

of experiments under high opening rates of up to 15 m s-1. Two of these DCB experiments, 

with PEEK/carbon-fibre composite under opening rates of 6.5 m s-1 and 10 m s-1, were 

selected to verify the analytical solution developed in Section 6.2.2. For this composite, 

the longitudinal modulus is taken as 115 GPa, the Poisson’s ratio as 0.28 and the density 

as 1540 kg m-3 [19][20]. The half DCB thickness is 1.5 mm, and the width is 20 mm. A 

plane-strain condition is therefore assumed in the analytical calculations with the 

effective Young’s modulus taken as E/(1–ν2) = 124.78 GPa. 

Before crack propagation, that is, for a stationary crack, the solution of Eq. (5.32) 

in Section 5.3.2.4 was used, which provides a continuous ERR with respect to time since 

the crack length does not increase. During crack propagation, Eq. (6.13) developed in 

Section 6.2.2.2 for rate-dependent fracture toughness was used to calculate the dynamic 
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ERR. The first five vibration modes were considered in both cases, which Section 5.3.2.3 

and Section 5.5.2 showed to be adequate. 

The original experimental data of crack length versus time curves in [19] and [20] 

includes 51 data points at evenly spaced intervals for the test with the 6.5 m s-1 opening 

rate, and 31 points for the test with the 10 m s-1 opening rate. A central difference 

calculation was therefore used to estimate the crack-propagation speed with 

( ) ( ) ( ) ( )1 1 1 1n n n n na t a t a t t t+ − + −= − −   , since there are not enough data points to get an 

accurate estimation otherwise (further study for assessment of crack-propagation speed 

is in Section 6.5). When calculating the ERR, the effective crack length of aeff = a+Δ was 

used, where a is the actual crack length and Δ is an additional crack length aimed to 

compensate for crack-tip rotation [19][20], which otherwise is not captured by Euler-

Bernoulli beams with effective boundary condition. The corresponding values of Δ for 

each test are from [19] and [20]. The Δ for 6.5 m s-1 opening rate is 4.4 mm (see 

Table 6.2), and that for 10 m s-1 opening rate is calculated by linear interpolating for 

opening rates 6.5 m s-1 and 14.9 m s-1, giving Δ = 5 mm. 

Experimental verification for DCB under 6.5 m s-1 loading rate 

The theoretical results of the dynamic ERR for the DCB test with the 6.5 m s-1 

opening rate are plotted in Figure 6.6. They are based on the experimentally observed 

crack length and propagation speeds (the crack length is also plotted in Figure 6.6 with 

values on the secondary axis). Note that Ref. [22] simulates Blackman et al.’s [19][20] 

experiments using FEM with ITLSM (Section 4.3.2.3), and in these simulations, the crack 

initiation time is higher than the actual crack initiation time in the experiments. This is 

because “the lost motion device was set to allow a period of pre-travel to ensure that the 

test was conducted at constant velocity” in experiments [19][20], and so this pre-travel 

period should be taken into consideration. The FEM results in [22] were therefore used 

to shift the initiation time in the experimental data. The experimental results in Figure 6.6 

are plotted on this shifted time scale in order to make a valid comparison with the theory. 

The crack-initiation toughness (CIT) of 1400 N m-1 and crack-arrest toughness (CAT) of 

670 N m-1 are taken from the same reference [22], in which Liu et al. performed a 

parametric FEM study of different values of CIT and CAT aiming to match the 

experimentally measured crack length versus time curve. These values are not required 

in the calculation of dynamic ERR and are only shown for comparison. 
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Using the developed analytical solutions – Eq. (5.32) for stationary crack and 

Eq. (6.13) for propagating crack – and the experimentally observed crack length and 

propagation speed, the dynamic ERR was calculated for both stationary and propagating 

cracks. For the stationary crack, it is expected that crack should not propagate until the 

ERR exceeds the CIT (1400 N m-1). For propagating crack, it is expected that the crack 

should propagate if the ERR exceeds the CAT (670 N m-1) and should be arrested 

otherwise. Moreover, once the dynamic ERR drops below the CAT and crack propagation 

is arrested, it is expected that it re-initiates (i.e. continue propagating again) only once the 

dynamic ERR builds up and exceeds the CIT again. 

 
Figure 6.6 Evolution of dynamic ERR and crack length for 6.5 m s-1 loading rate based 

on experimentally observed crack-propagation speed 

Apparently, the developed analytical theory is generally in excellent agreement 

with the experimental results (Figure 6.6): (1) The crack initiates and begins to propagate 

once the dynamic ERR reaches the expected CIT (i.e. after 0.6 ms). (2) The dynamic ERR 

is equal to or greater than the CAT, while it propagates continuously between about 

0.6 ms and 3.5 ms. Note that a small number of data points in this period are slightly 

below the CAT and that in the period between 2.4 ms and 2.7 ms (with three sample 

points), there appears to be a very short period of arrest. Nevertheless, the general 

tendency in the period from 0.6 ms to 3.5 ms is that of propagation with the dynamic ERR 

equal to or greater than the CAT. There are several considerations, which indicates that 

the general tendency is more important than close attention to singular or small groups of 

data points when interpreting these experimental results. In both cases, at least part of the 

cause is the relatively few experimental sample points, which prevented accurate 
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estimation of the crack-propagation speed (detailed discussion in Section 6.5). Also, 

concerning the short arrest period, the FEM simulation shows its absence (see Figure 6.9). 

Generally, dynamic tests are well-known to be probabilistic in nature [165], particularly 

where damage is concerned, and on small scales of time and space, whereas the developed 

theory is deterministic. For all these reasons, it is sensible to consider that the crack 

propagates during the short period between 2.4 ms and 2.7 ms with the dynamic ERR 

equal to or greater than the CAT (thus permitting continued propagation). (3) At about 

3.5 ms, for the reasons described above, it is also within the probable error margin that 

the dynamic ERR drops below the CAT, and the propagation is arrested. (4) Once 

propagation is arrested, the dynamic ERR needs to exceed the CIT again in order to re-

initiate. Indeed, there is a crack arrest period between 3.5 ms and about 4.8 ms, where the 

dynamic ERR is lower than the CIT. (5) At about 4.8 ms, the dynamic ERR reaches the 

CIT again and then the crack propagates until about 6 ms with the dynamic ERR within 

the limits set by the CIT and the CAT. (6) At 6 ms, the dynamic ERR drops below the 

CAT and the propagation arrests once more. 

Experimental verification for DCB under 10 m s-1 loading rate 

The theoretical results of dynamic ERR for the DCB test with the 10 m s-1 opening 

rate are presented in Figure 6.7. These results are based on the experimentally observed 

crack length and propagation speeds (the crack length is also plotted in Figure 6.7 with 

values on the secondary axis). As previously explained, to account for the period of pre-

travel in the experiment, the experimental results are plotted on a shifted time scale, with 

the required amount of shift determined using the FEM results in [22]. The values of CIT 

and CAT were also determined in the same reference as 1300 N m-1 and 300 N m-1, 

respectively. These toughness values are not required in the calculation of dynamic ERR 

and are only shown for comparison. 
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Figure 6.7 Evolution of dynamic ERR and crack length for 10 m s-1 loading rate based 

on experimentally observed crack-propagation speed 

Figure 6.7 again demonstrates an excellent agreement between the developed 

analytical theory and the experimental results: (1) The crack initiates and begins to 

propagate once the dynamic ERR reaches the expected CIT. (2) After crack initiation, 

there is a significant drop of dynamic ERR, which remains above the CAT until t = 2.6 ms, 

when the propagation arrests. 

In both comparisons with dynamic DCB experiments at different opening rates, the 

developed analytical theory predicts dynamic ERRs that are in line with the observed 

crack-propagation behaviour. This is a strong confirmation that the developed analytical 

theory accurately predicts the values of CIT and CAT at times of the crack initiation or 

re-initiation, and arrest. 

6.4 Numerical verification 

6.4.1 Verification for developed theory for constant fracture toughness 

For the crack propagation in the DCB with constant fracture, the same geometry in 

Figure 5.6 and material properties in Section 5.4.1 were used, but the fracture toughness 

of the material was set to 200 N m-1, and the width of the specimen set to 0.05 mm. 3D 

finite-element model was built with 3D stress elements (C3D8R) with one element in the 

widthwise direction. Widthwise displacement was constrained, which simulated a plain-

strain condition, Consequently, the effective Young’s modulus of E/(1–ν2) was used in 

the analytical calculations. The VCCT method was used to model the crack propagation. 
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In the analytical model, crack initiation time is predicted by analytical solution for 

stationary crack in Eq. (5.20) and crack length is derived by Eq. (6.5) with crack extension 

being 1 0A t t− . Note that the coefficient A1 is determined by the crack initiation 

condition. 

 
Figure 6.8 Comparison of crack extension obtained from FEM simulation and from the 

developed analytical theory for material with constant fracture toughness 

The comparison for the crack extension from the analytical solution and the FEM 

simulation is shown in Figure 6.8. Both analytical and numerical methods predict the 

same crack initiation time, and they also agree well with each other for the period just 

following crack initiation. This is as expected since the analytical solution for stationary 

crack with the first-mode accuracy has already been shown to agree well with the FEM 

in predicting the ERR in Section 5.4.2. Subsequently, however, the FEM shows a period 

of a crack arrest of about 0.0005 s after crack initiation, after which the crack grows 

steadily with a slope that is well predicted by the theory. The FEM captures the crack 

arrest period, but the analytical theory does not for the reasons explained in Section 6.2.1.  

This comparison shows that, for brittle materials with moderate density, the 

analytical theory developed for constant fracture toughness based on the ERR with the 

first-mode accuracy can predict the ERR well (and thus the crack initiation time), as well 

as the slope of the crack-extension curve. 
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6.4.2 Verification for developed theory for rate-dependent fracture 
toughness 

The experimental verification (Section 6.3) for the theory developed for rate-

dependent fracture toughness of Eq. (6.13) can accurately predict the main features of 

fracture behaviour such as initiation, propagation and arrest. More detailed comparisons 

between the developed analytical theory and experiment were not possible, however, 

since dynamic ERR cannot be measured directly from experiments without post-

processing (for example, using the developed theory), and because of the insufficient 

number of sample points for accurate measurement of the crack propagation speed. 

Instead, the results from FEM analysis in [22], which simulated the same 

experiments in [19] and [20] considered in Section 6.3, were used to further verify the 

developed analytical theory. The FEM analysis by Liu et al. [22] used ITLSM (see 

Section 4.3.2.3) to simulate 3D DCB under different loading rates. Full details are given 

in [22]. Following the same procedure described in Section 6.3 for experimental 

verification, the FEM results for crack length and crack propagation speed were used 

together with the developed analytical theory for rate-dependent fracture toughness to 

determine the analytical dynamic ERR, which could then be compared directly with the 

dynamic ERR of the respective FEM results.  

Numerical verification for DCB under 6.5 m s-1 loading rate 

The dynamic ERR calculated with developed analytical theory (based on the crack 

length versus time curve obtained from the FEM simulation as well as the crack 

propagation speed) and the FEM results for the 6.5 m s-1 loading case are compared in 

Figure 6.9. 
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Figure 6.9 Evolution of dynamic ERR and crack length for 6.5 m s-1 loading rate based 

on FEM results of crack-propagation speed 

They are in excellent agreement for both stationary crack and propagating cracks. 

Note that the developed analytical theory predicts a slightly higher ERR in comparison 

to the result from FEM. This is reasonable since the FEM model used a 3D formulation 

with the anisotropic material properties of E11 = 115 GPa and E22 = 8 GPa, making this 

model less stiff than the analytical one. The discrepancy is not significant. 

Numerical verification for DCB under 10 m s-1 loading rate 

The dynamic ERR determined with the developed analytical theory (based on the 

evolution of the crack length calculated with the FEM result as well as the crack 

propagation speed) and the numerical result are compared in Figure 6.10 for 10 m s-1 

loading case. They are in excellent agreement for both regimes of crack – stationary and 

propagation. 
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Figure 6.10 Evolution of dynamic ERR and crack length for 10 m s-1 loading rate based 

on FEM results of crack-propagation speed 

The analytical theory developed for the material with rate-dependent fracture 

toughness is therefore verified and can accurately predict the dynamic ERR in DCB tests 

under high loading rate, and also to characterise the main feature of fracture behaviour 

such as crack initiation, propagation and arrest. 

6.5 Crack-propagation speed assessment and dynamic ERR 

An accurate prediction of dynamic ERR requires an accurate estimation of crack-

propagation speed. Due to the relatively small number of experimental sample points, 

central difference method was used in Section 6.3 to assess the crack-propagation speed 

at a given time based on two crack-length measurements to avoid sudden jumps in the 

crack-propagation speed, so ( ) ( ) ( ) ( )1 1 1 1n n n n na t a t a t t t+ − + −= − −    was used. 

Another two possible methods to assess the crack-propagation speed include 

backward difference method with ( ) ( ) ( ) ( )1 1n n n n na t a t a t t t− −= − −   , and forward 

difference method with ( ) ( ) ( ) ( )1 1n n n n na t a t a t t t+ += − −   . Ideally, these three methods 

would give values of crack-propagation speed in close agreement, but this may not be the 

case in real experiments under high loading rates when the actual number of sample points 

for the crack length is determined by the capability of the experimental setup, for 

example, high-speed cameras. 
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For the experimental verification in Section 6.3 (i.e. PEEK/carbon-fibre composite 

under the opening rate of 6.5 m s-1), the three methods of determining the crack-

propagation speed are examined. At t = 3.065 ms, the crack-propagation speed is 

15.15 m s-1 by central difference method, 26.81 m s-1 by backward difference and 

6.14 m s-1 by the forward difference; the dynamic ERR predicted with these crack-

propagation speeds are 645.33 N m-1, 809.01 N m-1 and 625.19 N m-1, respectively, and 

the mean and range of these dynamic ERR values is therefore 693.18±82.32 N m-1. 

Following this approach, the dynamic ERR for every sample point is calculated, and the 

mean and range results of the dynamic ERR are shown in Figure 6.11. 

 
Figure 6.11 Mean value of dynamic ERR and its range by three methods of assessing 

crack-propagation speed 

Apparently, precise prediction of the dynamic ERR based on the developed 

analytical solution of Eq. (6.13) in Section 6.2.2 depends on the accurate determination 

of the crack-propagation speed. The mean value of the dynamic ERR from the three 

estimation methods of the crack-propagation speed can capture the main crack-

propagation behaviours including its arrest and re-initiation. The CAT measured from the 

experimental results in this way is a range rather than the single value of 670 N m-1 

determined by the FEM simulation. The crack re-initiation value at t = 4.81 ms is not 

affected by estimation of the crack-propagation speed, however, because it is zero before 

re-initiation. 

There is a particular point at t = 2.46 ms, where the mean dynamic ERR drops 

significantly below the CAT value of 670 N m-1 (the value determined by the FEM 
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simulation). This one point is not considered problematic for several reasons: (i) the 

overall crack behaviour around this time is one of crack propagation (see Section 6.3); 

(ii) the range still allows for a dynamic ERR that exceeds the CAT; and, furthermore, (iii) 

there are other contributions to the experimental error besides estimation of the crack-

propagation speed, which is the one considered here. 

At t = 2.46 ms, the forward and backward differences for crack-propagation speed 

give a lower limit of 0 m s-1 and an upper one of 53.31 m s-1, respectively, and the central 

difference gives 24.12 m s-1. To study the sensitivity of the dynamic ERR to the crack-

propagation speed, the dynamic ERR is calculated for this particular point at t = 2.46 ms 

with the crack-propagation speed ranging from 0 to 55 m s-1 while keeping other 

parameters same; the results are shown in Figure 6.12. 

 
Figure 6.12 Dynamic ERR versus crack-propagation speed for sample point t = 2.46 ms 

The dynamic ERR ranges from 521.9 N m-1 to 724.9 N m-1. For the crack-

propagation speeds between 10 m s-1 and 35 m s-1, the dynamic ERR is above the CAT 

value of 670 N m-1. Note that the lower limit of crack-propagation speed at this point is 

0, while the upper one is 53.31 m s-1. The mean value gives the dynamic ERR above 

670 N m-1; this is as expected since the general crack behaviour around this point is 

propagation.  

In conclusion, application of the theoretical solution developed in this chapter 

clearly requires the accurate estimation of the crack-propagation speed. For a relatively 

small number of experimental sample points, however, the central difference method may 

offer a reasonable prediction of the dynamic ERR. 
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6.6 Crack-tip-rotation compensation for propagating crack 

In Section 6.3 experimental and Section 6.4 numerical verifications, when applying 

Eq. (6.13), the effective crack length aeff = a+Δ is used, aiming at compensating the 

crack-tip rotation. The additional crack lengths Δ were from [19] and [20] as shown in 

Table 6.2 corresponding to various opening rates.  

Table 6.2 Experimental values of Δ for the PEEK/carbon-fibre composite 

Opening rate 1.67×10-5 m s-1 1.10 m s-1 6.50 m s-1 14.90 m s-1 18.40 m s-1 

Δ 3.6 mm 2.0 mm 4.4 mm 6.0 mm 8.5 mm 

 

In Table 6.2, Δ = 3.6 mm was determined by the MCC method (Section 5.5.1), with 

the opening rate of 1.67×10-5 m s-1 being as the quasi-static loading rate. The other values 

for Δ, however, were not determined by the MCC method, since the MCC method cannot 

be used in dynamic DCB tests due to the inaccurate assessment of compliance from the 

oscillating external forces under high loading rates. Instead, these values for Δ under high 

loading rates were derived by Blackman et al. [20] as they used another method of linearly 

regressing the experimentally measured crack length a against the square root of time t1/2 

with the Δ being the negative intercept corresponding to t = 0. It is noteworthy that the 

additional crack length Δ for propagating cracks determined in this way under high 

loading rates is rate-dependent as shown in Table 6.2 whereas the additional crack length 

Δ for stationary cracks determined by the MCC method is rate-independent. The reason 

for the rate-dependency of Δ is the presumption that the crack length a is linearly related 

to square root of time t1/2 while in reality the crack length is in a stick-slip fashion, and 

this linearly regression fits all the crack behaviours (propagation, arrest, re-initiation) all 

together against the root time, making the additional crack length Δ a representation of 

the average crack behaviour rather than only compensation for crack-tip rotation; under 

different high loading rate, the crack behaves differently with different combinations of 

crack propagation, arrest and re-initiation, and this explains the rate-dependency of the 

additional crack length Δ. 

The experimental (Section 6.3) and numerical (Section 6.4) verifications have 

shown for the propagating cracks, with the rate-dependent Δ in Table 6.2, the analytical 

solution can accurately predict the dynamic ERR. However, these Δ, representing the 
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average crack propagation behaviour rather than only compensating for crack-tip rotation, 

might disguise some local crack behaviour, and therefore further investigation is 

desirable. And this is one objective in Chapter 7 to introduce the elastic foundation into 

the analytical framework, which allows the crack tip to rotate to avoid using the 

compensation. 

6.7 Conclusion 

In this chapter, analytical theories for dynamic mode-I crack propagation are 

developed for a DCB with constant and rate-dependent fracture toughness under high 

loading rates based on the established analytical framework in Chapter 5. 

For a propagating crack in a DCB with constant fracture toughness material, crack 

propagation speed is determined by fracture criterion G = Gc and it is found that crack-

propagation speed is ( )2a a t=  and integration of this crack-propagation speed gives the 

crack length as 0 1 0a a A t t= + − . These analytical solutions are in accordance with 

conventional solutions for interfacial fracture but including dynamic effects of vibration. 

The crack length curve predicted by this analytical solution is verified against FEM 

simulations. The analytical result predicts the same slope for crack length curve indicating 

the accurate crack propagation speed assessment, but it cannot predict a short crack arrest 

near crack initiation observed by FEM simulation. However, in the long run, this short 

crack arrest is not significant, and the analytical solution for the constant toughness is still 

applicable under the stated assumptions. 

For a propagating crack in a DCB with rate-dependent fracture toughness material, 

dynamic ERR is derived using crack-tip bending moment and simplification method in 

Chapter 5, as well as an assumption of energy conservation at the crack tip, also 

accounting for dispersion and the Doppler effect. The developed analytical solution is 

also used to study the limiting speed of crack propagation in DCBs. For a conventional 

DCB test with a magnitude of aspect ratio r = h/a ranging from 0.01 to 0.1 typically 

(where h is the DCB’s arm thickness, a is the crack length), the limiting speed of crack 

propagation is determined to be in the range from 0.02CR to 0.25CR, where CR is the 

Rayleigh wave speed. The developed analytical theory for rate-dependent fracture 

toughness is verified against both experimental data and results of FEM simulations. It 

accurately predicts the dynamic ERR in comparison to FEM simulations; and it provides 

the correct assessment of fracture behaviour, including crack initiation, arrest and re-
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initiation observed in the experiments. The theory can, therefore, be used to determine 

the CIT and CAT values. 

The developed analytical solution is based on effective boundary condition 

assumption of a fixed boundary condition at the crack tip, and compensation for crack-

tip rotation is required via effective crack length aeff = a+Δ. But the result in [20] shows 

that the additional crack length Δ for the propagating cracks is rate-dependent and also 

an average representation of crack behaviours rather than only a compensation for crack-

tip rotation, which might limit its applications. Therefore, further analytical models are 

desirable to allow crack-tip rotation rather than using the compensation method, and this 

is achieved by introducing the elastic foundation in Chapter 7. 

 



 
Chapter 7:  Dynamic fracture on elastic interface 

7.1 Introduction 

The analytical framework of dynamic mode-I fracture for the rigid interface has 

been established in Chapter 5 for stationary cracks and Chapter 6 for propagating cracks 

in DCBs with effective boundary condition, which requires using effective crack length 

to compensate for crack-tip rotation; and there are some limitations in determining this 

crack-tip rotation compensation in the dynamic regime, and further analytical models that 

allow the crack tip to rotate is desirable. This can be achieved by introducing an elastic 

foundation into the established analytical framework, which allows the crack-tip to rotate. 

But more importantly, the dynamic fracture on the non-rigid interface can, therefore, be 

studied by this introduced elastic foundation. 

The derived analytical solution for dynamic fracture on an elastic foundation can 

be directly applied to study the following structures: adhesively bonded or welded 

symmetric DCB (Figure 7.1a) and thin-layer-on-thick-substrate configuration (or spalling 

of a surface layer) (Figure 7.1b). 

 
Figure 7.1 (a) Symmetric double cantilever beam with h = h1 = h2; (b) thin-layer-on-

thick-substrate configuration with h1 = h and h1 << h2. 

7.2 Theoretical development for stationary crack 

The two configurations in Figure 7.1 can be represented by the configuration of 

Figure 7.2. And the dynamic ERR of this stationary crack shown in Figure 7.2 is derived 

analytically considering both vibration and wave propagation. Figure 7.2 shows that a 

beam in its initial undeformed condition rests on a partial elastic foundation with constant 

foundation stiffness k, with a time-dependent displacement w0 (t) applied to the midplane 

of its free end. A constant opening rate v is selected, that is, w0 (t) = vt. The length of the 
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beam section resting on the foundation representing the uncracked region is L. The length 

of the free beam section is a, which represents the crack length. The coordinate system is 

set so that the x axis is to the right with the crack tip at x = L, and the z axis is upwards, 

with the beam’s transverse deflection in the x-z plane. The deflection of the foundation-

supported beam section is represented by wFD (x, t), and the deflection of the free beam 

section is represented by wFR (x, t). It is assumed that there is no interfacial contact 

between the free beam section and the foundation and that the beam thickness h is small 

enough compared to a and L (h/a<0.1, h/L<0.1) for the Euler-Bernoulli beam theory to 

apply. At (0,0) it is assumed a fixed boundary, since deflection is constrained due to the 

symmetry, and when the foundation stiffness is large, the rotation is also constrained. 

Note that for thick beams with h not small compared to a and L the rotational inertia and 

shear can be significant, and Rayleigh beam theory (accounting for rotational inertia) and 

Timoshenko beam theory (accounting for rotational inertia and shear) have to be adopted, 

but this is beyond the scope of this thesis. 

 
Figure 7.2 Configuration of beam partially supported on elastic foundation and 

prescribed coordinates 

Now the global energy balance based on conservation of energy for this elastic 

structure with the crack area of A0 (corresponding to crack length a) is 

 ext ,W U K S= + + +Γ  (7.1) 

where Wext is the time-accumulated work done by the external forces; U and K are the 

instantaneous strain and kinetic energies of the beam, respectively; S is the instantaneous 

strain energy stored in the elastic foundation, and Γ is the time-accumulated energy, 

dissipated from the whole system in advancing the crack. At t = 0, the system is in its 

initial condition and all the energy terms are zero. Under displacement control, the applied 

displacement is held during the crack opening and so dWext/dA0 = 0. The energy dissipated 
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from the system in incrementing the crack area by dA0 is, therefore, the reduction in total 

mechanical energy of the system П, where 

  .U K SΠ = + +  (7.2) 

Note that П is the total mechanical energy of the system in Figure 7.2 at a given 

time t that could potentially be dissipated from the system during crack growth. 

7.2.1 Dynamic response of beam on elastic foundation 

By introducing shifting functions (Section 2.2.3), the dynamic transverse 

deflections of the beam sections shown in Figure 7.2 with applied constant-rate 

displacement w0 (t) = vt takes the form of 

 ( ) ( ) ( )FD FD FD
fv, , ,w x t w x t F x vt= +  (7.3) 

 ( ) ( ) ( )FR FR FR
fv, , ,w x t w x t F x vt= +  (7.4) 

where ( )FD
fv ,w x t  and ( )FR

fv ,w x t  are the free-vibration components of the foundation-

supported beam section and the free beam section, respectively; FFD (x) and FFR (x) are 

the corresponding shifting functions. The shifting functions distribute the externally 

applied displacement along the beam. 

The equation of motion for the vibration of an Euler-Bernoulli beam on an elastic 

foundation with constant foundation stiffness k is given in Eq. (2.5). Combining 

Eqs. (2.5) and (7.3), and enforcing homogeneous condition, the governing equation for 

the free-vibration component ( )FD
fv ,w x t  and the corresponding shifting function FFD (x) 

for the foundation-supported beam section are obtained: 

 ( ) ( ) ( ) ( )4FD FD FD
fv fv fv, , , 0 ,EIw x t Aw x t kw x tρ+ + =  (7.5) 

 ( ) ( ) ( )4FD FD 0.EIF x kF x+ =  (7.6) 

Likewise, using Eqs. (2.6) and (7.4) for the free beam section, the governing 

equations for the free-vibration component ( )FR
fv ,w x t  and the shifting function FFR (x) are 

 ( ) ( ) ( )4FR FR
fv fv, , 0,EIw x t Aw x tρ+ =  (7.7) 

 ( ) ( )4FR 0.F x =  (7.8) 
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For the foundation-supported beam section, the boundary conditions for the total 

deflection wFD (x, t) are wFD (0, t) = 0 and wFD(1) (0, t) = 0. By using these boundary 

conditions for wFD (x, t) in Eq. (7.3), and enforcing homogeneous conditions, the 

boundary conditions for the free-vibration component ( )FD
fv ,w x t  and the shifting function 

FFD (x) are obtained in Table 7.1. 

Table 7.1 Boundary conditions for the foundation-supported beam section 

Boundary 
Total deflection 

( )FD ,w x t  

Free-vibration component 

( )FD
fv ,w x t  

Shifting function 

( )FDF x  

0x =  

( )FD 0, 0w t =  ( )FD
fv 0, 0w t =  ( )FD 0 0F =  

( ) ( )FD 1 0, 0w t =  ( ) ( )FD 1
fv 0, 0w t =  ( ) ( )FD 1 0 0F =  

 

For the free beam section with boundary conditions wFR (L + a, t) = vt and 

wFR(2) (L + a, t) = 0, following a similar approach with Eq. (7.4), the corresponding 

boundary conditions for the free-vibration component ( )FR
fv ,w x t  and shifting function 

FFR (x) are obtained in Table 7.2. 

Table 7.2 Boundary conditions for the free beam section 

Boundary 
Total deflection 

( )FR ,w x t  

Free-vibration component 

( )FR
fv ,w x t  

Shifting function 

( )FRF x  

x L a= +  

( )FR ,w L a t vt+ =  ( )FR
fv , 0w L a t+ =  ( )FR 1F L a+ =  

( ) ( )FR 2 , 0w L a t+ =  ( ) ( )FR 2
fv , 0w L a t+ =  ( ) ( )FR 2 0F L a+ =  

 

Considering continuity at the crack-tip location, x = L, since the two beam sections 

share the same deflection, slope, bending moment and shear force at this location, the 

continuity condition for the free-vibration components ( )FD
fv ,w x t  and ( )FR

fv ,w x t  as well 

as the shifting functions FFD (x) and FFR (x) are derived by enforcing homogeneous 

conditions, given in Table 7.3. 
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Table 7.3 Continuity conditions for total deflection and its components 

Continuity Total deflection Free-vibration component Shifting function 

Deflection ( ) ( )FD FR, ,w L t w L t=  ( ) ( )FD FR
fv fv, ,w L t w L t=  ( ) ( )FD FRF L F L=  

Slope ( ) ( ) ( ) ( )FD 1 FR 1, ,w L t w L t=  ( ) ( ) ( ) ( )FD 1 FR 1
fv fv, ,w L t w L t=  ( ) ( ) ( ) ( )FD 1 FR 1F L F L=  

Bending moment ( ) ( ) ( ) ( )FD 2 FR 2, ,w L t w L t=  ( ) ( ) ( ) ( )FD 2 FR 2
fv fv, ,w L t w L t=  ( ) ( ) ( ) ( )FD 2 FR 2F L F L=  

Shear force ( ) ( ) ( ) ( )FD 3 FR 3, ,w L t w L t=  ( ) ( ) ( ) ( )FD 3 FR 3
fv fv, ,w L t w L t=  ( ) ( ) ( ) ( )FD 3 FR 3F L F L=  

 

7.2.1.1 Solutions for free-vibration components and orthogonality 

By the method of separation of variables, the solutions for the free-vibration 

components ( )FD
fv ,w x t  in Eq. (7.5) and ( )FR

fv ,w x t  in Eq. (7.7) are 

 ( ) ( ) ( )FD FD
fv

1
, ,i i

i
w x t W x T t

∞

=

=∑  (7.9) 

 ( ) ( ) ( )FR FR
fv

1
, ,i i

i
w x t W x T t

∞

=

=∑  (7.10) 

where Wi (x) represents the ith normal mode for the respective beam section, which is 

derived in Section 7.2.1.2, and Ti (t) is the time-dependent modal displacement of the ith 

vibration mode, which is solved in Section 7.2.1.3. Substituting these solutions into 

Eqs. (7.5) and (7.7), introducing natural frequency ωi and rearranging provide two 

ordinary differential equations for the normal modes, ( )FD
iW x  and ( )FR

iW x , and one 

ordinary differential equation for the modal displacement Ti (t): 

 ( ) ( ) ( )FD 4 2 FD 0,i i i
k AW x W x

EI EI
ρω + − = 

 
 (7.11) 

 ( ) ( ) ( )FR 4 2 FR 0,i i i
AW x W x

EI
ρω− =  (7.12) 

 ( ) ( )2 0.i i iT t T tω+ =  (7.13) 
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The corresponding boundary conditions for the normal modes ( )FD
iW x  and 

( )FR
iW x  are derived from the boundary conditions of their free-vibration components 

shown in Table 7.4 from Table 7.1 and Table 7.2. 

Table 7.4 Boundary conditions for normal modes 

Boundary 

Normal modes 

( )FD
iW x  ( )FR

iW x  

0x =  

( )FD 0 0iW =  - 

( ) ( )FD 1 0 0iW =  - 

x L a= +  

- ( )FR 0iW L a+ =  

- ( ) ( )FR 2 0iW L a+ =  

 

The continuity conditions at the crack tip x = L are given in Table 7.5 derived from 

Table 7.3. 

Table 7.5 Continuity conditions for normal modes 

Continuity Normal modes 

Deflection ( ) ( )FD FR
i iW L W L=  

Slope ( ) ( ) ( ) ( )FD 1 FR 1
i iW L W L=  

Bending moment ( ) ( ) ( ) ( )FD 2 FR 2
i iW L W L=  

Shear force ( ) ( ) ( ) ( )FD 3 FR 3
i iW L W L=  

 

Now consider the orthogonality condition. For the foundation-supported beam 

section, multiplying Eq. (7.11) by ( )FD
jW x , integrating over the length of the beam 
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section from 0 to L twice by parts, and applying the boundary conditions in Table 7.4, 

gives 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 FD 1 FD 2 FD 2 FD 2FD FD

0

FD FD 2 FD FD

0 0
.

L

j i j i j i

L L

i j i i j

W L W L W L W L W x W x dx

k AW x W x dx W x W x dx
EI EI

ρω

− +

= − +

∫

∫ ∫
 (7.14) 

For the free beam section, multiplying Eq. (7.12) by ( )FR
jW x , integrating over the 

length of free beam section from L to L + a twice by parts, and applying the boundary 

conditions in Table 7.4, gives 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

FR 3 FR 1 FR 2 FR 2 FR 2FR

2 FR FR .

L a

j i j i j iL

L a

i i jL

W L W L W L W L W x W x dx

A W x W x dx
EI
ρω

+

+

− + +

=

∫

∫
 (7.15) 

Summing Eqs. (7.14) and (7.15), applying continuity at the crack tip in Table 7.5, and 

then subtracting this from itself with the subscripts i and j exchanged, gives 

 ( ) ( ) ( ) ( ) ( )2 2 FD FD FR FR

0
0.

L L a

i j i j i jL
AW x W x dx AW x W x dxω ω ρ ρ

+ − + =  ∫ ∫  (7.16) 

Since the natural frequency of the system is unique, that is, ωi ≠ ωj for i ≠ j, therefore 

 ( ) ( ) ( ) ( )FD FD FR FR

0
0.

L L a

i j i jL
AW x W x dx AW x W x dxρ ρ

+
+ =∫ ∫  (7.17) 

Including the case of i = j and normalising Eq. (7.17), finally, the orthogonality of the free 

vibration of a beam partially supported on an elastic foundation is written as 

 ( ) ( ) ( ) ( )FD FD FR FR

0
.

L L a

i j i j ijL
AW x W x dx AW x W x dxρ ρ δ

+
+ =∫ ∫  (7.18) 

7.2.1.2 Solutions for normal modes and frequency equation 

For the ith normal mode of the free-vibration component of the foundation-

supported beam section, ( )FD
iW x  in Eq. (7.11), the general solution with the available 

boundary conditions in Table 7.4 applied is 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

FD
1

2

cosh sin sinh cos

sinh sin ,
i i i i i i

i i i

W x C x x x x

C x x

α α α α

α α

= −  
+

 (7.19) 
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where ( )4 24 i ik EI A EIα ω ρ= −  with ( )2 0ik EI A EIω ρ− >  for the foundation 

stiffness k being relatively large, Ci1 and Ci2 are coefficients to be determined. 

For the ith normal mode of the free-vibration component for the free beam section, 

( )FR
iW x  in Eq. (7.12), the general solution with available boundary conditions in 

Table 7.4 applied is 

 ( ) ( ) ( )FR
3 4sinh sin ,i i i i iW x C x L a C x L aβ β= − − + − −        (7.20) 

where ( )4 2
i i A EIβ ω ρ= , Ci3 and Ci4 are coefficients to be determined. 

The frequency equation is derived by applying the four continuity conditions at the 

crack tip, x = L, listed in Table 7.5, to these general solutions for ( )FD
iW x  and ( )FR

iW x , 

which gives 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )2 2 2

cosh sin
sinh sin sinh sin

sinh cos

sinh cos
2 sinh sin cosh cos

cosh sin

sinh cos
2 2 cosh cos sinh

cosh sin

i i
i i i i

i i

i i
i i i i i i i i

i i

i i
i i i i i i

i i

L L
L L a a

L L

L L
L L a a

L L

L L
L L a

L L

α α
α α β β

α α

α α
α α α α β β β β

α α

α α
α α α α β β

α α

 
  − 

 
− −  + 

 
−  + 

( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1

2

32

4

3 3 3 3

0
0

.
0

sin 0

sinh cos
4 cosh cos 2 cosh cos

cosh sin

i

i

i

i i
i

i i
i i i i i i i i

i i

C
C
C

a C

L L
L L a a

L L

β β

α α
α α α α β β β β

α α

 
 
 
 
     
     
     =     
           
 
  
 −   −  

 (7.21) 

For this homogeneous system of linear equations above to have nonzero solutions, the 

determinant of the coefficient matrix must be zero, and this gives the frequency equation. 

Let Di be the determinant of the coefficient matrix of Eq. (7.21). From Di = 0, the 

wavenumbers βi can be determined and thus the angular frequency of each mode is 

( )2
i i EI Aω β ρ= . 

By Gaussian elimination, the coefficients Ci1, Ci2 and Ci3 can be expressed linearly 

in terms of Ci4. Then, by substituting the general solutions in Eqs. (7.19) and (7.20) into 

the orthogonality condition in Eq. (7.18), Ci4 can be determined, and, therefore, Ci1, Ci2 

and Ci3 also. 

7.2.1.3 Solution for time-dependent modal displacement 

The general solution for the time-dependent modal displacement of the ith vibration 

mode in Eq. (7.13) is 
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 ( ) ( ) ( ) ( ) ( )0
sin 0 cos ,i

i i i i
i

T
T t t T tω ω

ω
= +


 (7.22) 

where ( )0iT  and ( )0iT  are the initial values of the modal displacement and modal 

velocity of the ith vibration mode. 

The initial modal displacement Ti (0) can be determined by the following 

procedure: Substitute Eq. (7.22) into Eqs. (7.9) and (7.10), and combining Eqs. (7.3) and 

(7.4) to obtain the following equations for foundation-supported beam and free beam 

sections, respectively: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )FD FD FD

1

0
, sin 0 cos ,i

i i i i
i i

T
w x t W x t T t F x vtω ω

ω

∞

=

 
= + + 

 
∑



 (7.23) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )FR FR FR

1

0
, sin 0 cos .i

i i i i
i i

T
w x t W x t T t F x vtω ω

ω

∞

=

 
= + + 

 
∑



 (7.24) 

The initial displacements of these two beam sections are therefore 

( ) ( ) ( )FD FD
1

,0 0i ii
w x W x T∞

=
=∑  and ( ) ( ) ( )FR FR

1
,0 0i ii

w x W x T∞

=
=∑ , respectively. 

Multiply ( )FD ,0w x  by ( )FD
jAW xρ  and integrate over the foundation-supported beam 

length (from 0 to L); multiply ( )FR ,0w x  by ( )FR
jAW xρ  and integrate over the free beam 

length (from L to L + a); and sum these two integrals to have 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

FD FD FR FR

0

FD FD FR FR

0
1 1

,0 ,0

0 0 .

L L a

j jL

L L a

j i i j i iL
i i

AW x w x dx AW x w x dx

AW x W x T dx AW x W x T dx

ρ ρ

ρ ρ

+

∞ ∞+

= =

+

= +

∫ ∫

∑ ∑∫ ∫
 (7.25) 

By applying the orthogonality in Eq. (7.18) together with the initial conditions that 

wFD (x, 0) = 0 and wFR (x, 0) = 0, the ith modal displacement is found to be zero, that is, 

Ti (0) = 0. Following a similar procedure, the initial value of the ith modal velocity is 

found to be 

 
( ) ( ) ( ) ( ) ( )FD FD FR FR

0
0

,

L L a

i i iL

i

T v AW x F x dx AW x F x dx

vH

ρ ρ
+ = − +  

= −

∫ ∫

 (7.26) 

where 
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 ( ) ( ) ( ) ( )FD FD FR FR

0
.

L L a

i i iL
H AW x F x dx AW x F x dxρ ρ

+
= +∫ ∫  (7.27) 

The quantity Hi represents the coupling of free vibration and applied constant 

opening velocity, that is, the response of the free vibration of the beam to the applied 

excitation. It is shown in Section 7.2.1.4 that the shifting functions, FFD (x) and FFR (x), 

are independent of the applied velocity v; therefore, Hi is also independent of the applied 

velocity and is instead an inherent property of the beam configuration. In addition, Hi is 

also a counterpart of Λi in Eq. (5.5). 

7.2.1.4 Solutions for shifting functions 

The shifting functions are obtained by solving the ordinary differential equations in 

Eqs. (7.6) and (7.8), together with the available boundary conditions in Table 7.1 and 

Table 7.2 as well as the continuity conditions at the crack tip in Table 7.3. 

The general solution for FFD (x) with available boundary conditions in Table 7.1 

applied is 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

FD
1

2

cosh sin sinh cos

sinh sin ,

F x P x x x x

P x x

γ γ γ γ

γ γ

= −  
+

 (7.28) 

where 4γ4 = k/(EI), and where P1 and P2 are coefficients to be determined. 

The general solution for FFR (x) with available boundary conditions in Table 7.2 

applied is 

 ( ) ( ) ( )3FR
3 4 1,F x P x L a P x L a= − − + − − +  (7.29) 

where P3 and P4 are coefficients to be determined. 

By applying the four continuity conditions at the crack tip x = L in Table 7.3, to the 

general solutions for FFD (x) and FFR (x), the following system of equations is obtained: 
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( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

3

2

2 2

3 3

cosh sin
sinh sin

cos sinh

cosh sin
2 sinh sin 3 1

cos sinh

cosh sin
2 2 cosh sin 6 0

cos sinh

cos sinh
4 cosh cos 2 6 0

cosh sin

L L
L L a a

L L

L L
L L a

L L

L L
L L a

L L

L L
L L

L L

γ γ
γ γ

γ γ

γ γ
γ γ γ γ

γ γ

γ γ
γ γ γ γ

γ γ

γ γ
γ γ γ γ

γ γ

  
  − 

 
− −  + 

 
  + 

 
−  − 

1

2

3

4

1
0

.
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 (7.30) 

Solving this system of equations gives the coefficients P1, P2, P3 and P4 as 
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where 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 2 2
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. 

The shifting function solutions, given in Eqs. (7.28) and (7.29) together with their 

coefficients from Eqs. (7.31) to (7.34) show that they are independent of the applied 

opening velocity v. This indicates that the shifting functions, which represent the 

distribution of the externally applied displacement or velocity along the beam, are 

inherent properties of the beam configuration. 

7.2.1.5 Total deflections 

The combined results from Sections 7.2.1.1 to 7.2.1.4 give the total deflections for 

foundation-supported beam and free beam sections in Eqs. (7.3) and (7.4) as 
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 (7.35) 

 
( ) ( ) ( )

( ) ( ) ( )

FR FR FR
fv

FR FR

1

, ,

sin .i
i i

i i

w x t w x t F x vt

Hv W x t F x tω
ω

∞

=

= +

   = − +  
   
∑

 (7.36) 

It is demonstrated that the beam system’s response is proportional to the externally 

applied constant opening velocity v. The terms contained in the braces are determined by 

the beam configuration alone. And the total deflection in Eqs. (7.35) and (7.36) are used 

to derive the respective energy terms in Section 7.2.2 and then to determine the dynamic 

ERR in Section 7.2.3. 

7.2.2 Energy stored in the beam on elastic foundation 

7.2.2.1 Strain energy of beam 

The strain energy of a thin beam section is calculated using 

( ) ( )2 , 2U M x t dx EI= ∫ , where ( ) ( ) ( )2, ,M x t EIw x t= , which is the internal bending 

moment. The strain energy stored in the foundation-supported beam section is therefore 
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 (7.37) 

and the strain energy stored in the free beam section is 
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∫

∫

 (7.38) 

Let FD
locU , FD

cpU  and FD
stU  correspond in order to each of the three terms in Eq. (7.37), 

representing the strain energy due to the local vibration, the strain energy due to the 

coupling between the local vibration and the quasi-static motion, and the strain energy 
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due to the quasi-static motion, respectively. Similar definitions are applied to Eq. (7.38), 

with the corresponding strain energy terms being FR
locU , FR

cpU  and FR
stU . 

The total strain energy of the whole beam is, therefore, FD FRU U U= + , which can 

then be partitioned into the total strain energy due to the local vibration, FD FR
loc loc locU U U= +

; the total strain energy due to the coupling between the local vibration and the quasi-

static motion, FD FR
cp cp cpU U U= + ; and the total strain energy due to the quasi-static motion, 

FD FR
st st stU U U= + . 
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 (7.39) 

The total strain energy due to the local vibration is 

 ( ) ( ) ( ) ( )
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U EI w x t dx EI w x t dx

+
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The combined results from Sections 7.2.1.1 to 7.2.1.3 allow ( )FD
fv ,w x t  and 

( )FR
fv ,w x t  in Eqs. (7.9) and (7.10) to be substituted into Eq. (7.40) and expanded, giving 
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 (7.41) 

which then further expands to 
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(7.42) 

Rearranging Eq. (7.42) gives 
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The first term in Eq. (7.43) is the summation of strain energy due to each individual 

local vibration, and denoted as Uloc/S; the second term is the strain energy due to the 

coupling between different local vibration modes Uloc/C, so 

 loc loc/S loc/C ,U U U= +  (7.44) 

where 
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The total strain energy due to the coupling between the local vibration and the quasi-

static motion, that is, FD FR
cp cp cpU U U= + , is 
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 (7.47) 

The total strain energy due to the quasi-static motion, that is, FD FR
st st stU U U= + , is 
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7.2.2.2 Kinetic energy of beam 

The transverse velocities of the foundation-supported beam and the free beam 

sections are ( ) ( ) ( )FD FD FD
fv, ,w x t w x t F x v= +   and ( ) ( ) ( )FR FR FR

fv, ,w x t w x t F x v= +  . The 
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kinetic energy of a thin beam section is calculated using ( ) 2

0
2 ,

L
K A w x t dxρ=   ∫  , and, 

therefore, the corresponding kinetic energies are 
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Let FD
locK , FD

cpK  and FD
stK  correspond in order to each of the three terms in Eq. (7.49), 

representing the kinetic energy due to the local vibration, the kinetic energy due to the 

coupling between the local vibration and the quasi-static motion, and the kinetic energy 

due to the quasi-static motion, respectively. Similar definitions are applied to Eq. (7.50) 

with the corresponding kinetic energy terms being FR
locK , FR

cpK  and FR
stK . 

The total kinetic energy of the whole beam is, therefore, FD FRK K K= + , which 

can be partitioned into the total kinetic energy due to the local vibration, FD FR
loc loc locK K K= +

; the total kinetic energy due to the coupling between the local vibration and the quasi-

static motion, FD FR
cp cp cpK K K= + ; and the total kinetic energy due to the quasi-static 

motion, FD FR
st st stK K K= + . And, therefore, 
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 (7.51) 

The total kinetic energy due to the local vibration is 
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Like the case for the strain energy due to the local vibration Uloc in Eq. (7.40), and 

by the equivalent derivation for Eq. (7.44), the total kinetic energy due to the local 

vibration can be expressed as the sum of kinetic energy contributions from each individual 

vibration mode Kloc/S and kinetic energy contributions from the coupling between 

different vibration modes Kloc/C. In this case, however, the orthogonality condition in 

Eq. (7.18) can also be applied, allowing Kloc/S and Kloc/C to simplify further to 

( )2 2 2
loc/S 1

2 cosi ii
K v H tω∞

=
= ∑  and Kloc/C = 0, giving 

 ( )2 2 2
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=

= ∑  (7.53) 

The total kinetic energy due to the coupling between the local vibration and the 

quasi-static motion, that is, FD FR
cp cp cpK K K= + , with the orthogonality condition in 

Eq. (7.18) also applied, is 
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 (7.54) 

The total kinetic energy due to the quasi-static motion, that is, FD FR
st st stK K K= + , is 
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7.2.2.3 Strain energy of elastic foundation 

The strain energy of the elastic foundation is ( ) 2FD

0
, 2

L
S k w x t dx =  ∫ , which 

expands to 
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 (7.56) 

Let Sloc, Scp and Sst correspond in order to each of the three terms in Eq. (7.56), 

representing the strain energy of the foundation due to the local vibration, the strain 

energy of the foundation due to the coupling between the local vibration and the quasi-
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static motion, and the strain energy of the foundation due to the quasi-static motion, 

respectively. 

The strain energy stored in the foundation due to the local vibration is 
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Like the case for the strain energy due to local vibration Uloc in Eq. (7.40), and by 

the equivalent derivation for Eq. (7.44), the total strain energy of the foundation due to 

local vibration can be expressed as the sum of strain energy contributions from each 

individual vibration mode Sloc/S and strain energy contributions from the coupling 

between different vibration modes Sloc/C. This is expressed as 

 loc loc/S loc/C ,S S S= +  (7.58) 

where 
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The total strain energy of the foundation due to the coupling between the local 

vibration and the quasi-static motion is 
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The total strain energy of the foundation due to the quasi-static motion is 

 ( ) 22 2 FD
st 0

1 .
2

L
S kv t F x dx =  ∫  (7.62) 

7.2.2.4 Total mechanical energy 

The total mechanical energy Π is by summing all the energy terms derived from 

Sections 7.2.2.1 to 7.2.2.3 as per Eq. (7.2). The relations between relevant energy terms 

are derived first, which can be used to simplify the final solution for total mechanical 

energy. 
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(1) Relation between Uloc and Sloc 

For simplifying the strain energy of local vibration Uloc , the following relationship 

in Eq. (7.63) for normal modes of ( )FD
iW x  and ( )FR

iW x  is derived first by summing 

Eqs. (7.14) and (7.15) together with the continuity condition in Table 7.5 and also by 

letting i = j and applying orthogonality in Eq. (7.18). 

 ( ) ( ) ( ) ( ) ( )
22 2 2FD 2 FR 2 FD

0 0
.

L L a L i
i i iL

kW x dx W x dx W x dx
EI EI

ω+
     + = − +    ∫ ∫ ∫  (7.63) 

Using Eq. (7.63), the local vibration strain-energy contributions from individual 

mode vibration, that is, Uloc/S in Eq. (7.45) can be simplified to 

 
( ) ( ) ( )

( )

2 22 2 FD 2 2 2
loc/S 2 0

1 1

2 2 2
loc/S

1

1 1sin sin
2 2

1 sin .
2

Li
i i i i

i ii

i i
i

HU kv t W x dx v H t

S v H t

ω ω
ω

ω

∞ ∞

= =

∞

=

 
 = − +  

 

= − +

∑ ∑∫

∑
 (7.64) 

Using the summation of Eqs. (7.14) and (7.15) again, the local vibration strain-

energy contributions from the coupling between different mode vibrations, that is, Uloc/C 

in Eq. (7.46) can be simplified to 

 
( ) ( ) ( ) ( )FDFD1

2
loc/C 0

1 1

loc/C

sinsin
lim

.

n nL j j ji i i

n i j ii j

H W x tH t W x
U kv dx

S

ωω
ω ω

−

→∞
= = +

   = −   
    

= −

∑ ∑∫  (7.65) 

(2) Relation between Ucp and Scp 

Expanding FD
cpU , which is the first term of Eq. (7.47), with Eq. (7.9) and integrating 

twice by parts gives 

 ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

FD 1 FD 2

0

FD 3FD 2 FD
cp

01
FD 4FD

0

sin .

L

i

L
i

i i
i i

L

i

W x F x

HU EIv t t W x F x

W x F x dx

ω
ω

∞

=

    
   = − −  
 
  +    

∑

∫

 (7.66) 

Then, by using the boundary conditions for ( )FD
iW x  in Table 7.4 and for FFD (x) in 

Table 7.1, and substituting Eq. (7.6), FD
cpU  simplifies to 
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 ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

FD 1 FD 2

FD 3FD 2 FD
cp

1

FD FD

0

sin .

,

i

i
i i

i i
L

i

W L F L
HU EIv t t W L F L

k W x t F x dx
EI

ω
ω

∞

=

 
   
   = − −  
 
  −    

∑

∫

 (7.67) 

By using the same procedure with Eqs. (7.8) and (7.10), FR
cpU , which is the second 

term in Eq. (7.47), simplifies to 

 ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

FR 1 FR 2
FR 2
cp FR 3FR

1
sin .ii

i
i i i

W L F LHU EIv t t
W L F L

ω
ω

∞

=

 − = −  
+  

∑  (7.68) 

By summing Eqs. (7.67) and (7.68) as for Eq. (7.47) and applying the continuity 

conditions at the crack tip in Table 7.3 and Table 7.5, Ucp is simplified to 

 
( ) ( ) ( )2 FD FD

cp 0
1

cp

sin

.

Li
i i

i i

HU kv t t W x F x dx

S

ω
ω

∞

=

 
=  

 
= −

∑ ∫  (7.69) 

(3) Relation between Ust and Sst 

Partially integrating FD
stU , the first term in Eq. (7.48), twice and using the boundary 

condition in Table 7.1 together with Eq. (7.6), gives 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

FD 1 FD 2 FD 3 FD
2 2

FD
2st FD

0

.
2 L

F L F L F L F LEIv tU k F x dx
EI

 −
 =  

 −   ∫
 (7.70) 

By the same procedure for FR
stU , the second term in Eq. (7.48), but using Eq. (7.8) 

and Table 7.2, FR
stU  simplifies to  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

FR 1 FR 22 2
FR
st FR 3 FR 3FR

.
2

F L F LEIv tU
F L F L F L a

 −
 =
 + − + 

 (7.71) 

Summing Eqs. (7.70) and (7.71) and applying the continuity at the crack tip for 

shifting functions in Table 7.3, Ust is found to be 
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( ) ( ) ( )

( ) ( )

2FR 32 2 2 2 FD
st 0

FR 32 2
st

1 1
2 2
1 .
2

L
U EIv t F L a kv t F x dx

EIv t F L a S

 = − + −  

= − + −

∫
 (7.72) 

Thus, by substituting results from Sections 7.2.2.1 to 7.2.2.3 to Eq. (7.2), and 

combining Eqs.  (7.64), (7.65), (7.69) and (7.72), the total mechanical energy of the 

system at a given time t that could potentially be dissipated during crack growth is 

 

( )

( ) ( )

( ) ( )

2 2 2 2

1 1

FR 32 2

2 2FD FR

0

1cos
2

1
2
1 1 .
2 2

i i i
i i

L L a

L

v H t v H

EIv t F L a

A F x v dx A F x v dx

ω

ρ ρ

∞ ∞

= =

+

Π = − +

− +

   + +   

∑ ∑

∫ ∫

 (7.73) 

7.2.3 Dynamic energy release rate on elastic foundation 

The energy that can potentially be dissipated from the system during crack growth 

comes from the mechanical energy of the system. The total mechanical energy is given 

by П is Eq. (7.73). Let U K
vib st stΠ = Π +Π +Π , where 

 ( )2 2 2 2
vib

1 1

1cos ,
2i i i

i i
v H t v Hω

∞ ∞

= =

Π = − +∑ ∑  (7.74) 

 ( ) ( )FR 3U 2 2
st

1 ,
2

EIv t F L aΠ = − +  (7.75) 

 ( ) ( )2 2K FD FR
st 0

1 1 ,
2 2

L L a

L
A F x v dx A F x v dxρ ρ

+
   Π = +   ∫ ∫  (7.76) 

in which Πvib is the vibration-related energy component, U
stΠ  is the strain energy 

component due to the quasi-static motion, and K
stΠ  is the kinetic energy component due 

to the quasi-static motion. 

They dynamic ERR can also be expressed as the sum of respective components, 

that is, U K
st st vibG G G G= + + , where U

stG  and K
stG  are the ERR components due to the strain 

and kinetic energies of the quasi-static motion, respectively, and Gvib is the ERR 

component due to the vibration. Note that this partition is also in accordance with 

Section 5.3.2. The ERR components due to the quasi-static motion U
stG  and K

stG  can be 

readily determined as U U
st st 0G d dA= − Π  and K K

st st 0G d dA= − Π . But for the ERR 
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component Gvib, in general, vib vib 0G d dA≠ − Π , and instead the dispersive properties for 

the propagation of flexural waves must be considered as Section 5.3.2 and dispersion-

corrected global approach must be applied, or otherwise Gvib will not be accurately 

determined. 

7.2.3.1 ERR component due to quasi-static motion 

The ERR component due to the strain energy of the quasi-static motion U
stG  is 

 
( ) ( )FR 3U 2 2

U st
st

0

,
2

dF L ad EIv tG
dA b da

+Π
= − =  (7.77) 

where, from Eq. (7.29), FFR(3) (L + a) = 6P3. Assuming the product of the foundation 

stiffness k and the length of the foundation-supported beam section L (also the uncracked 

region length) is large enough to satisfy tanh (2γL) ≈ 1 (that is, γL ⪆ 3 so that 

tanh (6) ≈ 0.999999), and then P3 in Eq. (7.33) approximates to 

 
3

3 3 3 2 2 ,
2 6 6 3

P
a a a

γ
γ γ γ

−
=

+ + +
 (7.78) 

and U
stG  simplifies to 

 
2 2 U

U st
st 4

9 ,
2

EIv t fG
ba

=  (7.79) 

where 

 ( )
( )

24 4
U

st 23 3 2 2

4 1
.

2 6 6 3

a a
f

a a a

γ γ

γ γ γ

+
=

+ + +
 (7.80) 

For a rigid interface, the foundation stiffness k and γ approach to infinity, and so 
U

st 1f =  and U
stG  becomes ( )U 2 2 4

st 9 2G EIv t ba= . Therefore, U
stf  can be viewed as a static 

ERR reduction factor for non-rigid linear elastic interfaces, and this can be readily used 

for the quasi-static case, for example, a DCB bonded with adhesives under quasi-static 

loads. 

Based on Eq. (7.76), the ERR component due to the kinetic energy of the quasi-

static motion, K K
st st 0G d dA= − Π , is constant and only gives the total ERR a downward 

shift. As above, if tanh (2γL) ≈ 1, then K
stG  is 
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2 K

K st
st

33 ,
280
Av fG

b
ρ

= −  (7.81) 

where 

 
( )

9 9 8 8 7 7 6 6 5 5

4 4 3 3 2 2
K

st 33 3 2 2

88 792 3168 7420 11256
12180 10920 8820 5040 1260

.
11 2 6 6 3

a a a a a
a a a a

f
a a a

γ γ γ γ γ

γ γ γ γ

γ γ γ

 + + + +
  + + + + + =

+ + +
 (7.82) 

It is worth noting that if aγ⪆4.7 then K
st 0.995f > . For a rigid interface, K

st 1f = , and 

this ERR component becomes ( )K 2
st 33 280G Av bρ= − , which is the same as the 

contribution from kinetic energy in the conventional method (half of the last term in 

Eq. (4.4)) and as the contribution from the kinetic energy of the quasi-static motion in 

Section 5.3.2.1. 

7.2.3.2 ERR component due to vibration 

The ERR component due to vibration is determined by the energy flux Fvib(Ω) due 

to vibration through a crack tip contour Ω as shown in Figure 7.3 with ε << a and ε << L. 

 
Figure 7.3 Crack tip contour Ω for elastic interface to determine ERR component due to 

vibration 

Similar to Section 5.3.2.2, Fvib(Ω) can be determined by ( ) 1
vib vib pF E CΩ = , where 

Evib is the energy density and 1
pC  is the phase speed of the first-mode flexural wave. This 

is due to the dispersive property of flexural waves in beams, and first-mode flexural wave 

modulates all the other waves with higher frequencies [25] (Sections 2.3.1.1 and 5.3.2.2).  

To determine the total energy density Evib, and hence via Eq. (5.26) for 

( )vib vib 0G F A= Ω  , the ERR component due to vibration Gvib, consider Πvib in Eq. (7.74) 
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as having two components, Πvib = ΠC + ΠS, which give rise to Evib with two 

corresponding components, Evib = EC + ES. 

The EC component of Evib comes from ПC, which is the first term in Eq. (7.74) and 

is the kinetic energy due to the coupling between local vibration and quasi-static motion. 

For the ith mode flexural wave, the energy flux from the coupling between local vibration 

and quasi-static motion is ( )C C g
i i iF E CΩ = , and ( )C C

i iF d dtΩ = − Π . However, 

C C1
i

i
E E∞

=
≠ ∑ , and so also, ( ) ( )C C1

i
i

F F∞

=
Ω ≠ Ω∑ ; The ES component of Evib comes from 

ПS, which is the second term in Eq. (7.74) and is the strain and kinetic energy due to local 

vibration. For the ith mode flexural wave, the energy flux from the strain and kinetic 

energy due to local vibration is ( )S S g
i i iF E CΩ = , and ( )S S

i iF d dtΩ = − Π . Nevertheless, 

S S1
i

i
E E∞

=
≠ ∑ , and so also, ( ) ( )S S1

i
i

F F∞

=
Ω ≠ Ω∑ . 

Now consider the net contribution from all the flexural waves to EC. If the 

foundation stiffness k is relatively large, then the shifting function for the foundation-

supported beam section is approximately zero. Therefore, by simplifying Eq. (7.54) with 

FFD (x) ≈ 0, expanding ( )FR
fv ,w x t  using Eq. (7.36), and substituting in ПC, which is the 

first term of Eq. (7.74), then C
iΠ  (the ith mode flexural wave contribution to ПC) is 

obtained as 

 ( ) ( ) ( )2 FR FR
C cp

1
cos .

L ai i
i i iL

i
K Av H W x F x dx tρ ω

∞+

=

  Π = ≈ −    
∑∫  (7.83) 

The integrand of Eq. (7.83) represents the spatial coupling of the normal modes and the 

shifting function due to the velocity coupling between local vibration and applied 

velocity. For the small contour Ω around the crack tip as shown in Figure 7.3, inside this 

contour in a region behind the crack tip, that is, L ≤ x ≤ L+ε, it can be shown that 

FFR (x) > 0 and ( )FR 0iW x > , but that the sign of Hi alternates with vibration mode 

numbers with Hi < 0 for odd modes and Hi > 0 for even modes. This can be seen by 

referring to Λi in Table 5.2, which has the effective boundary condition i.e. fixed at the 

crack tip. For relatively large foundation stiffness, the beam partially on elastic foundation 

is equivalent to the fixed effective boundary condition, and thus Hi is equivalent to Λi 

(see Section 7.2.1.3), which alternates with vibration mode numbers. The integrand of 

Eq. (7.83) is therefore negative for odd modes, which means that the corresponding C
iΠ  
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reduces the energy density, and is positive for even modes, which means that the 

corresponding C
iΠ  increases the energy density. Therefore, the total energy density due 

to C
iΠ  is 

 ( )C C
1

1 .i i

i
E E

∞

=

= −∑  (7.84) 

The physical interpretation of Eq. (7.84) is that, near to the crack tip spatially, when the 

transverse velocity of the free vibration represented by normal modes is in the same 

direction as the applied velocity, the energy flux tends to open the crack and increase the 

total energy density and the ERR. When, however, near to the crack tip spatially, the 

transverse velocity of the free vibration represented by normal mode is in the opposite 

direction to the applied velocity, the energy flux tends to close the crack and decrease the 

total energy density and the ERR. 

The energy density of ES due to ПS, similarly, can be determined by 

( )S S1
1 i i

i
E E∞

=
= −∑  with an alternating Hi. The total energy density due to vibration Evib 

is therefore 

 ( ) ( )vib C S
1 1

1 1 .i ii i

i i
E E E

∞ ∞

= =

= − + −∑ ∑  (7.85) 

By substituting Eq. (7.85) into Eq. (5.26) for ( )vib vib 0G F A= Ω  , the ERR 

component due to vibration is 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1
p C S

vib
1 10 g g

1
p C S

1 10 g g

1 1
p pC S

1 10 g 0 g

1 1

1 1

1 1 .

i i
i i

i i
i i

i i
i i

i i
i i

i
i i i

i i
i i

C F F
G

A C C

C d dt d dt
dA dt C C

C Cd d
dA C dA C

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

 Ω Ω
= − + − 

  
 Π Π

= − − + − 
  

Π Π
= − − − −

∑ ∑

∑ ∑

∑ ∑



 (7.86) 

The ratio 1
p g

iC C  is the correction factor for dispersion, where the phase speed of 

firs-mode flexural wave is ( )1 4
p 1C EI Aω ρ=  and group speed of ith mode flexural 
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wave is ( )4
g 2i

iC EI Aω ρ= , giving correction factor for dispersion 

( )1
p g 1 4i

i if C C ω ω= = . 

Eq. (7.86) can be expanded into the following form: 

 
( ) ( ) ( ) ( )

( )

2 2
21 1

vib
1 1

2
1

1

1 cos 1 sin
4 2

1 .
2

i ii i
i i i

i ii i

i i

i i

dH dv v tG t H t
b da b da

dHv
b da

ωω ωω ω
ω ω

ω
ω

∞ ∞

= =

∞

=

= − − −

− −

∑ ∑

∑
 (7.87) 

Unless t is small, the first and third term of Eq. (7.87) are much smaller than the 

second term, which increases with time, and therefore 

 ( ) ( )
2

21
vib

1
1 sin .

2
i i

i i
i i

dv tG H t
b da

ωω ω
ω

∞

=

≈ − −∑  (7.88) 

The derivative dωi/da is derived as follows. Recall the determinant Di for the 

coefficient matrix in Eq. (7.21) in Section 7.2.1.2, which is a function of the 

wavenumbers, αi and βi, and lengths of the sections, a and L. Since Di = 0, its total 

derivative is 

 ( ), , , 0.i i i i
i i i i i

i i

D D D DdD L a d d dL da
L a

α β α β
α β
∂ ∂ ∂ ∂

= + + + =
∂ ∂ ∂ ∂

 (7.89) 

Diving Eq. (7.89) by da gives 

 0.i i i i i i

i i

D d D d D DdL
da da L da a
α β

α β
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

 (7.90) 

Note that L + a = constant, which gives dL/da = –1; and that 4 44 i ik EIα β= − , which 

gives ( )( )3 34i i i id da d daα β α β= − . By also using ( )4 2
i i A EIβ ω ρ= , dωi/da is 

obtained as 

 3

3

2 2 .

4

i i

i i
i i

i i i

i i i

D D
d dEI EIL a

D Dda A da A
ω ββ β

βρ ρ
α α β

∂ ∂
−

∂ ∂= =
∂ ∂

− +
∂ ∂

 (7.91) 
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7.2.3.3 Total dynamic energy release 

By summing Eqs. (7.79), (7.81) and (7.88), the total dynamic ERR under the above 

assumptions is approximately 

 ( ) ( )
2 2 U 2 K 2

2st st 1
4

1

9 33 1 sin .
2 280 2

i i
i i

i i

EIv t f Av f dv tG H t
ba b b da

ρ ωω ω
ω

∞

=

= − − −∑  (7.92) 

Note that Eq. (7.92) is for a crack on the interface between a partially supported 

beam and an elastic foundation; for a DCB, the ERR is simply twice of Eq. (7.92) due to 

symmetry. 

Also, note the combination of the first two terms of Eq. (7.92) is the ERR due to 

quasi-static motion Gst; and it is a counterpart in the conventional analytical approach in 

Section 4.2, where  

 
2 2 U 2 K

st st
st 4

9 33 .
2 280

EIv t f Av fG
ba b

ρ
= −  (7.93) 

7.2.4 Dynamic factor 

Now consider the total dynamic effect of the last two terms in Eq. (7.92), which can 

be grouped together as Gdyn, so U
st dynG G G= + , where 

 ( ) ( )
2 K 2

2st 1
dyn

1

33 1 sin .
280 2

i i
i i

i i

Av f dv tG H t
b b da

ρ ωω ω
ω

∞

=

= − − −∑  (7.94) 

To investigate the dynamic effect, a dynamic factor is defined as 

 
( ) ( )

dyn
dyn U

st

K 4 4
2st 1

U 2 U
1st st

11 1 1 1 sin .
420 9

i i
i i

i i

G
f

G

f dA a a H t
f EI t f EI t da

ωωρ ω
ω

∞

=

=

= − − −∑
 (7.95) 

Dynamic effects arise due to the kinetic energy of the quasi-static motion and 

vibration. The former was the focus of the conventional analytical approach (Section 4.2), 

in which the dynamic factor follows an inverse square law with respect to time and decays 

very quickly. The latter dynamic effect, the second term of Eq. (7.95), is the focus of this 

chapter. It is therefore called the dynamic factor due to vibration, denoted by fvib, and is 

the summation of contributions from all vibration modes. 
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 ( ) ( )
4

21
vib U

1st

1 1 1 sin .
9

i i
i i

i i

daf H t
f EI t da

ωω ω
ω

∞

=

= − −∑  (7.96) 

7.2.4.1 Dynamic factor due to vibration and vibration modes 

To show the relative contribution from each vibration mode for a rigid interface, a 

Fourier analysis is conducted using the Fast Fourier Transform algorithm to transform the 

dynamic factor due to vibration in Eq. (7.96) from the time domain to the frequency 

domain. For this, the verification case in Section 7.3.1 is used with the dynamic ERR 

from the time interval of (0 ~ 0.04 s). The first ten vibration modes are shown in 

Figure 7.4 with the dynamic factor due to vibration normalised by the dynamic factor due 

to vibration of the first vibration mode. With increasing vibration mode frequency, the 

dynamic factor decreases monotonically. The first vibration mode makes the greatest 

contribution, which drops dramatically over the first five modes. The first five vibration 

modes are therefore adequate to capture the major contributions to the dynamic ERR. 

 
Figure 7.4 Normalised dynamic factor due to vibration first ten modes for rigid interface 

7.2.4.2 Dynamic factor due to vibration and foundation stiffness 

Now consider the effect of foundation stiffness, Fourier analyses are again 

conducted on Eq. (7.96) using four levels of foundation stiffness, namely, k/E = 1, 0.1, 

0.01 and 0.001, and with the same geometry and material properties in Section 7.3.1. The 

results are normalised by the dynamic factor due to vibration of the first vibration mode 

with k/E = 1, and the numerical values are tabulated in Table 7.6. 
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Table 7.6 Normalised dynamic factors due to vibration with various foundation 

stiffnesses 

Foundation stiffness 1st vibration mode 2nd vibration mode 3rd vibration mode 

k/E = 1 1 0.65599 0.48112 

k/E = 0.1 1.17225 0.67009 0.45369 

k/E = 0.01 1.19499 0.70870 0.52466 

k/E = 0.001 1.27728 0.70111 0.49133 

 

The trends for the dynamic factor due to vibration with various foundation stiffness 

are plotted in Figure 7.5. With decreasing foundation stiffness, the frequency spectra shift 

to the left, with higher-order vibration modes being more sensitive to the foundation 

stiffness change. Another characteristic to note is that the contribution from the first 

vibration mode increase with decreasing foundation stiffness, which indicates that lower-

order vibration modes become even more dominant for less stiff foundations. 

 
Figure 7.5 Normalised dynamic factors due to vibration versus frequency for various 

foundation stiffness 

7.3 Numerical verification for stationary crack 

The FEM simulations were used to verify the theory developed in Section 7.2. 

Three verification studies were conducted using the geometries shown in Figure 7.6. 
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(1) To verify that the developed theory agrees with FEM simulations for cracks on 

rigid interfaces; 

(2) To verify that the developed theory agrees with FEM simulations for cracks on 

non-rigid linear elastic interfaces. 

(3) To inspect the fracture mode mixity of a crack between a thin layer and a thick 

substrate under dynamic loading 

 
Figure 7.6 (a) DCB geometry for FEM verification studies (1) and (2); (b) thin-layer-

on-thick-substrate geometry for FEM verification study (3) 

7.3.1 Verification for rigid interface 

The DCB geometry shown in Figure 7.6a with a width of 1 mm is used for the first 

verification study of a crack on a rigid interface. The Young’s modulus was 10 GPa, the 

Poisson’s ratio 0.3, and the density 103 kg m-3. A linear 2D FEM model was constructed 

using plane-stress elements (CPS4R) in Abaqus/Explicit with a mesh size of 0.1 mm in 

accordance with the element size convergence study in Section 5.4.1. The uncracked 

interface ahead of the crack tip was formed by sharing nodes and no contact was 

simulated. The VCCT was applied to determine the dynamic ERR. 

For the developed theory, an appropriate foundation stiffness that represents a rigid 

interface needs to be used. An interface stiffness of the same order as the beam material’s 

Young’s modulus can be regarded as a rigid interface [63], but there is no unanimous 

agreement on the exact value in the literature (see, for example, Refs. [166][167]). 

Kanninen claimed that for DCB of the mono-material under plane-strain condition the 

foundation stiffness should be taken as k = 2Eb/h, since this foundation stiffness provided 

excellent agreement with well-established experimental data; Cabello et al. [168] derived 

that under plane-stress condition the foundation stiffness is k = Eb/h. Therefore, for the 
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current verification case the foundation stiffness is taken k = 0.5 E for the geometries of 

h =2 mm, b =1 mm. 

The dynamic ERR versus time results from the FEM and the developed theory are 

compared in Figure 7.7, with the black line representing the theory (with k = 0.5E) and 

the grey line representing the FEM. The black dashed line represents the ERR from the 

strain energy of quasi-static motion in Eq. (7.79), that is, the ERR without any dynamic 

effect. The first one, two, three, four, five, ten, 15 and 20 vibration modes are shown in 

subfigures a–h of Figure 7.7, respectively. As more vibration modes are considered in the 

theory, it becomes increasingly closer agreement with the FEM in terms of the overall 

magnitude of ERR, and the frequencies, phases and amplitudes of oscillation. It is seen 

that the theory with the first five vibration modes (Figure 7.7e) is adequate to capture the 

dynamic ERR very accurately; adding more vibration modes (Figure 7.7f-h) provides 

more detail, but the changes in the amplitude are not significant. 

Note that the theory with just the first vibration mode (Figure 7.7a) is close to what 

was reported in Sections 5.2 and 5.3 for DCBs analysed by effective boundary condition. 

With effective boundary condition, the developed theory in Sections 5.2 and 5.3 was 

slightly out-of-phase due to the simplified boundary condition and requires an additional 

crack length Δ to compensate for crack-tip rotation in Section 5.5. Now with the elastic 

foundation which allows the crack tip to rotate under externally applied displacement, 

this phase difference was substantially corrected rather than employing an additional 

crack length Δ. 

For further application of this analytical theory in composite DCB, the interfacial 

stiffness can be determined by k = αE33/h0, where E33 is the transverse modulus, h0 is the 

thickness of an adjacent sub-laminate, and α is a parameter much large than 1 [169]. 
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Figure 7.7 Dynamic ERR versus time results from developed theory (black line) and 

from FEM (grey line) with increasing numbers of vibration modes 
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7.3.2 Verification for non-rigid interface 

The same DCB geometry and material properties were used for the second 

verification study of cracks on non-rigid linear elastic interfaces. The FEM model was 

used with the uncracked interface ahead of the crack tip being modelled with cohesive 

elements (COH2D4), length of which was set to be 0.05 mm after an element size 

convergence study with 4 elements sizes (0.5 mm, 0.2 mm, 0.1 mm and 0.05 mm) 

following a similar approach in Section 5.4.1 (see Figure 7.8) and thickness 0.0001 mm, 

to simulate the linear-elastic interface with a traction-separation law. A crack closure 

integral was used at the crack tip to determine the dynamic ERR [130], also referred to 

Eq. (4.14). Note that the density of the cohesive element was set as 1 kg m-3, which is 

0.1% of the DCB material, in order not to add significant extra mass to the system. 

 
Figure 7.8 Cohesive element size convergence 

Since the DCB in Figure 7.6a deforms symmetrically but the developed theory is 

for a partially-supported beam on an elastic foundation (Figure 7.2), the normal stiffness 

of the cohesive elements in these FEM simulations must be set as Enn = 0.5k. This 

relationship is a consequence of the symmetric deformation of the DCB (and its interface) 

under the prescribed loading in comparison to the ‘one-sided’ deformation of a partially 

supported beam on an elastic foundation, which the developed theory is for. As long as 

the deformation is symmetrical, this relationship between Enn and k is valid. 

Four levels of interface stiffness k were examined, namely, 0.1E (1000 MPa), 0.01E 

(100 MPa), 0.001E (10 MPa) and 0.0001E (1 MPa), and so the corresponding normal 

stiffnesses Enn for the cohesive elements were 500 MPa, 50 MPa, 5 MPa and 0.5 MPa, 

respectively. 
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The dynamic ERR versus time results from the FEM and the developed theory (with 

the first five vibration modes) are compared in Figure 7.9, with the black line representing 

the theory and the grey line representing the FEM. There is excellent agreement between 

the theory and the FEM for the three different foundation stiffnesses shown in 

Figure 7.9a-c considering the overall magnitude of ERR and the frequencies, phases and 

amplitudes of oscillation. 

Note that the developed theory is only applicable for relatively large foundation 

stiffness: In Section 7.2.1.2, the general solution of free vibration of the foundation-

supported beam section requires that 4 44 0i ik EIα β= − > . Furthermore, in 

Section 7.2.3.1, the developed expression for dynamic ERR requires that γL⪆3. For 

k = 0.0001E in Figure 7.9d, the condition of 4 0ik EI β− >  is met only for the first two 

vibration modes, and then from the third vibration mode onwards, 4 0ik EI β− < . This 

accounts for the discrepancy seen between the results from the FEM and the developed 

theory in Figure 7.9d. 

 
Figure 7.9 Dynamic ERR versus time results from developed theory (black line) and 

from FEM (grey line) with the first five vibration modes for different foundation 

stiffnesses 
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The comparison between Figure 7.7 and Figure 7.9 also indicates that whether ERR 

is sensitive to the foundation stiffness. When foundation stiffness is within the same 

order, the amplitude of the ERR is not sensitive to the alteration of the foundation 

stiffness, and this can be seen by comparing Figure 7.7e (k = 0.5 E) and Figure 7.9a 

(k =0.1 E). 

7.3.3 Verification for fracture mode mixity 

The developed theory also applies to thin layers on thick substrates. Note that this 

configuration is also known as spalling of a thin layer, which is a typical mixed-mode 

case, that is, crack-tip subjected to both normal and shear stress due to the asymmetric 

configuration (relevant literature in Section 3.2.6), where the relative displacements of 

thin layer and thick substrate at crack tip are both opening (mode-I) and sliding (mode-

II) at the same time. The developed theoretical solution, however, provides the total 

dynamic ERR; since the fracture is mixed mode, the total ERR comprises both fracture 

modes I (GI) and II (GII). In this third verification study, the agreement between the 

developed theory and FEM simulations is checked for a crack on a rigid interface between 

a thin layer and a thick substrate. Furthermore, the fracture mode mixity (see 

Section 3.2.6) is calculated and compared against the mixed-mode partition theory in 

[170], which was developed for quasi-static fracture of thin layers on thick substrates. 

The geometry shown in Figure 7.6b with a width of 1 mm was used for the third 

verification study. The same material properties from the first verification study were 

used, and the same global mesh size of 0.2 mm was used (without any refinement around 

the crack tip). The VCCT was applied to determine the two ERR fracture mode 

components, GI and GII, with the total ERR being G = GI + GII. 

The total dynamic ERR versus time results from the FEM and the developed theory 

(with k = 0.5E [168] and the first five vibration modes) are compared in Figure 7.10a with 

the black line representing the developed theory and the grey line representing the FEM. 

The total dynamic ERR from the developed theory was then partitioned according to 

[170] (which gives GII/GI = 0.6059) and is compared against the FEM results in 

Figure 7.10b. Excellent agreement is seen between the developed theory and the FEM for 

both the total ERR and its partitions, showing that the quasi-static partition theory in [170] 

is also applicable under dynamic loading. 
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Figure 7.10 Results for (a) total dynamic ERR and (b) its fracture-mode I and fracture-

mode II components versus time results from developed theory (black line) and from 

FEM (grey line). 

7.4 Theoretical development for propagating crack 

The analytical solution for dynamic ERR of a stationary crack on an elastic 

foundation is derived in Section 7.2.3, see Eq. (7.92). Its second term is the ERR 

component due to the kinetic energy of the quasi-static motion; it is constant and only 

provides a baseline shift down for the total dynamic ERR; in the long run, this term is 

insignificant, and the total dynamic ERR can be approximated as 

 ( ) ( )
2 2 U 2

2st 1
4

1

9 1 sin .
2 2

i i
i i

i i

EIv t f dv tG H t
ba b da

ωω ω
ω

∞

=

= − −∑  (7.97) 

Eq. (7.97) is a counterpart of Eq. (5.37), and, therefore, can be used to develop the 

dynamic ERR for a propagating crack on the elastic foundation following a similar 

approach established in Section 6.2.2.2. If the foundation’s stiffness is large, the beam 

partially supported on elastic foundation in Figure 7.2 degrades into the configuration of 

a half DCB arm with the effective boundary condition as shown in Figure 5.1b, and 

Eq. (7.97) becomes equivalent to Eq. (5.37). By analogy to the dynamic ERR solution in 

Eq. (6.13) (developed in Section 6.2.2.2) and using Eq. (7.97), the dynamic ERR for the 

propagating crack on the elastic foundation (for a relatively large foundation’s stiffness) 

is 
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 (7.98) 

Note that 'if  is the correction factor for dispersion for the propagating crack, but it 

has different values from those in Table 6.1, derived on the assumption that the boundary 

conditions for the crack increment of the beam section (a2 – a1) are fixed-fixed.  

 
Figure 7.11 Crack propagation from a1 to a2 over time interval Δt on elastic interface 

For the propagating crack on the elastic foundation, consider a crack propagating 

from a1 to a2 in Figure 7.11. Since the elastic foundation allows crack tips (x = a1 and 

x = a2) to rotate, the boundary conditions for the crack increment (a2 – a1) are more free 

than completely fixed-fixed. But the elastic foundation does not allow the crack tips to 

rotate completely freely, and this means that the boundary conditions for the crack 

increment (a2 – a1) do not achieve the pinned-pinned boundary conditions. Therefore, 

fixed-fixed and pinned-pinned are two limiting cases for the boundary conditions for the 

crack increment (a2 – a1) on the elastic foundation, and the correction factor for 

dispersion 'if  should be derived between these two limiting boundary conditions. It is 

also assumed that 'if  can be taken an average value of those from fixed-fixed and pinned-

pinned boundary conditions with its values given in Table 7.7. 
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Table 7.7 Correction factor for dispersion for propagating crack 

Mode number 1 2 3 4 5 i > 5  

Correction factor  

for fixed-fixed  

boundary conditions 

0.5 0.30115 0.21509 0.16729 0.13687 ( )
1.50562

2 1i +
 

Correction factor   

for pinned-pinned 

boundary conditions 

0.5 0.25 0.16667 0.125 0.1 
1
2i

 

Correction factor 

for elastic foundation 

boundary conditions 

0.5 0.27558 0.19088 0.14615 0.11844 ( )
5.011 1
4 2 1

i
i i

+
+

 

 

7.5 Numerical verification for propagating crack 

Numerical simulations of a DCB of a PEEK/carbon-fibre composite under 6.5 and 

10.0 m s-1 opening rate cases in [22] for experiments in [19] and [20] are used to verify 

the analytical solution Eq. (7.98) for the propagating crack on the elastic foundation. 

Ref. [22] used ITLSM (Section 4.3.2.3) to model the damage in the interface by 

overcoming the disadvantage of CZM (Section 4.3.2.2), and numerical details can be 

found in [22]. Note that these numerical simulations were used previously in this work 

for verification of the theory developed based on effective boundary condition in 

Section 6.4.2. The application of Eq. (7.98) requires accurate value of the foundation 

stiffness. For composite materials, the interlaminar stiffness is highly dependent on the 

transverse modulus of the composite material, and the foundation stiffness for the 

interface is derived by compliance calibration against experimental data. 

Determination of foundation’s stiffness 

The foundation stiffness is essential to study the dynamic fracture and to derive the 

ERR. For CFRPs, Turon et al. [169] proposed a solution for foundation stiffness 

k = αE33/h0, where E33 is the transverse modulus, h0 is the thickness of an adjacent sub-

laminate, and α is a parameter much large than 1; clearly, to employ this foundation 

stiffness, the parameter α should be known, but currently there is also no exact value for 
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α in literature. Instead, a compliance calibration method against quasi-static DCB 

experimental data is developed to determine the foundation stiffness. 

Considering the quasi-static component in deflection in Eq. (7.36), the external 

force under quasi-static loading rate is found to be P = -vtEIFFR(3)(L+a), and then the 

compliance is C = vt/P, and by combining Eq. (7.78), the following relationship between 

the compliance and foundation stiffness (represented by γ) can be derived: 

 ( )3 3 2 22 6 6 6 3 0,a CEI a aγ γ γ− + + + =  (7.99) 

where ( )4 4k EIγ = , and, therefore, k = 4γ4EI. Note that for plane-strain condition E 

should be substituted by 115/(1 - 0.282) GPa. 

Now consider the PEEK/carbon-fibre composite under constant opening rate of 

3.3×10-5 m s-1 in Figure 4.1a, the compliance is calculated using the initial linearly elastic 

response, which gives the compliance of 1/28382 m/N. Combining Eq. (7.99), the 

compliance calibration gives the foundation stiffness k = 1.18 GPa. 

Therefore, this foundation’s stiffness k = 1.18 GPa is used in Eq. (7.98) to verify 

the numerical results for the propagating crack for the PEEK/carbon-fibre composite 

(which was also been used in Section 6.4.2). The crack length is taken from [22] and the 

crack-propagation speed is calculated with the central-difference scheme. For the 

stationary crack before the crack initiation, Eq. (7.92) is used to calculate the dynamic 

ERR, and, once the crack starts to propagate, Eq. (7.98) is used.  
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Numerical verification for DCB under 6.5 m s-1 loading rate 

 
Figure 7.12 Evolution of dynamic ERR and crack length for 6.5 m s-1 loading rate based 

on FEM results for crack-propagation speed using analytical solution for elastic 

foundation 

Figure 7.12 shows an excellent agreement of the dynamic ERR with the analytical 

solutions for the elastic foundation and numerical results both for the stationary and 

propagating cracks, although at the crack initiation the analytical solution predicts a 

higher dynamic ERR compared to that in the numerical results, which is due to isotropic 

material properties in the analytical model and anisotropic material properties of the FEM 

model, which makes the FEM model less stiff. 
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Numerical verification for DCB under 10 m s-1 loading rate 

 
Figure 7.13 Evolution of dynamic ERR and crack length for 10 m s-1 loading rate based 

on FEM results of crack-propagation speed using analytical solution for elastic 

foundation 

Figure 7.13 shows the numerical verification for 10 m s-1 loading rate. The dynamic 

ERR obtained with the analytical theory developed in this chapter for stationary and 

propagating crack is in a good agreement with the results from the FEM simulation 

in [22]. 

Generally, the analytical solution shows an excellent ability to capture the crack 

behaviours such as propagation, arrest and re-initiation. Another important aspect of this 

excellent agreement is that it shows that the stiffness of elastic foundation does not depend 

on the rate, i.e. it is rate-independent, in the contrast to the compensation method with Δ 

(see Section 6.6), which is rate-dependent (see Table 6.2). 

7.6 Relation between foundation stiffness and effective crack length 

For a stationary/propagating crack in DCBs with rigid interface under quasi-static 

loads, the analytical solution for ERR is usually developed with an effective boundary 

condition, that is, a fixed boundary condition at a crack tip. To compensate the crack-tip 

rotation, the effective crack length aeff = a + Δ is used by including an additional crack 

length Δ to compensate for this crack-tip rotation, which is determined with the MCC  

method (see Section 5.5.1). This method also applies to stationary crack under dynamic 

loads (see Section 5.5.2).  
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In this chapter, the elastic foundation is introduced to allow the crack tip to rotate 

and actual crack length is employed to determine the dynamic ERR rather than using the 

effective crack length with compensation. Note that these two approaches – one with 

effective crack length and the other with elastic foundation – are supposed to provide the 

same results for the dynamic ERR for a stationary crack, and, therefore, the dynamic ERR 

in Eq. (5.32) or (5.37) equals to two-fold of Eq. (7.92) (due to symmetry). Therefore, the 

respective ERR components should have the same value; for instance, those due to the 

strain energy of the quasi-static motion (i.e. the first term in Eq. (5.32) or (5.37) and two-

fold of the first term in Eq. (7.92)) are equal, giving 

 
2 2 U2 2

st
4 4
eff

99 ,EIv t fEIv t
ba ba

=  (7.100) 

where U
stf  is given in Eq. (7.80) with ( )4 4k EIγ = . Solving Eq. (7.100), the additional 

crack length Δ to compensate for crack-tip rotation is 
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 (7.101) 

Eq. (7.101) provides a convenient relation between the additional crack length for 

crack-tip rotation Δ and the elastic foundation stiffness k. It also provides a new method 

to determine the addition crack length Δ providing the foundation stiffness is known; this 

is always the case with adhesively bonded DCBs. But note that this relation can be 

applicable to a stationary/propagating crack under quasi-static loads and a stationary 

crack under dynamic loads; it cannot be used for a propagating crack under dynamic 

loads, where Δ is shown to be rate-dependent (see Section 6.6), whereas the stiffness of 

elastic foundation k is rate-independent (see Section 7.5).  

The FEM verification cases for symmetric DCBs in Section 5.5.2 with the effective 

crack length and in Section 7.3.1 with the elastic foundation share the same geometry, 

material properties and loading conditions. Using the MCC method, the additional crack 

length compensating for crack-tip rotation Δ is 1.34 mm; using the elastic foundation, its 

stiffness is found to be 0.5E, with Eq. (7.101) giving the additional crack length 

Δ = 1.52 mm. These two values for Δ are used hereby to generate ERRs again as shown 

in Figure 7.14, and the difference between these two ERRs for two different values for Δ 
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is not significant. But the value Δ = 1.52 mm gives a more accurate result than 

Δ = 1.34 mm in terms of the frequency compared to the FEM data. 

 
Figure 7.14 Dynamic ERR using effective crack length: (a) MCC method; (b) elastic 

foundation solution 

Another instance demonstrating the relationship between the foundation stiffness k 

and the additional crack length to compensate for crack-tip rotation Δ in Eq. (7.101) is 

the DCB test case of the PEEK/carbon-fibre composite under quasi-static loads from [19]. 

As reported based on the MCC method, the additional crack length Δ = 3.6 mm (see Table 

6.2). For this case, the foundation stiffness is k = 1.18 GPa (see Section 7.5 for 

determination of the foundation stiffness), which, according to Eq. (7.101), gives 

Δ = 3.31 mm. 

7.7 Conclusion 

In this chapter, the analysis of dynamic fracture at the elastic interface is developed 

by introducing an elastic foundation to the established analytical framework for dynamic 

interfacial fracture. The dynamic ERR of a stationary crack at the interface between a 

partially supported vibrating beam and an elastic foundation with time-dependent 

displacement applied to the beam’s free end is derived, which allows the relationship 

between the dynamic effect and the foundation stiffness to be studied. Both analytical 

theories for stationary and propagating cracks were developed based on the established 

analytical framework developed in Chapters 5 and 6. 

For the stationary crack, a series of verification studies were carried out using the 

FEM for a stationary crack on an elastic foundation. For rigid interfaces, the interface 

stiffness in the developed theory needs to be of the same order as the Young’s modulus 
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of the beam material for a DCB, an interface stiffness k = 0.5E in the developed theory 

provides the best agreement; for a thin layer on a thick substrate, it is also k = 0.5E. With 

these values of the interface stiffness, an excellent agreement is achieved between the 

theory and the FEM for a rigid interface considering the overall magnitude of the ERR 

and the frequencies, phases and amplitudes of oscillation. Furthermore, in the case of a 

thin layer on a thick substrate, resulting in a mixed-mode fracture, the quasi-static 

partition theory in [170] is shown to be applicable under dynamic loading to partition the 

total ERR G into its components, GI and GII. For non-rigid elastic interfaces, the 

developed theory is only applicable for relatively high levels of the foundation stiffness, 

that is, the following conditions must be satisfied: 4 44 0i ik EIα β= − >  and γL ⪆ 3. 

Under these conditions, there is also an excellent agreement between the theory and the 

FEM considering the overall magnitude of ERR and the frequencies, phases and 

amplitudes of oscillation. 

For the propagating crack on the elastic foundation, based on the analytical solution 

for the stationary crack on the elastic foundation and the same theoretical consideration 

of the analytical solution for the propagating crack in Chapter 6, the dynamic ERR for the 

propagating crack at the elastic interface is obtained. This analytical solution is verified 

against the numerical results showing an excellent agreement. But the accurate estimation 

of the foundation stiffness is important, especially for composite materials, with their 

interlaminar stiffness highly dependent on the transverse modulus. The advantage of this 

theoretical solution with the elastic foundation over the analytical theory for the effective 

boundary condition with compensation for crack-tip rotation in Chapter 6 is that the 

foundation stiffness is rate-independent, in contrast to the rate-dependent Δ. Therefore, it 

is deemed to be able to capture the local crack behaviour rather than the overall average 

crack behaviour in the compensation method.  

The developed analytical solutions can be readily applied to study various 

engineering problems, for example, to determine the dynamic fracture toughness of 

layered materials, adhesive and welding bonds in DCB tests, as well as to characterise the 

fracture behaviour of engineering structures under dynamic loads. Furthermore, the 

partially supported beam’s elastic foundation is particularly relevant for the study of crack 

process zones, which usually must be studied with the FEM and the CZM. 

 



 
Chapter 8:  Dynamic mode-II interfacial fracture 

8.1 Introduction 

Laminated composite materials are widely used in aerospace, automotive and naval 

applications to save weight. Their weak transverse property, however, make them 

susceptible to damage from transverse loading such as impact, which causes delamination 

and significant weakening of structural strength. Impact-induced delamination tends to 

be mode-II-dominant [171], and so it is important to understand the dynamic mode-II 

fracture behaviour of structures in addition to the corresponding loading rate-dependent 

fracture toughness of the material.  

As pointed out in a recent review paper [89], which also provides a broad review of 

dynamic mode-II delamination, there is therefore still a clear need for closed-form 

analytical solutions to study the dynamic mode-II fracture behaviours. Under rapidly 

applied loads, the arms of the fundamental engineering structures for studying dynamic 

mode-II fracture, such as ELS and ENF specimens, slide back and forth, generating the 

oscillating relative displacement and ERR, which conventional analytical solutions do not 

capture (Section 4.2.2). There is also a disagreement among various experimental studies 

concerning the rate effects of dynamic mode-II fracture toughness: positive rate effects 

in [85][172][173], negative in [18][86] and insignificant in [88][174][175][176]. This 

disagreement might be explained by structural vibration, not considered in the data 

reduction. 

Chapters 3 to 5 show the capability of structural dynamics (vibration and wave 

propagation) to accurately predict the dynamic ERR in mode-I dynamic fracture. In this 

chapter, structural dynamics and vibration are used to model the dynamic ELS test and to 

derive the dynamic mode-II ERR. It is demonstrated that this is not just a straightforward 

application of the existing analytical framework developed in previous chapters, but 

requires additional novel ideas and interpretation, including the handling of contact in the 

modelling; the representation of the dynamic effect in terms of a dynamic factor and a 

spatial factor to facilitate understanding; and the insight regarding dominant vibration 

modes. 
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8.2 Theoretical development 

In this section, the dynamic mode-II ERR of an ELS specimen is derived 

analytically considering beam dynamics and structural vibration. Figure 8.1 shows such 

an ELS specimen in its initial undeformed state, with three beam sections, ①, ② and 

③. A time-dependent downwards displacement w0 (t) = vt is applied to free end of beam 

section ②, where v is a constant displacement rate. The length of beam section ① (the 

intact region) is L, while beam sections ② and ③ are above and below, respectively, the 

crack with length a; the total length of the ELS specimen is L0. In the conventional ELS 

specimen [14], beam sections ② and ③ have the same thickness h. The x axis is positive 

to the right, with the crack tip located at x = L. The transverse deflections of beam sections 

①, ② and ③ are in the x-z plane and denoted w1 (x, t), w2 (x, t) and w3 (x, t), 

respectively. 

 
Figure 8.1 Configuration of ELS specimen and prescribed coordinates 

As beam section ② deflects downwards according to the applied w0(t), interfacial 

contact between beam sections ② and ③ also drives beam section ③ downwards. It is 

assumed that beam section ③ has the same vertical deflection as beam section ②, and 

so a pure mode-II fracture is produced. Under the further assumptions of h << L and 

h << a, the Euler-Bernoulli beam assumption is appropriate to derive the respective 

deflections and, thus, the ERR. 

Since the local and dispersion-corrected global approaches are equivalent as 

demonstrated in Section 5.3.3.2, the local approach using crack-tip bending moment is 

applied here to determine the dynamic ERR as 
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 ( ) ( ) ( )2 2 2
2 3 1

2 3 1

, , ,1 ,
2

M L t M L t M L t
G

bE I I I
 

= + − 
 

 (8.1) 

where M1 (L, t), M2 (L, t) and M3 (L, t) are the crack-tip bending moments of beam 

sections ①, ② and ③, respectively, and ( ) ( ) ( )2
1 1 1, ,M L t EI w L t= , 

( ) ( ) ( )2
2 2 2, ,M L t EI w L t=  and ( ) ( ) ( )2

3 3 3, ,M L t EI w L t=  with I1, I2 and I3 being the 

corresponding second moment of inertia of these sections. 

8.2.1 Dynamic response of ELS specimen 

Under the applied constant-rate displacement of w0 (t) = vt, the dynamic transverse 

deflections of beam sections ①, ② and ③ take the following forms by introducing 

shifting functions: 

 ( ) ( ) ( )1 1fv 1, , ,w x t w x t F x vt= +  (8.2) 

 ( ) ( ) ( )2 2fv 2, , ,w x t w x t F x vt= +  (8.3) 

 ( ) ( ) ( )3 3fv 3, , .w x t w x t F x vt= +  (8.4) 

In Eqs. (8.2) to (8.4), w1fv (x, t), w2fv (x, t) and w3fv (x, t) are the free-vibration components 

of three beam sections ①, ②, ③, respectively; F1 (x), F2 (x) and F3 (x) are the respective 

shifting functions. The effect of the shifting functions is to distribute the applied 

displacement of w0 (t) = vt along the three beam sections. Note that in order to satisfy the 

assumed contact condition that beam sections ② and ③ have the same deflection, that 

is, w2 (x, t) = w3 (x, t), both their free-vibration components and their shifting functions 

must be equal, that is, w2fv (x, t) = w3fv (x, t) and F2 (x) = F3 (x) by enforcing 

homogeneous conditions. Therefore, the deflection and shifting function of beam section 

③ are replaced by those of beam section ②, which simplifies and facilitates the 

derivation process. 

Combining equation of motion in Eq. (2.6) and deflection assumption in Eq. (8.2) 

and enforcing homogeneous conditions, the governing equations for the free-vibration 

components w1fv (x, t) and the shifting function F1 (x) for beam section ① are derived: 

 ( ) ( ) ( )4
1 1fv 1 1fv, , 0,EI w x t A w x tρ+ =  (8.5) 

 ( ) ( )4
1 0.F x =  (8.6) 
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Similarly, the governing equations for the free-vibration component w2fv (x, t) and 

the shifting function F2 (x) for beam section ②, by combining Eqs. (2.6) and (8.3), are 

 ( ) ( ) ( )4
2 2fv 2 2fv, , 0,EI w x t A w x tρ+ =  (8.7) 

 ( ) ( )4
2 0.F x =  (8.8) 

For beam section ①, the boundary conditions for the total deflection w1 (x, t) are 

w1 (0, t) = 0 and ( ) ( )1
1 0, 0w t = . By using these boundary conditions for w1 (x, t) in 

Eq. (8.2), and enforcing homogeneous conditions, the boundary conditions for the free-

vibration component w1fv (x, t) and shifting function F1 (x) are obtained in Table 8.1. 

Table 8.1 Boundary conditions for beam section ① 

Boundary 
Total deflection 

( )1 ,w x t  

Free-vibration component 

( )1fv ,w x t  

Shifting function 

( )1F x  

0x =  

( )1 0, 0w t =  ( )1fv 0, 0w t =  ( )1 0 0F =  

( ) ( )1
1 0, 0w t =  ( ) ( )1

1fv 0, 0w t =  ( ) ( )1
1 0 0F =  

 

For the beam section ② with boundary condition w2 (L + a, t) = vt and 
( ) ( )2
2 , 0w L a t+ = , following the similar approach, using Eq. (8.3), the corresponding 

boundary conditions for the free-vibration component w2fv (x, t) and shifting function 

F2 (x) are obtained in Table 8.2. 

Table 8.2 Boundary conditions for beam section ② 

Boundary 
Total deflection 

( )2 ,w x t  

Free-vibration component 

( )2fv ,w x t  

Shifting function 

( )2F x  

x L a= +  

( )2 ,w L a t vt+ =  ( )2fv , 0w L a t+ =  ( )2 1F L a+ =  

( ) ( )2
2 , 0w L a t+ =  ( ) ( )2

2fv , 0w L a t+ =  ( ) ( )2
2 0F L a+ =  
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Considering the continuity condition at the crack tip x = L, the beam section ① 

shares the same deflection and slope with beam sections ② and ③, but its bending 

moment and shear force are the sums of those of beam sections ② and ③, respectively. 

Therefore, the continuity condition for the corresponding free-vibration components and 

the shifting functions can be derived by enforcing homogeneous condition and given in 

Table 8.3. 

Table 8.3 Continuity conditions for total deflection and its components 

Continuity Total deflection Free-vibration component Shifting function 

Deflection ( ) ( )1 2, ,w L t w L t=  ( ) ( )1fv 2fv, ,w L t w L t=  ( ) ( )1 2F L F L=  

Slope ( ) ( ) ( ) ( )1 1
1 2, ,w L t w L t=  ( ) ( ) ( ) ( )1 1

1fv 2fv, ,w L t w L t=  ( ) ( ) ( ) ( )1 1
1 2F L F L=  

Bending moment 
( ) ( )

( ) ( )

2
1 1

2
2 2

,

2 ,

EI w L t

EI w L t=
 

( ) ( )
( ) ( )

2
1 1fv

2
2 2fv

,

2 ,

EI w L t

EI w L t=
 

( ) ( )
( ) ( )

1
1 1

2
2 22

EI F L

EI F L=
 

Shear force 
( ) ( )

( ) ( )

3
1 1

3
2 2

,

2 ,

EI w L t

EI w L t=
 

( ) ( )
( ) ( )

3
1 1fv

3
2 2fv

,

2 ,

EI w L t

EI w L t=
 

( ) ( )
( ) ( )

3
1 1

3
2 22

EI F L

EI F L=
 

 

8.2.1.1 Solution for free-vibration components and orthogonality 

By the method of separation of variables, the solutions for the free-vibration 

components w1fv (x, t) and w2fv (x, t) in Eqs. (8.5) and (8.7) are 

 ( ) ( ) ( )1fv 1
1

, ,i i
i

w x t W x T t
∞

=

=∑  (8.9) 

 ( ) ( ) ( )2fv 2
1

, ,i i
i

w x t W x T t
∞

=

=∑  (8.10) 

where W1i (x) and W2i (x) are the ith normal modes for beam sections ① and ②; and 

Ti (t) is the modal displacement.  

Combining Eqs. (8.5) and (8.9) for beam section ① and Eqs. (8.7) and (8.10) for 

beam section ②, and introducing natural frequency, the following governing equations 

for the normal modes and the modal displacement are derived: 
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 ( ) ( ) ( )4 2 1
1 1

1

0,i i i
AW x W x

EI
ρω− =  (8.11) 

 ( ) ( ) ( )4 2 2
2 2

2

0,i i i
AW x W x

EI
ρω− =  (8.12) 

 ( ) ( )2 0.i i iT t T tω+ =  (8.13) 

The corresponding boundary conditions for the normal modes W1i (x) and W2i (x) 

in Table 8.4 are derived from the boundary conditions of their free-vibration components 

in Table 8.1 and 8.2. 

Table 8.4 Boundary conditions for normal modes 

Boundary 

Normal modes 

( )1iW x  ( )2iW x  

0x =  

( )1 0 0iW =  - 

( ) ( )1
1 0 0iW =  - 

x L a= +  

- ( )2 0iW L a+ =  

- ( ) ( )2
2 0iW L a+ =  

 

The continuity conditions at the crack tip x = L are listed in Table 8.5. 

Table 8.5 Continuity conditions for normal modes 

Continuity Normal modes 

Deflection ( ) ( )1 2i iW L W L=  

Slope ( ) ( ) ( ) ( )1 1
1 2i iW L W L=  

Bending moment ( ) ( ) ( ) ( )2 2
1 1 2 22i iEI W L EI W L=  

Shear force ( ) ( ) ( ) ( )3 3
1 1 2 22i iEI W L EI W L=  
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Now consider the orthogonality conditions. For the beam section ①, multiplying 

Eq. (8.11) by W1j (x), integrating over the beam section length (0, L) twice by parts, and 

applying the boundary conditions for normal modes in Table 8.4, gives 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1
1 10

1

3 1 2 2 2
1 1 1 1 1 10

.

L

i i j

L

j i j i i j

A W x W x dx
EI

W L W L W L W L W x W x dx

ρω

= − +

∫

∫
 (8.14) 

For beam section ②, multiplying Eq. (8.12) by W2j (x), integrating over the beam section 

length (L, L + a) twice by parts, and applying the boundary conditions for normal modes 

in Table 8.4, gives 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
2 2

2

3 1 2 2 2
2 2 2 2 2 2 .

L a

i i jL

L a

j i j i i jL

A W x W x dx
EI

W L W L W L W L W x W x dx

ρω
+

+
= − + +

∫

∫
 (8.15) 

Multiplying Eq. (8.14) by 4 and summing it with Eq. (8.15), applying continuity 

conditions at the crack tip in Table 8.5, and then subtracting it from itself with the 

subscripts i and j exchanged, gives 

 ( ) ( ) ( ) ( ) ( )2 2 1 2
1 1 2 20

1 2

4 0.
L L a

i j i j i jL

A AW x W x dx W x W x dx
EI EI
ρ ρω ω

+ 
− + = 

 
∫ ∫  (8.16) 

Since the natural frequency of the beam system is unique, that is, ωi ≠ ωj for i ≠ j, 

therefore 

 ( ) ( ) ( ) ( )1 2
1 1 2 20

1 2

4 0.
L L a

i j i jL

A AW x W x dx W x W x dx
EI EI
ρ ρ+

+ =∫ ∫  (8.17) 

Now, including the case of i = j and normalising Eq. (8.17), finally the 

orthogonality of the beam system for ELS specimen is written as 

 ( ) ( ) ( ) ( )1 2
1 1 2 20

1 2

4 .
L L a

i j i j ijL

A AW x W x dx W x W x dx
EI EI
ρ ρ δ

+
+ =∫ ∫  (8.18) 

8.2.1.2 Solutions for normal modes and frequency equation 

For the ith normal mode of the free-vibration component of beam section ①, W1i (x) 

in Eq. (8.11), the general solution with the available boundary conditions in Table 8.4 

applied is 
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 ( ) ( ) ( ) ( ) ( )1 1 2cosh cos sinh sin ,i i i i i i iW x C x x C x xα α α α= − + −        (8.19) 

where ( )4 2
1 1i i A EIα ω ρ= , Ci1 and Ci2 are coefficients to be determined. 

For the ith normal mode of the free-vibration component of beam section ②, W2i (x) 

in Eq. (8.12), the general solution with the available boundary conditions in Table 8.4 

applied is 

 ( ) ( ) ( )2 3 4sinh sin ,i i i i iW x C x L a C x L aβ β= − − + − −        (8.20) 

where ( )4 2
2 2i i A EIβ ω ρ= , Ci3 and Ci4 are coefficients to be determined. 

The frequency equation is derived by applying the continuity conditions at the crack 

tip presented in Table 8.5 to these general solutions for W1i (x) and W2i (x), which gives 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2

3 3

cosh cos sinh sin sinh sin

sinh sin cosh cos cosh cos

4 cosh cos 4 sinh sin sinh sin

4 sinh sin 4 co

i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i

L L L L a a

L L L L a a

L L L L a a

L L

α α α α β β

α α α α α α β β β β

α α α α α α β β β β

α α α α

− −      
+ − − −      
+ + −      
−   ( ) ( ) ( ) ( )

1

2

3

3 3
4

0
0

.
0
0sh cos cosh cos

i

i

i

ii i i i i i

C
C
C
CL L a aα α β β β β

               =                + −   

 (8.21) 

For this homogeneous system of linear equations to have nonzero solutions, the 

determinant of the coefficient matrix must be zero, and this gives the frequency equation. 

Let Di be the determinant of the coefficient matrix of Eq. (8.21). From Di = 0, the 

wavenumber αi and βi can be determined and thus the natural frequency ωi via 

( )2
1 1i i EI Aω α ρ=  or ( )2

2 2i i EI Aω β ρ= . 

By Gaussian elimination, the coefficients Ci1, Ci2 and Ci3 can be expressed linearly 

in terms of Ci4. Then, by substituting the general solutions in Eqs. (8.19) and (8.20) into 

the orthogonality condition in Eq. (8.18), Ci4 can be determined, and, therefore, Ci1, Ci2 

and Ci3 also. 

8.2.1.3 Solution for time-dependent modal displacement 

The general solution for the time-dependent displacement of ith vibration mode in 

Eq. (8.13) is 

 ( ) ( ) ( ) ( ) ( )0
sin 0 cos ,i

i i i i
i

T
T t t T tω ω

ω
= +


 (8.22) 
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where ( )0iT  and ( )0iT  are the initial values of the modal displacement and modal 

velocity of the ith vibration mode. 

The initial modal displacement Ti (0) can be determined by the following 

procedure: Substitute Eq. (8.22) into Eqs. (8.9) and (8.10), and then combining Eqs. (8.2) 

and (8.3) to obtain the following deflections for beam sections ① and ②, respectively: 

 ( ) ( ) ( ) ( ) ( )1 1 1
1

0
, sin 0 cos ,i

i i i i
i i

T
w x t W x t T t F x vtω ω

ω

∞

=

 
= + + 

 
∑



 (8.23) 

 ( ) ( ) ( ) ( ) ( )2 2 2
1

0
, sin 0 cos .i

i i i i
i i

T
w x t W x t T t F x vtω ω

ω

∞

=

 
= + + 

 
∑



 (8.24) 

The initial displacements of beam sections ① and ② are therefore 

( ) ( ) ( )1 11
,0 0i ii

w x W x T∞

=
=∑  and ( ) ( ) ( )2 21

,0 0i ii
w x W x T∞

=
=∑ , respectively. Multiply 

w1 (x, 0) by ( ) ( )1 1 14 jAW x EIρ  and integrate over the beam section length (0, L); 

multiply ( )2 ,0w x  by ( ) ( )2 2 2jA W x EIρ  and integrate over the beam section length 

(L, L + a); sum these two integrals to have 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2
1 1 2 20

1 2

1 2
1 1 2 20

1 11 2

4 ,0 ,0

4 0 0 .

L L a

j jL

L L a

j i i j i iL
i i

A AW x w x dx W x w x dx
EI EI

A AW x W x T dx W x W x T dx
EI EI

ρ ρ

ρ ρ

+

∞ ∞+

= =

+

= +

∫ ∫

∑ ∑∫ ∫
 (8.25) 

Finally, by applying the orthogonality condition in Eq. (8.18) together with the 

initial conditions that w1 (x, 0) = 0 and w2 (x, 0) = 0, the ith modal displacement is found 

to be zero, that is, Ti (0) = 0. Following a similar procedure, the initial value of the ith 

modal velocity is found to be 

 ( )0 ,i iT vH= −  (8.26) 

where 

 ( ) ( ) ( ) ( )1 2
1 1 2 20

1 2

4 .
L L a

i i iL

A AH W x F x dx W x F x dx
EI EI
ρ ρ+

= +∫ ∫  (8.27) 

Hi represents the coupling of the free vibration and the applied constant loading 

velocity v, that is, how the free vibration of the beam responds to the applied excitation. 
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But note that Hi is independent of applied velocity v, and thus this is an inherent property 

representing the beam configuration of ELS specimen. 

8.2.1.4 Solutions for shifting functions 

The shifting functions are obtained by solving the ordinary differential equations in 

Eqs. (8.6) and (8.8), together with the available boundary conditions in Table 8.1 and 

Table 8.2 as well as the continuity conditions Table 8.3 at the crack tip. 

The general solutions for F1 (x) and F2 (x) with available boundary conditions 

applied are 

 ( ) 3 2
1 1 2 ,F x Px P x= +  (8.28) 

 ( ) ( ) ( )3
2 3 4 1,F x P x L a P x L a= − − + − − +  (8.29) 

where P1, P2, P3 and P4 are coefficients to be determined. 

By applying the four continuity condition at the crack tip, x = L, listed in Table 8.3, 

to the general solutions for F1 (x) and F2 (x) in Eqs. (8.28) and (8.29), the following 

system of equations is obtained. 

 

3 2 3
1

2 2
2

3

4

1
03 2 3 1

.
024 8 6 0
024 0 6 0

PL L a a
PL L a
PL a
P

     
     − −     =
     
     

−    

 (8.30) 

Solving this system of equations gives the coefficients P1, P2, P3 and P4 as 

 
( )1 3 2 2 3

1 ,
2 3 3 4

P
L L a La a

= −
+ + +

 (8.31) 

 ( )
( )2 3 2 2 3

3
,

2 3 3 4
L a

P
L L a La a

+
=

+ + +
 (8.32) 

 
( )3 3 2 2 3

2 ,
3 3 4

P
L L a La a

= −
+ + +

 (8.33) 

 
( )

( )
2 2

4 3 2 2 3

3 2 4
.

2 3 3 4

L La a
P

L L a La a

+ +
=

+ + +
 (8.34) 

The shifting function solutions, given in Eqs. (8.28) and (8.29) together with their 

coefficient solutions from Eqs. (8.31) to (8.34) show that they are independent of applied 

velocity v. This indicates that the shifting functions, which represent the distribution of 
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externally applied velocity along the related beam sections, are inherent properties of the 

beam configurations. 

8.2.1.5 Total deflections 

The combined results from Sections 8.2.1.1 to 8.2.1.4 give the total deflections for 

beam sections ① and ② in Eqs. (8.2) and (8.3) as 

 
( ) ( ) ( )

( ) ( ) ( )

1 1fv 1

1 1
1

, ,

sin ,i
i i

i i

w x t w x t F x vt

Hv W x t F x tω
ω

∞

=

= +

   = − +  
   
∑

 (8.35) 

 
( ) ( ) ( )

( ) ( ) ( )

2 2fv 2

2 2
1

, ,

sin .i
i i

i i

w x t w x t F x vt

Hv W x t F x tω
ω

∞

=

= +

   = − +  
   
∑

 (8.36) 

It is seen that the beam system’s dynamic response is proportional to the externally 

applied velocity v. The terms contained in the braces are determined by the ELS 

configuration alone. 

Hi in Eq. (8.27) can be further simplified by partially integrating and combining 

Eqs. (8.6), (8.8), (8.11) and (8.12) with boundary conditions in Table 8.4 and continuity 

conditions in Table 8.5 to 

 ( )3
3 42

2 .i i i i
i

H C Cβ
ω

= −  (8.37) 

8.2.2 Dynamic energy release rate for ELS specimen 

By combining Eqs. (8.1), (8.35), (8.36) and (8.37), the total dynamic ERR for the 

ELS specimen shown in Figure 8.1 is obtained as 

 
( )

( ) ( ) ( )

2 2 2
2

23 2 2 3

22 2
2 2

3 2 2 3
1 1

108

3 3 4

18 3sin sin ,
43 3 4 i i i i

i i

EI a v tG
b L L a La a

EI av t EI vt t
bb L L a La a

ω ω
∞ ∞

= =

=
+ + +

 − Λ + Λ + + +  
∑ ∑

 (8.38) 

where ( )( ) ( ) 3 2
3 4 3 4 2 2sinh sini i i i i i iC a C a C C A EIβ β ρΛ = − + −    . In Eq. (8.38), the first 

term is the ERR component due to the strain energy of the quasi-static motion, which has 

the same value of static ERR without any dynamic effect; the second term is the ERR 
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component due to coupling between local vibration and quasi-static motion; the last term 

is the ERR component due to local vibration. These three terms are denoted U
stG , cp

dynG  

and loc
dynG , respectively, so that U cp loc

st dyn dynG G G G= + + . 

It should be recognized that the total deflections in Eqs. (8.35) and (8.36) as well as 

the total dynamic ERR in Eq. (8.38) are vibrational solutions, and as such, assume that 

sufficient time has passed for all the flexural waves to form standing waves. Chapter 5 

derives the dynamic ERR of a DCB employing the dispersion-corrected global approach 

and the local approach with vibrational solutions. It is shown that for a DCB the difference 

between the two approaches is essentially zero after 12 times the duration taken for the 

first-mode flexural wave to travel the crack length, and already very small after just five 

times. Following this guide from Section 5.3.3.2, the vibrational approach used here is 

considered justified, as verified in Section 8.3. 

To establish the time required for all flexural waves to form standing waves in an 

ELS specimen, the phase speed of the first-mode flexural wave is considered since it 

travels slowest. The time needed for this wave to travel from the free end of the ELS 

specimen to the crack tip is 1
1 apa Cτ = , where 1

ap 1 1C ω β=  is the phase speed of the first-

mode flexural wave in beam section ②. Likewise, the time needed for this wave to travel 

from the crack tip to the fixed end is 1
2 Lpa Cτ = , where 1

Lp 1 1C ω α=  is the phase speed 

of the first-mode flexural wave in beam section ①. Note that 1 1
ap Lp 1 1 1 2C C α β= = . 

Therefore, the time τ0 needed for this wave to travel from the free end to the fixed end of 

the ELS specimen is 

 ( )4
0 1 2 2

1

1 3 2 .a L
Eh
ρτ τ τ

ω
= + = +  (8.39) 

There are two limiting cases, namely, a→0 and a→L0, where L0 = a + L is the 

constant total length of the ELS specimen. Therefore, the time needed for the first-mode 

flexural wave to travel from the free end to the fixed end is in the range 

 ( ) ( )0 0 0 00 ,a a Lτ τ τ→ < < →  (8.40) 

where ( ) 1
0 0 Lp0a L Cτ → =  and ( ) 1 1

0 0 0 ap 0 Lp2a L L C L Cτ → = = . Either of these two 

limiting cases represents a cantilever beam under constant loading rate, which is the 
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configuration modelled in Chapter 5 (see Figure 5.1b). Therefore, the multiple of 12 can 

be introduced as guided by the conclusion of Section 5.3.3.2. The minimum time for the 

developed dynamic ERR solution based on structural vibration to become applicable, or, 

equivalently, the minimum test time required to post-process experimental results by this 

method, is therefore 

 ( )4
0 0 2

1

1 312 2 .t a L
Eh
ρτ

ω
= = +  (8.41) 

Therefore, the maximum velocity that can be applied in a test is wcrit/t0, where wcrit is the 

critical displacement, at which crack initiates. 

8.2.3 Dynamic factor 

Since the ERR component due to the strain energy of quasi-static motion U
stG  has 

the same value as the ERR without any dynamic effect, the total dynamic effect 

contribution to the ERR is 

 cp loc
dyn dyn dyn .G G G= +  (8.42) 

The ERR component due to local vibration loc
dynG  has a maximum value of 

( ) ( )
2

2
2 1

3 4ii
EI v b∞

=
Λ∑ , while the amplitude of the ERR component due to the coupling 

of vibration and quasi-static motion cp
dynG  increases with time t. Therefore, given sufficient 

time, cp
dynG  is more significant than loc

dynG , and, so, in order to better understand the 

dynamic effect, the total dynamic effect can be taken as cp
dyn dynG G≈ . A comparison of 

these ERR components for verification case in Section 8.3.1 is shown in Figure 8.2. 

Note that in Figure 8.2 the ERR component due to dynamic effect in the 

conventional solution (Section 4.2.2.2) is also plotted (denoted by Gdyn in conventional 

solution); it is the solid horizontal line with a constant value of 6.91 N m-1. This shows 

the limitation of the conventional approach of using only quasi-static motion to account 

for the total kinetic-energy contribution to the ERR. This is the reason why the dynamic 

effect only accounted for 1% of the measured fracture toughness value in [88] and was 

described as negligible. Therefore, to accurately determine the dynamic mode-II ERR of 

an ELS specimen, vibration must be considered. 
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Figure 8.2 Comparison of ERR components of ELS specimen 

A total dynamic factor for mode-II fracture can be defined as 

 
( ) ( )

cp
dyn dyn

dyn U U
st st

3 2 2 3

1

3 3 4
sin .

6 i i
i

G G
f

G G

L L a La a
t

at
ω

∞

=

= ≈

+ + +
= − Λ∑

 (8.43) 

Note that cp
dynG  for the ith vibration mode is proportional to parameter Λi. Typical values 

of Λi for the verification case in Section 8.3.1 are plotted in Figure 8.3 based on the 

specified beam configuration and material properties. It can be seen that for the given 

configuration, the most significant contribution to the total dynamic ERR is from the first 

vibration mode, whereas the contribution to the total dynamic ERR from the second 

vibration mode is near zero since Λ2 ≈ 0, as discussed in Sections 8.2.4 and 8.2.5, and 

reflected by results presented in Figure 8.8. 

 
Figure 8.3 Typical value for the parameter Λi 
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From Eq. (8.43), the dynamic factor for the verification case in Section 8.3.1 is 

plotted in Figure 8.4 for the first vibration mode (dashed line) and the first four vibration 

modes (solid line). The maximum value for the dynamic factor is found in the first cycle 

of the first vibration mode, and then it drops dramatically. The dynamic factor with the 

first four vibration modes oscillates around the dynamic factor of the first vibration mode 

since the first vibration mode makes the most significant contribution to the total ERR. 

This indicates the feasibility of using only the first vibration mode to quantify the dynamic 

ERR for this beam configuration; however, this is not always the case as shown in 

Section 8.2.5. The dynamic factor based on conventional approach in Section 4.2.2.2 is 

also plotted in Figure 8.4 as the dotted line. It does not oscillate but decays very quickly 

to around zero. 

  
Figure 8.4 Dynamic factor for the verification case in Section 8.3.1 

8.2.4 Normal modes and crack-tip loading condition 

In Section 8.2.3, the dynamic factor of the ith vibration mode is found to be 

proportional to parameter Λi. For the value Λi shown in Figure 8.3 (of the verification 

case in Section 8.3.1), it can be seen that Λ2 ≈ 0, and accordingly, the dynamic factor of 

the second vibration mode 2
dyn 0f ≈  (the superscript 2 denoting the second vibration 

mode). This means that the second vibration mode does not contribute to the total 

dynamic ERR in this case. 

To understand this phenomenon, the normal mode and its slope of the first three 

vibration modes of the verification case in Section 8.3.1 were examined to investigate the 

crack-tip loading condition. 



Chapter 8 Dynamic mode-II interfacial fracture 

  181 

 
Figure 8.5 Normalised normal modes and slopes for first three vibration modes 

It is apparent that the slopes of the first and third normal modes (Figure 8.5b and f) 

are not smooth at the crack tip (that is, there is a discontinuity of curvature), whereas it is 

smooth for the second normal mode (Figure 8.5d). This demonstrates that the first and 

third normal modes contribute to the bending moment at the crack tip and the ERR 

according to Eq. (8.1).  

For the second normal mode, however, ( ) ( ) ( ) ( )2 2
12 22W L W L= . Since 

( ) ( ) ( ) ( )2 2
1 12 2 222EI W L EI W L=  (Table 8.5), therefore ( ) ( ) ( ) ( )2 2

12 22 0W L W L= = . This means 
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that, in this configuration, the second vibration mode does not contribute to the bending 

moment at the crack tip, or to the ERR. 

The parameter Λi can therefore be interpreted as a description of the crack-tip 

loading condition. Note that Λi is a function of the ELS’s configuration, and the second 

vibration mode does not always give Λ2 ≈ 0 for different configurations. A more general 

conclusion about the ith vibration modal contribution to ERR is given in Section 8.2.5. 

8.2.5 ith vibration modal contribution to ERR 

The dynamic factor of the ith vibration mode is  

 
( ) ( )

3 2 2 3

dyn

3 3 4
sin ,

6
i

i i

L L a La a
f t

at
ω

+ + +
= − Λ  (8.44) 

which is a sine function decreasing with time as it oscillates (superscript i denoting the 

vibration mode). It is seen that the dynamic effect comes from both the time and the space 

domains, where the former varies with time, and the latter depends on structural 

properties. To facilitate understanding of the relationship between the beam configuration 

and the modal contributions of each vibration mode, a spatial factor sp
if  can be defined 

by isolating the structural properties from dyn
if  as 

  
( )3 2 2 3

sp

3 3 4
,

6
ii

L L a La a
f

a
Λ + + +

= −  (8.45) 

where sp
if  has units of seconds, and superscript i denotes the vibration mode. 

Using the material properties from the verification case in Section 8.3.1 and 

maintaining the total length of the specimen as L0 = 60 mm, sp
if  was calculated for the 

first five vibration modes for crack-length ratios, defined as η = a/L0, in the range 

0.05 ≤ η ≤ 0.95, and plotted in Figure 8.6. 
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Figure 8.6 Spatial factor of ith vibration mode against crack-length ratio η 

Figure 8.6a shows the spatial factors of each vibration modes oscillate around zero 

with crack-length ratio η. Clearly, the first vibration mode has the lowest frequency, and 

the frequency of sp
if  increases with increasing vibration mode numbers. It is noteworthy 

that there are some crack-length ratios for which sp 0if = , meaning that the ith vibration 

mode does not contribute to the total ERR in this case. Furthermore, for the ith vibration 

mode, there are i ratios which produce sp 0if = . For example, the first vibration mode has 

only one crack-length ratio (0.61, approximately) that provides 1
sp 0f = ; but the second 

vibration mode has two crack-length ratios (0.34 and 0.78, approximately) that provide 
2

sp 0f = . Thus, for the verification case in Section 8.3.1 with the crack-length ratio of 0.33, 

the second mode contribution to the total ERR is close to zero. 

The absolute value of sp
if  for various crack-length ratios is presented in Figure 8.6b. 

The range of this ratio can be divided into four regions, according to relative contribution 

of each modes, as shown. Note that since sp
if  is independent of the applied loading rate 

and an inherent property of an ELS specimen with given crack-length ratio η, this 

classification of regions is general for ELS specimens, and is not just for the specific 

verification case in Section 8.3.1. 

In Region I, where 0.05 ≤ η ≤ 0.15, the contribution for each vibration mode is 

significant, and so all the modes should be taken into account when determining the total 

dynamic ERR. 

In Region II, where 0.15 ≤ η ≤ 0.5, the contribution of the first vibration mode is 

dominant, and the total ERR can be approximated using only the first vibration mode. 
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In Region III, where 0.5 ≤ η ≤ 0.7, the dominant vibration mode contributing to 

total dynamic ERR is the second vibration mode. 

In Region IV, where 0.7 ≤ η ≤ 0.95, the dominant vibration mode contributing to 

the total dynamic ERR changes from the second vibration mode back to the first vibration 

mode. 

This classification of regions is important when designing specimens for high-

loading-rate ELS tests to measure the dynamic mode-II fracture toughness of a given 

material. For example, it may be desirable to design ELS specimen in Region II (with 

crack-length ratios in the range 0.15 ≤ η ≤ 0.5), since then only the first vibration mode 

would be dominant, simplifying the post-processing of test data, and reducing the 

amplitude of higher vibration modes, which could be helpful for data recording and 

regression. 

This classification of regions is also important to help understand structural 

behaviour in the presence of a mode-II crack; for instance, a structure could be designed 

to avoid certain vibration modes in the presence of certain crack-length ratios. 

Alternatively, to reduce the total dynamic effect, crack-length ratio in Region III are 

preferred due to smaller spatial factors of all vibration modes. 

8.3 Numerical verification 

8.3.1 Verification for isotropic bi-layer composite 

FEM simulations were used to verify the analytical theory developed in 

Section 8.2.2 for the total dynamic ERR. The geometry for the ELS specimen verification 

case is shown in Figure 8.7. Isotropic elastic material properties were used with the 

Young’s modulus of 10 GPa, the Poisson’s ratio of 0.3, and the density of 103 kg m-3. The 

applied constant displacement rate was 5 m s-1. 
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Figure 8.7 ELS geometry for FEM verification 

A 2D FEM model was built in Abaqus/Explicit using four-node plane-stress 

elements (CPS4R) with a uniform mesh size of 0.1 mm, and the total number of elements 

was 24000. The crack region was modelled using a contact algorithm. To eliminate any 

damping effect in the dynamic response, the viscosity parameters were set to zero. The 

total dynamic ERR from the FEM was calculated using the VCCT and compared to the 

analytical theory. 
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Figure 8.8 Dynamic ERR versus time results from developed theory (black line) and 

from FEM (grey line) with increasing numbers of vibration modes for an isotropic bi-

layer composite 

Figure 8.8 shows the comparison of dynamic mode-II ERR from analytical solution 

developed in Section 8.2.2 (solid black line) and from FEM simulation results (solid grey 

line) with various numbers of vibration modes. The dashed line represents the static 

component of ERR. In addition, the conventional solution in Section 4.2.2.2 is also 

plotted as a dashed line, which almost overlaps with the static component or quasi-static 

solution with only a baseline upwards shift of 6.91 N m-1. The significant difference 

between the conventional solution in Section 4.2.2.2 and the developed analytical theory 
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demonstrates the necessity of considering vibration for ELS specimen under dynamic 

loads. 

The developed analytical theory and FEM simulations are in excellent agreement 

up to, and including, the first four vibration modes. From the fifth vibration mode 

onwards, the oscillation amplitudes from the analytical solution is slightly larger than that 

from FEM simulations, suggesting that the assumption in the theory that beam sections 

② and ③ share the same deflection is valid for the lower vibration modes, but not quite 

so accurate for higher-order ones. In addition, Euler-Bernoulli beam theory was used, 

which overlooks shear and rotational inertia that might become significant for higher 

modes. Since the actual ERR amplitudes due to higher vibration modes are small however 

(see Figure 8.3), this discrepancy is not significant in estimating ERR if only the first few 

vibration modes are used, but the dominant vibration mode must be included as discussed 

in Section 8.2.5. 

The crack-length ratio in this verification case is 0.33, and according to the analysis 

in Sections 8.2.3, 8.2.4 and 8.2.5, the contribution of the second vibration mode to the 

total dynamic ERR is close to zero. This is also confirmed by comparing 

Figure 8.8a and b, where adding the ERR contribution from the second vibration mode in 

the developed analytical theory does not alter the total ERR. 

8.3.2 Verification for orthotropic fibre-reinforced composite 

In Section 8.3.1, the numerical verification demonstrates the agreement between 

the developed theory and FEM simulation for an isotropic bi-layer composite. In this 

section, the developed theory is verified against a simulation of an orthotropic fibre-

reinforced composite material. To apply the developed theory, the conventional method, 

as in ASTM D5528 [11], is to use the longitudinal modulus of elasticity (if it is dominant 

and the aspect ratio L/h is high). 

The orthotropic material properties of unidirectional T800H/3900-2 carbon-fibre 

reinforced polymer, as given in Table 8.6, were taken from [177] and adopted for FEM 

simulation. The ELS dimensions used, in accordance with ISO 15114 [14], were 

L = 40 mm, a = 60 mm, h = 1.5 mm. The applied loading rate selected was 5 m s-1. The 

density of T800H/3900-2 was taken as 1.25×103 kg m-3 from the manufacturer’s data 

sheet. All other FEM settings were as described in Section 8.3.1. 
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Table 8.6 Orthotropic material properties of unidirectional T800H/3900-2 

graphite/epoxy 

E11 = 154.72 GPa E22 = 7.58 GPa E33 = 7.58 GPa 

G12 = 4.27 GPa G13 = 4.27 GPa G23 = 2.88 GPa 

ν12 = 0.32 ν13 = 0.32 ν23 = 0.32 

 

For the analytical solution, the modulus of elasticity in the fibre direction (E11 in 

Table 8.6) is used to derive the dynamic mode-II ERR by Eq. (8.38). The comparison 

between the analytical solution and the FEM simulation results is shown in Figure 8.9. 
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Figure 8.9 Dynamic ERR versus time results from developed theory (black line) and 

from FEM (grey line) with increasing numbers of vibration modes for an orthotropic 

fibre-reinforced composite 

Results of the analytical solution and the FEM simulation are generally in excellent 

agreement, although the analytical solution predicts slightly higher amplitudes, which is 

not significant. The crack-length ratio for this ELS geometry is η = 0.6. According to 

Figure 8.6 in Section 8.2.5, the dominant vibration mode should be the second one, with 

the first vibration mode not contributing to the total ERR since 1
sp 0f ≈ . This is confirmed 

in Figure 8.9a, in which the analytical solution with the first vibration mode only almost 

overlaps the static component. Figures 8.9b-f show that by adding more vibration modes, 
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the analytical solution becomes increasingly closer to the FEM simulation results, and 

that, therefore, the developed theory is also applicable to orthotropic fibre-reinforced 

composite ELS specimens by the conventional method of using the longitudinal modulus 

of elasticity. 

8.4 Conclusion 

The dynamic ERR of a mode-II stationary crack of an ELS specimen is derived 

analytically by established analytical framework in Chapter 5. They dynamic effect and 

the contribution of each vibration mode were quantified by defining a dynamic factor and 

a spatial factor. They dynamic factor fdyn facilitates understanding of the total dynamic 

effect. It was found that dynamic factor decreased with time as it oscillates around the 

dynamic factor-contribution of the dominant vibration mode. 

The spatial factor sp
if , which represents the contribution on the total ERR from the 

ith vibration mode for given structural properties, facilitates understanding the relative 

contribution of each vibration mode. The spatial factor is a function of the crack-length 

ratio η. Based on the crack-length ratio, four regions were established with the dominant 

vibration mode(s) for determining the total dynamic ERR identified in each. In addition, 

for a given spatial factor, there may exist a certain vibration mode, which makes 

approximately zero contribution to the ERR. 

FEM simulations were used to verify and confirm the analytical solution, and 

comparison between FEM simulation results and analytical results is in excellent 

agreement. The comparison of results also demonstrates the importance of including the 

dominant vibration mode when using the developed theory.  

The derived theory is readily applicable in various applications, such as measuring 

the dynamic mode-II fracture toughness of materials, or designing structures to avoid 

certain vibration modes in the presence of certain crack length, or reducing the total 

dynamic effect on the ERR of a structure with a mode-II crack. In addition, the developed 

theory can guide the design of high-loading-rate ELS tests, the design of specimens to 

avoid unwanted high-amplitude oscillation from higher-order vibration modes, and can 

simplify and guide the post-processing of test data. 

 



 
Chapter 9:  Conclusions and future work 

9.1 Conclusions 

The increasing application of laminated materials such as CFRPs requires a 

fundamental understanding of the interfacial fracture behaviour in such materials. In the 

dynamic loading regime, the fracture behaviour was always investigated with a 

conventional analytical approach or experimental-numerical hybrid schemes. The 

conventional analytical approach used the global approach including the kinetic energy, 

accounting for a quasi-static motion, but usually came to different or contradicting results 

for dynamic fracture toughness. Also, it did not capture the oscillating dynamic ERR that, 

as the experiments and FEM simulations demonstrate, can be significant. The 

experimental-numerical hybrid methods generally require extensive computational 

resources. Therefore, a new analytical framework, which accounts for the structural 

vibration and wave propagation is developed to study the dynamic interfacial fracture. 

The analytical framework for the dynamic interfacial fracture is first developed for 

DCBs, the most fundamental engineering structure to study the mode-I fracture 

behaviour. An effective boundary condition was assumed at the crack tip for one DCB 

arm and the problem of dynamic deflection of this arm was solved by vibration analysis 

for time-dependent boundary conditions. This dynamic deflection was then used to 

determine the strain and kinetic energies to assess the dynamic ERR employing the global 

approach. However, the dynamic ERR obtained in this way shows a non-physical and 

non-mechanical behaviour: its amplitude diverges with including more vibration modes. 

Also, only the first-order-accurate dynamic ERR is derived; further examination shows 

that the global approach overlooked the wave-propagation properties of beams as 

dispersive waveguides and assumed that all the flexural waves arrived at the crack tip 

simultaneously. To address this, the dispersive property is included to study the energy 

flux into the crack tip at a given time, and a correction factor for dispersion is introduced 

to modify the global approach solution: this method is called dispersion-corrected global 

approach. The dynamic ERR determined with this approach demonstrates a good 

agreement with results from FEM simulation (but slightly out of phase). So, the method 

to compensate for crack-tip rotation with the effective crack length (also known as the 

MCC method and widely used in a quasi-static loading regime) was employed to adjust 

this and results are in an excellent agreement. The investigation also demonstrates the 
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equivalence between the developed dispersion-corrected global approach and the local 

approach in determining the dynamic ERR. 

The developed analytical framework is then extended further to study the crack-

propagation behaviour in mode-I under dynamic loads. For a material with constant 

fracture toughness, the first-order-accurate dynamic ERR was used to derive the crack-

propagation speed and obtain a crack length versus time curve by enforcing G = Gc. The 

analytical solution exhibits a good agreement with the FEM results but cannot predict the 

crack-arrest phenomenon. For a material with rate-dependent fracture toughness, the 

dynamic ERR is derived based on the dispersion-corrected global approach and a further 

assumption of energy conservation as well as a correction of frequency due to the Doppler 

effect. The developed analytical solution for propagating crack is thus verified against 

results from experiments and FEM simulations, showing excellent agreement. This 

analytical solution also allows a study of the limiting crack-propagation speed in the 

DCBs, which is demonstrated to be a function of aspect ratio r (r = h/a, the ratio between 

the thickness and the crack length) and the Poisson’s ratio. For the conventional DCBs, 

the limiting crack propagation speed is in the range from 0.02CR to 0.25CR for the given 

aspect ratio of 0.01 to 0.1. In the analytical solution to determine the ERR, however, the 

effective crack length is still used. But this effective crack length cannot be derived using 

the MCC method but by data regression for the experimentally observed crack length 

against the square root of time, and an additional crack length for the crack-tip-rotation 

compensation is found to be rate-dependent. 

To allow the crack tip to rotate  and also to extend the analytical framework to study 

dynamic fracture at a non-rigid elastic interface, an elastic foundation is introduced into 

the established analytical framework. This developed analytical solution can be readily 

applied to study adhesively bonded or welded interfaces. It is found that with decreasing 

interface stiffness, the ERR decreases, with lower vibration modes becoming more 

dominant. The developed analytical solutions are verified against the FEM results, 

demonstrating an excellent agreement. Additionally, the mode-mixity is also studied by 

applying the quasi-static partition theory to partition the total dynamic ERR derived from 

the developed theory; the comparison between the ERR components are in excellent 

agreement with FEM simulation results. For crack propagating on the elastic foundation, 

the ERR solution is derived by analogy to the solution for the propagating crack in 
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Chapter 6, and this ERR solution for the propagating crack on the elastic foundation is 

also verified by FEM simulation. 

For dynamic mode-II interfacial fracture, an ELS specimen is investigated with the 

local approach, that is, using the crack-tip bending moment. The derived analytical 

solution shows that the contributions to the total ERR of different vibration modes are 

dependent on the ELS configuration, i.e. crack-length ratio, which is the ratio between 

the crack length and the total length of the specimen. Accordingly, a spatial factor is 

defined by isolating structural properties in the dynamic factor in the space domain, and 

the dominant vibration mode for various ranges of the crack-length ratio can be identified. 

The crack-tip loading condition is also linked to this spatial factor. The finding is essential 

for designing ELS specimens or engineering structures to avoid specific contributions of 

vibration mode to the total ERR. 

Overall, all of the analytical solutions are readily applicable to engineering 

applications, such as measuring dynamic fracture toughness in modes I and II, designing 

engineering structures to avoid certain vibration modes, and reducing the total dynamic 

effect in structures.  

9.2 Future work 

This work established an important analytical framework to study dynamic 

interfacial fracture in the context of engineering structures as waveguides with various 

analytical solutions. However, there is still some research work for the future: 

Experimental investigations In Chapter 6, the experimental verification of the 

analytical solution developed shows the limitation of inadequate experimental sample 

points for assessing the crack-propagation speed. Therefore, experiments that can provide 

adequate experimental sample points and the method to decide the number of these points 

are desirable. Now experiments suitable for the further study of the theories developed in 

Chapters 7 and 8 are also required: the experiments for adhesively bonded or welded 

DCBs would be used to assess and validate the analytical solution for the propagating 

crack in Chapter 7 as well as the experiments for dynamic mode-II using ELS spcimens 

to verify the analytical solution in Chapter 8. 

Analytical solutions for different engineering structures For engineering 

structures analysed in this thesis, such as DCB, beam on elastic foundation and ELS 
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configurations, the classical Euler-Bernoulli beam theory (the beams are assumed to be 

thin) is used to develop the respective analytical solutions for dynamic ERR, which only 

accounts for transverse inertia of the system. Further investigations to account for 

rotational inertia can be conducted by using the Rayleigh beam theory, and, to include the 

shear effect, the Timoshenko beam theory can be used. In addition, the analytical solution 

for a propagating crack in the ELS specimen can be developed. For other engineering 

structures, such as circular plates and annular plates, the analytical solutions for dynamic 

ERR can be obtained, which have different applications for engineering problems, for 

instance, impact problems. 

Analytical solutions for different materials In this thesis, only elastic materials, either 

isotropic or orthotropic, are studied. Viscoelastic and elastic-plastic materials can be 

studied together with theoretical frame developed to provide wider applications. 
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Appendix A: Formulas for integrals for mode shapes 
For the mode shape of fixed-pinned boundary conditions with the expression in 

Eq.  (2.22), Ref. [24] provides useful formulas for integrals for mode shapes, and they are 

used to derived relevant physical quantities, such as strain energy, kinetic energy and 

modal velocity in Chapter 5. These formulas are as follows: 
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Appendix B: DCB FEM model 
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