
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Multiparticle collision dynamics simulations of a squirmer in a nematic fluidMultiparticle collision dynamics simulations of a squirmer in a nematic fluid

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1140/epje/s10189-021-00072-3

PUBLISHER

Springer Science and Business Media LLC

VERSION

VoR (Version of Record)

PUBLISHER STATEMENT

This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0
International Licence (CC BY 4.0). Full details of this licence are available at:
https://creativecommons.org/licenses/by/4.0/

LICENCE

CC BY 4.0

REPOSITORY RECORD

Mandal, Shubhadeep, and Marco Mazza. 2021. “Multiparticle Collision Dynamics Simulations of a Squirmer in
a Nematic Fluid”. Loughborough University. https://hdl.handle.net/2134/14547564.v1.

https://lboro.figshare.com/
https://doi.org/10.1140/epje/s10189-021-00072-3


Eur. Phys. J. E           (2021) 44:64 
https://doi.org/10.1140/epje/s10189-021-00072-3

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Flowing Matter

Multiparticle collision dynamics simulations of a squirmer
in a nematic fluid
Shubhadeep Mandal1,2 and Marco G. Mazza2,3,a

1 Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
2 Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
3 Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University,

Leicestershire LE11 3TU, Loughborough, United Kingdom

Received 31 October 2020 / Accepted 16 April 2021
© The Author(s) 2021

Abstract We study the dynamics of a squirmer in a nematic liquid crystal using the multiparticle collision
dynamics (MPCD) method. A recently developed nematic MPCD method [Phys. Rev. E 99, 063319 (2019)]
which employs a tensor order parameter to describe the spatial and temporal variations of the nematic order
is used to simulate the suspending anisotropic fluid. Considering both nematodynamic effects (anisotropic
viscosity and elasticity) and thermal fluctuations, in the present study, we couple the nematic MPCD
algorithm with a molecular dynamics (MD) scheme for the squirmer. A unique feature of the proposed
method is that the nematic order, the fluid, and the squirmer are all represented in a particle-based
framework. To test the applicability of this nematic MPCD-MD method, we simulate the dynamics of a
spherical squirmer with homeotropic surface anchoring conditions in a bulk domain. The importance of
anisotropic viscosity and elasticity on the squirmer’s speed and orientation is studied for different values
of self-propulsion strength and squirmer type (pusher, puller or neutral). In sharp contrast to Newtonian
fluids, the speed of the squirmer in a nematic fluid depends on the squirmer type. Interestingly, the speed
of a strong pusher is smaller in the nematic fluid than for the Newtonian case. The orientational dynamics
of the squirmer in the nematic fluid also shows a non-trivial dependence on the squirmer type. Our results
compare well with existing experimental and numerical data. The full particle-based framework could be
easily extended to model the dynamics of multiple squirmers in anisotropic fluids.

1 Introduction

Microswimmers are natural or artificial self-driven enti-
ties which are capable of converting stored or ambient
energy into a systematic motion in a suspending fluid
medium [1]. Recently, artificial microswimmers have
fascinated several researchers because of their futur-
istic applications in drug delivery, disease monitoring,
minimally invasive surgery, swarm robotics, etc. [2–5].
In order to achieve these technological goals, a major
challenge is to gain control over trajectory and orien-
tation of the microswimmers in complex environments.
These complex environments not only include geomet-
ric complexities, but also the complexity in the rheology
of suspending fluids [6]. Here we are interested in a rhe-
ologically complex fluid, namely nematic liquid crystals
(LCs), having anisotropic viscosity and elasticity [7].

While the dynamics of microswimmers in Newto-
nian fluids are reasonably well studied, the dynamics of
microswimmers in anisotropic and elastic environments
such as LCs were given due consideration only recently
[7–9]. Unlike Newtonian fluids, LCs possess long-range
orientational order due to their asymmetric molecu-
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lar structure. This orientational order gives rise to
anisotropic viscosity and elasticity of the medium which
dramatically alters the behaviour of microswimmers in
an LC medium as compared to a Newtonian medium.
Instead of performing random trajectories in three-
dimensional geometry, recent experiments have shown
that flagellated microorganisms (e.g. E. coli, B. subtilis,
and P. mirabilis) move parallel to the nematic direc-
tor (anisotropy axis) in a biocompatible LC, namely a
solution of water and biocompatible compound DSCG
(disodium cromoglycate) [10–15]. The motion of elon-
gated bacteria parallel to the nematic director can be
explained by the minimization of elastic energy of the
medium around a rodlike body. The orientation of these
elongated bacteria away from the nematic director is
always resisted by an elastic torque. Recently, Lintu-
vuori et al. [16] have studied the reorientation dynamics
of a spherical squirmer in nematic LC and found that at
steady state pushers (pullers) swim parallel (perpendic-
ular) to the nematic director. The analytical calculation
showed that the reorientation dynamics of a spherical
squirmer is governed by a nematodynamic toque asso-
ciate with the squirmer’s flow field and anisotropic vis-
cosity of the suspending medium [16–18]. This unique
behaviour of the microswimmers was utilized to trans-
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port cargo of cells/particles along prescribed pathways
determined by the local nematic director field over long
distances [14,19,20]. More recently, the dynamics of
bacteria in the presence of bounding walls [19,21] and
defects [8,22–26] have been investigated.

A closer look into the theoretical literature shows
that dynamics of microswimmers in LCs have been
investigated using either the lattice Boltzmann method
[16] or finite element method [18]. These methods solve
the nematodynamics but do not include thermal fluc-
tuations. It is well established that thermal fluctua-
tions play an important role in governing the dynamics
of microswimmers in Newtonian fluids. Thus, it would
be quite useful to have a simulation model that can
be used to study microswimmers in combined pres-
ence of nematodynamic effects and thermal fluctua-
tions. Towards this, the multiparticle collision dynam-
ics (MPCD) seems quite promising. MPCD, originally
proposed by Malevanets and Kapral as stochastic rota-
tion dynamics (SRD) [27], is a mesoscopic particle-
based simulation method for fluids [28,29]. Alternat-
ing streaming and collision steps are performed in such
a way that mass, momentum and energy (or tem-
perature) are conserved locally so that at long time
and large length-scale the Navier-Stokes hydrodynam-
ics with thermal fluctuations is recovered. The particle
nature of the MPCD method makes it quite successful
in solving several nonequilibrium soft matter systems
ranging from colloids [30], viscoelastic fluids and poly-
mers [31,32], liquid crystals [33,34], binary fluids [35],
biological cells and vesicles [36], and microswimmers
[37,38]. Recently, we have extended the multiparticle
collision dynamics (MPCD) method for nematic LCs
by combining anisotropic viscosity, elasticity and ther-
mal fluctuations [39]. This nematic MPCD model which
incorporates the tensorial nematic orinetational order
is more general than other fluctuating nematodynam-
ics models [33,34]. In the present study, we build on our
model and incorporate a moving squirmer in nematic
LCs. Our goal is to produce a full particle-based simu-
lation technique for microswimmers in nematic LCs.

2 Model

In the following we provide a detail description of the
nematic MPCD-MD algorithm which we use to study
the dynamics of a squirmer moving in a nematic LC
medium.

2.1 Modelling of nematic LC: nematic MPCD
algorithm

2.1.1 System description

The basic MPCD method employs pointlike particles
to represent the fluid. These particles are not fluid
molecules rather they represent a parcel of fluid. To
describe a Newtonian fluid on a coarse-grained level,

(a) (b)
a0

n

Fig. 1 a Schematic representation of the distribution
of nematic director field around a spherical particle in
unbounded domain. Homeotropic anchoring leads to the for-
mation of a Saturn ring around the spherical inclusion. b
Schematic representation of a squirmer (with radius R and
orientation e) in a fluid. The fluid particles are presented
by black dots, while the virtual particles are represented by
red dots. The bulk director field, n, is oriented along the
z-axis

the fluid is represented by Nf pointlike particles with
mass m0, position ri and velocity vi. In sharp contract
to Newtonian fluids, nematic LCs are made of asym-
metric (e.g. rodlike) molecules which produce long-
range orientational order. A complete description of
this orientational order can be given by a tensor order
parameter. To incorporate the orientational order in
the present particle-based framework, we assign a ten-
sor order parameter qi (symmetric and traceless 2nd
order tensor) to each MPCD particle in addition to
position and velocity [39]. In the nematic MPCD frame-
work, in addition to particle-level quantities, we also
have cell-level quantities. The simulation domain is
divided into cubic cells of side length a0 (see Fig. 1).
The particle-level quantities are related to the cell-level
quantities in the following way: cell-level velocity field
V = 1

Nc

∑
j∈cell vj , and cell-level tensor order param-

eter Q = 1
Nc

∑
j∈cell qj , where Nc is the number of

particles in the given cell under consideration.

2.1.2 Evolution of tensor order parameter

The evolution of the particle-based tensor order param-
eter qi is given by [39]

qi(t + Δt) = qi(t) + gi(t)Δt, (1)

where gi is a cell-level tensor quantity. The components
of g are given as

gαβ = gmol
αβ + gvel–oriαβ + gLagαβ , (2)

where gmol
αβ represents the molecular field which gives

rise to the nematic-isotropic phase transition, gvel–oriαβ

represents the velocity-orientation coupling, and gLagαβ

represents the enforcement of tracelessness and symme-
try of qi using Lagrange multipliers [40]. The molecular
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field is given by gmol
αβ = 1

μ1
Hαβ , where μ1 is viscosity

coefficient and Hαβ is given by the Landau–de Gennes
theory as [41] Hαβ = L∂2

μQαβ−αF Qαβ+3βF QαμQβμ−
4γF QαβQμνQμν , where L is elastic constant (note that
we have assumed the one-elastic-constant approxima-
tion) and αF , βF and γF are three phenomenological
material constants. The velocity-orientation coupling is
given by gvel–oriαβ = − μ2

2μ1
Aαβ + (QαμWμβ − WαμQμβ),

where μ2 is viscosity coefficient, Aαβ = 1
2 (∂αVβ +∂βVα)

is the symmetric part of velocity gradient tensor and
Wαβ = 1

2 (∂αVβ − ∂βVα) is the anti-symmetric part of
the velocity gradient tensor. The traceless and symme-
try of q is imposed using gLagαβ = 1

μ1
(λδαβ + λμεμαβ),

where λ and λμ are Lagrange multipliers. A central dif-
ference discretization scheme is used to calculate gαβ

for each cell.

2.1.3 Streaming step

In the basic MPCD method, streaming and collision
steps are performed in such a way that the mass, lin-
ear momentum, angular momentum and temperature of
the fluid remain constant. This scheme effectively com-
bines the hydrodynamics (the Navier–Stokes behavior
at a coarse-grained level) and thermal fluctuations. For
Newtonian fluids, particles are moved ballistically in
the streaming step over a time interval Δt (referred
to as collision time). However, for nematic LCs the
streaming step is modified by incorporating the effects
of anisotropic viscous stress and elastic stress in the
following form [39]

ri(t + Δt) = ri(t) + vi(t)Δt + f i(t)
Δt2

2m0
, (3)

vi(t + Δt) = vi(t) + f i(t)
Δt

m0
, (4)

where f i is a cell-level force. The components of f

are fβ = a3
0

Nc
∂α(σv,aniso

αβ + σe
αβ), where σv,aniso

αβ is the
anisotropic viscous stress and σe

αβ is the elastic stress
of the form [40]

σv,aniso
αβ = β1QαβQμνAμν + β5QαμAμβ + β6QβμAμα

+
1
2
μ2Nαβ − μ1QαμNμβ + μ1QβμNμα,

(5)

σe
αβ = −L∂αQμν∂βQμν ,

(6)

where β1, β5 and β6 are viscosity coefficients, and
Nαβ = DtQαβ + WαμQμβ − QαμWμβ represents the
corotational derivative with Dt ≡ ∂t+Vμ∂μ as the mate-
rial time derivative. Note that the central idea behind
this modified streaming step is to first calculate the
force on each cell and then distribute that force among
the particles present in that cell [39]. To calculate the
force, we need to take divergence of the anisotropic vis-
cous stress and elastic stress. This cell-level divergence

can be calculated by employing a central difference dis-
cretization scheme. This scheme ensures that the total
force on all the particles vanishes and does not lead to
any macroscopic drift in momentum in equilibrium con-
dition. Similar implementation in MPCD in the context
of binary fluid mixtures can be found in [35].

2.1.4 Collision step

To perform the collision step at fixed discrete time inter-
vals, the simulation domain is divided into small cubic
cells of length a0. The particles are sorted into colli-
sion cells and an instantaneous momentum exchange
is performed among all the particles in a cell. To per-
form the collision step we choose the MPC-AT+a colli-
sion rule which conserves linear momentum and angular
momentum locally in each cell [42,43]. In this collision
rule the relative velocities of particles are drawn from a
Gaussian distribution (Andersen-thermostat) with zero
mean and standard deviation

√
kBT0/m0 so that the

cell-wise temperature is maintained at constant value
T0 even in nonequilibrium condition (e.g. presence of
external force or flow). Thus, the collision step effec-
tively gives rise to the isotropic viscous stress in an
isothermal condition. The velocity after collision step
is given by

vi(t + Δt) = 1
Nc

∑
j∈cell vj(t) + vran

i − 1
Nc

∑
j∈cell v

ran
j

+Π−1
c

∑
j∈cell[rj,c × (vj − vran

j )] × ri,c,

(7)

where Nc is the particle (number) density in the cell,
vran

i is the fluctuating part of velocity, Πc is the
moment-of-inertia tensor of the particles in a reference
frame at center-of-mass of the cell, rj,c = rj − rc is
the relative position of particle j in the cell relative to
the center-of-mass of the cell, and rc is the center-of-
mass of the cell. The Cartesian velocity components of
vran

i are drawn from a Gaussian distribution with zero
mean and standard deviation

√
kBT0/m0. The Galilean

invariance is violated due to the partitioning of the sys-
tem into cells. The Galilean invariance is re-established
by randomly shifting the grid before performing colli-
sion step [44].

2.2 Modelling of the squirmer in nematic LC:
nematic MPCD-MD algorithm

The particle-based framework of MPCD makes it
straightforward to model the dynamics of embed-
ded particles (e.g. colloids, swimmers, etc.) in a fluid
medium by coupling the MPCD algorithm with molec-
ular dynamics (MD) like scheme for embedded particles
[38].
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2.2.1 Squirmer model

The squirmer is a rigid spherical particle of radius R
with prescribed surface velocity [45] vs = B1 sin θ(1 +
β sin θ cos θ)eθ, where θ is the polar angle measured
from the squirmer orientation direction e, and eθ is the
unit vector tangent to the squirmer surface. This model
introduces two model parameters: B1 defines the self-
propulsion strength and β represents swimming mecha-
nism. Depending on the swimming mechanism, we can
have the following three types of swimmers: puller for
β > 0 (e.g. C. reinhardtii cells), pusher for β < 0 (e.g.
E. coli), and neutral for β = 0 (e.g. Volvox or Parame-
cium). It is assumed that the mass density of squirmer
is same as the suspending fluid (i.e. the squirmer is neu-
trally buoyant). Thus, the mass of the squirmer is given
by Ms = ρfVs (with squirmer volume Vs = 4

3πR3)
and the moment of inertia of the squirmer is given
by Is = 2

5MsR
2. The squirmer has a center-of-mass

position R, orientation e, translational velocity V and
angular velocity Ω.

2.2.2 Virtual particles

In the simulation domain, Nf fluid particles are dis-
tributed outside the squirmer body. Additionally, we
use Nvp pointlike virtual particles with the same mass
as the fluid particles. The virtual particles are uniformly
distributed throughout the volume of the squirmer with
the same density as the fluid particles outside the
squirmer (see Fig. 1). The purpose of the virtual parti-
cles is the implementation of the boundary conditions
at the squirmer’s surface, and in the present particle-
based framework the result is twofold [33,39]: (i) pre-
cise implementation of the no-slip boundary condition
and (ii) imposition of surface anchoring condition. In
addition to position rvpi and velocity vvp

i , each virtual
particle is also endowed with a tensor order parameter
qvp

i . A uniform distribution of virtual particles inside
the squirmer is generated at each time step. The veloc-
ities are assigned as [38]

vvp
i = V + Ω × (rvpi − R) + vs + vran

i , (8)

where the velocity of virtual particles consists of the
rigid body motion of squirmer, surface velocity of
squirmer, and a random velocity (with Cartesian com-
ponents drawn from a Gaussian distribution of zero
mean and standard deviation

√
kBT0/m0). The extra

degrees of freedom of the virtual particles, qvp
i , allows

us to implement the surface anchoring condition by sim-
ply prescribing qvpαβ = Svp(3nvp

α nvp
β −δαβ)/2, where Svp

is the preferred nematic order on the squirmer’s sur-
face and nvp is the preferred director orientation at
the squirmer’s surface. This method effectively imposes
infinitely strong anchoring condition on the squirmer’s
surface. With these choices, the virtual particles take
part in streaming and collision steps as discussed below.

2.2.3 Implementation of a moving squirmer

During the streaming step, the squirmer motion is
updated by employing an MD-like step in which we
integrate the equation of motion in the following form

R(t + Δt) = R(t) + V (t)Δt + F (t)
Δt2

2Ms
, (9)

e(t+Δt)=e(t)+(Ω(t) × e(t))Δt + (T (t) × e(t))
Δt2

2Is
,

(10)

V (t + Δt) = V (t) + F (t)
Δt

Ms
, (11)

Ω(t + Δt) = Ω(t) + T (t)
Δt

Is
, (12)

where F and T are force and torque acting on the
squirmer due to anisotropic viscous stress and elastic
stress present in nematic LCs. We calculate the force
and torque on the squirmer as F =

∑Nvp
j=1 f

vp
j and

T =
∑Nvp

j=1((r
vp
j − R) × fvp

j ). This approach by con-
struction ensures the conservation of global momentum
because the momentum lost by fluid particles is trans-
ferred to the squirmer via the coupling through virtual
particles.

Note that the fluid particles interact with the squirmer
via collision during the streaming step [46]. To impose
the no-slip condition on the squirmer’s surface, we use
the bounce-back rule (instead of using an interaction
potential between squirmer and fluid particles [47])
whenever the fluid particles collide with the squirmer
during the streaming step. Following a course-grained
approach, it is assumed that fluid particle-squirmer col-
lision happens at time t+Δt/2, which is valid provided
the squirmer size is larger than the distance traversed
by the fluid particle during streaming [48]. At the end
of each streaming step, the change in momentum of
fluid particles due to the fluid particle-squirmer colli-
sion is transferred back to the squirmer to balance the
momentum.

During the collision step, the squirmer is coupled to
the fluid via the virtual particles [46]. These virtual
particles take part in the collision step and they suf-
fer change in momentum similar to fluid particles. At
the end of the collision step, the change in momentum
of virtual particles is also transferred to the squirmer
to balance the momentum. A step-by-step algorithm is
presented in Appendix A.

2.3 Model parameters

In the MPCD framework, the collision cell length a0,
the mass of MPCD particles m0 and thermal energy
of fluid kBT0 are taken as the scales of length, mass
and energy, respectively. The scales for velocity, time
and viscosity can be obtained as v0 =

√
kBT0/m0,

t0 = a0/v0, and η0 = m0/a0t0, respectively. The col-
lision time step Δt determines the fluid viscosity and

123



Eur. Phys. J. E           (2021) 44:64 Page 5 of 10    64 

Fig. 2 Variation of the
orientation angle,
θs = cos−1(e · n), with
time for strong puller
(β = 5) and strong pusher
(β = −5) with B1 = 0.1

(a) (b)

to have a liquidlike behavior Δt should be smaller than
t0 (that is, large Schmidt numbers [49]). In the present
nematic MPCD-MD framework, Δt is also associated
with the accuracy with which the streaming step of the
fluid particles and the squirmer is performed. To have a
proper time resolution, we take Δt = 0.01t0. The fluid
density is given as ρf = 〈Nc〉m0/a3

0, where we choose
the mean number density of fluid particles 〈Nc〉 = 30.
To have a proper resolution, the squirmer size should be
such that it spans the size of a couple of collision cells.
We have observed that a convenient choice of squirmer’s
radius R � 5a0.

The nematic fluid is described by six viscosity coef-
ficients (μ1, μ2, β1, β4 (isotropic part), β5 and β6),
three phenomenological constants (αF , βF and γF ),
and one elastic constant (L). In the present study,
we have taken 5CB as a model LC fluid [50] and
fixed the dimensionless coefficients as μ1 = 132.782η0,
μ2 = −268.132η0, β1 = −20.533η0, β4 = 232.548η0,
β5 = 202.364η0, β6 = −65.768η0, L = 132.782kBT0/a0,
αF = −21.037kBT0/a3

0, βF = 98.174kBT0/a3
0 and

γF = 49.087kBT0/a3
0 with the equilibrium scalar order

parameter as Seq = 0.615. These dimensionless prop-
erties are obtained by performing a mapping between
MPCD scales and physical scales, details of which can
be found elsewhere [39].

3 Results

We apply the above-mentioned nematic MPCD-MD
method to study the dynamics of a single squirmer
in a bulk fluid with periodic boundary conditions in
all dimensions. A squirmer of radius R = 6a0 with
homeotropic surface anchoring is simulated in a three-
dimensional nematic LC domain of size 60a0 × 60a0 ×
60a0 for different values of B1 and β.

3.1 Squirmer orientation

The temporal evolution of squirmer orientation can be
represented by a single orientation angle θs = cos−1(e ·
n), where n = ez is the nematic director in the bulk
which is conventionally set along the z-axis far away
from the squirmer (see Fig. 1 a). First, we investigate

the temporal evolution of the orientation angle of a
strong puller (β = 5) and a strong pusher (β = −5)
in Fig. 2. Figure 2 a shows that the strong puller moves
perpendicular to the nematic director at steady state
(represented by θs = 90◦ in the long time limit). Irre-
spective of the initial squirmer orientation θs(t = 0) =
0◦, 45◦ or 90◦, a strong puller always settles with an
orientation perpendicular to the nematic director field.
On the other hand, a strong pusher (β = −5) shows a
distinctly different orientation behavior as depicted in
Fig. 2b. Irrespective of the initial squirmer orientation,
a strong pusher always moves parallel to the nematic
director at steady state (represented by θs = 0◦ in the
long time limit). Note that the tendency of pusher-
type bacteria to align along the nematic director has
been reported in several recent experiments [10,14].
The squirmer orientation dynamics also compares well
with the existing simulation and analytical results. Lin-
tuvuori et al. [16] have shown recently that the squirmer
encounters a nematodynamic toque due to the interac-
tion between squirmer-generated flow and anisotropic
viscosity. The approximate expression for the namato-
dynamic torque is of the form

TN = −8πR2ηβB1(n · e)(n × e), (13)

where η is an effective viscosity (negative for common
nematic LCs). In the absence of thermal fluctuations,
this nematodynamic torque governs the squirmer reori-
entation. A puller (pusher) moves perpendicular (par-
allel) to the nematic director.

Next, we investigate the effect of β on the orienta-
tion dynamics of the squirmer. We carry out simula-
tions with a fixed initial orientation of the squirmer,
i.e. θs(t = 0) = 45◦ and calculate the squirmer’s orien-
tation for pullers (Fig. 3a) and pushers (Fig. 3b) over
a wide range of β. Figure 3 shows that with increasing
|β|, the squirmer reaches its steady orientation more
quickly and afterwards oscillates around the steady-
state orientation; or in other words, the relaxation time
to reach the steady-state orientation decreases with
increasing magnitude of β. This behavior is in line with
the existing lattice Boltzmann simulations [16] and can
be explained by the fact that the magnitude of nema-
todynamic torque is proportional to the magnitude of
β (i.e. |β|) (refer to Eq. 13). The insets show the vari-
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Fig. 3 Variation of the
orientation angle,
θs = cos−1(e · n), with
time for a pullers (β > 0)
and b pushers (β < 0) with
B1 = 0.1

(a) (b)

Fig. 4 Variation of the
orientation angle,
θs = cos−1(e · n), with
time for a puller (β = 5)
and b pusher (β = −5) for
different values of B1

ation of θs in the long time. Note that the oscillations
in orientation around the steady-state value is quite
large (of the order of 5◦) for small |β|. This is due
to the fact that the nematodynamic toque is smaller
in magnitude for small |β| and thus thermal fluctua-
tions affect the squirmer dynamics significantly. Note
that in presence of thermal fluctuations the squirmer
is acted upon by a stochastic torque which is gener-
ated due to collisions with the fluid particles. With
increasing |β|, the oscillations reduce as the magni-
tude of nematodynamic torque dominates the thermal
fluctuations.

The effect of self-propulsion strength, B1, on the
squirmer orientation dynamics is presented in Fig. 4.
Figure 4 shows that with increasing B1, the squirmer
quickly reaches its steady-state orientation and then
oscillates around the steady-state orientation. The
relaxation time reduces with increasing B1. This can
be explained by the fact that the magnitude of nema-
todynamic torque is proportional to B1 (refer to Eq.
13). Thus, a faster squirmer will reorient to its steady
orientation quickly as compared to a slower squirmer.
When B1 is small the nematodynamic toque is also
small, and thermal fluctuations will strongly affect the
squirmer’s dynamics. The insets show the variation of
θs in the long time. Note that the oscillations in orien-
tation around the steady-state value is quite large (of
the order of 5◦) for small B1. This is due to the fact
that the nematodynamic toque is smaller in magnitude
for small B1 and thus thermal fluctuations affect the
squirmer dynamics significantly.

Fig. 5 Variation of squirmer speed (Vs = V · e) with B1

for different values of β. Squirmer speed in Newtonian fluid,
Vs = 2B1/3, (analytical result) is also shown. Simulation
results are shown by taking average over 5 independent runs
for each parameter set

3.2 Squirmer speed

The speed of a squirmer, Vs = V · e, with two sur-
face modes B1 and β can be obtained analytically for
the case of a Newtonian fluid as Vs = 2B1/3. Notably,
the squirmer speed is independent of β and it increases
linearly with B1. Figure 5 shows the dependence of
the squirmer’s speed on B1 in nematic LC for puller
(β = 5), pusher (β = −5), and neutral (β = 0) squirm-
ers. The squirmer velocities are measured in the steady
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Fig. 6 Time-averaged director field, n, (small black
dashes) and scalar order parameter, S/Seq, (color shad-
ing) around stationary a puller (B1 = 0.1, β = 5), and
b pusher (B1 = 0.1, β = −5). Time-averaged streamlines
(thin white lines with arrows) and velocity field (color shad-

ing) in the squirmer rest frame around stationary c puller
(B1 = 0.1, β = 5), and d pusher (B1 = 0.1, β = −5). The
white sphere represents the squirmer and the large red arrow
represents the steady orientation of squirmer

orientation state. The predicted squirmer’s speed in the
Newtonian fluid, Vs = 2B1/3 is also plotted for the
sake of comparison. Our simulation results show that
the squirmer speed in nematic LC not only depends
on B1 but also depends on β. The swimming speed of
pusher (β = −5) is considerably smaller than in a New-
tonian medium, and also smaller than the swimming
speed of puller (β = 5) and neutral (β = 0) squirmer.
Sokolov et al. [14] recently found experimentally that
the average swimming speed of B. subtilis (pusher type
bacterium) in lyotropic chromonic LC is about 2 times
smaller than in a Newtonian medium. Figure 5 also
shows that the variation of squirmer speed with B1 is
nonlinear for strong pusher. Note that the behaviour of

a neutral squirmer is very similar in both Newtonian
and nematic fluids.

3.3 Nematic order and flow field around the
squirmer

Figure 6a, b shows the time-averaged nematic director
field (n) and scalar order parameter (S/Seq) for a puller
and a pusher in stationary condition. On account of
the homeotropic anchoring condition at the squirmer’s
surface, a Saturn ring topological defect forms around
the spherical squirmer. At steady state, the puller ori-
ents perpendicular to n, while the pusher orients par-
allel to n. Note that the structure of the Saturn ring
remains very similar for both puller and pusher even for
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B1 = 0.1. The only noticeable change is observed in the
pusher for which the Saturn ring is slightly advected
towards the rear end of the squirmer, downstream of
the local flow. This fact is in agreement with exper-
iments [51] and full MD simulations of nematic col-
loids in a flow [52]. Figure 6c, d show the time-averaged
streamlines and velocity field. A closer look into these
flow fields reveals that the streamlines for pusher are
slightly more elongated along the z direction (paral-
lel to the director); this is due to the fact the resis-
tance to flow is smaller in the direction of the director.
On the other hand, for the puller the streamlines are
more compressed. Inspecting Fig. 6a, b can help ratio-
nalize the asymmetry in the speed of squirmers between
pullers and pushers (see Fig. 5). Figure 6a shows that
for pullers the Saturn ring topological defect induced
by the squirmer on the nematic host is directly in front
of the self-propulsion direction. The drastic reduction
of the nematic order parameter at the leading edge of
the squirmer reduces the local viscosity and thus allows
it to move faster than the pusher.

4 Conclusions

We have proposed a particle-based mesoscopic sim-
ulation method for microswimmers in nematic LCs.
The existing nematic MPCD method is extended by
combining it with an MD scheme for squirmer. We
have tested this nematic MPCD-MD method for a sin-
gle squirmer in an unbounded nematic LC medium.
We correctly reproduce the orientation dynamics of
squirmer in nematic LCs. The proposed method could
be easily extended to study the collective dynamics of
multiple squirmers in LCs.

We find that the speed of a squirmer moving within a
nematic fluid depends nonlinearly on both B1 (setting
the self-propulsion strength) and β (setting the type of
swimmer.
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A Nematic MPCD–MD algorithm

Below we provide a step–by–step algorithm of the nematic
MPCD-MD method. These steps have been implemented on
CUDA-capable GPU. At the beginning, the system is ini-
tialized by assigning the initial position, orientation, trans-
lational velocity and rotational velocity to the squirmer as
R(t = 0) = 0 (i.e. at the middle of the simulation domain),
e(t = 0) = sin θs(t = 0)ex + cos θs(t = 0)ez (with θs as
the orientation of the squirmer measured from the z-axis),
V (t = 0) = 0 and Ω(t = 0) = 0. Next, the position, velocity
and tensor order parameter of fluid and virtual particles are
initialized. The fluid particles (outside the squirmer) and
the virtual particles (inside the squirmer) are uniformly dis-
tributed. The number density of both fluid and virtual parti-
cles is 〈Nc〉 = 30. The Cartesian velocity components of fluid
and virtual particles are drawn from a Gaussian distribution
with zero mean and standard deviation

√
kBT0/m0. Addi-

tionally, the surface velocity of the squirmer vs is added into
the velocity of virtual particles. The nematic orientational
order is initialized by prescribing the particle-level tensor
order parameter to fluid particles, while the homeotropic
surface anchoring is imposed by prescribing the particle-
level tensor order parameter to virtual particles.

1. The whole domain is divided into cubic cells of side
length a0. The fluid and virtual particles are sorted in
these cells and cell-level quantities such as Nc, V , Q, g
and f are calculated. To calculate g and f , we need to
take numerical differentiation of different cell-level quan-
tities that we do using central difference scheme (details
can be found in Ref. [39]).

2. The evolution equation of the tensor order parameter is
employed to calculate qi.

3. Perform streaming step (update position and velocity) of
the fluid particles and the squirmer following respective
equations of motion for the time Δt. Periodic boundary
condition is imposed by checking whether the particles
or squirmer moved out of the simulation domain.

4. After the streaming step, if Nbb particles ended up inside
the squirmer then the bounce-back rule is employed for
those particles [48]. To resolve the collision, both the fluid
particle and squirmer are moved back in time by Δt/2.
The collision point on the squirmer surface is taken to be
the projection of the particle position on the squirmer’s
surface calculated as ri ← R + R(ri − R)/|(ri − R)|.
Application of the bounce–back rule modifies the parti-
cle velocity as vi ← vi − J i/m0, where the momentum
transfer J i = 2m0(vi−V −Ω×(ri−R)−vs) which takes
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into account the rigid body motion of squirmer and sur-
face velocity of squirmer. After exchanging momentum,
the fluid particles perform streaming for the rest Δt/2
time with the modified velocity. The squirmer is also
moved for the rest Δt/2 time. To conserve the momen-
tum, the momentum lost by Nbb fluid particles are trans-
ferred to the squirmer by modifying its translational
and angular velocities as V ← V +

∑Nbb
i=1 J i/Ms, and

Ω ← Ω +
∑Nbb

i=1 (ri − R) × J i/Is.
5. Position and velocity of virtual particles are re-generated

as per the updated position and velocity of the squirmer.
6. Instead of shifting the cells, all the particles are moved as

ri ← (ri+s) (where the components of s are drawn from
a uniform distribution within the interval [−a0/2, a0/2])
to reestablish the Galilean invariance. At the boundaries
of the simulation domain, periodic boundary condition is
applied.

7. The fluid and virtual particles are sorted in cells and cell–
level quantities such as Nc, rc, V c and Πc are calculated.

8. The collision step is performed to get the updated veloc-
ity of the fluid and virtual particles.

9. To conserve momentum, the momentum gained by the
virtual particles is given to the squirmer [48]. Consider-
ing the velocity of virtual particles before and after col-

lision step to be vvp
i and vvp′

i , respectively, the momen-

tum transfer can be calculated as J i = m0(v
vp′
i − vvp

i ).
The momentum gained by Nvp virtual particles is trans-
ferred to the squirmer by modifying its translational and

rotational velocities as V ← V +
∑Nvp

i=1 J i/Ms, and

Ω ← Ω +
∑Nvp

i=1 (ri − R) × J i/Is.
10. The particle–shift operation is performed in reverse,

ri ← (ri −s), to shift back the fluid and virtual particles
to their original position. At the boundaries of the sim-
ulation domain, periodic boundary condition is applied.
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