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Abstract 

To date, most existing fracture aperture models are limited to compression-induced closure and shear-
induced dilation for the analysis of heat extraction in enhanced geothermal system (EGS) reservoirs. 
This paper presents a new, fully coupled thermo-hydro-mechanical (THM) model to investigate the 
combined effect of shear, thermal and compression stresses on fracture aperture alterations during the 
heat extraction process. A brief analysis determines the underlying mechanisms characterising these 
coupled THM processes. The results provide insights into the fracture aperture’s transient behaviour 
during exploitation, which is a crucial factor in optimising thermal energy production in EGS reservoirs. 
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1. Introduction 

Stimulating the crystalline formation to open predominantly pre-existing natural fractures, in order to 
create a reservoir, is the first step towards extracting heat from an enhanced geothermal system (EGS) 
[1]. The second step involves circulating fluid through the fractures to create a connection between 
wellbores [2]. During circulation, the fracture aperture dilates, opens and closes due to heat extraction. 
The complex interaction resulting in fracture aperture changes during exploitation includes shear-
induced dilation, thermal-induced opening and compression-induced closure. Bandis et al. [3] and 
Barton et al. [4] conducted several experiments on different rock samples that enabled them to develop 
several mathematical expressions of rock joints’ behaviour, which have become widely accepted in 
rock mechanics. Hick et al. [5] and Willis-Richards et al. [6] developed specific mathematical models 
of fracture aperture response during heat extraction in hot dry rock (HDR) geothermal reservoirs.  

 

The above-cited works focus solely on shear-induced dilation and compression-induced closure in 
fracture apertures. However, several other authors [7] have also pointed out that the effect of the 
thermal-induced opening could influence fracture apertures’ behaviour. It is therefore crucial to 
investigate the effects both of individual models and of combinations of different models on aperture 
opening/closure during EGS exploitation. On this background, this study presents models of shear-
induced dilation, thermal-induced opening and compression-induced closure. The models are 
implemented in the COMSOL Multiphysics solver using a coupled thermo-hydro-mechanical (THM) 
approach, in order to examine how they respond to heat extraction in EGS reservoirs.  

 

2. Mathematical description 

The mathematical formulation of the fracture aperture model is derived from laboratory observation of 
several rock joint samples [3], [4]. When fluid flows in the fracture, the surfaces are held apart by 
internal fluid pressure p . The effective stress at the surface of the fracture is given as 

pnn   (1) 



where n  is the normal stress to the fracture surface and p is the fluid pressure in the fracture. The 

closed fracture aperture ( 0n ) can be expressed as [4]   
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where 0b  is the aperture at zero normal stress, nK  is the normal stiffness of the fracture, maxb  is the 

maximum fracture closure, sb  is the change in the aperture resulting from any subsequent shear 

accumulated, and resb  is the residual aperture at high effective stress [6]. Stress field perturbation due 

to fracture fluid pressurisation could result in shear slip and instability at the fracture surfaces. A simple 
friction law defines shear stability. Shear slip occurs when the shear force exceeds the confining 
frictional force, written as [6] 

 eff
dilbasicn   tan (3) 

where basic  is the basic friction angle, a material property of the fracture surfaces, ranging between 30° 

and 40°. The effective shear dilation angle eff
dil  is a property of both fracture surfaces and normal stress. 

The available fracture shear stiffness and excess shear stress determine the amount of shear 
displacement, expressed as [8] 
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where sK  is the fracture shear stiffness and   is the excess shear stress, written as [8] 

 eff
dilbasicn   tan (5) 

Thus, the increment in aperture due to shear dilation, sb , can be written as [6] 

 eff
dilss Ub tan (6) 

Substituting (7) into (2) and letting 0resb , the total aperture can be expressed as 
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Thermoelasticity also contributes to the changes in the fracture aperture. Assuming complete spherical 
symmetry in the temperature distribution, the thermal stress can be calculated as  
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where   is the thermal expansion coefficient of the rock, E  is the Young’s modulus of the rock,   is 

the Poisson’s ratio, 0T  is the initial rock temperature, and T  is the rock temperature at any given time 

t . Substituting (10) into (1) yields  

 Tnn p    (9) 

Expression (9) is the effective stress across the fracture relating to normal stress, pore pressure and 
thermal stress. Fig. 1 presents the reservoir geometry employed in this study. The reservoir geometry, 
initial and boundary conditions, and material properties are similar to those employed in Ref [9]. The 



only difference is the wellbore spacing, which is 400 m here. These data, together with equations (1–
9), as introduced in this section, and the governing equations and the THM coupled processes 
framework presented in Ref [10], are implemented in the COMSOL Multiphysics solver. The 
simulation results are presented in the following section. 

 

 

Fig. 1. Reservoir geometry 
 

3. Simulation results 

Fig. 2 presents the fracture aperture opening and the corresponding permeability changes for the 
different models during a long-term simulation of 30 years. The results show that shear dilation affects 
the aperture the most, followed by thermal stress. Compression-induced closure/opening has the least 
impact during the heat extraction process. 

   

Fig. 2. Fracture aperture opening (Left) and permeability changes (Right) for the compression, 
thermal, shear, and combined models 

 
Fig. 3 displays the aperture propagation on the middle fracture surface at various simulation stages for 
the different aperture models. The results show that in earlier stages, the aperture evolution is only 
pronounced at the injection location. In the later stages, however, the aperture evolves upwards towards 
the producer in the thermal, compression and combined models. For the shear case, the aperture opening 
extends laterally due to shear dilation effects. 



 

Fig. 3. Fracture aperture propagation for all the models at different simulation times 

 

4. Conclusions 

This work has presented a new fracture aperture modelling framework incorporating thermal-induced 
opening, shear-induced dilation and compression-induced closure. Each model is developed using a 
coupled THM approach in the COMSOL Multiphysics finite element-based solver. The results show 
that each of the models contributes to permeability enhancement; however, the combined effect of all 
the models together yields the greatest reservoir productivity.  
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