
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Authoring educational software: theory and practiceAuthoring educational software: theory and practice

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

Loughborough University of Technology

LICENCE

CC BY-NC 4.0

REPOSITORY RECORD

Newton, John C.. 2021. “Authoring Educational Software: Theory and Practice”. Loughborough University.
https://doi.org/10.26174/thesis.lboro.14413697.v1.

https://lboro.figshare.com/

Authoring
Educational Software:

Theory and Pr actice.

by John Christopher Newton.

A Master's by Course Dissertation submitted

in partial fulfilment of the requirements

for the award of the degree of M. Sc. in

Computer Education of Loughborough

University of Technology,

January 1990.

-
Supervisor: Dr. D. R. Green, M.Sc. M.Ed. Ph.D.

(Cl by JOHN CHRISTOPHER NEWTON 1990.

---- --- -- --~~----- -- -- -----------

Abstract.

The production of educational software requires the

skills and knowledge from a number of fields to be drawn

together in order to meet the needs of an increasingly

discerning audience of users. Thus, a collection of

perspectives for those involved in the authoring of this

software is presented.

Chapter 1 provides a historical exposition of the

development of computer assisted learning (CALl from its

pre-computer beginnings to the present day.

Next, Chapter 2 considers the CAL production system.

Three specific issues are dealt with here: selecting and

using authoring

used packages,

packages, an investigation of two commonly

and a survey of commercially available

packages within the U.K.

This is followed by three essential perspectives for

those involved in CAL software production: Chapter 3

presents an examination of the relevant education issues;

Chapter 4 is concerned with designing for effective human

computer interaction; and Chapter 5 looks specifically at

the application of software engineering techniques to the

CAL authoring process.

To complete this dissertation, a look to the future

is presented, which identifies the developments that are

likely to affect those involved in the development of

educational software.

ii

Acknowledgements.

I would like to acknowledge the contribution made by a

number of people to the content of this dissertation. My

thanks are extended to the following:

firstly, and most importantly, my supervis9r

David Green, who has supported my efforts with

unfailing advice and encouragement.

Bill Lynch of Systems Interactive, who taught me

everything I know about the TenCORE language.

Karen Smith of Format P.C. for freely

technical information about the Top

system.

giving

Class

the Staff at Loughborough University who made

the Computer Education course so interesting and

stimulating.

lastly, but by no means least, my wife Sandra

who has put up with me for the last 2� years.

Declaration.

I declare

own work.

that this dissertation is entirely my

iii

Contents.

Abstract

Acknowledgements

Chapter 1.

ii

iii

Introduction: A Historical Perspective 1

1920-1950: The Teaching Machines 3

The Arrival of Computers 6

CAL in the U.K. 10

Summary 12

Chapter 2.

Authoring Educational Software:

The Production System.

Modelling Authoring Packages

Two Authoring Packages

An Authoring Package Survey

Chapter 3.

Educational Issues for CAL Authors

The Theories of Learning

Modelling the Learner

Learning and Computers

Chapter 4.

Human Factors for CAL Authors

The Na ture of HCI

Authoring System:The Interface

14

15

25

39

44

46

55

60

69

70

Between Author and Computer 73

Courseware: Interface Between

Learner and Computer

iv

86

Chapter 5.

Courseware Production:

A Software Engineering Approach

The Software Life Cycle

The Production Team

Documentation

Coding Conventions

Software Testing

Chapter 6.

Conclusion: A Look to the Future

Hardware Developments

Software Developments

Developments Within Education

An Agenda for the Future

Bibliography

Appendix A.

Authoring Language Suppliers

Appendix B.

The TenCORE Instruction Set

Appendix C.

The Top Class Instruction Set

v

97

97

102

103

106

107

114

114

122

126

129

132

142

144

146

CHAPTER 1.

Introduction: A Historical Perspective.

Overview.

computer based learning is a relatively new field.

Because of the links with (or dependence on) new

technology, it is a field that is constantly developing.

In order to analyse the issues that affect present and

future educational software design, it is appropriate to

begin by considering the historical development of

computer based education.

This chapter describes the significant past

developments of CBE and examines the evolutionary process

that has led to the present state of educational software

in the U.K. The view presented is selective, and

highlights the events pertinent to the major theme of this

dissertation: the theory and practice of courseware

authoring.

Terminology.

Before going any further, it is important to consider

the range of acronyms that plague the field of educational

computing. The following definitions are presented in

order to offer an explanation of those in common usage.

Many of these terms seem to be inter-changeable and, to

some extent, their use is influenced by what is currently

fashionable.

The use of computers to support the learning process,

perhaps by employing a tutorial, simulation or game

program is logically referred to as Computer Assisted

1

------ --~----- -- --- -- -- ------- -------~-----

Learning, or simply CAL. More widely seen in publications

from the U. S. is the term Computer Assisted Instruction

(CAI) which, to readers in the U.K., suggests overtones of

drill-and-practice type software. Nevertheless, when

comparing texts of U.S. and British origin the terms CAL

and CAI appear to be synonymous.

Other acronyms, which suggest a more exclusive use

of the computer in the teaching environment, are Computer

Based Learning (CBL), Computer Based Education (CBE) and

Computer Based Training (CBT). The latter is often used in

an industrial training context. Occasionally, the

following acronyms are encountered: CAT -Computer

Assisted Training; CEL -Computer Enhanced Learning; CSL -

Computer Supported Learning.

Finally, it is useful to distinguish between the use

of the computer to support learning and the computer used

to manage the learning process. The terms Computer Managed

Learning (CML) and Computer Managed Instruction (CMI)

reflect this difference.

The Development of Computer Based Education.

From out of the maelstrom of past activity in the

field of CAL, three distinct phases of activity can be

identified that have played an important part in shaping

the present state of educational software. These are:

-----~----

- The development of teaching machines and associated

theories of instruction during the period 1920 to

1950.

The use of computers since 1960 and the influence

of the PLATO and TICCIT projects.

- The major CAL initiatives that have shaped the

present state of affairs in the United Kingdom:

NDPCAL and the MEP.

2

- .------ ------ -------------- --

1920-1950: The Teaching Machines.

Arguably, the prelude to the use of computers as an

aid to teaching was in the development and use of the so-

called "teaching machines." These machines were devised

to automate the process of delivering material of an

instructional nature and to test the subsequent learning

outcome.

Richmond (1965, p37) indicates the logical starting

point for a historical exposition of computer assisted

learning in stating that " ... Sidney Pressey of Ohio State

Uni versi ty is the man who is usually credited with

inventing the first teaching machines ... "

The Work of Pressey.

Pressey's work, which began in 1926, was concerned

with automating the process of administering objective

type tests by using a mechanical apparatus to produce a

test giving machine.

machine would display

Of simple construction, such a

typewritten questions through an

aperture, to which the student would respond by selecting

an answer and pressing the corresponding key. Correct

answers would result in a counting device being

incremented at the rear of the machine. The major

drawback with this original design was that the student

was not provided with any feedback to indicate which

questions were answered correctly.

Recognising this limitation, Pressey modified his

design so that the machine would wait until a correct

response was made before presenting another question to

the student. This modification produced a machine that

gave the student some feedback, albeit minimal, which at

least let the student know whether the answer given was

right or wrong. A third (and apparently final) change to

the design was made, which produced an early example of

machine generated positive feedback. This was achieved by

3

arranging for the machine to reveal the correct answer to

the student whenever an error was made.

According to Richmond (1965 p.47) Pressey's work came

to an end by 1932, as a result of Pressey becoming

discouraged by the lack of interest shown by potential

manufacturers of his machine. As a result, most of his

work was subsequently confined to the laboratory.

The Work of Sk.inner.

Perhaps the most significant landmark in the history

of CAL is the work of B.F. Skinner, who documents the use

of a teaching machine in an article published in "Science"

(Skinner, 1958). However it is his work in behavioural

psychology and learning that is his legacy to modern CAL.

Skinner's approach to understanding the mechanism of

the mind was mainly based on his earlier investigation

into animal learning. He came to believe that effective

learning was based on a process of mastering a subject in

small steps in a linear fashion with each step building on

its predecessor. In fact, the underlying theme of

Skinner's work was a complete theory of instruction based

upon operant conditioning and exemplifies the basic tenets

of the Behaviourist school of psychology.

Skinner's early work on programmed instruction used

text books as a delivery medium. These did not use the

usual format of paragraphs but consisted of page after

page of short sentences, each conveying one piece of

information, and each building on the previously presented

facts. Hundreds of these pieces of information made up a

course of instruction.

Given the theories that the behaviourists put forward

regarding the learning process, then the logical step for

the teaching process was for it to become similarly

mechanistic in nature.

4

-------- --------- - --------

Skinner (1954) recognised this in stating that

"Mechanical and electrical devices must be used ... " when

he described the applicability of the teaching machine to

his methods of programmed instruction. Retrospectively

analysing the use of computers, Kearsley (1985) states

that Skinner's work " ... provided the conceptual framework

for the initial efforts towards computer assisted

instruction" .

Not surprisingly, as Criswell (1989) points out,

Skinner's teaching machines were not widely received with

open arms in observing that "Many educators resisted the

machines and their programs because they felt the machines

might displace teachers or impart instruction in an

undesirable, mechanistic fashion." Indeed, with programmed

instruction providing the framework for much of today's

CAL software is is not surprising that the objections

levelled at Skinner's teaching machines are equally valid

today.

The Work of Crowder.

During the late 1950's another figure, Norman

Crowder, emerged to be a significant influence in the

development of Computer Based Learning. Crowder based his

approach and subsequent training solution on the real life

problems he encountered as an instructor in the U.S. Air

Force. Crowder describes his methodology, the so-called

"intrinsic programme," as:

"An individually used, instructor-less method of

teaching which represents an automation of the

classical process of individual tutoring. The

student is given the material to be learned in

small logical units and is tested on each unit

immediately. The test result is used

automatically to control the material that the

student sees next [...] The test questions are

multiple choice questions and there is a

5

~----

separate set of correctional material for each

wrong answer that is included in the multiple

choice alternatives." (Crowder 1959).

It is this branching capability of Crowder's

"intrinsic programme" that provides an advancement of the

philosophy of automated instruction. Prior to this, no

provision appears to have been made for the remedial

treatment of wrong responses in programmed instruction.

In allowing learners to find out where they went

wrong, Crowder realised that constructive treatment of

errors was an important part of the learning process, and

that computers were the ideal machines to cope with the

delivery of this type of individualised instruction.

The Arrival Of Computers: PLATO and TICCIT.

The development of the digital computer was not

directly associated with educational activities but to

provide a method of dealing with complex mathematical

calculations. However, the development of an easy to

learn programming language, i.e. BASIC, at a major U.S.

University (Dartmouth) provided many educators with the

means to access the new technology and hence to be able to

write computer assisted instruction programs.

Along with the rapid growth of computer technology,

the BASIC language spread into many schools and colleges,

providing practising teachers with the means to program

their own CAL material. Al though the educational and

technical quality of much of this home-grown software was

(and still is) questionable, the BASIC language has become

so widely available that it is a favourite choice for the

production of educational software by those with little or

no computer programming experience.

6

In fact, the BASIC language has undergone many

modifications and changes to keep pace with the

microprocessor systems that it is now used on. Today,

virtually every home/personal computer is supplied

complete with BASIC. Wi th such proliferation, it is no

surprise that it continues to be a widely used language

for CAL courseware production.

The early notable efforts in the U. s. were aimed

specifically at the design and production of CAI material,

and took place in the 1960's as educational research

projects: namely the PLATO and TICCIT systems.

Significantly, each had its own programming language

designed specifically for the production of educational

software. The main purpose of each project was to design

and implement cost effective computer based instructional

systems.

PLATO

The PLATO project was developed at the University of

Illinois, and was supported by the National Science

Foundation and the Control Data Corporation. The main

goal of the project was" to develop an automatic

teaching system sufficiently flexible to permit

experimental evaluation of a large variety of ideas on

automatic instruction." (Bi tzer et al. 1962.)

The PLATO project started out as a single student

system. However, as the logic of the system was

developed, the project staff worked towards the goal of

achieving multiple student instruction . Tenczar (1981)

reports that the PLATO system became operative in the

early 1970's, by which time " ... over 100 man years of

system software effort ... " had gone into the development

of operating system software and an authoring language

(called "TUTOR") to control the P~TO ha:rdwqre.

7

The resulting PLATO IV system is described by

Alpert (1975) as a computer based network system based

up to 1,000 around a central computer that could serve

student consoles. The consoles,

keyboard and graphics screen.

could accommodate touch screen

a micro-fiche image selector

or terminals, comprised a

Addi tionally, the system

based student interaction,

and an audio unit. Of

particular interest, is the TUTOR authoring language,

which comprised of over 400 commands to allow programming

of CAI related tasks such as graphics generation, response

analysis and student data keeping.

Tenczar goes on to explain that as general purpose

microprocessor based computers became available during the

1970's the researchers on the PLATO project began the task

of investigating the possibilities of implementing

mainframe type CAI on micros.

The PLATO project was evaluated in 1977 by the

Educational Testing Service. PLATO material was used in

community colleges in Chicago and at Urbana, Illinois.

Although the evaluators found that a significant

improvement was found when comparing PLATO to traditional

teaching in mathematics, no improvements were noted for

other subjects.

So, the overall effect of the PLATO project was

essentially to advance the hardware and production aspects

of CAI material, but offered no positive outcome with

respect to addressing the problem of using computers to

help bring about effective learning. It is important to

note that the development of the TUTOR programming

language demonstrates the recognition of the need for a

purpose made authoring language for the production of

educational software.

PLATO is now marketed by the Control Data

Corporation, and has been used internationally. The

8

Coventry PLATO project (Bell 1985) and a project

undertaken at the University of Wi twatersrand,

Johannesburg (Freer, 1986) are two documented examples of

the PLATO system in use.

The TICCIT Project

The TICCIT (Time-Shared Interactive Computer

Controlled Information Television) project was carried out

as a joint venture by the MITRE Corporation and Brigham

Young University. Like the PLATO project, it was also

heavily funded by the National Science Foundation. The

project aimed to develop college level courses in

Mathematics and English, with the MITRE Corporation

designing and developing the hardware and system software

and Brigham Young developing courseware.

Describing the use of TICCIT at Phoenix College,

Arizona, Morrison (1975) explains that mini-computers were

linked to 128 computer terminals, each consisting of a

high resolution colour television receiver and a keyboard.

With regard to the development of courseware, Morrison

states that "TICCIT accomplished what no other CAL system

has done to date." He clarifies this bold claim by saying

that " ... course content and computer programming have been

completely separated. Authors need not learn computer

programming."

The project leader, Victor Bunderson, explains how

TICCIT aimed to produce learner controlled courseware

(Bunderson 1974). He characterises this learner controlled

courseware as embracing a modular approach to courseware

structure and being related to a taxonomy of instructional

variables.

Bunderson also advocates a team based approach to

courseware production but does not elaborate on the

authoring mechanism. In a later paper (Bunderson 1981) he

states that the distributors of TICCIT, (Hazeltine Inc.)

9

have developed a TICCIT Authoring Language (TAL) in

response to a call for greater flexibility in courseware

authoring.

The TICCIT project was evaluated by the Educational

Testing service. Chambers and Sprecher (1983) report that

the evaluation provided some evidence that CAI could be an

effective instructional tool, but " ... the evidence was far

from clear-cut."

computer Assisted Learning in the U.K.

The National Development Programme in

Computer Assisted Learning.

The beginning of co-ordinated computer assisted

learning (CAL) activity in the U.K. is usually associated

wi th the National Development Programme in Computer

Assisted Learning (NDPCAL). This was funded by the

Government from 1973 to 1977, at a cost of £2.5 million.

According to MacDonald (1977), the NDPCAL represented

" ... a departure from a monolithic tradition

of computer based curriculum development,

largely American, which has given rise to a

stereotyped view of what computer assisted

learning means."

The stereotype that he refers to here is, of course, that

of Skinnerian programmed instruction.

The Project Director, Richard Rooper (1977) saw the

major aim of the project as primarily, " ... to develop and

secure the assimilation of computer assisted and computer

managed learning on a regular institutional basis at a

reasonable cost." This innovative aim was tackled by

stimulating CAL activity through the development of new

10

courseware. Essentially, this appears to have been based

on work already under way at Leeds University (for

projects in Chemistry and Statistics), Queen Mary College

(for the Engineering Sciences project) and at

the University of Surrey to develop "materials for

undergraduate science education. This later became known

as CUSC Computers in the Undergraduate Science

Curriculum.

Hooper boasts that the scope of the project in the

year 1975/76 included " ... 17 universities, 10

polytechnics, 20 colleges (including military colleges)

and 31 schools." He states " ... some 10,000 students/

pupils were experiencing CAL and CML in NDPCAL projects,"

and reports that the project resulted in the production of

some 200 CAL packages. It seems, however, that little

formal or objective evaluation was implemented.

Al though NDPCAL may have given more people an

exposure to CAL than would otherwise have been the case, I

fear that the result may well have been to generate

caution rather than enthusiasm concerning the value of CAL

in the classroom.

The Micro-electronics Education Programme.

Starting in 1981, the Government funded a five year

program as a successor to the NDPCAL project. This

was called the Micro-electronics Education Program (MEP).

This scheme, aimed at education in schools, had three main

aims:

- to provide in-service training in micro-electronics.

- to stimulate curriculum developments using computer

technology.

- to disseminate programmed materials and information.

At about the same time, the Department of Industry

funded a scheme to put at least one microcomputer into

11

every school. However, the computers that were made

available to the local authorities were limited to

approved British micros only. These were sold at half the

full cost, leaving the local authority to find the other

half. Although financially advantageous, this scheme

imposed a major limitation in terms of the paucity of

suitable educational software: indeed, at the time, no

software existed for the approved computers I

According to Hartley (1987) this software vacuum

would be filled by " ... commissioning large and experienced

units ... " to generate the required materials to

" ... commercial standards." The production of software

appears to have been a vigorous and frenzied activity,

with some 300 programs developed by the end of 1982

(Educational Computing 1982,3(7), p.8).

Taking note of the views of two recognised

commentators on the educational computing scene, it is

clear that commercial standards were not reached:

"A mountain of poor-quality educational software

seems to be accumulating with only a molehill of

quality". (Maddison 1983);

" ... the courseware available so far for use in

the new machines is inadequate in quality,

quantity and variety." (Hawkridge 1983);

Summary.

The advances made in technology, particularly in the

development and refinement of micro-electronics has had a

profound effect on the development of low-cost yet

powerful computers. As a result, educationalists now have

suitable hardware resources to implement effective CAL

programs. Unfortunately, educational software of the

12

required quality or quantity is not yet available.

If a remedy for this situation is to be found, then

an analysis of past events is important. In doing so,

the following issues arise as being worthy of further

consideration:

Courseware production methods. Clearly, the

majority of software is written with unsuitable
programming languages, as demonstrated by the

proliferation of courseware written in BASIC.

As the PLATO and TICCIT projects have demonstrated there

is a case for using a programming language that has been

designed expressly for the purpose of producing

educational software - the so-called "authoring language."

This issue is discussed fully in Chapter 2.

- Software authoring skills. Software quality is

directly affected by the skills of the author. To produce

good quality educational software, the author must be

equipped with knowledge of the fields of educational

psychology and effective human-computer interaction. If

the mistakes of the MEP-produced software are to be

avoided then suitable training in these fields must be

provided. Chapters 3 and 4 examine the educational and

human-computer interaction issues more closely.

Managing the authoring process. The widely

accepted principles of software engineering may well

provide courseware authors with the basis for a courseware

design and development methodology. Thus, the production

process, is considered further in Chapter 5.

13

~-~---- -----

Chapter 2.

Authoring Educational Software: The Production System.

Introduction.

Historically, the production of educational software

has been the province of the computer programmer.

However, this situation is slowly being changed as

educators become able to produce their own courseware

using a new generation of sophisticated programming tools:

the so-called authoring packages.

Thus, the new breed of teacher-cum-programmer is

faced with a daunting task: to select an authoring package

that is suitable for his/her own use. Often, the

selection process requires the individual to sift through

the claims made by the manufacturers of these complex

software tools, necessitating many feature comparisons to

be made before a decision can be reached regarding which

package to purchase.

In an attempt to assist the prospective authoring

package user, this chapter describes a framework which

may be used to evaluate and compare different authoring

packages. The chapter is divided into three sections:

Section One presents a model which may be employed

to evaluate and compare any software package used for

the production of educational courseware.

Section Two uses the model presented in Section One

as the basis for describing in some detail two

significantly different Authoring Systems, namely

TopClass and TenCORE.

14

-- --------- --~--~--

Section Three presents a survey of the authoring

languages and systems that are commercially available

in the U.K.

Section 1: Modelling Authoring Packages.

The term 'Authoring Package' is a broad description

that embraces two different types of software package that

may be used to produce CAL material. The two types of

package are a) Authoring Languages, and b) Authoring

Systems.

Authoring Languages are similar in construction to

traditional programming languages. They consist, at basic

level, of an instruction set which is used by the author

to write the CAL program. Unlike a 'traditional'

programming language, the instruction set of an authoring

language is in a form more suited to the task of producing

CAL type programs.

Authoring Systems on the other hand, tend to be more

restrictive, typically offering an inflexible menu/prompt

driven program creation environment. Such systems have

acquired the inevitable reputation of being responsible

for reducing the author's overall control of the design

and outcome of the resultant software, both in a technical

and pedagogic sense.

The Need to Evaluate.

With the wider availability and use of authoring

packages, the CAL author is faced with an increasingly

difficult task: to evaluate and select an authoring

package that is suitable for his/her own use.

15

-------- --~-

The purpose of evaluating authoring packages then, is

simple: to provide information, either for oneself or

others about the strengths, weaknesses and suitability of

a particular package, either specifically, or for

comparative purposes. Unfortunately, what actually

constitutes a 'good' or 'bad' authoring package will

depend on the requirements of the individual, who will

have his own set of criteria. The process of evaluation

(and hence comparison) is, to quote Wellington (1985)

" ... ultimatelya personal and subjective activity."

A Framework for Making Comparisons.

How should the task of evaluating and comparing

authoring packages be performed? One of the most

commonly adopted methods is to produce a table, listing

all the feature comparisons that may be made. While such

an approach presents a lot of information concisely, it

often is not in a form that is easily understood,

particularly those who do not have a technical background.

In order to allow meaningful judgements to be made,

it is desirable to establish a framework that may be used

to model any programming system that could be used for

producing educational software. The use of a model will

introduce uniformity to the evaluation process, thus

making the resulting information more meaningful to a

wider audience of prospective users.

Fairweather and O'Neal (1984), have put forward a

sui table model for comparing authoring packages. It

considers three basic criteria, relevant to authoring

package performance. They are :-

- Power.

- Productivity.

- Ease of Use.

16

---- ------- ---- ---

This model, shown in Figure 2.1, represents these

parameters graphically. It forms the basis for evaluating

any software system used for producing educational

material. For the purposes of further discussion it will

be referred to as the P.P.E. model (Power - Productivity -

Ease of use). Each parameter is considered in detail

below.

Pallier
high

Ease-of-Use Productivity

Figure 2.1

Power. Essentially, this axis of the model provides an

indication of how easily the capabilities of the computer

hardware may be accessed, and utilised, by the

author/programmer. Thus, the power rating provides an

indication of functionality. The power

package will be directly related

rating for a given

to the range of

instructions that the programming language provides.

Many authoring packages currently available provide

the programmer with instructions specifically to handle

the following types of programming task:

- generate text and graphics displays.

- generate questions.

- perform answer judging.

17

- control the flow of program execution.

- perform mathematical operations.

provide data storage facilities.

- control peripheral devices.

The authoring package under investigation should,

therefore, be tested to determine whether adequate

mechanisms are provided to allow the programming of these

fundamental CAL specific tasks.

Productivity.

productivity of the

This axis indicates the potential

authoring/programming package. It

provides a measure of the quantity and sophistication of

CAL material that may be produced per man-hour of effort.

Potential productivity is directly influenced by the

availability of certain CAL production 'tools' that

enhance the authoring process. Typical productivity tools

include:

- drawing utilities.

- graphics editors.

- font editors.

- 'test-and-revise' utilities.

- on-line help and debugging facilities.

- support documentation.

Ease of use. This axis provides an indication of how

easily the authoring/programming system is learned and

used. Ease of Use is essentially a human-computer

interface issue. Considering the issue of software

usability, Goodwin (1987) highlights that different "sets"

of users (or in this context, authors) will have

different needs:

"First time, casual, and expert users may all

have different requirements, and their

requirements may change as they move from one

level of expertise to another."

18

~---------- ---------------

With this point in mind, the Ease of Use axis of

the model will be considered in terms of three distinct

reg ions, in order to

evaluation is:

indicate if the system under

only suitable for those with previous authoring

experience (a low Ease of Use rating).

only sui table for those with programming

experience.

suitable for use by novice programmers (a high

Ease of Use rating).

On the issue of usability, we would be well advised

to remember the words of Pogue (1980): " Any authoring

system must be easy to learn and simple to use regardless

of the computer expertise of the author." This statement

embraces the raison d' etre of authoring packages: to put

CAL software production into the hands of teachers rather

than programmers. Hence, the assessment of Ease of Use

must be extended to consider the availability of features

such as automatic error checking, on-line debugging and

good support documentation.

Using the Model.

For illustrative purposes, consider the following

examples,

represent

authoring

which show how the model may be used to

graphically three different types of CAL

method.

Example 1...!. A "General Purpose" Programming Language

It is not uncommon for many CAL authors to produce

courseware using a 'general purpose' programming language

such as BASIC or Pascal, for example. Figure 2.2 shows how

this type of authoring method is represented using the

P.P.E. model.

19

------~-

Pallier

Ease-of-Use Productivity

Figure 2.2

Broadly speaking, a general purpose programming

language offers a wide range of instructions, thus

allowing the author/programmer to exercise a high degree

of control over how the computer hardware is utilised.

However, because many CAL type programming activities

cannot be directly written using general purpose

instructions, (question and answer judging or importing

graphic images, for example) this method does not offer a

very productive means of authoring.

Furthermore, a general purpose language is not easy

for novice authors to use because it typically requires

the author to: a) master the use of a complicated

instruction set, and b) learn to use an unfriendly

command-line style interface. To write educational

material, an experienced programmer's skills are required

to produce some of the 'ingenious' programming routines

_needed. I

20

Example 2: A Typical Authoring Language.

Unlike general purpose programming languages, many of

the authoring languages that are currently available offer

a comprehensive range of

specifically to handle CAL

instructions designed

programming tasks. A

'typical' authoring language is modelled in Figure 2.3.

POlIJer

Productivity

Figure 2.3

Because authoring languages are designed for the

production of CAL software, they tend to provide a CAL

biased instruction set. Consequently, the overall range

of instructions provided is often reduced, compared to a

general purpose language. This results in less hardware

control being available to the author. Productivity

however, is greatly enhanced by the availability of CAL

specific instructions.

Authoring languages tend to offer the same type of

programming environment as the general purpose language,

requiring the use of an editor to produce source code, and

a compiler or interpreter to generate the executable

program. Thus, it is often necessary for the author to

have some previous programming experience in order to make

the best use of authoring languages.

21

Example 3: A Typical Authoring System.

A growing number of authoring systems are available

that aim to provide subject experts, rather than

programming experts, with the tools to produce CAL

material.

Figure 2.4.

A 'typical' authoring system is modelled in

Pallier

Productivity

Figure 2.4

Authoring systems are, by their nature, very

restrictive .. Typically offering a menu and prompt driven

interface, they do allow novice authors to use the system,

but their 'easy-to-use' philosophy is also responsible for

severely restricting the amount of control in design that

may be exercised by the author.

within the constraints imposed by the authoring

system, the novice author can be very productive, but at

what cost ? The resulting courseware usually consists of

monotonous, uniform presentations of text based material.

Unless used with care, authoring systems simply allow

poor quality software to be produced-quickly~

22

Observations on the P.P.E. Model.

As described, the P.P.E. model only deals with the

technical aspects of the authoring package being

considered and fails to recognise the importance of

factors such as cost, availability and the type of

computer needed, for example. Accepting these limitations,

and using the model as the framework for a technical

evaluation of CAL authoring packages, it has

failings;

two main

1. It provides no indication of the quality of the

resulting software.

2. It does not indicate how free the author is to

implement a chosen teaching strategy in his

courseware design.

Clearly, the issues of quality and teaching strategy are

worthy of further examination, and are considered below.

Quality.

Bork (1984), in considering the production of

computer based learning material, states that " The

final test of any production system is the quality of

the product." Clearly, the issue of quality is an

important one, but Bork appears to imply that the

quali ty of the authoring package may be judged

largely on the courseware that it has produced. To do

so is quite wrong. It is the skill and ability of

author that determines quality.

Indeed, to consider the issue of quality solely in

terms of the production system is dangerous: it

implies that

high quality

ability.

a given authoring package will produce

CAL material regardless of the author's

23

This must be avoided, to prevent inexperienced

authors believing that by using a certain authoring

package, good quality CAL material will

automatically result.

Teaching Strategy.

As it stands, the model does not provide any

information regarding the pedagogical aspects of the

authoring package being modelled. The only

indication of scope for individual design is implied

by the power axis rating, but this only indicates the

degree of freedom from a technical view point.

Clearly, it is important that the production system

should be able to accommodate the design of software

using a variety of different teaching strategies, as

preferred by an individual author. Thus, an authoring

package should be educationally neutral, and not

favour the production of one particular strategy,
e.g. drill and practice, games or simulations.

So, in order for the P.P.E. model is to be used for

the evaluation of authoring systems, two options arise:

the model must either be modified in some way, to indicate

pedagogical freedom, or pedagogical freedom must be

considered as a separate issue. For the purposes of

Section Two of this chapter, the second option will be

adopted.

24

------ ------ --- - ------ -------

Section Two: Two Authoring Packages.

In this section, the previously described model and

evaluation criteria will be applied to two markedly

different authoring packages: TopClass, an authoring

system used widely in education; and TenCORE, an authoring

language widely used in industrial training.

The approach taken is to present a description of

each package which may then be used for compara ti ve

purposes. The strengths and weaknesses of each package

will be noted under the appropriate headings. The

information provided is given so that the reader may draw

his/her own conclusions about the appropriateness of each

package in the context of their individual requirements.

The TenCore Package.

Overview.

TenCore is essentially a microcomputer based

implementation of the TUTOR Authoring Language used on the

American PLATO project. It is claimed by the

manufacturers, the Computer Teaching Corporation, that

TenCORE provides " ... a complete computer based

instruction development system for the IBM Personal

Computer." The version reviewed here (Version 3.1)

supports IBM PC/XT/AT and System/2 computers and all of

the commonly used IBM display adapters.

TenCORE provides an integrated graphics editor and

character editor to complement the command based authoring

language. The attributes of TenCORE are considered below,

in terms of Power, Productivity and Ease of Use.

Pedagogic freedom will be discussed as a separate issue.

The P.P.E. model of TenCORE is shown in Figure 2.5.

25

POlller

Productivity

Figure 2.5

Power.

The TenCore language contains over 150 English-like

instructions (see Appendix B). Whilst these are primarily

concerned with supporting instructional type functions,

many of the commands provided are characteristic of a

general purpose programming language. The TenCORE

instruction set was written in assembly language. Klass

(1984) claims that the TenCORE instruction set " ... is

also powerful enough to be used for all the TenCORE

editors and utilities", a fact 'that testifies to the power

of the language.

The Text and Graphics Display capabilities of TenCore

are impressive. The author is able to address and write

characters to any location on the screen using an 80 x 25

text grid or a 640 x 350 (in EGA mode) pixel grid.

Characters and their backgrounds may be displayed in as

many colours as the display supports. Text can be

presented in

proportional

superscripts,

any of 4 standard sizes,

spacing. Text displays

subscripts ,and accent marks.

characters are also possible.

26

with fixed or

can include

User-defined

Graphics commands are provided to handle dots,

lines, boxes, circles and ellipses. Windows and text

overlays are supported, allowing easy programming of

complex screen designs. Additionally, TenCORE can directly

interface with the P. C. Paintbrush drawing program, and

can call drawings and diagrams created in this way

directly into a program as a bit-mapped graphic image.

Response to student input is extremely flexible. When

dealing with student inputted text, say in response to a

question, the author can choose to:

- specify word(s} that must be present

- specify words that may be ignored

- accept incorrect spelling of key words

- ignore the case of text input

- accept extra words

- ignore word order

Any number of responses may be specified, along with the

action to be taken for each anticipated response.

Program Flow & Execution may be controlled by

student input or program generated conditions. Simple

control of program flow is by means of NEXT and BACK

commands, initiated by the user as single key presses,

allowing a previous display or the next display in a

sequence to be seen. Branching strategies are easily

implemented, allowing a degree of individualisation in

terms of feedback to responses, or as a student initiated

branch by designing a menu selection interface as part of

the program.

By making full use of the 'block' structure that the

TenCORE language imposes, it is possible to produce a very

modular and structured program.

27

Stand-alone versions of a TenCORE program may be run

by using the 'student executor' utili ty. This allows

programs to be run from a floppy disk away from the

authoring environment in a 'stand alone' form. To use this

facili ty for courseware publishing I a separate licence

must be purchased.

Mathematical Operations are fully supported in

TenCORE. Arithmetic operations of addition, subtraction,

multiplication and division (in real and integer form),

raising to a power and degree to radian conversions are

all easily used. Buil t in functions are available for

Sin, Cos, Tan (and Arcsin, Arccos, Arctan) and logarithmic

(natural and base ten) operations. Numerical data may be

in 1 to 8 bit integer, or 32/64 bit floating point format.

Data Storage. TenCORE allows the use of both local

and global variables in a program. variables must be

defined as being either integer, real or buffer (string)

types. In addition, contiguous sets of variables may be

defined to form arrays. Provision is also made for the

storage of data on disk by uSing 'Namesets,' which provide

a random access file of user-defined sets of records.

Basic operations on these Nameset files include file

creation, data entry, data manipulation and use of data

from a disk file by the main program.

Peripheral Devices. TenCore supports an extensive

range of external devices, a library of device driver

files are supplied with the system. The appropriate files

must be installed before authoring Language is used.

Display Drivers are supplied

graphics cards, i.e. CGA,

resolution) MCGA and VGA

for all IBM standard

EGA (low and high

(used on IBM PS/2

computers). Additionally, the following gr~phics

cards are supported: VEGA, Tecmar, Hercules.

28

-- -------- ------- -- -- -- --- --- -- - --- ---- ------~--

Input Devices. In addition to the standard

keyboard, TenCORE supports mouse and touch screen

control. TenCORE allows tutorials to be designed

that make use of interactive video disk

(I.V.) technology. I.V. Systems that are supported

include: Visage, Micro Key, MIC and IBM Info

Window.

Productivity

The first impression gained when writing a lesson

with TenCORE is that TenCORE programs are produced in a

similar way to the process of programming with a general

purpose language: source code is entered using a line

editor. Whilst most of the code for a program could be

entered in this way, a number of productivity tools are

integrated into the system to enhance the authoring

process:

- A graphics editor allows objects to be drawn on the

screen using the cursor, a mouse or a light pen.

When objects are drawn, the appropriate TenCORE code

is then automatically "inserted" into the source

code.

- A character set editor is provided. This allows the

author to define alternate characters for each

keyboard character. The alternate characters can be

used at any time in a program, simply by prefixing

the character with a special code (ESC and F).

Whilst entering a program into the computer, the

author can choose to observe how a program runs and

incorporate modifications using a 'test and revise'

method of working. This process is very fast, and does not

require the code to be compiled each time it is tested. By

toggling between 'programmer' and 'student' modes, the

authoring process is considerably enhanced. An on-line

reference is provided that allows the syntax and use of

any TenCORE instruction to be checked whilst using the

29

---- - -- ------ --"-

line editor, thus avoiding the need to frequently refer

to the manual.

When program development is complete, it is a simple

matter to produce a stand alone version of the lesson

(called a 'binary'), which allows lessons to be used away

from the authoring program.

Ease of Use.

As with most programming systems that use a command

line interface, the authoring method employed by TenCORE

is not easily mastered by novices. However, those with

some previous programming experience should find that

TenCORE makes the production of educational software

significantly easier than is possible when using a general

purpose language.

The reward for perseverance with TenCORE is that

once mastered, programs of significant complexity can be

written quickly, employing a wide range of advanced

techniques (animation, windows, mouse input etc.).

Pedagogic Freedom.

Many of the commands in the TenCore language are

reminiscent of instructional learning strategies.

However, as the production method provided by TenCORE is

open, i . e. not guided by a pre-determined menu/prompt

dialogue, the author is not 'locked' into using a pre

determined teaching strategy. The sample programs that

are provided with TenCore demonstrate the ability to

program simulations and laboratory experiments, as well as

drill and practice material, although to be fair, a high

degree of mastery of TenCORE programming is needed to

produce complex simulation programs.

30

--- ~- ~--

The TopClass Package.

Overview.

TopClass is probably the most widely used authoring

package by educational establishments in the United

Kingdom.

for the

Like TenCORE, the TopClass package is available

IBM PC/XT/AT family of personal computers. The

version of TopClass reviewed here is release 2.3.

Rather than being a single authoring program,

TopClass provides an authoring ntoolkit n of nine different

programs that may be used to aid the courseware production

process.

TopClass permits the use of two distinctly different

authoring strategies. Firstly, by using the 'CREATE'

program, TopClass operates as an authoring system,

providing an automatic program generator. Secondly, by

using 'EDITOR', the author can write a program directly,

using TopClass as an authoring language. The availability

of these two modes of authoring is reflected in figures

2.6a and 2.6b.

POIiIe r

Productivity

Figure 2.6a

31

--~---------- ---- - -----.-_._-

Fiqure 2.6a: TopClass as an Authoring System.

CREATE is a menu/prompt driven program that allows

courseware to be created simply by filling in blank

screens, allowing the author to generate a series of

text and graphics frames on a What You See Is What

You Get (WYSIWYG) basis. The CREATE program

automatically converts the screens produced into

TopClass language source code.

Pallier

Productivity

Figure 2.6b

Fiqure 2. 6b: TopClass as an Authoring Language.

EDITOR is essentially a text editing program, that

allows more advanced users to make modifications to

the code produced by CREATE. Al ternati vely, EDITOR

allows the more advanced author to produce courseware

by directly entering Topclass code in an authoring

language style of working.

Power.

The TopClass instruction set

commands, that are primarily

instructional type CAL material

comprises of around 60

geared to producing

(See Appendix C). The

TopClass instruction set is written in compiled BASIC. On

first inspection,

rather limiting

the range of instructions available are

when compared with the range of

32

---------- -

instructions to be found in a general purpose programming

language. However, a closer look reveals a number of

powerful commands that would normally have to be manually

written into the code by the author have been provided.

Text and Graphics Displays. Screen presentation must

be defined as being either text only or graphics mode

(which may include text). Text screens are limited to the

standard ASCII characters which may only be in one of two

standard sizes corresponding to 40 or 80 column display

mode. Different colours may be used, depending on the

capability of the display device and graphics adapter

fitted.

Graphics displays may be drawn using a limited range of

commands that allow lines, boxes and circles to be

generated. Graphics screens can also include standard

text. At the time of writing TopClass only supports

640x200 line (low resolution) EGA displays, but the

manufacturers claim that high resolution (640 x 350)

graphics will be supported in a future release.

A graphics editor called 'IMAGE' is provided in the suite

of TopClass programs that allows the author to:

- generate and edit images at pixel level

- combine several images into one large image

- enlarge and reduce images

To allow images created by other drawing programs

(e.g. P.C. Paintbrush) to be incorporated into a TopClass

program a utility called SNAPSHOT is provided. This is a

memory resident program that allows text or graphics from

another program to be 'captured' for later use in a

TopClass program via the IMAGE program.

33

Response to Student Input is dealt with when

authoring in CREATE mode by selecting pre-defined

strategies from a menu. Strategies may be chosen to test

student inputted text for: exact matching with a

prescribed response; key word matching; specifying a list

of acceptable key words; or using a 'soundex' facility

that tests student input phonetically.

TopClass limits the number of pre-defined responses

that can be specified to a maximum of 16 correct and 16

incorrect answers. Each specified response can be dealt

wi th individually, allowing some scope for making a CAL

program adaptive to different students needs using a

branching program.

Program Flow & Execution. When using CREATE to

produce programs, only two types of program flow can be

used: linear or branching. Obviously this severely

restricts the teaching strategy that may be implemented

(this is discussed under 'Pedagogic Freedom', below).

Stand alone program disks for student use can be made

with the RUNTIME utility. Because TopClass stores its

source code in ASCII format, a utility called 'ENCODE' is

supplied to render

anything but the

security.

the program source code unreadable to

RUNTIME program, ensuring program

Mathematical Operations are available by using the

information stores to be manipulated. The functions

supported inc 1 ude: Sin, Cos, Tan (and their inverses),

logarithmic operations (natural and base ten), random

number generation and factorials.

Data Storage is limited to the use of up to 120 so

called information stores, which can hold data in text or

numerical form. The TopClass manual does not provide

------ -- -----

34

-~-------~---
~- ---------

specific details about the amount of data that an

information store can contain or if both real and integer

numbers can be dealt with.

Peripheral Devices. When used as an a uthoring

language TopClass can support the following devices as

part of a CAL program:

Interactive video disk, if the computer is fitted

with a MIC controller card.

Interactive video tape, if the tape player is able

to 'communicate' with the computer. This implies

that a professional specification tape player

must be used.

Interactive audio tape -a separate system supplied

by Format P.C. Ltd.

Digitised speech is available when the "TopTalker"

system is purchased with TopClass.

Unfortunately, the display driving capability of

TopClass is limited. At the present time, TopClass can

only use MDA, CGA and low resolution EGA displays. The

lack of support for 350 line EGA, and more importantly,

the VGA display standard is a definite limitation of

TopClass's graphics power.

Productivity.

As already discussed, TopClass is not a single

program, but a collection of program creation utilities.

New users of TopClass find that the automatic program

generation provided by CREATE allows courseware to be

produced very quickly with very little effort. This fact

is the key to a major weakness of TopClass: novice users

fall into the trap of producing low quality software. It

is important to plan any program very carefully to avoid

this happening.

35

---------~

In terms of its producti vi ty, CREATE suffers from

another significant draw-back: it is not possible to test

and revise material whilst programming. When programming

using CREATE, the process is one way. If a mistake is

made during the authoring process, only two courses of

action are available to the author:

a) start over again from the beginning, or

b) use EDITOR to correct mistakes at source code

level.

Clearly option b) is of no value to a novice user,

although it might provide an incentive to learn how to use

the EDITOR. Option a) on the other hand, represents very

un-productive way of working.

Many TopClass users report that the most productive

way of authoring CAL courseware is to write the basic

program using CREATE, and then use EDITOR to deal with the

more involved programming tasks, and so 'fine-tune' the

program. Unfortunately, relying on the CREATE utility as a

program 'outliner', or design aid, tends to produce a

bland, un-imaginative program.

To assist in the preparation of graphics images

TopClass has a powerful image editor that allows the

creation and manipulation of graphic images at pixel

level. A memory resident program called SNAPSHOT can be

used to capture images produced by other programs, and

used as part of a a TopClass presentation.

As aids to the authoring process, other utilities

provided are:

TOPCOPY: a program that allows novices to use MS-DOS

via a menu driven interface.

RUNTIME: which executes programs that are in

TopClass code.

36

---~- --- - -----------
---------- -- -- ----- ---

QBANK:

TCFONT:

a utility for holding a bank of questions

on disk, which may be used in any TopClass

program.

a font generating/editing tool.

READFILE: provides a datafile on disk of the students

responses to questions asked as part of a

tutorial.

Ease of Use.

The menu/prompt driven interface employed by ALL of

the programs in the TopClass suite allows those with

little or no previous computer experience to use TopClass

quickly and easily. However, over a length of time over

which experience is gradually acquired, users tend to find

that working via the menu interface is a slow and tedious

process. Generally speaking it is not possible to take

short cuts and by-pass the menus. This serves to frustrate

the experienced author.

The solution to this frustration is to program a

lesson directly, using the TopClass language and the

EDITOR utility. Fortunately, learning to author using the

TopClass language can be an easy process: once a program

has been written, it is possible to run it in single step

mode AND see the source code on the screen as the program

runs: this makes greatly assists the process of learning

TopClass instruction set.

The overall accessibility of the TopClass package is

severely restricted by a poorly written manual, which is

seen as un-friendly by most new users. The total lack of a

tutorial or introductory booklet compounds the problem. As

a result, I suspect that many of the TopClass packages

sold remain on the bookshelf rather than in use on a

computer.

37

Pedagogic Freedom.

Users of the TopCLass CREATE program are locked into

a programming environment that is biased towards the

production of either linear or branching instructional

software. To exercise pedagogic freedom, authors must use

EDITOR to program in TopClass source code. Even with this

approach, the instruction set available is limiting enough

to make any strategy other than instructional difficult to

program.

Contrasting TopClass and TenCORE.

Al though the TopClass and TenCORE packages both aim

to provide a

design and

production system for those intending to

program CBT

differences between the

summarised as follows:

software,

two. These

there are

differences

marked

may be

for the novice author, TopClass is a more

accessible package than TenCORE. Its build-a-screen

approach allows a simple program to be produced

very easily. Unfortunately, this easy-to-use

philosophy is responsible for the pedagogic

restrictions imposed by the TopClass system: with

only linear or branching programmed learning

strategies directly catered for, the limits of the

package are all too quickly reached.

- TenCORE, on the other hand, is not an easy package

to get started with, particularly for those who

have no previous computer programming experience.

However, once mastered, TenCORE offers a powerful

CBT software production system that does not limit

pedagogic freedom. Furthermore, its programming

language-like features make it an excellent system

for large CBT projects, particularly if programming

is undertaken by a team rather than individual

author.

38

Section Three: An Authoring Package Survey.

To conclude this chapter on authoring packages, this

section presents the results of a survey carried out to

determine the availability of commercially produced

authoring systems within the U.K.

The intention here is not to present a comprehensive

description of each package, but merely to indicate

availability and provide an overview of each. The full

name and address of the supplier of each system surveyed

is given in Appendix A for those who wish to find out more

information about a particular system.

Crystal.

Unlike the other packages reviewed here, Crystal is

really a rule-based expert system creation package rather

than a true authoring package. However, as an information

handling system it is admirably suited to the task of

producing computer based training materials.

By making extensive use of menus, the program

creation interface of Crystal is suitable for novices to

use. Options are provided to allow graphics to be produced

with Crystals own "Screen painter", or to import a bit

mapped image created by an external package. Furthermore,

Crystal allows the use of all of the M. I. C. commands,

thereby supporting the production of interactive video

based material.

Keen to gain a foothold in the educational sector the

producers, Intelligent Environments Ltd., offer an

educational package which includes a full development

system, nine student licences and sample projects for

£1995. Crystal is suitable for use on all IBM PC and

compatible machines.

39

Mentor II.

The Mentor II authoring system is a completely menu

and prompt driven package. As such, it is a production

system that is easy to use for those with little or no

previous computer or programming experience.

The system requires that text and graphics screens

are created separately using the appropriate part of the

system with "Textedit .. or "Grafedit .. as appropriate).

Completed screens are then integrated into a complete

program using the "Builder" facility. Because of this

modus operandi a certain amount of planning is advised

before programming commences: it is difficult to write a

program as-you-go-along with Mentor II

As with many other systems that are menu and prompt

driven, Mentor's ease of u.se would seem to be at the

expense of flexibility. programming mistakes are not

readily rectified without getting involved in programming

at code level.

Mentor II is produced for the IBM PC and PS/2 range

of computers by Mentor Interactive Training Ltd., and

costs £2500.

Microtext.

Microtext is an authoring language for producing

"frame based" instructional material. Versions are

available for both the IBM P.C. and BBC computer systems.

The production of a Microtext program is centred

around the generation of a series of screen based

modules. Because the Microtext instruction set resembles

the BASIC programming language, it imposes no structure on

the program produces, and hence is considered to be more

suited to smaller CBT programming projects.

40

The instructions for generating graphics based

screens are minimal, however additional utilities are

available from the supplier that allow graphic images to

be produced externally and then imported into Microtext.

Similarly, a utility program is available to allow

interactive video images to be incorporated into a

Microtext program.

Microtext was designed at the National Physics

Laboratory, and later developed and produced by Transdata

of London. The basic system costs £570.

ProCAL.

This package is essentially an authoring language,

based on two main programs: 1) a line editor for writing

programs in source code form; and 2) a command interpreter

for translating programs written in PRoCAL command

language into an executable CAL program. Schofield (in

Strawford) reports that the range of commands provided are

comprehensive, and allows control of video tape and laser

disk players.

In addition to the ProCAL Editor and Interpreter, a

range of other utilities are provided to aid the authoring

process. "Test" and "Check" are two programs that are used

for testing a program module and checking command language

syntax. "Draw" is a graphics program to allows the

production of graphic based presentations, although these

are limited to CGA and low resolution EGA standards.

Written mainly in compiled BASIC, the speed of PRoCAL

produced CAL software can be rather slow at times,

especially when graphics are used.

ProCAL is produced by VPS Interactive Ltd., the

system costs £1350.

41

TenCORE.

TenCORE is an authoring language based on an

enhancement of the instruction set developed for the PLATO

project authoring language, called "TUTOR".

The TenCORE instruction set is comprehensive, and

offers a range of over 150 English-like commands. Programs

are written by entering commands into a line editor or

by designing screens using a graphics editor. Graphics

images may also be produced using the PC Paintbrush

program and then imported into a TenCORE program at a

later stage.

The open programming language nature of TenCORE means

that courseware design is not limited to the style of

'tradi tional ' CBT. In fact, TenCORE is widely used in

industry for producing complex simulation programs.

TenCORE is designed to run on the I.B.M. PC and

range of computers. It is distributed in the U . K.

Systems Interactive Ltd. of London and costs £2050.

Top Class.

PS/2

by

Top Class can be, depending on its mode of operation,

both an authoring language and an authoring system. As an

authoring system it offers an easy to use screen based

tutorial production system. Authoring is completely menu

and prompt driven, and as such does not require the author

to be familiar with computer programming in order to

produce simple presentations.

As an authoring language, Top Class provides an easy

to learn and understand instruction set. Programs may be

written by using the text editor provided, and executed

using the "Runtime" interpreter. Utilities for generating

graphics, text fonts, and storing question banks are all

included in the package.

42

The manufacturers also produce

add-ons: a digitised speech system;

video disk capability.

a range of hardware

CD-ROM facility and

Versions are available for the BBC Micro and the

I. B.M. PC family of computers. TopClass is produced and

distributed by Format P.C. Ltd. of Belper and costs £495

for the IBM version and £64 for the BBC version.

Unison.

Produced by an ex-member of the Plato project team

from the University of Illinois, Unison, like TenCORE, is

based on an implementation of the TUTOR language. Indeed,

at language level, Unison and TenCORE are almost identical

in appearance.

The Unison package is minimal - a language compiler,

graphics editor and font editor. A text editor is not

included, and so a separate editor or word processor must

be used for producing programs. Unison source code must

first be compiled before a program can be seen working.

This makes a test-and-revise method of working time

consuming and difficult.

Unlike most other authoring packages, Unison does not

require an additional licence to be purchased for

courseware publication. Despite its cumbersome nature, the

package is an attractive proposition, it is competitively

priced at only £400. Unison is available in the U.K. from

Castle Learning Systems, of Chelmsford.

43

------~---

--------- --

CHAPTER 3.

Educational Issues for CAL Authors .

. To be seen as educationally worthwhile, CAL software

must not only be technically sound but must also employ

appropriate teaching strategies. Clearly, with this latter

point in mind, it is vitally important that those

responsible for the design of courseware are acquainted

with the issues that influence educational quality. Hence,

the purpose of this chapter is to identify and examine the

important factors that should influence the designers of

educational software.

The CAL Environment.

In order to identify the educational issues that are

relevant to CAL authors, consider the model shown in

Figure 3.1.
~------------------------------~

1/
I [11 ~4 _I [learner]

/computer \

/

The CAl Environment

Figure 3.1

The model illustrates the principal components found

in the CAL environment, namely:

44

---------------- ----- ------------------

The computer. Depending on the application, this

element of the environment may range from the

"standard" visual display/ keyboard combination

through to a multi-media system equipped with

videodisk player, touch-screen and other specialised

peripheral devices.

The learner, who may, at any

interacting with the computer,
perhaps other learning resources,

given time, be

the teacher or

as the learning

situation (or the learners motivation) dictates.

The teacher, whose activities

interacting with a group of students,

to individuals, and ensuring

may encompass

offering advice

the overall

effectiveness of the learner's experiences.

It must be recognised that this simple model has

limi tat ions . There are many other inf luences, not

accounted for, that affect the dynamics of the learning

environment: the presence of other learners and the

intrusion of distracting noises, for example.

Nevertheless, this simple model does allow the important

-educational issues to be identified. Basically, CAL

authors will need:

a) a knowledge of the relevant theories of learning,

in order to be equipped to design courseware that

utilises an appropriate educational strategy.

b) an awareness of the characteristics and needs of

the learner for whom the courseware is intended.

c) an understanding of the processes and range of

activities that may occur in a computer orientated

learning environment.

45

- - ----- -------- ----- --------

Thus, in order to provide an educational perspective

for CAL authors, the following themes will be considered

further:

- The Theories of Learning,

- Modelling the Learner, and

- Learning and Computers.

It must be stressed that although these three themes

are examined separately, they are closely inter-related in

the CAL design process. Each has an important part to

play in influencing the design of educational software.

The Theories of Learning.

Understanding the nature of learning is a central

issue in education, yet identifying a single, adequate

theory of learning is difficult, as Hilgard points out:

" no one has succeeded in providing a system

invulnerable to criticism. The construction of a

fully satisfactory theory of learning is likely

to remain for a long time an uncompleted task."

(Hilgard 1958, p.14)

Although written some thirty years ago, Hilgard's

words are just as valid today. There is no single theory

of learning that can

definitive explanation.

confidently claim to provide the

The historical development of learning theories, as

Romiszowski(1981, p 165) points out, " ... has been eventful

and colourful, marked by a series of feuds between

partisan groups fighting under different names in

different epochs." He likens the evolution of the various

theories to a "pendulum" effect, as opposing groups in

each "epoch" contest each others views: associationists

against humanists, the connectionists against the

46

------- -----------

"gestalt" school, and most recently, behaviourists against

cognitive psychologists.

To represent the contribution made by the various

theories of learning, only the recognised main-stream

contemporary views will be considered. Specifically:

- the'Behaviourist viewpoint, and the work of Skinner.

- the Neo-Behaviourist views of Gagne.

- the views of the Cogni ti ve School: Ausubel and

Bruner.

Before going further, we must recognise that the

theories examined below are not specifically intended to

be applied to the computer based learning situation.

Working under this caveat, and by applying a measure of

interpretation, the theories considered provide CAL

authors with an informative perspective.

The Behaviourist Viewpoint.

This viewpoint is closely associated with the work

of B.F. Skinner, whose approach to instruction treats the

learner as a black-box. Skinner simplistically defines

learning in terms of an observable change in behaviour

that is not caused by physical maturation or growth

(Skinner 1961).

Skinner's views are based on a refinement of

Thorndike's "Law of effect," which was in turn based on a

belief that human behaviour could be analysed in terms of

simple stimulus-response (S-R) sequences. Thorndike's "Law

of Effect" stated that if a S-R sequence was immediately

followed by a pleasurable experience then it would be

increasingly likely that the same response would occur

again upon presenting the same stimulus. Conversely, if a

S-R sequence was immediately followed by an unpleasant

47

experience, then it would follow that upon presenting the

same stimulus the same response would be less likely to

result.

Instruction is described by Skinner as the process of

conditioning the learner to produce a desired behaviour, a

process that he refers to as "operant conditioning."

Operant conditioning can be distinguished from the

Pavlovian "classical conditioning" thus: in operant

conditioning the learner acquires entirely new behaviour

patterns as a result of prolonged and repetitive S-R

training. Classical conditioning however, simply causes

the learner to exhibit natural (in-born) behaviour

patterns.

To facilitate the learning of complex behaviours,

Skinner stipulates that the desired end result should be

reached by reducing the task to a number of smaller

intermediate stages. According to Skinner it is essential

that the instructor identifies a specific existing

behaviour pattern in the learner before commencing

instruction. Having established a starting point, the

learner's behaviour can then be modified step by step

towards a desired final state.

In developing his theory of instruction, Skinner

emphasised the importance of positive feedback following a

learner's response to a stimulus (he calls this a

"reinforcer"). The job of the instructor, essentially, is

to arrange a sequence of stimuli, observe the learner's

response to each, and administer positive feedback to

reinforce the correct responses. Skinner considered that

his approach to instruction was admirably suited to

automation, as his development of teaching machines in the

1950's demonstrated.

Even today, Skinner's views on instruction may be

seen at work in many so-called "drill and practice" type

48

CAL programs. More often than not, these examples of the

Skinnerian legacy are nothing more than computerised

versions of their machine based programmed learning

counterparts. As such, these drill and practice programs

do little to demonstrate the true capabilities of the

computer as a learning tool.

The Neo-Behaviourlst Viewpoint.

This is best exemplified by the work of R.M. Gagne,

presented in "The Conditions of Learning and Theory of

Instruction." (Gagne, 1985). This book has, over a

succession of four editions from 1965 through to 1985,

revealed a gradual shift in Gagne's stance, moving from a

behavioural base to take on board some of the central

beliefs of the cognitive school.

Two significant aspects of Gagne' s work reveal how

his views may be distinguished from those of true

behaviourism:

he recognises a number of different "learning

categories", which he associates with different

instructional strategies. This point is elaborated on

below.

in contrast to the behaviourists, he places some

importance on the internal mental processes of the

learner.

Gagne defines learning as " ... a change in human

disposition or capability that persists over a period of

time and is not simply ascribable to processes of growth."

(Gagne 1985, p.2). As already mentioned, he identifies and

describes eight different types of learning, which he

presents as an ascending hierarchical sequence. The eight

types of learning may be summarised as:

1. Signal Learning. This term is used to describe a

Pavlovian type of conditioned response.

49

~--.~--- ------- . ~---- ---------- ----- ------- ----

2. Stimulus-Response Learning. Unlike the general

responses that the learner would exhibit in signal

learning, here a more exact response is acquired to

certain stimuli.

3. Chaining, which describes the learner being able

to link a number of S-R events to perform more

complex actions.

4. Verbal association, which is really a form of

chaining S-R associations to form verbal chains from

previously acquired S-R associations.

5. Discrimination Learning. This describes the

learner being able to distinguish between similar

stimuli and make the correct response.

6. Concept Learning. Here, a learner is able to

classify groups of stimuli that, despite their

differences, may receive a general response. For

example, being able to identify a range of different

vehicles all as motor cars, despite their different

shapes and colours.

7. Rule Learning. By chaining two or more concepts,

the learner is able to infer rules like "if x, then

Y". Gagne distinguishes this inference process from

simple verbal rule memorisation by pointing out that

the learner will be able to apply the rule in all

relevant situations.

8. Problem Solving. Having acquired a range of rules,

the learner should naturally be able to use them

to perform problem solving. This is done by recalling

existing rules and re-combining them to develop a new

rule which can be tested. This mode of working is

characteristic of discovery learning.

50

----- ~--~----

Gagntfl's approach to learning and instruction places

great importance on the teacher as a designer and manager

of the learning process. The hierarchical organisation of

the eight types of learning demonstrates Gagntfl' s belief

that lower order skills must be mastered before the

learner can progress to higher order learning.

Gagntfl describes two alternative strategies that the

instructor may use to move the learner from lower to

higher learning levels. An exposition tactic requires the

instructor to recall lower order rules that have

previously been learned, and then provide an example of

how these rules might then be employed to solve a new

problem. Al ternati vely, a guided discovery approach

requires the instructor to present the learner with a

problem to be solved - the learner must then recall

relevant rules and hence discover the higher order rule

that provides a solution to the problem. In this latter

strategy, the instructor would normally guide the process

of discovery by offering hints and suggestions to lead the

learner towards the solution.

Comparing the expository & discovery strategies,

Gagntfl expresses a preference for guided discovery on the

grounds of long term effectiveness. However, he concedes

that the exposition strategy may be seen as more

attractive because it is less time consuming.

The Cognitive School.

Whereas the behaviourist school perceives learning

essentially as a simple stimulus-response event, the

cognitive view places great importance on taking into

account the mental processes that occur within the learner

in order to interpret the process of learning. The

cognitive viewpoint is best illustrated by considering the

work of two prominent workers in the field: Jerome Bruner

and David Ausubel.

51

-~---

-~~
--- -----

Bruner: the Developmental Viewpoint.

Bruner considers learning as a process rather than a

product, and in so doing provides an illuminating

perspective of what instruction should be:

"Instruction consists of leading the learner

through a

restatements

sequence

of a problem

of statements and

or body of knowledge

that increase the learner's ability to grasp,

transform, and transfer what he is learning."

(Bruner, 1988).

He stresses the need for the learner to be recognised

as an individual, and emphasises that there is no one

ideal programme of instruction that will satisfy the needs

of every member of a group. He asserts that successful

instruction may only be achieved by first considering the

individual's requirements in terms of past learning, stage

of development, nature of the instructional material and

individual differences.

Bruner is a recognised advocate of "discovery

learning," which he describes in terms of a developmental

process, characterised by three levels of activity

through which the learner may progress:

- an enactive level, where the learner manipulates

objects directly. Learning to ride a bicycle is an

example of this type of activity.

- an iconic level, where the learner operates on

mental images of objects rather than manipulate

objects directly.

- a symbolic level, where the learner manipulates

symbols instead of mental images.

As Romiszowski (1981, p.171) correctly points out,

Bruner's views on learning are based on an interpretation

of Piaget's work in developmental psychology.

52

------~- --- ~----- --- --- - - -------- - --~-----

On the issue of feedback, Bruner makes two important

observations that CAL authors would do well to take note

of. Firstly, if learning or problem solving is taking

place in a given mode (Le. iconic or symbolic) then

corrective feedback " ... must be provided in that same

mode or in one that translates into it." Secondly, he

states that the tutor or in this context CAL author)

must ensure that the learner is corrected in a manner that

will eventually allow the learner to perform corrective

actions himself. Bruner warns that not to do so will

produce a learner who is dependent on the constant

presence of a tutor.

Ausubel: the subject matter viewpoint.

In contrast to the developmental approach advocated

by Bruner, David Ausubel (1983) argues that learning can

be performed successfully by what he refers to as

"meaningful reception learning." To understand the meaning

of this statement, first consider the model shown in

Figure 3.2. It represents Ausubel's interpretation of

learning, in terms of strategies and outcomes.

llIeaningful Classification 01 UelI designed Scientific
relationships audio tutorial research

learning between instruction
concepts

intemediate LectUl"'eS or School type Most routine

learning textbook laboratory research or
presentations work intellectual

production

rote Ti~es tables Applying Trial tx error

learning
forPlul:as la "puzzle"
solve probl_ solutions

reception guided discovery

learning discovery learning

Figure 3.2.

53

---_._--- _._---- ---- ---- ----------------------

The horizontal axis of the model represents the style

of learning to be adopted, and is divided into three bands

which range from reception, through guided discovery, to

discovery learning. Moving from left to right on this
axis, we observe that the control of the

shifts from teacher centred through to

learning.

learning process

student centred

Reception and discovery learning

differentiated between thus: In "reception"

may be

learning,

the student is given the material to be learned in its

final form. In discovery learning however, the learner is

required to discover what is to be learned before

"internalisation" can take place.

The vertical axis of the model represents the outcome

of the learning process, which may range from meaningless

(rote) learning to meaningful learning, with a region in

between of intermediate (not rote, yet not entirely

meaningful) learning. What actually constitutes

meaningful or meaningless learning is, according to

Ausubel, largely dependent on the learner's existing

knowledge, or concept structures, and hence the means to

"anchor" new information to these structures in a

meaningful way. This is the mechanism by which the learner

acquires "new meanings." Rote learning, on the other hand,

does not result in the acquisition of new meanings: no

logical perception or comprehension is required on behalf

of the learner.

Ausubel stresses that reception learning can only be

meaningful if the material to be taught is properly

structured. Essentially, the teacher must organise topics

into a sequence of learning concepts: each should be a

link in a chain and provide the basis for the following

topic.

--------- ~------

54

---~--- ~--------

Although this approach appears reminiscent of that

used by Skinner, there is an important difference.

Skinner regards learning in terms of output from the

learner. Ausubel, on the other hand, describes learning in

terms that relate to providing input to the student.

Ausubel recognises that motivation is of key

importance in reception learning. He stresses that

meaningful-reception learning must be an active process,

with the learner deciding how to categorise the new

information and perform recognition with existing

knowledge. Such activity must, according to Ausubel,

" ... stop short of actual discovery or problem solving."

Modelling the Learner.

In the light of the importance placed by cognitive

psychologists on the internal processes of learning, it

follows that the CAL author should be aware, in some

detail, of processes that occur within the learner. In so

doing, hel she would then be better equipped to design

more effective educational software.

A suitable model for this purpose is put forward by

Gagne (1985) and is shown in Figure 3.3 below. The model

is not unique, but is used here because it is typical of

the many "information processing" models of human

cognition that abound.

55

--------------~~---------

Environment

"'",
Effectors

Response

V
t-- GeI1erator

t<"
"-
~Receptors Sensory

f--l Register

,V
Learner

--.

I

Short-T --. long-leno

I'Ie9Iory
NeAOry

t--

Figure 3.3

Source:Gagn~,R.M. (1985)

The component elements of the information processing

model are discussed in some detail below.

Sensory Input and Attention

The model shown in Figure 3.3 illustrates the flow of

information which is collected from the learners

environment via the sensory input from the five senses.

This stimulation results in the generation of nervous

signals which are registered in a sensory register - a

temporary store.

The information in the sensory register does not

persist, but is processed into what Gagn~ refers to as

"patterns of stimulation." These patterns may be either

processed further if required, or ignored if they are not

of interest. It is this selection of information which

explains the process of attention. We are continuously

receiving information from all of our sensory inputs, yet

if all of this information were to be completely

processed, the system would become overloaded. To prevent

such an overload, some form of filtering must take place,

56

~----------
------- ----------

~---~---

where only the signals that are to receive attention are

selected. Winfield (1986) puts forward a useful two-state

model of attention to illustrate the filtering process.

Sense organs filter

A

-; B B
Response

-l C

1
MelllOry

Figure 3.4.

Source: Winfield,I.(1986)

An understanding of the process of attention is

important. CAL material will have to compete will many

other stimuli in the learners environment. The CAL

designer must produce computer software that demands the

learners attention.

The Memory Stages

Information received from the selected sensory

channels is passed to the first true memory stage, the

iconic memory. It is so called because its function is to

maintain a mental picture of the sensory signals.

Although the image retained by the iconic stage only

persists for around 0.5 - 2 seconds, it is invaluable in

processes involving reading, for example. An illustration

of the action of iconic memory is experienced when we

perceive the apparent smooth movement of images displayed

on television or cinema screens, which are actually rapid

sequences of differing static pictures.

57

-------------- ---------

Another example of iconic memory in action may be

seen by giving a subject a brief glimpse of an image (a

map, for example). When asked questions about the map the

subject will search and find information from their iconic

image. Iconic memory holds more than just visual data, it

also stores 'images' of auditory stimulation, for example.

Having captured an image,

short term memory (STM) where it

it is then passed to

may persist for up to 20

seconds. If this information is of immediate interest,

it may be kept alive by performing a process known as a

"rehearsal loop" whereby it is regularly refreshed to

maintain it. An example of this process in action is in

remembering a telephone number for a few minutes, by

repeating it over and over to oneself until able to write

it on a note-pad. Some people vocally perform the

rehearsal process to keep information temporarily alive.

STM has a limited capacity, only 6 or 7 separate items can

be simultaneously stored, hence human information

processing is subject to a limited "band-width." The

implication for the CAL designer is obvious: do not give

the learner too much information to process at any given

time (see Figure 3.5).

I'Iaintenance , rehearsal loop +

Iconic Short Long
rrOl'l '--I lem

integrative lerlll sen501'\1 Melllory sYSteIlS Melllory Process Melllory

Figure 3.5.

Source: Winfield,I.(l986)

58

--~---- ------~---

If information is received which is important and

must be retained, it is converted into a form which can be

held in long term memory (LTM). The process of passing

information from STM to LTM is referred to by Gagne as

"encoding." He describes this information storage " ... not

as sounds or shapes, but as concepts, whose meaning is

known and can be correctly referenced in the learners

environment."

Once the information destined for LTM has been

encoded, it undergoes a storage process. In such a

process the information, if successful and meaningful

storage is to take place, must be linked to existing LTM

structures or concepts. Ausubel refers to this linking as

the formation of "anchorages" where new LTM information is

attached to, or associated with, existing LTM structures.

The final process associated with LTM is that of

information retrieval. The key to successful memory

recall is in the recognition of the required information

when a search pattern is invoked. Assuming that the

storage capacity of LTM is infinite then the apparent loss

of information is assumed to be a failure to successfully

recognise and hence recall that information.

Conscious Memory

In addition to processing incoming signals, STM also

functions as a working memory, and in performing recall

operations on LTM, it is STM acting as a working memory

which holds the recalled information for conscious use.

Once recalled into STM, information can be reprocessed for

assimilation with other mental structures: this provides

an explanation for the act of consciously thinking things

through.

59

- ------------

Response Generation

Responses to information in the system are generated

by driving, or stimulating, the motor-effectors. In so

doing this will result in interaction with sensory inputs

and thus providing feedback of our action. Such

deliberate action is referred to as the purposeful

interaction of the learner with the environment.

This last pOint, in fact, epitomises the need for the

CAL author to use a model of the cognitive processes

performed by a learner. After all, the purpose of any

piece of educational software is to stimulate the

purposeful interaction of the learner with his/her

environment which, in the CAL context, centres around the

computer.

Learning and Computers.

There are many different applications of the computer

in the learning situation: tutorial, drill and practice,

educational games and simulations are all examples.

Although these terms loosely describe the role of a given

piece of software, their meanings are ambiguous and open

to a wide degree of interpretation: Just what is a

"tutorial" program, and how does it differ from "drill

and-practice" software ?

Kemmis et al. (1977) put forward a set of clearly

defined categories, which may be used to describe a piece

of software in terms of its educational paradigm. Four

such paradigms are identified: instructional, revelatory,

conjectural and emancipatory. To the educator they offer a

useful classification system for CAL software. Each

paradigm is presented below.

60

----- ---

The Instructional Paradigm.

This mode of CAL embraces Skinner's theory of

operant conditioning, where subject matter is broken down

into smaller units to be individually mastered. The

instructional approach is not new. A similar system was

used with mechanical teaching machines, but these lacked

the sophistication that the computer offers.

The computer provides the means for a number of

important features to be designed-in to instructional CAL

programs. For instance, branching, as Crowder

demonstrated, will help to inject some degree of

flexibility into the learning material, allowing for

appropriate responses to be generated, thus accommodating

different students abilities.

To be worthwhile, however, instructional programs

must involve the user interactively with the learning

process. Providing the student with feedback enables this

to happen. As Bruner points out, "Learning depends upon

knowledge of results at a time and at a place where the

knowledge can be used for correction." Clearly , giving

such information in a way that is appropriate to the

individual learner demands great skill from the CAL

designer.

The Revelatory Paradigm

Here, the computer is used to present subject matter

and its under lying theory in an ordered manner. This

paradigm may be equated to the "guided discovery"

dimension of Ausubel's model. The CAL designer is

responsible for setting the framework in which discovery

can take place, but unlike the instructional paradigm,

more control of the learning process is given to learner.

The important difference between this and the

previously described paradigm is that some degree of

61

---~--- -
~----------- --

problem solving activity is required from the learner, in

order to discover the material to be learned which must in

turn be processed (Ausubel referred to this process as

"internalisation") .

One of the strengths claimed by advocates of this

paradigm is that in using a computer to model or simulate

a situation or system, the learner is freed from

unnecessary distractions or details which are not needed

for learning to take place. While this may be generally

true, a decision must be made about what information is or

is not necessary for inclusion in a simulation. Indeed,

unless the cognitive processing ability of all users is

anticipated, some vital information may be denied to the

learner.

As all learners are individuals, and should ideally

be treated as such, many programs in this category of CAL

are far from perfect. However, it should be stated that

the method can be usefully employed, particularly if a

teacher is available in the learning environment, to

provide the additional information and guidance that

learners may require that is not available from the

computer.

The Conjectural Paradigm

The conjectural paradigm is heavily dependent upon

the student being an agent of his/her own learning.

Probably given no, more than an objective or an outline,

the learner must engage in problem solving activity, and

therefore must already possess the appropriate conceptual

structures for meaningful learning to result.

Furthermore, the learner must be suitably motivated to

operate in this way in the first place. This approach

requires a certain level of maturity (cognitively

speaking) on the behalf of the learner.

62

As with the revelatory paradigm, the presence of a

teacher in the learning environment will be useful to

provide any information or facilities that are not

available via the computer.

The Emancipatory Paradigm

Although perhaps not strictly of relevance to the

design of CAL courseware, this paradigm embraces the use

of a computer as a tool, allowing the learner to be free

of work which has no educational value. The often cited

examples of software in this category are databases,

graphics packages, spread sheets and the like.

The table shown in Figure 3.6 summarises how a range

of types of software equate to these paradigms:

- -- ---~-~

Textbook InOde

Drill and Practice

Programmed learning (linear)

Prograromed Learning (branching)

Educational gallles }

Simulations

ProblBlll solving }

Creative Activities

Spreadsheets }
Nordprocessors

Databases

63

Instructional

Revelatory

Conjectural
(expltratory)

Utility
(elmcipator\Jl

Figure 3.6

---- - --~-~- ----~-- --~ ----------
-~-----

Although the above paradigms offer a useful means

with which to view types of software, they all neglect an

important fact. They take no direct account of how

meaningful the learning process can be. This absence may

imply that the meaningfulness of CAL software is not, as

yet, taken as being a design consideration by many

software designers.

A CAL Model.

Perhaps the simplest model of CAL is one that adopts

the approach taken by Chandler (1984), who categorises a

range of CAL activities according to the degree of control

afforded to the learner by the computer. This "locus of

control" is illustrated in Figure 3.7.

Spreadsheets SiMulations

I
I

Total Learner
Control

Drawing Packages GaMes

(The Locus of Control

Drill & Practice

I I
Total COMPuter
Control

)

Figure 3.7

Chandler's model is, however, only of limited use.

Although it considers the interaction of learner and

computer, it fails to recognise the presence of other

influences that are part of the CAL environment. To be of

value, the model must be extended to reflect the

meaningfulness of the learning that may occur.

64

Extending the Model.

As already discussed, Ausubel emphasises the

importance of recognising learning outcome when modelling

learning. Taking this point on board, a rote-meaningful

dimension can be added to the "locus of control" model, as

Figure 3.8 shows.

llleaningfUl1
L
e
a
r
I)
1
n
9

rote
Instructional

---CoIIIPuter Control -----t

Figure 3.B

The four CAL paradigms have been added for

illustrative purposes. It is interesting to note the

similarity between the model shown in Figure 3.8 and the

two dimensional model that Ausubel uses to describe

learning in terms of activities and outcomes.

To allow the model to reflect the influence of the

teacher in the learning environment a third axis must be

added. This indicates the degree of control exercised in

the learning environment by the teacher. As a result the

model is shown in its new 'three dimensional' form in

Figure 3.9. For illustrative purposes, two of the CAL

paradigms identified by Kemmis have been included.

~--~~-

65

~~- ------~~------ -------- - - -~ - ---

Learning
outcollle

Conjec.tura1
paradl911

~~:»1 Teacher
control

Instructional
paradigpl

..............

----------t' COIllPuter , contro!

Figure 3.9

It would appear from the model that learning appears

to be influenced by two agents: teacher and computer.

However, a third agent exists that influences the point of

control, i.e. the learner. As Armstrong (1987)

demonstrates, accepting the simp1ifications of the model

the balance of control, shared between learner, teacher

and can be expressed thus:

L+T+C=1

Where L is the proportion of learner control, T is the

proportion of teacher control and C is the proportion of

computer control. Thus, the amount of learner control may

be expressed in terms of teacher and computer control, as

shown graphically in Figure 3.10.

66

~---~ ---- - --~-~ . ~---- ~------

Teacher
Control

----------4' COIIIPutir , contra

Figure 3.10

Source: Armstrong(1987)

Observations on the CAL Model.

As with any model, the one illustrated in Figure 3.9

has limitations since it can only represent a

simplification of the actual learning environment.

The CAL environment is dynamic: the balance of

learner-teacher-computer control, and the resultant

learning outcome may well change with time as a student

uses a piece of software. At one point the learner may be

passive, reading instructions from the screen. At other

times the learner will be active, perhaps making a menu

selection, responding to a question or reading a paragraph

of text from the screen.

Similarly, the amount of teacher control experienced

by a learner will, over a period time, vary. This simple

67

~- ---~-~ -~----- --- --------------- -- -- - -----~---~----

model only recognises the presence of one learner, but in

reality the teacher's attention may well have to be shared

between several learners who, in all probability, will

progress at different rates and hence be at different

operating points on the model, even though they are all

using the same piece of software.

As it stands, then, the model makes the following

assumptions:

tha t the teacher is only concerned wi th one

learner.

- that the learner has the exclusive use of a

computer.

that the learner's attention is only influenced by

the computer and the teacher.

Nevertheless, the model does make an important

contribution. It serves to draw attention to the main

elements that influence the learning environment. Armed

with such an awareness, the author is better equipped to

design software that is educationally sound, and relevant

to the needs of both teachers and students.

68

-----~~ ------ --------------- ---- --- ----

Chapter 4.

Human Factors for CAL Authors.

The Human-Computer Interface.

It is widely accepted that poor interface design can

greatly contribute to the failure of a computer system to

operate effectively. CAL systems are not immune in this

respect:

• Computer assisted learning (CAL) programs,

like almost all applications programs written

for human use, have been criticised for the

design of their user interfaces ... •

(Whiting,1989) •

• . . . the principles of computer ergonomics,

dialogue design and user support systems are

also of great importance and relevance in the

field of Computer Assisted Learning (CAL)."

(Lay, 1981).

Clearly, the understanding, and engineering of the

fragile link between man and machine is fundamental to

the design of both effective authoring systems and

successful CAL software. The purpose of this chapter is

to present an exposition of the essential HCI issues that

relate to the design of effective learning systems. To

this end, the topics discussed here are:

1. The nature of Human-Computer Interaction (HCI);

2. Authoring System: The interface between author and

computer;

3. CAL software: The interface between learner and

computer.

69

The Nature of Hel.

The approach taken, in introducing this overview of

the HCI process, has been to turn to the work of Donald

A. Norman, editor of "User Centred System Design"(Norman,

1986). Norman coins the phrase "cognitive engineering" to

embrace a blend of cognitive psychology, science and human

factors to apply what is known from these fields to the

design and construction of computer interfaces.

Prom Psychological to Physical.

Assuming that a user (author or student) wants to

interact with a computer, then he/she will have personal

goals which will stimulate an interaction process. A mis

match immediately arises: The computer user has goals

that are psychological in nature, yet the computer's

mechanism is physical. This mis-match represents what

Norman refers to as a "gulf" between the user's goals and

the computer system. If the user's goals are to be

satisfied, then the gulf must be bridged.

For an interactive system, Norman pOints out that two

such gulfs exist, i.e. the gulf of execution, across which

the user inputs to the computer, and the gulf of

evaluation, whereby the user interprets system action.

These are illustrated in Figure 4.1.

Gulf
""'-- of-~

Physical
Systlllll

70

Goals

Fig. 4.1

Source: Norman,D.A.(1986).

Norman goes on to suggest that in order to bridge the

gulf of execution, a four stage process must occur. This

is described below:

1. Intention formation, where interaction with the

computer modifies the thoughts of the user,

producing goal formation.

2. Specifying the action, where the psychological

intentions are translated into the changes that

are necessary to produce physical action.

3. Executing the action, which is the first

physical stage of the process and results in a

psycho-motor sequence.

4. Contact, i. e. making contact with the input

mechanism.

Similarly, Norman resolves the gulf of evaluation

into a sequence, whereby the computer system is

interpreted by the user, and compared with the original
goals and intentions. Norman describes the sequence thus:

1. Interface perception, where the display system

of the computer stimulates the user's sensory

(visual) input, resulting in patterns held in

the users iconic memory.

2. Interpretation of these patterns into meaningful

conceptual structures which can then be

assimilated with existing structures. This is

the short term to long term memory process

referred to by Gagne (see Chapter 3).

3. Evaluating this information in terms of a

comparison with the original intentions.

Figure 4.2 provides an illustration of the step-wise

bridging of the gulfs of execution and evaluation for

computer interaction to occur.

71

(

---------------------------- - -- -

l!ent.al
Activities

Physical
Activities

[m~tatiml
t

[Perception

Fig. 4.2

Source: Norman, D.A.(l986).

The implications for the field of CAL in

considering the psychological-physical processes may be

stated, in simple terms, thus:

CAL authoring software should employ an interface

that allows the author to design and develop

software in an easy and productive manner.

CAL courseware should employ interface designs

that minimise interaction effort within the

context of the learning task.

Courseware authors should strive to design systems

in which the computer is transparent in the

learning process.

72

Authorlng System:
The Interface between Author and Computer.

In accepting the basic premise that an authoring

package exists to allow teaching/training experts rather

than computer programming experts to produce computer

based training software, it follows that the success of

an authoring system will, in the eyes of the user, be

judged largely on the quality of the interface provided.

This quality will, as Lindquist (1985) pOints out, usually

be interpreted in terms of two basic parameters: "effort

to learn" and "effort to use." These two parameters

provide the basis for investigating the authoring

interface further.

The Novice-Expert Problem.

Authoring system users who have a background in

training or teaching rather than in computer programming

are, at least initially, novice computer users. However,

most of these users will, after a period of time during

which experience is acquired, become more familiar with

the computer. Indeed, over an extended period, some users

will go on to accumulate considerable knowledge and skill,

becoming experts in the use of a particular system.

The needs of this range of authoring system users,

from novices through to experts, differ considerably.

Novice users will require the system to present a dialogue

style that is predictable and consistent. They will also

need to be equipped with a model of the system (a so

called "virtual machine") that is easily conceptualised.

Expert users, however, will prefer a fast and versatile

dialogue style, allowing abbreviated versions of

frequently used instruction sequences: the virtual machine

must be geared to performance rather than easy usage.

73

Thus a conflict arises for interface designers: to

devise an interface that can serve the needs of expert and

novice users alike.

The findings of Bosser (1987), who has researched the

effects of user experience and system performance, are

of particular interest. Bosser notes that if an

inappropriate interface design is employed, the novice may

be penalised. Thus, for the novice authoring system user,

difficulties encountered in learning to use the system may

interfere with the task of producing courseware due to the

user initially lacking the required experience. On the

other hand, if an expert user is faced with a system

designed to accommodate novices, the fluency of the

authoring process will be disrupted by the use of an

apparently clumsy interface.

It would appear that designing an interface that

accommodates the needs of novice users will inevitably

lead to a sacrifice of system functionality and

usability at the expense of learning to use the system.

However evidence can be found demonstrating that, with

careful attention, the interface can be designed to

support all three activities. Whiteside et al.(1985), in

comparing different user interfaces, found that some

systems that were best for novices were also best for

experts.

Nevertheless, many new users of authoring systems,

particularly those with little or no previous computer

experience, find authoring systems to be slow to learn

and clumsy to use. Indeed, from the survey carried out in

Chapter 2, it is clear that all of the IBM PC based

systems reviewed left a lot to be desired in terms of

their interface design.

74

Moving out of the narrow field of authoring system

software, good examples of interface design can be found:

The Apple Macintosh exemplifies how to design a system

that is easy to use and accommodate a range of different

user needs. Indeed, the Macintosh interface along with

that of the Digitalk Smalltalk V system stimulated the

following design exercise.

Designing the Authorlng Interface: An Example.

The following study uses a hypothetical

system (referred to as "CONCEPT") to provide

authoring

the basis

for discussing the application of cognitive interface

design principles to the authoring interface.

In doing so, an interface is described which, it is

hoped, will indicate a possible direction for making

authoring systems more easily learned and readily used.

The Traditional Authoring Interface.

Typically, it is with a menu and prompt driven system

that many new users take their first steps in authoring

educational software. This is when the all important first

impressions are made. Even when a system that has clear

and hierarchically organised menus is used, the newcomer

finds the task of converting their goals into outcomes a

difficult and frustrating experience. Many users all too

easily become disorientated as they are forced to wade

through an apparently endless series of menus in order to

produce the simplest of tutorial programs.

Essentially the problem is this: none of the current

generation of IBM PC based authoring systems appear to

have been designed to deliberately provide the user with a

mental model, or "virtual machine" which can be employed

as a framework for learning and using the system.

75

Navigating through menus to eventually perform the

desired action is a compartmentalised process. Often, the

user is given no indication of where he has come from or

where he is going. As a result, only those with previous

computer experience, or high motivation, or who are

already committed to implementing CAL/CBT will persist in

learning (or tolerating) the intricacies of a badly

designed authoring system and so go on to use the package

to its full potential.

Providing a "Virtual Machine."

Iconic interfaces are becoming increasingly common,

and for good reason: they represent a deliberate attempt

to provide the user with a carefully designed virtual

machine. Because computer users often rely on using

physical analogies to construct a mental model, icons can

be appropriately used to provide the user with a ready

made metaphor.

Consider the user interface of the Apple Macintosh,

which provides the user with a virtual machine based on a

"desk-top" metaphor. Generally, new users can relate to

and purposefully use the Macintosh in a far shorter time

than would otherwise be possible if a command language

interface, such as MS-DOS or UNIX, was employed. This is

because of one fundamental fact: the iconic interface

requires the user to simply recognise symbols and menu

choices, rather than remember commands. In this icon and

menu based environment the user can interact with the

computer almost as he/she would interact with real world

objects.

In addition to achieving the primary objective of

making the computer use a natural and easily learned

process, there is another benefit in designing-in the

virtual machine. The provision of a built-in model ensures

that all users of the machine share the same virtual

76

machine concept, thus allowing a wider discussion of the

machine's operation and dissemination of product

information in virtual machine terms rather than on a

more unfriendly technical basis.

It would, then, seem appropriate to reconsider the

design of the authoring interface with the intention of

building-in a virtual machine suitable for the needs of

courseware authors. The advantages of doing so are clear:

first time users would see the process of

authoring as more friendly, and hence be

encouraged to explore and make fuller use of its

potential.

experienced

a fluent

a good

users would find authoring to be

and productive process.

interface design would motivate

users to use the package again and again, rather

than simply leaving it on the shelf.

CONCEPT: A New Authoring Interface.

The CONCEPT authoring environment represents a

possible direction for interface design if cognitive

strategies are to be used to improve the interface

between author and computer. Because the CONCEPT approach

is based on a system with "standard" authoring functions

it is possible to apply its philosophy to many authoring

systems currently available. It is felt that Top Class, a

system widely used in education

previous computer experience,

adopting an interface similar

below.

by those with little or no

could greatly benefit by

to the design presented

The metaphor used for CONCEPT is that of an "author's

work-bench" in which the "standard" authoring tools may be

found. These tools are grouped thus:

77

- a lesson building and modifying program

- image generating and editing utilities

- a character font making program

- a data storage facility

Figure 4.3 illustrates how these "standard" authoring

utilities may be organised into the structure of the

author's work-bench.

Authoring Environoent

Create
Edit
Test-run
Save

Create
Edit
Utilities

I The Authoring Envirol1Jlll!l1t. I

Make
Edit
Use

Question bank
L.age library
Macros

Figure 4.3

Each of the four major authoring functions within the

system are presented to the user as icons. Selecting an

authoring function is performed by using a mouse and

pointer to select an icon. Upon selection, a menu would

be presented that allows a further choice as appropriate.

Unlike many menu based systems, such as Top Class,

which uses a one-menu-per-screen deSign, the CONCEPT icons

and pop-up menus all appear on the same screen. This way,

users can see the path taken through the available

choices, and navigate through the authoring system easily

and purposefully to achieve their goals.

78

Using the CONCEPT approach, the user is merely

required to recognise and choose the appropriate icon in

order to author, and is not burdened with the need to

commi t command names, menu choice sequences and key

presses to memory.

Implementing CONCEPT.

The diagrams on the following pages illustrate the

appearance of the CONCEPT interface, as seen by the

author. The underlying principles are to:

replace the" tradi tional" opening menu (as

exemplified by Top Class and TenCORE) with icons

to represent the basic authoring processes.

present concise, relevant menus in a way that

reveals the internal structure of the system to

the user.

allow the user to navigate through, and maintain

a sense of position within, the system.

reduce the need for the user to memorise names,

codes and rules.

simplify the interaction process by using a mouse

and pointer.

The opening screen of the CONCEPT interface (see

Figure 4.4) presents the user with a simple four choice

selection task, depending on whether the author wishes to:

Author, or work on a piece of software.

Draw, or produce a graphics image to be used in a

piece of software.

create a text Font.

work with information held in a Database.

79

Concept

Figure 4.4

Each authoring activity, as the structure chart in

Figure 4.3 shows, allows a number of different processes

to be performed. Thus, once an activity is chosen, a pop

up menu is presented to the user for the appropriate next

choice to be made. An "exit" option is always provided so

that the user can close a menu and reverse the last

decision made.

To leave the authoring environment and return to the

computer operating system, the author simply moves the

pOinter outside of the work-bench window area and presses

a mouse button.

Figures 4.5 through to 4.8 on the following pages

illustrate the main screen designs.

80

Concept

Create
Edit ~
Test-run
Save

Author. (Figure 4.5)

Figure 4.5

When ' author" is chosen, the user may choose to:

- create a new lesson.

- edit an existing lesson.

- test-run a lesson.

- save a lesson.

81

Draw.

Concept
A'TI.RS UO.UE_CB

~ ~ ~ fID
Author D Font Database

C .> •
Ec

Edit Pixels

~
Collhine
Re-size

E Rotat~
Mirror

Colour

Elit

Figure 4.6

(Figure 4.6)

When 'draw' is selected, the user may choose to:

- create a graphic image.

edit or work on an existing image.

- operate on an existing image using a set of

utilities, as the second overlapping

menu shows.

82

Cmcept

Author D font DlItabase

Make

Edit

Use "
E.it ~

Figure 4.7

Font. (Figure 4.7)

Selecting "font" allows the author to:

- create a new style of text font.

- edit an existing text font.

- build a string of text using a specified font.

B3 .

Concept

Database. (Figure 4.8)

Quest~
Inages

Macros

Elit

Figure 4.8

By choosing "database" the user can store or

retrieve:

- questions from a question bank.

- images from an image library.

- macros (program code combinations).

84

CONCEPT: Hardware Considerations.

To implement the CONCEPT interface on an IBM PC/AT

or PS/2 compatible computer, authoring stations must be

equipped with:

1. An EGA or VGA standard monitor and graphics card

in order to display the high resolution graphics

based icons used by CONCEPT.

2. A mouse, to operate the point-and-select dialogue

style of CONCEPT.

The first requirement is not unreasonable: Most new

computers are now supplied with VGA graphics as the

standard colour display: CGA and EGA are rapidly

disappearing as configuration options. The second

requirement identified is also easily accommodated. For

users who do not already have a mouse, this inexpensive

device could be supplied as an optional item when the

system is purchased.

CONCEPT: Where Next ?

The CONCEPT interface provides an indication of a

possible direction that might be taken to improve the

human-computer interface of a system such as Top Class.

CONCEPT offers some essential enhancements: making the

authoring process more accessible to novice computer users

by allowing the user to "see" the overall structure of the

Top Class environment.

As discussed here, CONCEPT is far from complete. A

finished system design would include a selectable on-line

help facility to act as an "author's assistant" and a

context sensitive error handling system. Furthermore,

documentation should be recognised as an extension to the

CONCEPT interface: a complete tutorial manual should be

produced to accompany the reference manual.

85

Implementing a CONCEPT-like interface is not a simple

task. Designing the interface requires special skills: a

knowledge of programming, a knowledge of authoring

systems, and an understanding of the psychological issues

involved. However, the starting point for authoring system

designers, to borrow the words of Norman (1984) is

simple: " ... to take the design of the interface seriously,

to recognise that both programmers and psychologists must

co-operate to do the task."

Courseware:
Interface between Learner and Computer.

When considering computer interaction from a

learner's perspective, the relevance of HCI issues take on

a different complexion. The underlying nature of

interaction is the same, but the goals that drive the

interaction process are different. The problem of

bringing closer the gulfs of execution and evaluation

remains, but the solution must take into account the

learners image of the computer.

If the CAL interface is designed with care, the

learner will become engaged in a learning conversation

wi th the computer, with the learner's perception focused

on the virtual machine: the physical computer will simply

become a transparent intermediary in the learning process.

Dialogue Across the Interface

Most people, whether computer experts or novices, are

able to recall a frustrating experience when using a

computer. Perhaps the machine behaved unpredictably, or

simply refused to co-operate I Such an experience usually

stems from the user not understanding what type of

responses the computer requires.

86

These frustrating encounters should be avoided at all

costs, they may at best ruin a learning session, and at

worst convince the student never to touch a computer

again.

Wi th careful planning and design it should be

possible to ensure that such experiences are avoided. The

key to doing so is to make the dialogue between learner

and computer a natural and logical interaction. In doing

so the result will be that the student will have the

feeling of being in control, and hopefully forget that

they are actually interacting with a physical machine.

Dialogue across the interface is a two way process.

Typically, this involves information being presented to

the user on a Cathode Ray Tube (CRT) display system, and

responses inputted from the user via a keyboard. Thus, the

issues of human factors in screen design and dialogue

design are each considered in terms of the interface

device.

Output to the Learner.

As display technology continues to advance, many of

today's computers are equipped with high resolution colour

graphics visual display units (VDU's), capable of

presenting text and graphics information. When designing

interactive educational software, the organisation of

information presentation via the VDU is an important part

of the CAL authoring process. The central theme to good

design is to ensure that the learning material is

presented clearly, and that the information processing

ability of the learner is not exceeded.

87

Screen Design Issues.

Work performed in the field of psychology on how

information is extracted from text is of interest to CAL

authors, particularly if these findings can be applied to

the presentation of text on CRT displays. Hulme (1984) has

performed such work, applying the cognitive psychology of

reading to the problems of reading text from a computer

display. His work has revealed that reading information

from a CRT display is in the order of 30% slower than the

reading of text from a book. This he accounts for by the

fact that less information is contained on a CRT screen

than on a book page (approximately 400 words for a book,

compared to 150 words for a CRT screen). Also, when

reading, most people prefer to adjust the angle of

viewing. Although such an adjustment is easy in the case

of a book, a CRT screen imposes strict limitations. Hulme

goes on to point out that the luminance of a CRT display

causes discomfort, and often results in fatigue, which

also detracts from the reading process.

Van Nes (1986) identifies the importance of space,

colour and contrast to maximise the legibility of screen

based text. He states "Being easy to read, text with a

high legibility enables the reader to devote his attention

to understanding what ever information the text conveys."

The implications for the design of educational software

need no further elaboration. The recommendations made by

Van Nes for text screen design can be summarised thus:

that light background/dark foreground combinations

are more legible than the reverse, although this

only applies on VDU's where the screen refresh

rate is above 70Hz (a critical rate for avoiding

an annoying 'flicker' effect).

the use of space on a text screen is important.

Legibility can be significantly improved by using

blank lines to separate paragraphs, and give

screens an orderly appearance.

88

colour should be used carefully. Van Nes suggests

that not more than three colours should be used on

a single text screen. Colour can be .used to

suggest grouping in text screens. Part of a block

of text or diagram may be coloured differently to

its surround and thus help the user to search for

key information.

different character fonts can be eye catching, and

this may be usefully exploited. However caution

should be exercised: some fonts are less legible

than others.

To avoid designing a screen that is over burdened, or

cluttered, with attention gaining mechanisms, Shneiderman

(1986, p.7l) suggests that screens should be designed in

monochromatic form. The designer may then "judiciously"

decide on the use of colour and text size to aid the

learner.

Accompanying text information, graphic images may be

usefully employed to aid the communication of important

information in a meaningful way.

graphics, caution should be exercised.

Yet, even wi th

Over use should

be avoided otherwise the learner may receive more

information than his/her short term memory can

simultaneously process.

When presenting information in a sequential manner,

some concepts can be particularly difficult to convey.

Computer graphics can be appropriately employed to produce

what appears to be an animated diagram. This can be

particularly effective in CAL programs which model

situations or processes, allowing important details to be

emphasised and unimportant ones to be removed.

89

Keller (1987) makes an important observation about

the use of graphics to help keep the students attention:

"Add-on images - happy faces, exploding spaceships and the

like - may catch the eye but they won't engage the mind."

The CAL designer should avoid using meaningless graphical

images. Keller goes on to recommend that the designer

should ask himself a simple question when using an image:

What does the picture accomplish ?

Screen organisation is important. A good screen

design should allow the learner to readily access

important information: position within the lesson, help

notes and so on. Isaacs (1987) recommends that a small

area of the screen, ideally along the bottom, be reserved

to permanently display information on how to access help,

perform navigation, quit, and so on. The required

information can be presented in a pop-up window when

needed. Positional information such as topic name and page

number should be displayed at the top of each screen.

Input Devices.

Input devices are of special interest when designing

a computer based learning system. The choice of input

device will allow the designer to match the interface to

the requirements and needs of the learner. Al though the

QWERTY keyboard has become the standard input device,

many computer novices find it an awkward and unnatural

device for

deficiency,

designed to

communication. To overcome keyboard skill

CAL software should, if appropriate, be

restrict the amount of keyboard use. Even a

simple approach, such as confining input to the use of

special function keys, or easy to locate number keys can

relieve the burden placed on the learner by the keyboard.

90

Wherever possible, interaction dialogues should

minimise the learner's use of the keyboard. Invariably,

the user of CAL software will possess only minimal

keyboard skills. By using single keystroke actions for

selection, or better still mouse/pointer or touch-screen

selections, the learner is relieved of the burden of using

a rather unnatural input device.

By designing CAL software that makes use of a

selection dialogue, perhaps by employing menus or lists, a

number of alternative input devices are available: cursor

keys, mouse, trackerball, joystick, lightpen and

touchscreen. Discussing these pointing devices, Albert

(1982) has made comparisons in terms of speed and accuracy

for a cursor positioning task. Al though the trackerball

was found to be the most accurate, the slowest pointing

device, the touchscreen, was still eight times faster than

the keyboard.

Of the available pointing devices, Criswell (1989,

p. 28) prefers the touchscreen because it makes physical

interaction with the system so easy and natural.

Furthermore, its unobstrusiveness serves to increase the

transparency of the system allowing the learner to

concentrate on the lesson.

Dialogue Strategies.

Interactive dialogue can easily break down. Problems

in CAL often arise because the student simply does not

know what information to enter, or perhaps more often than

not, how to enter information into the computer.

A number of relevant points are identified in work

performed by Hammond & Barnard (1984), who have looked at

the interface problem in terms of the style of dialogue

used. Their work identifies some styles which should be

considered in CAL dialogues:

91

1. A question and answer dialogue, where the computer

asks questions to which the student responds. This

dialogue style is not an easy one to design. Allowing

the student to enter a character string from the

keyboard will require the software to be able to

appropriately handle every possible response that the

student produces. Fortunately, most authoring systems

accommodate this dialogue by providing a range of

matching strategies. Typically, these may include:

- detecting a key word in the user's input.

- accepting both upper and lower case characters.

- using a phonetic matching algorithm to avoid a

student for poor typing.

2. A menu selection dialogue, where the student selects

a response from a menu of pre-determined responses,

usually requiring a single number or letter entry.

This offers the advantage of easy keyboard use for

the student who lacks keyboard skills, hence

facilitating a smoother dialogue. When used for

testing, choices must be designed to discourage

guessing, if the results of testing are to be

meaningful.

3. In some CAL programs, such as simulations, the user

may need to give directives to the computer, in which

case some kind of "command language" may be used.

These commands should be chosen that they logically

represent their actions.

Essentially, the dialogue style, or mix of styles should

be chosen according to the aims of the CAL package, the

level of interaction required and the ability of the

learner.

92

Shneiderman (1986, p. 323) warns of the dangers of

writing software that attempts to give the computer a

personality. He points out that the novelty of

anthropomorphic software soon becomes unacceptable to the

user. He advises dialogue designers to " ... focus on the

user and use third person singular pronouns, or avoid

pronouns altogether. The following examples (from

Shneiderman 1986. p.325) illustrate the point:

POOR: I will begin the lesson when you type RETURN.

BETTER: You can begin the lesson by typing RETURN.

BETTER: To begin the lesson, type RETURN.

Similarly, the wording of answer judgements and other

forms of feedback to the user must be phrased to be

friendly and informative yet not authoritative or too

personal.

The reading ability of the student must also be

considered when designing text dialogue. The language used

must be clear and unambiguous. Green (1988) suggests the

use of a Reading Age Test (e.g. Flesch, 1948; Fry, 1977)

may be useful for highlighting difficulties, but warns

tha t " ... reading and unders tanding are not the same

thing."

Motivation.

Courseware authors must not assume that all learners

will be motivated to use a given CAL package. Indeed,

deliberate strategies must be employed to induce users to

become actively involved in the learning process. To

increase motivation, Kearsley and Hillelsohn (1982) make

the following suggestions:

- students should be provided with a record of their

progress.

- a competitive element should be introduced into the

learning.

93

allow students to work in pairs or small groups:

this will allow them to re-inforce each others

learning.

- improve the enjoyment level of the courseware by

using animated graphics, simulations, games or

humour.

- reduce boredom by designing courseware that will

allow the student to explore the learning material

and proceed at a rate that they choose.

Documentation.

CAL software should always be accompanied wi th

documentation that supports the user in learning to use a

given package. To this end, well produced teacher and

student manuals play an important role. Identifying the

problems of the new user, Clement (1984) calls for manuals

that are designed to meet the user's needs.

The widespread dissatisfaction with software

documentation is noted by Sullivan and Chapanis· (1983).

They offer the following general suggestions for those who

are involved in the preparation of user guides and help

texts:

- use simple, familiar language;

- use short, active positive sentences;

- make the order of events in a sentence parallel the

order of actions that the user will need to take;

- be complete and specific when describing actions;

- use headings and sub-headings to identify sections

in a manual;

use lists rather than long passages in order to

present one idea at a time;

- make use of space so that information can be easily

scanned.

94

Sherwood

presentational

(1987)

issues

stresses the

in improving

importance

the usability

of

of

manuals. This is a vitally important point if the user is

using a manual whilst operating the computer. Careful use

of page size, typography, layout and so on can produce a

presentation style that allows similarity between printed

page and computer screen. This will allow the user to

easily shift their attention from book to screen, perhaps

as they follow instructions, without losing their place,

and destroying the interaction process.

The production

Shneiderman (1986,

of documentation,

p.372) should begin

according

as early

to

as

possible in the design process to allow " ..• adequate time

for review, testing and refinement." The software author

is not always the best person to produce documentation.

Their familiarity may well lead to incorrect assumptions

being made about the needs of the user.

Summary.

The topics considered in this chapter represent the

main issues that a CAL designer/ author must consider if

the software that he/she produces is to become worthwhile

from a human factors point of view.

Unfortunately, the knowledge that could be applied to

educational computing from the fields of psychology and

human-computer interaction is not made easily available to

eAL designers, the results of most research work being

scattered across many different professional journals and

publications. It is a mammoth task just finding this

information, let alone using it I Furthermore, most of the

information that is available has not been produced as a

result of research into computers & learning directly, and

so requires interpretation before becoming useful.

95

It is clear that there is a need for more research

into the fundamental human factors issues within the

context of computer based learning, in order that

guidelines and principles may be made more widely

available.

96

CHAPTER 5.

Courseware Production:
A Software Engineering Approach.

The production of educational software is a complex

activity, often performed in an environment that is

sensitive to cost and productivity. To assist in the

production process, techniques employed in the field of

software engineering may be of use to those involved in

CAL authoring.

In order to examine the potential application of

software engineering techniques to the CAL production

process, an overview of the software production life cycle

is presented. This is followed by a review of a number of

areas of the courseware production process that may

benefit from adopting a software engineering approach.

The issue of software testing is a particularly neglected

area of the development process, and for this reason it is

discussed at some length.

The Software Life Cycle.

(The life cycle approach to software engineering

covers all stages of the production process. Many

variations of the basic life cycle model exist, but that

shown in Figure 5.1 is representative of those that

abound. It identifies the essential elements with which

courseware producers are concerned.

97

r Specification 1-

I Design ~

I InplBlllentation }-

f Testing }

[Operation 1

Figure 5.1

(Source:Coleman & Pratt, 1986)

(
The life cycle model provides a clearly defined

schedule with a logical flow that describes the key stages

in the production process. These are: specification;

design; implementation; testing; and operation &

maintenance. From a CAL author's viewpoint, the activities

belonging to each stage can be considered as follows:

Specification. This stage is concerned wi th

identification of the purpose of the software, in

terms of its functions and the constraints that will

affect the design process. To this end, answers to

three key questions must be sought:

- What is the proposed use of the software ?

- Who will be the users of the software be ?

- What hardware is the software to be used on ?

Design. This stage is concerned with producing a

design for subsequent programming. Vital to this

stage is a feasibility study, which should attempt to

identify a number of possible alternative outline

designs which should then be compared in terms of the

following parameters:

98

(
- programming method.

- educational strategy.

- production staff.

- costs involved.

- time involved.

From this information it should be possible to choose

the most appropriate design for the constraints

imposed by the production environment. This will

ensure that energy and resources are then directed

into the best design.

Implementation. This stage deals with the production

of program code from the design documentation. How

productively this is achieved is dependent on skill

in choosing appropriate production tools, such as

the authoring language, use of software tools and the

utilisation of specialised hardware devices such as

image scanners and digitizers, for example.

Testing. Unlike validation, which should occur at

EVERY stage of the life cycle, testing involves:

exercising the software as it would be used in

the real situation.

- detecting and correcting errors generated

during design and implementation.

- measuring performance.

Operation & Maintenance. It is at this stage of the

production process that the software is handed over

for use in the classroom or training situation.

Coleman & Pratt (19B7) point out that it is at this

stage that a piece of software enters its most

expensive stage in the life cycle, i.e. maintenance.

99

)

Although the life cycle model appears to promote a

linear approach to the design/development process, it must

be recognised that the model is also concerned with

managing the problems that can occur during the design

process. Typically, problems may arise due to: incorrect

specifications, the need to add new facilities or simply

accommodating uncertainty.

Thus, the life cycle model should accommodate the

ability to branch back to a preceding stage, so that the

design may be modified or refined in response to whatever

problems arise. To reflect this, the model is shown in a

revised form in Figure 5.2.

I Specification

L[Design }-

Inplementation t

l..{ Testing t

Lt Operation 1

Figure 5.2

It is informative to compare the life

wi th a list of "Stages in CBI Design"

Criswell, (Criswell 1989, p. 51), The list

below.

put

cycle model

forward by

is reproduced

100

Steps In CBI Design, Production and Testing.

Step 1. Conduct environmental analysis
- Proposed use of courseware
- Available hardware
- User att I tudes

Step 2. Conduct knowledge engineering
- Course content
- Concept/task analysis

Step 3. Establish Instructional goals and objectives
- Instructional goals
- Specific objectives and student performance levels
- Instructional objective taxonomles

Step 4. Sequence topics and tasks In CBI lessons

Step 5. Write courseware
- Introductions, Interactions, remedial sequences

review and tests
- Tailor Interactions for specific student performance

levels

Step 6. Design each frame, the student computer dialogue, and
the student performance record

Step 7. Program the computer
- Programming languages
- Authoring languages and packages

Step 8. Produce accompanying documents

Step 9. Evaluate and revise the CBI

Step 10. Implement and follow-up as necessary

(Source:Criswell1989.)

Both Criswell' s list and the software life cycle

model demonstrate the importance of completing the design

process before coding, or programming, commences.

Criswell's list also provides an informative elaboration

of the activities occurring when educational software is

authored, albeit that her list is geared to the production

of instructional material. Unlike Criswell's list,

however, the life cycle model is more general in nature,

and hence more suited to guiding the production of CAL

software belonging to any educational paradigm.

101

The Production Team.

In the commercial CAL software production

environment, there will usually be several specialist

staff working together as a team to produce a courseware

package. Such a team may well be involved in working on

more than one project, and have a well defined production

schedule and target deadlines. Kearsley (1986), in

discussing the team approach to courseware production,

lists the production team as being composed thus:

- an Instructional Designer.

- a Subject Matter Expert.

- a programmer.

- a Graphics Designer.

- a Script Writer.

- an Editor.

- a project Manager.

- an Evaluation Specialist.

A team approach to courseware production is also

advocated by Bunderson (1974, p.478) who identifies a

point that Kearsley fails to note: i.e. that the roles

identified in the courseware production team do not

necessarily have to be undertaken by separate people (for

example, the subject matter expert could also act as the

evaluation specialist).

With the increasing availability of advanced

authoring systems, the team approach to courseware

production is under attack. Typically, a modern authoring

system (such as TopClass, for example) contains an

automatic program generation facility, a graphics editor,

de-bugging tools and easy access to hardware resources

such as video-disk, touch screen and digitised speech.

Given such a production environment, it is often the case

102

that the roles of subject matter expert, instructional

designer, script writer, programmer and even graphic

artist are undertaken by an individual who is tempted

into acting as a one man band, so to speak.

Indeed, it is in such a modus operandi that most CAL

material is produced in the educational environment.

Usually, by an enthusiastic teacher working as a lone

author, working during spare time periods and during

evenings, without a development schedule or target

deadline.

Considering the CAL production team, Whiting (1989,

P .187), warns that "The team approach to CBT authoring

often mitigates against more individual designs ... "

Although this may be true, it should also be recognised

that there are few authors who possess all of the skills

and experience needed to work as a lone author and hence

are able to produce top quality courseware.

By being aware of the roles to be performed, those

who produce CAL software in the educational environment

should be encouraged to work with others who share an

interest in CAL: sharing work between members of a team,

perhaps identifying those who have a flair for graphic

design or programming, and enlisting their help.

Documentation.

Accurate and clear documentation is needed in order

to provide efficient communication between those working

on a CAL project. Documentation, if properly produced,

will also provide a record of the progress of a project.

103

Design Documentation.

To provide the detailed information needed to

facilitate production, Dean and Whitlock (1984, p.160)

emphasise the value of a "program flowchart" as a

graphical documentation method, particularly if one is

designing instructional software that employs a branching

strategy, and the "screen layout form" which allows a

story-board of the appearance of a program to be

constructed. This flowchart/story-board combination seems

to be widely favoured (e.g. Kearsley 1986, Chambers and

Sprecher 1983) as a means of documenting a program for

design purposes.

Graphical Documentation.

The field of software engineering offers an

alternative to the flowchart as a means of providing a

graphical representation of a program and its structure.

Bell, Morrey and Pugh (1987, p.69) present a case for

using the structure diagram for this purpose. They

identify the following attributes of structure diagrams:

- they support a top-down approach to design.

- they provide a clear, graphical representation of

program structure.

- the method is well defined and therefore will

produce consistent results when used by different

programmers.

- the method produces a design that is independent of

programming (or authoring) language.

Bell et al. go on to point out that "What a program

is to do, its specification, is completely defined by the

nature of its input and output of data." Clearly, since an

interactive CAL program is heavily concerned with input

and output, the structure diagram is suitable for

representing such software. It must therefore be of

interest to those involved with courseware production as

an alternative to the flow-chart.

104

,',
I

"

Screen Design Porms.

The screen design form is an attempt at'standardising

the approach to designing the appearance of the program on

a screen by screen basis. Typically, the screen design

form mimics the addressable screen area, onto which the

screen appearance may be sketched by hand. A resul ting

sequence of screen design forms provides a 'story-board'

of the lesson to be programmed.

Generally,

designing

employing

text
screen design forms are more suited to

based screens rather than for those
graphics. An example screen design

(Courtesy of Format P.C.
form is

reproduced in Figure 5.3 Ltd.) .

" " 30

I I I 1111 11 I
I I I11 11111111 I 11111
11 11 I 11 i]11 1111 I I
III 11 11 I11 111111 11111 11

, 111111111 11 111111 11 11 I I I 11
1111111111 11111 1111111 I
I 111111 11111 I 1111 ! I11

I 11 I I11 111111111 III I 11
11111111 111111111 111111 11

011 11111111 111111 !I 11 I 11 I I
111111111 I I I I 11111 I I
111111 11 I I I I I I. I
11111 11 1111 1111
I I11 I 11111 11 I I

, I 11 III I 11 11'1 I I 11111 11
11 ,11 I I 11 11 I I

I I I 1111 11 I
11 111111 I ' I

I I I I I I
I I I I 'I

I I I I I
,.

I

Screen Layout Sheet

Programme Shee! No,

" '" '" " 1111 I11 I 11 I ' 11 11111111 I I 11 11 11 I 11 III I I
1111 1111 1111111 11 111111 11111 ill I lilT! I I
11 I 11111 1111111 11 11 11 III i I 1111 11111 11111 I
11 11111 III 11 11 I I 11 11 i I I I11 1111 I 1111 I I
11 I 1111 11 11111111111111111 I11 1111 I 11111111
1111111111111111 1111111111 111111111 11 11 I i I! I

11111111 111111 I 11 11 11111 I I11 11 I I 11 11111
11 I 1111 I I 111111 11 i 11111 I I11 III 1111111
I 111111 III I I11 11 11 111111 111111111 iTTTlllll
111111111111111111111 I II! I11 I I I I 11 11 I 1111 HOles

I11 I11 I 1111 I 11 I 111111 111111 I I III iT I I
11 I I 11 I III I I11 1111 I '11 I 111111
1111 I11 1111 I11 I III 111111 11 11 11 I

11 11 I I I III i I I ! 11111 1IIIIIIm 11 I IT I I
1' 11111 IIII! III I 11 11111 III I I I11 I I
I I I 11 I I 111111111 1111 IT lilT! I
11 I I I11 I11 11 I I11 11 I I

11 I I11 I11 I III I III I
I I I I I I I I I I I11 I
I 11 I I 11 I 11 I I11

I 11 I fTl I I I
I I I

I I I
I I I I I I 11

11

Figure 5.3

(Reproduced with permission)

105

Working solely with a screen design form, it is

difficult to convey the designer's view of a finished

screen particularly if graphics, colour and different text

fonts are used. Furthermore, it is difficult to convey the

dynamic nature of an interactive program using pen and

paper. To overcome this problem designers must consider

the use of prototyping, making a mock up of sample

screens, to truly appreciate the implications of their

design decisions.

Coding Conventions.

Using a standardised coding convention is a technique

associated with structured programming methodology. The

purpose of using an agreed convention is to facilitate

ease of maintenance on large programs. Assuming that

control over code structure can be exercised (which

excludes the use of authoring systems), then such

conventions may be of interest to courseware producers.

The actual details of the coding convention used may

vary, depending on the constraints imposed by the

programming (or authoring) language used, but there are

general guidelines which may be used to indicate the

properties of coding conventions. Schneider and Bruell

(1981) discuss the main elements in some detail. These are

presented below:

- code should be modularised, if possible to less

than a page.

use comments to explain the purpose of each

module, its data structures and other modules

accessed.

- avoid over reliance on global variables: declare

variables in the module that they are used.

use clear mnemonic names for variables, data

structures and the like.

106

make use of indentation and space to visually

indicate the structure of a program.

use comments to explain the operation of

statements that have a complex or unclear purpose.

At the time of coding a program, abiding by some of

the rules imposed may appear unnecessary or superficial

to some programmers. Yet not to do so may well render the

program listing difficult or even impossible to read in,

say, six months time when another programmer (or even the

original programmer) attempts maintenance on that program.

The aim of using a coding convention, then, is simple: to

produce clear, self-documenting code that may be readily

understood by others.

Software Testing.

Testing is that part of a project where the

developers prove the design, or more accurately, discover

what is wrong with a design. Hetzel (1985, pp. 5-8)

defines software testing as "testing against pre-defined

ideals, and embraces a number of acti vi ties." Basically,

these activities include:

- Checking the program against specifications.

- Determining user acceptability.

- Ensuring that a system is suitable for use.

- Understanding the limits of performance.

Learning what a system is not able to do.

- Verifying documentation.

- Finding errors.

Having identified these activities Hetzel then makes the

statement that "testing is the measurement of software

quality. "

107

The above certainly holds true for educational

software, but what is meant by quality? Essentially,

quality software is that which meets all the requirements

placed upon it. So, by defining these requirements, it

should be possible to identify the parameters to be

examined when testing educational software.

The relevant factors that affect quality are as

diverse as the range of tasks for which computers are

used. Fortunately, it is possible to identify important

features which are common to all educational programs,

these are:

Functional Quality.

Adaptability.

Production Quality.

Each of these points will now be considered in turn.

Functional Quality

This is concerned with an external, or user's, view

of the software, and is to some extent a subjective area.

Functional quality can be considered in terms of both

technical and educational factors.

Technical considerations can be treated objectively,

with the following factors used to provide the basis for

good educational software.

First Impressions: When using a package, particularly

for the first time, impressions are formed which

last. Hence, good software should be simple and

straightforward to load. Furthermore, once loaded,

instructions should be given on screen for starting

and using the software. To allow for experienced

users, a facility to skip over this preliminary

information would be useful.

108

Program Input: A well designed program will make use of

the computer's ability to be interactive, and so the

user's perception of program input is important. To

this end, the program should accept input in a clear,

unambiguous manner and allow the user to edit input

before it is accepted for use. Simple yes/no

type responses could be aided by providing default

settings. The program should also be able to deal

with incorrect input appropriately, i.e. it

should be robust, to the extent that if wrong input

persists help instructions are given.

Screen Output: How information is presented to the user

also affects the user's acceptance of the software.

Text should be presented in a clear and readable

style. Large amounts of text on a single ficreen

should be avoided, and use made of

highlighting and colours to emphasise particular

areas. Unrelated information should not appear on

the same screen. Graphics, if available, should be

exploi ted to allow the program to turn static

diagrams into moving pictures.

User Friendly: The manner in which the program interacts

with the user is worthy of particular evaluation. A

friendly, helpful manner will inspire user

confidence. Help information should be easily

accessible at any point in the program, and should be

relevant to the user's needs. A pause facility would

enable the user to control the rate of progress

through the program, and promote a feeling of being

in control.

Educational Parameters

Because of the scope for individual interpretation it

is not easy to state good features for educational

software. However, there are fundamental qualities that

are the key to worthwhile software:

109

The content of the software must be accurate and

unambiguous. Errors of this type will destroy the

users confidence.

The package must provide an attainable educational

goal in order for the user to feel that progress

can be made. Such goals must be observable, in

order that they can be recognised and measured.

The user must feel motivated to use the package,

so goals must be seen to be worthwhile.

Adaptability

If fully exploited the computer is one of the most

powerful teaching tools available, offering interaction

with the user and having the ability to branch to various

parts of a program as dictated by the user's responses.

Good software should make use of this ability to adapt to

the user.

Production Quality

This term is used to convey an 'internal' view of the

software, and is concerned with how well the package has

been considered and put together. Key factors in this

sphere include the following:-

a) The provision of well produced documentation, in the

form of:

i) a teacher's manual, that gives a full

description of how to use the program and its

intended place in the curriculum.

ii) a student manual, that describes how to start

the program, its purpose and provides worksheets

if appropriate. It is particularly important

that the student manual is written in an

encouraging and motivating way.

110

b) Well written, structured software that takes

advantage of techniques such as windows, menus, icons

and pointers.

c) Appropriate choice of hardware facilities, in using

function keys, mouse etc. to facilitate ease of user

interaction.

d) The system should, if possible, be portable to run on

the range of machines that are commonly available in

education.

Performing Evaluation.

There are some important aspects of software testing

methodology, identified by Hetzel (1985, pp.19-27), which

have an important bearing on evaluating educational

software. These are:-

"Complete testing is not possible." Any computer

system, by its nature is complex and so the testing

of every eventuality is unrealistic in terms of time

and practicability.

"Testing is difficult." This statement is based on

the fact that you need to fully understand the system

you are testing, in order to test it effectively. As

the system is complex, testing (and hence evaluating)

is difficult.

"Testing must be planned." The testing process must

be structured in order to be effective. A plan will

organise how testing (or evaluation) will be carried

out, what is to be tested, and provide the results.

An ad hoc approach to evaluation will result in

ineffective use of time and misunderstood results.

111

"Testing requires independence." To obtain reliable

"unbiased" results, the evaluator must be an un

biased person, whose main objective is to make

accurate measurements.

The points made in these four statements have

particular significance when considering evaluating

educational software, not only in terms of how results are

obtained but also in terms of who should undertake the

task. As Potosnak (1988) points out, when testing

software, users ".". should be representative of the

intended population." When testing educational software,

this means using real students and teachers.

Summary.

The life qycle approach offers authors a structured

yet flexible methodology for designing and developing CAL

software. Unlike the schemas put forward elsewhere (e. g.

Criswell 1989, Chambers and Sprecher 1983, Steinberg 1984)

which appear to favour the production of instructional

software, the general nature of the life cycle approach

allows it to be applied to the production of any software,

regardless of educational paradigm.

By using the life cycle approach, or at least an

interpretation of it, courseware production should become

more productive and directed towards a defined outcome.

The resulting software should, in turn, be more reliable

and hence require less maintenance.

Many of the parameters discussed concerning testing

are, with interpretation, suitable for forming the basis

112

of an evaluation instrument which may be used by those who

are involved with the selection and use of CAL software.

For even the modest sized project, software

engineering techniques offer benefits for those concerned

wi th CAL project management and implementation. As

Sheppard (1983) points out "Most software engineering

techniques are practical and easy to use; in fact, good

programmers have typically discovered many of them through

experience."

113

Chapter 6.

Conclusion: A Look to the Future.

Attempting to look towards the future and identify

the issues and developments that will shape the working

environment of the CAL author is not easy. Technological

change is taking place at a staggering rate, and in

unpredictable directions, with research effort being

directed by the whim of political and commercial decision

makers.

Therefore, approach taken here is to avoid pure

speculation, and to identify likely developments, based

on the knowledge of the present state and current research

work. To this end, relevant developments in computer

hardware, software and the educational computing

environment are discussed.

Hardware Developments.

Computer Hardware.

Computer systems have, over a period of some forty

years, undergone many changes. Obvious milestones were the

replacement of the thermionic valve with the transistor,

and the replacement of the transistor with the integrated

circuit. It is the refinement of micro-electronic 'chip'

technology that has revolutionised the cost of computers

through mass production. Computer performance has

increased as rapidly as size has decreased, to produce the

desk top computer that can out perform its mainframe

counterpart of only ten years ago.

114

For the sake of this discussion, computer hardware is

considered as comprising of two main areas: computer

systems and peripherals.

Computer Systems

Using the parameter of computer power, measured in

Millions of Instructions per Second, Peled (1987), makes

the following predictions (see Figure 6.1), concerning

four classes of computer:

- At any point in time, the power of mainframe

computers is greatest.

- There will be a tendency for some of the most

powerful personal computers

exceed the power of some of

available.

to equal, or even

the mini-computers

Embedded computers (sometimes called 'dedicated

computers') rise at a rate approximately the same

as that for the other categories of computer.

Millions of
Instructions
per second.

19

.1

.01

1960

I~

1970 1980 1990

Decade

1= E/mooe> SYSTtMS 2: I'tRsoNAL eo.,UT ...
3= M'NtcO""UT'RS 4= Mo~

Figure 6.1. (Source:Peled,1987).

115

For educational computer users, the second point is

the most relevant. Evidence of the availability of

powerful desk top computers (often referred to as

'workstations') that equal the power of many mini

computers can be found by browsing through the

advertisements in many of today's computer magazines.

Often costing less than £3000, these new workstations are

already appearing ina number of well funded educational

establishments. As the ratio of computer power to cost

steadily improves the spread of these machines into all

sectors of education seems inevitable, beginning with

colleges and universities and later into schools also.

In the next five years the computers that will be

available to education will probably have 5 to 10

Megabytes of memory as a standard configuration and will

be driven by not one microprocessor but an array of

parallel processors integrated into a device called a

transputer.

Yet, at the present time, while many colleges and

universities enjoy using 'state of the art' technology, a

great many schools are still making do with the computers

that are technically obsolete. For the many schools that

are faced with financial difficulty, the BBC micro

computer will continue to dominate classroom computing.

With no apparent successor having the same extent of

software support, 'it is understandable that this should be

the case.

So, taking a realistic view, there will probably be

three types of computer in use in education for the

foreseeable future:

1. Micro-computers (like the R.M. Nimbus, for example)

with a 16 bit microprocessor, 640 K bytes of main

memory and a floppy disk. Such machines will

become the standard computer for many primary and

secondary schools.

116

2. Personal workstations, typically using a 32 bit

microprocessor, or even in some cases a transputer,

with a 60 M byte hard disk, floppy disk and

probably 5 M bytes of main memory. Such machines

will be found in most colleges and universities,

and in smaller numbers in well funded schools.

3. Mainframe 'super-computers' will mainly be used by

institutions undertaking research work.

Peripheral Devices.

computer Displays

Modern computer displays are based on an ageing

cathode ray tube (C.R.T.) technology, with the picture

produced by scanning an electron beam across a matrix of

phosphor dots in a similar way to the domestic television

system.

A successor to the C. R. T. based display system is

emerging. Liquid crystal and gas-plasma technology is

providing a more compact and more efficient display method

for computer generated text and graphics and is now used

on many lap-top and portable computers. As yet, this

technology does not support colour display or large screen

sizes, but it is expected that in the foreseeable future

these problems will be overcome.

Storage Devices

Future computers are not likely to abandon the

magnetic storage techniques that are presently the

mainstay of computer backing store. Magnetic technology

has been refined and developed to offer a cheap, reliable

way of storing small to medium volumes (up to 60 Mega

bytes) of data quickly and conveniently on the types of

computer currently found in education. This position of

supremacy is however, under threat from a newcomer.

117

The presence of a large market for audio compact

disks has produced vigorous development work in the use of

optical devices as a storage medium, yielding CD-ROM

(Compact Disk-Read Only Memory). Being a read only

device, CD-ROM suffers from the limitation that data,

and hence information, must be recorded onto it at the

time of manufacture. CD-ROM's greatest attraction is that

a massive 600 M bytes of data can be stored on a single

disk. Hardware is currently available to allow IBM PC and

PS/2 machines to read CD-ROM.

As yet however, CD-ROM technology is not widely

used, although examples of its application are increasing.

Hampshire (1989) reports that over 2000 different CD-ROM

titles are currently available, with a world-wide user

base of around 70,000. He points out that the majority of

the available disks hold special purpose information, e.g.

the entire parts catalogue for Nissan Motor dealers. Very

few CD-ROM titles appeal to general or educational users

but there are notable exceptions: the complete Oxford

English Dictionary is now available on CD-ROM from Oxford

University Press and the software giant, "Microsoft," is

currently releasing its entire programmer's reference and

a small business resource disk on CD-ROM.

With prices currently at £600 for an internal CD

drive and interface card, the technology is affordable to

education. As more and more general information is made

available on CD-ROM it will provide a valuable information

resource: the availability of census data, public records

and so on will provide teachers with an important

information tool in many areas of the curriculum in much

the same way as conventional databases are used in schools

today.

118

Development in the field of optical disk technology

is currently pursuing the goal of producing optical disks

that offer read and write capability. When this goal has

been achieved, then optical storage may well displace

magnetic methods as the mainstay of computer backing

store. Until this happens, computers will, in the near

future, have three classes of memory: main

memory (employing microelectronics), backing store (using

traditional magnetic media) and a new 'mass store' using

optical disk.

Input Devices and Computer Interaction.

Researchers are increasingly directing their efforts

towards the problems of designing systems that are easy

to use by computer experts and novices alike. Hence, as

many computer users in education are not necessarily

computer experts, developments in the field interaction

device technology are of particular interest.

Pointing Devices

The mouse, used as a pointing device, has become an

important communication mechanism for computer users. In

fact for many selection type tasks the mouse is probably

used more naturally and easily that the traditional

computer input method: the keyboard.

Keyboards

Keyboards present a major interaction obstacle to

novice computer users. Shneiderman (1987) notes that the

DVORAK layout keyboard can be learned in about one third

of the time that it takes to learn to conventional QWERTY

keyboard. It remains inconceivable that the population of

QWERTY users would learn a new keyboard layout:

standardisation appears to have penalised new users for

some time to come. On the theme of textual input, Peled

(1987) speculates that a typical personal computer of the

119

next decade may well allow the user to "write" onto a flat

liquid crystal type display. The computer will then

recognise the characters and translate them into commands,

text or drawings.

Speech

Because speech is our (human) natural means of

communication, it is highly desirable to use it as a

method of computer interaction. Bailey (1984) describes

how speech output can be generated the computer either by

storing digitised speech on disk or in memory which can be

randomly accessed for playback, or by synthesising speech

using coded digital information: the Texas Instruments

"Speak & Spell" toy is an example of this approach.

Digitally stored natural speech, which has been possible

for a number of years, has received little attention to

date because of the requirement for vast amounts of memory

needed to store just a few seconds of speech. However, now

that microelectronic techniques have evolved to a suitable

level, and very large scale integration memory devices are

a reality, it is likely that this form of computer speech

generation will receive renewed interest.

Speech input on the other hand, is still very much in

its infancy. To get a computer to recognise even a small

vocabulary of spoken English words requires vast amounts

of memory and processor power. The difficulty of such a

task is not fully appreciated until one considers the

range of variations in speech (different vocal properties,

dialect and syntax) that the computer must be equipped to

deal with before speech input can be truly realised.

Despite these and other difficulties, researchers are

making progress. Peled (1987) reports that a team working

at IBM Research have developed a computer system that is

capable of recognising 20,000 different words, provided

that the speaker takes brief pauses between words.

120

The system that achieves this uses a program that

" ... comprises 60 milli6n instructions" and uses four

specialised microprocessors and an IBM PC/AT. Peled

states that " ... four years ago such a computer would have

occupied a room: in five years it will probably take up

less space than a card."

Simply in terms of making human computer interaction

a more natural process, many educational technologists

eagerly await the arrival of speech input and output.

Interactive Video.

In a similar way to audio discs, optical storage is

being used for video applications, allowing Borne 50,000

picture images to be stored on a laser disk. The

combination of computer control and laser disk images is

seen by many as the perfect combination for achieving

successful computer based training.

Wood (1989) reports that interactive video (I.V.) is

becoming "an attractive alternative to classroom based

training for larger organisations." Wood sees the major

advantage of I.V. over classroom and traditional computer

based training as being its compactness. By setting up an

I.V. station in the corner of the office, training can be

delivered to those who need it at their place of work. He

also suggests that I. V. offers other advantages over

traditional C.B.T: its quality of image presentation

allows a more realistic view of the world to be painted

than is achieved using computer graphics.

O'Neill (1987) explains the advantages of LV. in

terms of its quality compared to a number of other

'traditional' learning methods. He sees I.V. technology,

coupled with Computer Assisted Learning, as providing
,

effective learning through active engagement of the

learner, and higher motivation due to the learner

121

controlling his own rate of progress. Unfortunately,

these claims have been heard many times about many

educational tools (Programmed Learning and CAL to name

two). It is easy to see why sceptics simply dismiss I.V.

as another fad.

In direct opposition to the above views, O'Shea and

Self (1983) cast doubt on the value of I.V. They claim:

" ... the videodisk encourages the freezing of chunks

of teaching material and a reversal to modes of

teaching which have not been found effective."

Although this view is valid when considering the use

of videodisk as a reception-based learning medium, it does

not apply if the videodisk is employed as a library of

images to be controlled and ordered by a student. Used as

an image resource coupled with a hypertext type system

(discussed later), I. V. has a lot to offer to those who

can afford the high price. Furthermore, I.V. offers a

valuable teaching method for certain vocational and skills

training activities: as such it will be of interest to

those involved in Further Education.

Software Developments.

As computer memory capacity increases and processor

uni ts become faster, the software used on microprocessor

based machines will become increasingly more

sophisticated: programmers, and authors, will gradually be

freed of the constraints of working with inefficient

hardware.

The face of computer

changing beyond recognition.

programming in general is

Powerful so-called 'CASE'

(Computer Aided Software Engineering) environments are

122

becoming increasingly available to enable commercial

software producers to automate virtually every step of the

software life cycle (BYTE Editorial Staff, 1989). Armed

with these software tools, Jones (1987) believes that

programmers will become more productive and turn out more

reliable code.

Authoring Software.

It would appear that Barker (1989) expects the trends

emerging in commercial computing to be reflected in the

next generation of "authoring environment." He identifies

key elements of such an environment as comprising

facili ties for: window management, interface device

handling; database utilities; and code generation.

Interestingly, Barker also identifies a need for the

authoring environment to be able to represent knowledge

based structures.

In the light of the educational software production

problem identified by Nicholson and Scott (1986), perhaps

the authoring environments of the future will be able to

assist in combating the educational software shortage

without imposing a sacrifice of quality.

Hypertext Software.

Interest is also emerging in an entirely new form of

software that offers great potential for educational

computing: hypertext systems. These systems are not easy

to define, for they do not fit into any existing

educational software paradigm. They are quite unique. Put

in simple terms, they allow non-linearly arranged items of

information to be linked by an author and then browsed by

the learner. It is this freedom to "travel through" an

information resource that sets hypertext apart from other

educational software. Known producers of hypertext-like

sys terns are: Apple (HyperCard); I. B . M. (LinkWay); and

Xerox (NoteCards).

123

The educational use of hypertext systems is still in

its infancy. Nevertheless, concern is already being voiced

that hypertext systems will challenge our understanding of

the already weak areas of cognitive theory in learning and

the internalisation and organisation of knowledge (Fischer

and Weyer 1988). Even so, research into the use of

hypertext type systems promises to yield fresh insights

into the organisation and delivery of learning material,

if not the nature of learning itself.

Artificial Intelligence.

An emerging area of research within the field of

educational computing is that of intelligent computer

assisted instruction (!CA!). The characteristics of !CA!

differ considerably from the traditional form of CA!.

Traditional CA! is structured procedurally and has no

representation of the relationships that exist between the

elements of knowledge held. !CA! software however, uses

artificial intelligence principles and thus educational

content is based on the definition of subject knowledge

and the representation of relationships that exist

between elements. The resultant knowledge structure is

assessed by some type of inference engine.

By its very nature, !CA! appears to offer the means

to break the stranglehold of behavioural forms of CAL.

!CA! has the ability to replace the question-answer

approach to learning with a process that engages the

student in a learning conversation, where the computer

generates a problem and then guides the student through a

problem solving process to reach a solution. Using

artificial intelligence techniques, the computer is able

to tailor responses to meet the individual needs of the

student: the pre-defined feedback offered by traditional

CA! cannot.

124

The essence of lCAI systems, may best be summarised

by borrowing the words of Park, Perez and Seidel (1987

p.15), who describe that ICAI attempts to produce a

learning system that allows both the student and the

system a flexibility in the learning environment that

closely resembles what actually occurs when student and

teacher sit down one-to-one and attempt to teach and learn

together."

There are many examples of prototypic ICAI systems to

be found. An informative summary of these is presented by

Park, Perez and Seidel (1987, pp.22-23). Examples worthy

of note are: A self improving quadratic tutor (0' Shea,

1979); SOPHIE, an attempt at creating a "reactive learning

environment.. Brown, Burton and Bell,1975); WEST, an

arithmetic tutor in a game environment (Burton and Brown,

1979); GUIDON, a program for teaching medical diagnostics

(C1ancy 1979).

Ridgeway (1988) is critical of lCAl systems, and

warns that would-be implementors must guard against the

following pitfalls:

- ICAI may well result in the substitution of machine

experts for teachers.

- ICAI could devalue human-human communication, with

the emphasis of one learner to a computer reducing

the perceived value of group work.

- links between artificial intelligence and cognitive

psychology may produce a devaluation of creative

activities such as music composition or painting.

Clearly, although there is cause for excitement

concerning the developments that are taking place in

applying artificial intelligence techniques to the

production of educational software, the resulting ICAI

must not become regarded as a panacea for the present ills

of CAL.

125

Developments Within Education.

Probably the most important organisational issue

concerning authors of educational software is that of the

curriculum, if their output is to be used in the

classroom. In order to foresee what forms of curriculum

development might occur in the future, it is appropriate

at this point to consider three possible developments, as

described by Dunn and Morgan (1987).

Firstly, Dunn and Morgan suggest " ... a small-scale non

revolutionary change within an accepted curricular

tradition or structure." To some extent, this is already

evident: computers are being used by many teachers to

supplement their existing teaching. Unfortunately, much

of the Computer Assisted Learning (CALl software currently

available is quite limited. CAL is seen by many teachers

merely as computerised drill and practice. There is,

therefore, a danger that if computer based learning

continues to be used in its present form, as a supplement

to existing methods of teaching, the curriculum of the

future will become more prescriptive, discouraging the

development of thinking skills, originality and

innovation, and encouraging conformity and uniformity.

The second possible change that Dunn and Morgan

identify is concerned with " ... the breaking down to some

extent of the academic subject based structures." For

such a change to take place, educators must recognise

that there is a significant degree of overlap between many

subject areas and that the compartmentalisation of bodies

of knowledge (Mathematics, Geography or SCience, for

example) is artificial and destructive to the long term

needs of the learner. I share Dunn and Morgan I shope

that new technology will be the catalyst that allows the

subject boundaries to be re-defined.

126

Their third change suggests a" ... radical evaluation

of new curricular forms." The basis for such a suggestion

lies in the explosive potential of the new technology

itself. Dunn and Morgan contend that the, as yet, unseen

dimensions of information technology will bring new forms

of knowledge and suggest that " ... the power to access and

manage data of enormous complexity will allow the

development of new combinations of information, skills and

mental processes." This may seem to be a romantic view at

the present time, but given the explosive rate at which

change is taking place in technology, we should not be so

eager to dismiss such an opinion.

Uses of Computing and Technology in Schools.

Having considered the broader issue of the

curriculum, it is appropriate to turn and look at the

educational role of the computer in the school and college

setting.

The software produced to date has not made full use

of the computer's ability to interact with the learner. A

recent comment on the current state of software is made

by Nicho~son and Scott (1986), who believe that the use of

the computer as an every day teaching tool is threatened

by a lack of high quality software. It is a well

documented complaint (e.g. Hawkridge 1983 p.87, Maddison

1983 p.7).

A possible explanation for this sad state of affairs

is that educational software, on a large scale, is not

seen as profitable and hence worthwhile by commercial

producers. This point is supported by Nicholson and Scott

(1986):

"A commercial organisation can only indulge in

such a costly exercise if sales remain at high

volume over a long period. Unfortunately sales

127

are low - a school will buy only one copy of a

program compared with ten or more of a textbook

and life expectancy is short, given the pace of

hardware development. Few educational publishers

are now willing to risk CAL publication."

As a result, much of our present software is being

written by enthusiastic amateurs. A solution is offered by

Nicholson (19B7), who in his paper, "A Short Term Plan for

CAL," offers a " ... survival scheme" for remedying the

current software problems within the next 5 years (taking

us up to 1992 I). Essentially, his plan calls for:-

making the most of current hardware and resources.

planning actively for the replacement of hardware

and software after around 1991.

What Nicholson fails to indicate however, is who

should be implementing his plan. It must be assumed that

his hopes rest with the teacher. For such a plan to

succeed, it is important that work that was funded by the

MEP, i. e. implanting skills and knowledge into our

schools, is not only sustained, but boosted. The future of

CAL is ultimately in the hands of the teacher.

Returning to the theme of artificial intelligence, Neuman

(1987) offers an alternative, and refreshing perspective.

He argues that by developing computer based artificial

intelligence systems, a greater understanding of the

processes involved in thinking will be acquired. He argues

that by understanding how students learn we will find the

means to " re-vitalise the curriculum." In line with Dunn

and Morgan's third suggested change in the curriculum, I

believe that it is this type of approach that researchers

in education should adopt to bring learning and teaching

into a new era.

128

- .

~~_ $oO~~c~~?~Et..I.a.<;~, c~~_'t1l.S.
:==:c~.:o:-,~_~~~~- ____ =_,-- _____ _

~~c:cc=~N-~~~~~A .A~~\A, __ -.::-:~'1-~,",
=:..::..:.==~ -~=~--=--:::...- ---=-=.=-" -- ---

---- - -~

--<t.-,4 ;- -... 'i,1 J I J.~ :; . ::0>2 -,23

2<j- I '2 >, ;i{o~i~G.-5':h. 4<-r4-It
I ,

: -- - -~

An Agenda for the Future.

In the light of the above developments, education

must review its objectives and methodologies in order to

serve the changing society to which it belongs. My aim, in

providing this summary is not to offer predictions, but to

point towards a pathway that educators must take. The

points listed below are, therefore, an agenda for the

future.

Preparing for Change:

Accepting that the curriculum will inevitably change

as a result of computers being adopted as a cross

discipline tool, greater levels of co-operation and

exchange of ideas are needed between members of staff

within schools and colleges. This will assist in

preparing for the inevitable change in the role of the

teacher, from dispenser of knowledge to that of learning

guide.

Teacher Training:

Ultimately, it is the teacher in the classroom who

has the task of implementing, or in some cases producing

computer assisted learning material. Hence the training,

and re-training of teachers to fulfil this role is of

vital importance to ensure that this objective is

realised. It is important to recognise that many serving

teachers have had little or no experience in the use of

computers or new technology. To raise levels of awareness

and competency, LEA' s must act quickly, to provide

suitable training, not only as a short term remedy, but as

an on-going commitment to ensure that staff remain au-fait

with the rapidly changing technological environment that

they are a part of.

129

Concerning Educational Software:

Presently, there is no money to be made in producing

educational software on a commercial footing. The way

forward, until educational courseware does become viable

is for Local authorities to set up courseware development

teams to work with teachers to produce quality not

quantity material.

Resources and Funding:

The educational establishment will come under

increasing pressure not to be outpaced by technology.

Computers, with technology advancing at its present rate,

should be replaced after four years. Finding the money to

do so will be a major problem. With government pressure

and 'incentives' to encourage schools to opt out of local

authority control, those schools who cannot raise

sufficient funds will lag behind, eventually being unable

to offer the high-tech environment that many students and

their parents will come to expect. National schemes to

support schools must continue to ensure that this does not

happen. The experiences gained from the Department of

Industry and MEP schemes must be used to get it right next

time.

Policy Making:

In order to ensure the formulation of effective

policies for the future, there is a need to provide a

forum where those who have an interest in the future of

education can meet and exchange ideas. It is anticipated

that those who should be involved in such a forum, or

perhaps, network of forums are:

130

- representatives of local government.

- education officers.

- representatives of examining bodies.

- members of the teaching profession.

- representatives from industry and commerce.

- representatives of student bodies.

computers are bound to have profound and as yet

unforeseen effects on how learning takes place in schools

and colleges in the future. Therefore, we must go out

and meet the future before it meets us, we must plan for

change, not wait for it to happen ...

131

Bibliography.

Albert, A. E. (1982) "The Effects of Graphic Input Devices

on Performance in a Cursor Positioning Task", in R.G.

Edwards (ed.) Proceedings of the Human Factors

Society 26th. Annual Meeting, The Human Factors

Society:Santa Monica.

Alpert, D. (1975) "The PLATO IV System in Use:

Report" in O. Lecarme and R. Lewis (eds.)

in Education, IFIP: North-Holland.

A Progress

Computers

Armstrong, P.K. (1987) CAL Modes: Classifica tions, Paper

given as part of the M.Sc. in Computer

Education:Loughborough University (unpublished).

Ausubel, D.P. (1963) "Reception Learning and the Rote

Meaningful Dimension" in E. Stones (ed.) Readings in

Educational Psychology, Methuen & Co. : London.

Bailey, P. (1984) "Speech Communication: The Problem and

Some Solutions" in A.Monk (ed.) Fundamentals of Human

Computer Interaction, Academic Press: London.

Barker, P. (1989) "Authoring for DELTA", Education and

Training Technology International, Vol. 26 No. 3 pp.

175-185.

Bell,M. (1985) "The Coventry Computer Based Learning

Project", Programmed Learning and Educational

Technology, Vol.22 No.3 pp.218-223.

Bell, D., Morrey, I. and Pugh, J. (1987) Software

Engineering: A programming Approach, Prentice-

Hall:London. 00\ 5:"'

132

Bitzer, D.L., Braunfield, P.G. and Lichtenberger, W.W.

(1962) "PLATO 11: A Multiple Student, Computer

Controlled Automatic Teaching Device" in J.E. Coulson

(ed.) Programmed Learning and Computer Based

Instruction, Wiley:New York. 7,,"'1- 1 • '3'1 'I-'f-

Bosser, T. (19B7) Learning in Man-Computer Int.eract.ion,

Springer-Verlag:Berlin.

Bork A. (19B4) "Producing Computer Based Learning Material

at the Educational Technology Center", The Journal of

Computer Based Educat.ion, Vol. 11, No.4. pp.7B-Bl.

Brown, J.S., Burton, R.R. and Bell, A.G. (1975) "SOPHIE: A

Step Towards a Reactive Learning Environment",

Int.ernat.iona1 Journal of Man-Machine St.udies, Vol. 7

pp. 675-696.

Bruner, J.S. (19BB) "Instruction and Learning" in A.Jones

& P.Scrimshaw (eds.) Comput.er Educat.ion 5-13, Open

Uni versi ty Press :Mil ton Keynes. """'to .. .<! -\

Bunderson, C.V. (1974) "The Design and Production of

Learner Controlled Courseware for the TICCIT System:

A Progress Report", In t.ernat.iona1 Journal of Man

Machine St.udies, Vo1.6 pp.479-491. se .. ·~\ ","'\.s

Bunderson, C.V. (19B1) "Courseware" in H.F. O'Neil (ed.)

Comput.er Based Inst.ruct.ion: A St.a te of t.he Art.

Assesement., Academic Press:New York.

Burton, R.R. and Brown, J.S. (1979) "An Investigation of

Computer Coaching for Informal Learning Acti vi ties" ,

Int.ernat.iona1 Journal of Man-Machine St.udies, Vol. 11

pp. 5-24. ~.e~""~' ,,0\·5

133

BYTE Editorial Staff (1989)

BYTE, Vol. 14 No. 13 pp.

"Making a Case for CASE",

154-171. . S"'-~ 0 C> (• (..

Chambers, J.A. and Sprecher, J.W. (1983) Computer

Assisted Instruction: Its Use in the Classroom,

Prentice-Hall: New Jersey. '>?r(- '3"1 't'l '5'"

Chandler, D. (1984) Young Learners and the

Microcomputer, Open University Press :Mil ton Keynes.'!> "1-1· ~cr '(-« 'I

Clancy, W.J. (1979) "Tutoring Rules for a Case-Method

Dialogue", International Journal of Man-Machine

Studies, Vol. 11 pp. 25-49. s.",.,.~ O<>(.S-

Clement, D. (1984) "The Role of Documentation in Human

Computer Interaction", in G. Salvendy (ed.) Human

Computer Interaction, Elsevier: Amsterdam. ;< 0<7 1."'(

/r Coleman, M. & Pratt, S. (1986) Software Engineering

Chartwell-Bratt: Sweden. '06 / • b4>- ~.

for ,
Students,

E.L. (1989) The Design of Computer Based

Instruction, Macmillan:New York. 1"1-(' ~"1't'+ ~

Crowder, N. (1959) "Automatic Teaching By Means of

Intrinsic Programming" in E. Galanter (ed.) Automatic

Teaching: The State of the Art, Wiley-Hill.

Dean, C. and Whitlock, Q. (1984) A Handbook of Computer

Based Training, Kogan page:London. S,,\-I.'l"\"·,+s"

Dunn, S. and Morgan, V. (1987) The Impact of the Computer

on Education, Prentice-Hall:London. 't,':'\O.O'l.~~

Fairweather P.G and O'Neal A.F. (1984) "The Impact of

Advanced Authoring Systems on CAI Productivity" in

The Journal of Computer Based Education, Vol. 11

No.3. pp. 90-94.

134

Fischer, G. and Weyer, S.A. (1988) "A Critical Assesement

of Hypertext Systems", in Proceedings of the CHI' BB

Conference: Association for Computing Machinery.

Flesch, R.F. (1948) "A New Readability Yardstick", Journal

of Applied Psychology, No. 32 pp. 221-233.

Freer,D. (1986) "PLATO Across the Curriculum:An Evaluation

of a Project", Progra11l1lled Learning and Educational

Technology, Vol. 23 No.1 pp. 71-75. .:;Cl'" \ 1.""'rV

Fry, E.B. (1977) "Fry's Readability Graph: Clarifications,

Validity", Journal of Reading, No. 21 pp. 242-252.

Gagne, R.M. (1985) The Conditions of Learning and Theory

of Instruction, Holt Saunders:New York.

Goodwin, N.C.(1987) "Functionality and Useability",

C011l1llunications of the A.C.M., Vol. 30 No. 3 pp. 229 -

233.

'0 Green, D.R. (1988) "Design and Evaluation of Educational

Software", Coursenotes for the M. Sc. in Computer

Education, Loughborough University of Technology

(unpublished) .

'2 Hammond, N. and Barnard, P. (1984)"Dialogue Design: ,
Characteristics of Human Knowledge", in A. Monk (ed.)

Fundamentals of Human-Computer Interaction, Academic

Press: London. O(!) \ ,,. .. V-+ 0 't-

Hampshire, N. (1989) "Mass Media", Personal Computer

World, Vol. 12 No. 4.

Hartley, J.R. (1987) "The Innovation of Computer Assisted

Learning", British Journal of Educational Technology,

Vol.18 No.3 pp.210-220. :5e~v-\ ,,"ID

135

b

Hawkridge, D. (1983) New Information Technology in

Education, Croom Helm:London.

Hetzel w. (1985) The Complete Guide to Software Testing,

CoUins.

Hilgard,E.R. (1958) Theories of Learning, Methuen &

Co. : London. I 5'" . \ ~

Hooper, R. (1977) "An Introduction to the National

Development Programme in Computer Assisted Learning",

British Journal of Educational Technology, Vol.8 No.3

pp.165-173. ~ "", !.?'O

Hulme, C. (1984) "Reading: Extracting Information from

Printed and Electronically Presented Text", in A.Monk

(ed.) Fundamentals of Human-Computer Interaction,

Academic Press:London. oC> \ . ~4-«''''f

/7 Isaacs, G. (1987) "Text Screen Design for Computer

Assisted Learning", British Journal of Educational

Technology, Vol. 18 No. 1 pp. 41-51. 5<v· ' :''1"",

Jones, R. (1987) "Software Engineering: Pack Up Your

Troubles in a CASE Environment", Computing, November

26th, 1987 pp. 28-30. 601 ... '\" ~

Kearsley, G. (1985) "Automation in Training and

Education", Human Factors, Vol.27 No.1 pp.61-74.

Kearsley, G. (1986) Authoring: A Guide to Instructional

Software, Addison-Wesley: Reading , MA.

? Kearsley, G.P. and Hillelsohn, M.J. (1982) "Human Factors

Considerations for Computer Based Training", Journal

of Computer Based Instruction, Vol. 8 No.4 pp. 74-84.

136

7 Keller, A. (1987) When Machines Teach, Harper & Row:New

York.

7 Kemmis,S.,Atkin,R.,and Wright,E. (1977) "How Do Students
'-' Learn ?" Working Papers on Computer Assisted Learning

Occasional Paper No. 5, Centre for Applied Research

in Education:University of East Anglia.

Klass, R. (1984), "The TenCORE Language and Authoring

System for the IBM Personal Computer", The Journal of

Computer Based Education, Vol.ll No. 3.

Lay, R. W. (1981) "Basic Techniques for Teaching BASIC",

in R. Lewis & D. Tagg (eds.) Computers in Education,

North-Holland.

Lindquist, T.E. (1985) "Assesing the Usability of Human

Computer Interfaces", IEEE Software, January 1985,
pp. 74-82. S",.,.r.-\ OQl ~ Cc

MacDonald, B. (1977) "The Educational Evaluation of

NOPCAL", British Journal of Educational Technology,

Vol.8 No.3 pp.176-189. O;-c~'lt>-l ;'!'b

Maddison, J. (1983) Education in the Microelectronics Era,

Open University Press:Milton Keynes.

Morrison, F. (1975) "Planning a Large Scale

Assisted Instruction Installation: The

Experience" in O. Lecarme and R. Lewis

Computer

TICCIT

(eds.)

Computers in Education: Proceedings of the IFIP 2nd.

World Conference, North-Holland.

Neuman, M. (1987) "The Computer and Thinking Skills:

Rationale for a Re-vitalised Curriculum", AFIPS

Conference

Press:Virginia.

Proceedings,

137

Vol. 56. AFIPS

Nicholson, R.I. (1987) "A Short Term Plan for CAL",

Journal of Computer Assisted Learning, No. 3 pp. 81-
88. 7"'~- v-l ,,<-P

Nicholson, R.I. and Scott, P.J. (1986) "Computers and

Education: the Software Production Problem", British

Journal of Educational Technology, Vol. 17 No. 1.

pp.26-34.

Norman, D. A. (1984) "Cognitive Engineering Principles in

the Design of Human-Computer Interfaces", in G.

Salvendy (ed.) Human-Computer Interaction,

Elsevier:Amsterdam. 00 \ -1 0,+

Norman, D.A. (1986) "Cognitive Engineering" in D.A. Norman

and S. W. Draper (eds.) User Centred System Design,

Lawrence Erlbaum Associates: New Jersey. 0 <:> \ • ""I.j-

O'Neill, G. (1987) "Interactive Video as an Aid to

Learning", Programmed Learning and Educational

Technology, Vol.24 No.2 pp. 137-144. S 1~

O'Shea, T.(1979) "A Self-Improving Quadratic Tutor",

International Journal of Man-Machine Studies, Vol.11

pp. 97-124. s 0" \. ~

0' Shea, T. and Sel f, J. (1883) Learning and Teaching wi th

Computers, Harvester Press: Brighton. "S"t"I- 5"1 -<. -t s

Park, 0., Perez, R.S. and Seidel, R.J. (1987) "Intelligent

CAI:- Old Wine in New Bottles, or a New Vintage ?",

in G. Kearsley (ed.) Artificial Intelligence and

Instruction: Applications and Methods, Addison

Wesley: Reading, M.A. -;,-..:-'\.. "'!."I-I-"rS"'

Peled, A. (1987) "The Next Computer Revolution",

Scientific American, Vol. 257 No.4 pp. 35-42.

138

1

Pogue, R. E. (1980), "The Authoring System: Interface

Between Author and Computer", Journal of

Research and Development in Education, Vol. 14 No. 1.

pp. 57 - 68.

Potosnak, K. (1988) "Recipe for a Usability Test", in

I.E.E.E. Software, November 1988, pp. 83-84. Sool.",

Richmond, W.K. (1965) Teachers and Machines,

Collins:London.

Ridgeway, J. (1988) "Of Course ICAI is Impossible ... Worse

Though It Might Be Seditious", in J.Self (ed.)

Artificial Intelligence and Human Learning, Chapman &
Hall: London. ~,:\.\ . '1'1 y '+)

Romiszowski, A.J. (1981) Designing Instructional Systems,
Kogan Page: London. ... -::\- '5 ... 0 \

Schneider, G. M. and Bruell, S.C.

Programming and Problem Solving

Wiley: New York. 00 \ ~ (" It">-t

(1981) Advanced

with Pascal, John

Self, J.(1987) "The Institutionalisation of Mediocrity and

the Influence of Outsiders", in E.Scanlon & T. O'Shea

(eds.) Educa tional Computing, Wiley: Chichester. '1 "i't) • ",-..as'tl-

Sheppard, S. (1983) "Applying Software Engineering to

Simulation", Simulation, Vol. 40 No. 1, pp. 13-19.

,Sherwood, B. (1987) "Bridging the Computer-User Gap",

AFIPS Conference Proceedings, Vol. 56 pp. 185-192.
:;e_-u. \ ,,0 I • ~~.

V '7, Shneiderman, B. (1987) DeSigning the User Interface:

Strategies for Effective Human-Computer Interaction,

Addison-Wesley:Reading M.A. a 0 \ -I.,.(-'+- c'l-

139

Skinner, B.F. (1954) "The Science of Learning and the Art

of Teaching", Harvard Educational Review, Vol.24

pp.86-97.

Skinner, B . F . (1958) "Teaching Machine", Science, Vol. 128

pp. 969-977.

Skinner, B.F. (1961) "Teaching Machines",

American No. 205, pp 90-102.

Steinberg, E. R. Teaching Computers to Teach,

ErlbaUm:New Jersey. ~-:t-l' "}c('f'f:s""

Scientific

Lawrence

Strawford, G. (1988) Authoring Packages: a Comparative

Report, N.I.V.C:London.

v ~ Sullivan, M.A. and Chapanis, A. (1983) "Human Factoring a

Text Editor Manual", Behaviour and Information

Technology, Vol.2 No. 2 pp.113-125.

Tenczar, P. (1981) "CAI Evolution: Mainframe to Micro" in

R.P. Zimmer (ed.) Proceedings on the International

Conference on Cybernetics and Society, IEEE:New

York. pp.443-448.

0.. Van

u

Nes, F.L. (1986) "Space, Colour and Typography on

Visual Display Terminals", Behaviour and Information

Technology, Vol. 5 No. 2 pp. 99-118. ~c~" \ cO I • \..

Wellington J.J (1985). Children, Computers and the

Curriculum, Harper & Row:London.

Winfield, I. (1986) Human Resources and Computing,

Heinemann:London. n~\' b~

140

Whiteside, J., Jones,S., Levy, P.S., and Wixon, D. (1985)

"User Performance with Command, Menu, and

Iconic Interfaces", Proceedings of CHI '85 Human

Factors in Computing Systems, A.C.M.: New York.

Whiting, J. (1989) "An Evaluation of Some Conunon CAL and

CBT Authoring Styles", Educational & Training

Technology International, Vo1.26 No. 3 pp. 186-200. S ~"'H,)
!;:QV

Wood, R. (1989) "Interactive Video: The Future of

Training", Training and Development, January 1989 p.

26.

141

Appendix A.

Suppliers of the authoring packages surveyed in Chapter 2.

Crystal.

Produced by:

Mentor 11.

Produced by:

Mlcrotext.

Produced by:

ProCAL.

Produced by:

Intelligent Environments Ltd.,
Northumberland House,

15 - 19 Petersham Road,

Richmond,
Surrey.

TW10 6TP.

Mentor Interactive Training Ltd.,

Colonnade,

Sunbridge Road,

Bradford.

BD1 2LQ.

Transdata,

61 Lever Street,

London.

VPS Interactive Ltd.

22 Brighton Square,

Brighton.

BN1 1HD.

142

TenCORE.

Supplied by:

Top Class.

Produced by:

Unison.

Supplied by:

Systems Interactive Ltd.

235/245 Goswell Road,

Islington,

London.

Format PC Ltd.,

Goods Wharf,

Goods Road,

Belper,

Derbyshire.

Castle Learning Systems,

P.O. Box 741,

Chelmsford,

Essex.

CM2 9UL.

143

Appendix B.

The TenCORE Instruction Set.

Listed below are the instructions to be found in the

TenCORE language. The list is grouped by function.

Calculation:

calc

compare

exchang

keytype

packc

setbit

Data Storage:

addnarne

createn

delname

disk

getname

nsdirwr

setname

Display:

at

box

charset

colorg

erase

mode

palette

show

showy

smooth

video

calcc

compute

extin

move

recieve

setc

addrecs

datain

delrecs

dread

idisk

rename

atnurn

bright

circle

dot

fill

options

rotate

showa

size

spacing

window

144

calcs

date

ex tout

nocheck

return

transfr

attach

dataout

destroy

dwrite

memory

renamef

beep

charloc

color

draw

,image

origin

scale

showh

sixex

status

write

clock

define

find

pack

set

zero

created

ddisk

detach

files

names

resizef

blink

chars

colore

ellipse

margin

page

screen

showt

sizey

thick

writec

Judging

answer arrow endarrow exact

exactno ignore no ok

store storen wrong

Judging Modification

blanks copy exit holdno
holdok jkey jkeyx judge
loada long nomark noorder
nospell okextra okspell put
putlow rejudge storea

Sequencing

asmcall back BACK backop

BACKOP base branch cstop
data DATA dataop DATAOP

delay do doto else

elseif endif endloop error

exec exitsys goto help
HELP helpop HELPOP if

index INDEX indexop INDEXOP

intcall jump jumpop library
loop next NEXT nextop
NEXTOP outloop pause quit
QUIT qui top QUI TOP reloop
restart

Miscellaneous:

clearu debug device disable
edisk enable force initial
lesson loadu nextkey noword
okword operate press print

score time use

145

Appendix C.

The TopClass Instruction Set.

The instructions available in the TopClass language fall

into three categories:

DOT commands, which are used to modify the display

presentation.

@ commands, which may be used to control the

running and flow of the program.

GRAPHICS commands, which are an extension of the

DOT commands. They may be used if the computer is

fitted with a graphics adapter.

Only the first three letters of a command are used by the

language interpreter, but the long form of each command is

given (in lower case) to enable the commands to be learned

and recalled.

Dot Commands:

. ARRow . AUDio • BLAnk

.CDRom . CENtre . CLEar

. COLour . FUNction .IN

. INFormation .LET . LOCate

. OUT . PAUse . PLAy

. REAd . RESet .SET

.SINgle .SKIp . SNAp

.SPEach .TIMe .TXT

.USE .WIPe .WRIte

146

@ Conuoands

@CHAin @COMport @DOS

@EQUate @ESSay @GOBack

@GOTo @GRAde @IF

@MACro @ON @OPTion

@QBAnk @RND @SINgle

@STOp @SYStem @TESt

@ Question Commands

@BEGin @END @REAd

@RIGht @TRIes @WROng

Graphics Commands

.CIRcle . DRAw . FONt

.GET . MOVe . PAInt

. PALette . PUT .PSEt

. SCReen

147

