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Abstract

Although very little is known about the process of learning from television
it is possible to identify a number of possible uses of television in
teaching/learning situations in mathematics. However, in order that
television should even stand a chance of being a suitable medium for use in
the classroom there are a number of obstacles to be overcome.

The Open University has made a significant contribution towards increasing
the effectiveness of television as a teaching/learning medium although it
has not been relevant to consider this work in a classroom context.
Nevertheless, several television programmes, in particular those from the
mathematics foundation course, do seem to have potential for use in the
teaching of A level mathematics in schools. This dissertation describes a
project to investigate whether or not this is the case.

After an initial discussion on the use of television and the obstacles to
its successful implementation in the classroom, during which the project
itself is introduced, the first step is to examine whether the programmes in
the Open University mathematics foundation course are relevant to A level
mathematics and acceptable to teachers.

Next, the suitability of the programmes for use in the classroom is
considered and this involves a pilot study in which a number of programmes,

together with draft support materials, are developmentally tested in
schools. The response of teachers is indicated and some of the draft
materials are subsequently revised.

The outcome, albeit based on a small sample of schools, suggests that the
programmes do indeed have potential as a sixth form classroom resource -
although there is still some way to go before the programmes are likely to
be available for widespread use. N
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1. Television in the Mathematics Classroom

(i) Why use television?

Perhaps the most obvious reason for using television in the classroom is
simply that television exists as a source of knowledge and it is here to
stay. To ignore it would be just like ignoring any other resource such as
books, the blackboard, experimental apparatus, micro-computers and so on.
Moreover, since almost every home in the United Kingdom possesses a
television, it is a very familiar resource, more familiar in some households
than books. It is therefore perhaps true to say that television, if not the
only source, is certainly a major source of knowledge for all of us, adults
and children alike, and the advance in information technology suggests that
it will have an increasingly important role to play in the future. This
argument has long been recognized. For example, over ten years ago V.S.
GERLACH and D.P. ELY (1971 p 368) wrote

Preconditioned learners come to school as confirmed TV

consumers. The use of TV in instruction can capitalize

on this acceptance...

As a classroom resource television certainly has some attractions: it is
relatively cheap in comparison to other resources, it is easy and convenient
to use, it has the power to be entertaining, and it can hold the viewer's
interest, voluntarily, for long periods of time, But is it a suitable
medium for teaching or, more important, learning? Well, these two
activities are very different and, as A.W. BATES (198l) points out, they
should really be considered separately.

In rather simplified terms then, teaching is concerned with the selection,
presentation, representation and prior structuring of knowledge and
experience. A medium can be defined as a means by which something is
communicated. Television is a means of communicating information and is
therefore just one way of presenting and representing knowledge. Thus it
would seem that television is indeed a suitable medium for teaching.



It is not so obvious though that television is a suitable medium for
learning, an activity which is concerned with the perception, assimilation,
interpretation and relating of knowledge and experience. Although there has
been plenty of research on the use of television, very little seems to be
known about its effectiveness as a learning medium. A.J. ROMISZOWSKI (1974
pp 223-225) summed up the position in the early seventies as follows

There are hundreds and hundreds of reported studies comparing

TV with traditional methods but as yet no conclusive results...

Much of the research is subjective and poorly designed. Those

studies which are properly controlled generally repeat the

pattern of no significant difference...
and the position seems to be about the same today! This means that at the
moment it is really only possible to speculate on the suitability of
television as a learning medium from a teaching point of view. Of course,
such speculation is valuable in itself, since it can only lead to more
thought being given to the ways in which various ideas are taught, and this
should at least result in more effective teaching - if not more effective

learning.

It is only relatively recently that educationalists have begun to seriously
consider the question of multi-media teaching and it is within this context
that most of the discussion on the suitability of various media has taken
place, For example, D. OLSUN and J. BRUNER (1974) suggest that although
content can be presented through any medium, some mental skills (which they
associate with the process of assimilating and using knowledge, although
these are only vaguely defined) are better developed through one medium than
another. Research at the Open University, which is probably the largest
multi-media teaching institution in the world - using print, TV, audio-tape,
face-to-face tuition etc., supports this hypothesis in that A.W. BATES and
M. GALIAGHER (1977) have shown that, where the same content is presented
through several media, some media seem to be better than others in
developing certain skills in using or elaborating on that content.



It might therefore be reasonable to suppose that each medium has certain
qualities that make it suitable for wuse in various teaching/learning
situations. For example, consider the concept of differentiation which is a
central topic in the study of the calculus. Students need to become
familiar with the terminology, they need to be able to manipulate algebraic
expressions by applying various rules, and, ideally, they need to understand
what is meant by the concept. Familiarity with the terminology is probably
best achieved by hearing someone talk about it and this suggests that
face-to—face tuition is required. Learning to manipulate could be achieved

by a variety of media: some face-to—face tuition might again be appropiate

but perhaps the most suitable medium here is print since this can provide
worked examples and exercises for students to work through at their own

pace. Reaching an understanding of what is meant by differentiation is a
more complicated process and indeed is often never properly achieved. A
variety of media is probably needed here, for example, print and face-to-

face tuition - although these often are only able to convey a ‘static’

image. Moving pictures could help students to understand better what is
meant by (say) a limit and this suggests that television might also have a
part to play.

Ideally then, as this example demonstrates, knowledge and experience should
be presented through a number of alternative media since this can only
increase the amount of learning that takes place, and perhaps this in itself
provides the best answer to the question

Why use television?
However, the discussion above also suggests that in order for television to
be suitable as a teaching/learning medium its use must be carefully planned,
and this raises the following, perhaps more important, question

When is television appropriate?



(ii) wWhen is television appropriate?

For a start there are certainly many situations where television is not the
most appropriate means of conveying knowledge yet unfortunately, as D. LEECH
(1980) points out, it is often used in place of another, more useful medium.
The problem is that there is very little guidance provided on selecting the
most appropriate medium for a given task. What is really needed is a
taxonomy of instructional media, but although there is evidence of plenty of
thought in this area (for example, V.S. GERLACH and D.P. ELY (1971) in
Teaching and Media: a systematic approach, D. LEECH (1980) in What makes
television the right medium? and the rather empirical classification that
has been adopted by the Open University) there is still no accepted
authoritative work on the subject. So how should the decision be made about
when to use television? Perhaps the best approach is to examine the

particular qualities of television and hence to draw up a list of its
possible uses, and it is this approach that is adopted here (the only uses
to be considered being those that are relevant in mathematics).

The most obvious characteristic of television is that it is highly visual
and undoubtedly this is the key to its potential use in the classroom. T.S.
ALLAN (1973. p 54) stressed this when he wrote

The great strength of television is the iconicity of its

symbols. We do not insist enough on the translation of

verbal generalization into experience...
Television can certainly do many things that the teacher cannot (at least
not without great effort); it can show movement, it can bring the outside
world into the classroom and it can present up-to-the-minute information not
readily available. The Hayter Report (C.G. BAYTER (1973)) refers to all
these points. It also draws attention to the more nebulous qualities of
television which might affect student attitudes to learning, i.e. television
can be especially exciting, entertaining, stimulating and motivating.



G. SALOMON (1979) discusses television's qualities in a more formal context.
He distinguishes between the following three kinds of symbol systems
employed by the various media:

digital systems where meaning is conveyed by written language, musical
notation, mathematical symbols

analogic systems made up of continuous elements which can be reorganized

into various meanings and forms (such as voice quality, music, dance)
iconic systems which use pictorial representation with a variety of possible

visual experiences and meanings.

The great strength of television is that, unlike other media, it can combine
all three symbol systems; it is therefore an extraordinarily rich medium,

Thus, the medium of television does have a number of useful qualities.

Next, the ideal way to proceed would be to examine each teaching/learning
situation carefully and then to identify those where television might be a
suitable medium due to one or more of these qualities. But even within the
restricted domain of mathematics this would take a long time, and it is
likely that the conclusions would be subjective and contentious. For
example, this approach was recently applied to the single topic area of
hypothesis testing in statistics and it took months to even identify various
teaching/learning situations, let alone reach a consensus of opinion as to
which medium was most suitable in each situation. This example demonstrates
that the approach is unpractical. (Perhaps it also explains why there is as
yet no definitive taxonomy of instructional medial!) So, rather than stumble
through this rather laborious process, it is probably just as useful to
consider the particular qualities of television and then to draw up a list
of its possible uses within mathematics based on experience and judgement

alone. The results will again be subjective and contentious, but probably
no more so than a list drawn up in any other way. A.W, BATES {1981)
provides the list in Table 1.1 which is probably as good as any (see p.10).
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Table 1.1 The possible uses of television in mathematics

1. to illustrate principles involving dynamic change or
movement

2. to illustrate abstract principles through the use of
specially constructed models

3. to illustrate principles involving 1, 2, 3 or
n-dimensional space

4., to demonstrate principles invelving approximations

5. to use animated, slow motion or speeded up film to
demonstrate changes over time

6. to teach advanced concepts without the students having
to master the mathematical technigques by using methods
in 1, 2, 3 and 4 above

7. to demonstrate how mathematics is used in the real world
to solve problems (mathematical modelling) or where
visualisation of the application in its total environment
is necessary to understand the way in which the principle
is applied.

This list suggests that television could be a suitable medium to use in many
teaching/learning situations in mathematics. Indeed, the BBC goes one step
further than this in the report BROADCASTING and MATHEMATICS (1979) when
they state

It can be said with some confidence that no mathematical

topic is incapable of being dealt with on the screen

provided sufficient ingenuity is shown...
although this might be a little too optimistic!

{iii) The obstacles

However, although television could be a suitable medium to use in many
teaching/learning situations in mathematics this does not necessarily mean
that it is a suitable medium to use in the classroom. There are a number of
obstacles that need to be overcome if television is to be a successful
classroom resource and these are indicated below.

(a) The passive nature of television Because students can be so used to

television as a source of entertainment they may not be able to adapt to its
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use in a learning situation. V.S. GERLACH and D.P. ELY {1971, p 369)
recognized this limitation when they wrote

The very familiarity of TV sometimes contributes to habits

of inattentiveness and passivity. Most students do not know

how to learn from TV and often reject it...
This suggests that it is not enough for the teacher just to switch on the
television and sit back. Suitable activities need to be provided in order
to ensure that the students are active rather than passive viewers (see (b)
and (d) below).

(b) The limitations of broadcast television. It is now generally

recognized that live broadcast television is of restricted value. It must
be watched at fixed times, and it is not possible to stop the programme or
replay it. Thus it can be difficult to fit the programme into the school
timetable. And since the programme proceeds at a fixed pace which is not in
the control of the teacher there is no opportunity to cater for individual
differences in the class -~ with the result that if a student does not follow
one particular point he may lose the thread of the entire programme. These
major drawbacks perhaps explain why television did not become a major
teaching resource in the late sixties and early seventies.

However, the arrival of the video-recorder has effectively removed these
obstacles and has greatly enhanced the flexibility and adaptability of the
medium. The BBC in their report BROADCASTING and MATHEMATICS (1979)
reported that in 1979 over 75% of secondary schools had video-recorders, and
the figure is undoubtedly higher in 1983. This means that in almost all
secondary schools today recorded material should be available just when
required, and it can be stopped and replayed whenever necessary. Thus
teachers now have complete control over the use of the resource and can
decide for themselves when and how they wish to use it with a class of
students,
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(c) The limitations of video Of course, there are still some obstacles

to using television even when the school does have a video-recorder (for
example: do teachers have access to the equipment when it is needed? can
they use the equipment?), and although these obstacles can be overcome by
suitable planning they do need to be considered.

(d) Television on its own is often ineffective The discussion in Chapter

1(i) suggests that very little is known about the process of learning from
television. However, there is good reason (based on experience at the Open
University) to believe that television on its own is ineffective unless it
is designed as a video-tape in the first place - with specific activities
built into it. Few existing television programmes have this property, the
result being that, whereas television might provide an excellent means of
demonstrating a concept, the programme is soon over and all that is left is
an image. For the student to gain maximum benefit from the programme it is
necessary to build on that image. This suggests that, for television to
even stand a chance of being effective, it needs to be integrated closely
with other media - such as print, face-to-face tuition, experimental
apparatus and so on.

(e} The need for adequate preparation time Furthermore, in order for

television to be effective as a classroom resource its use needs to be
carefully planned. Ideally the teacher should watch the programme in
advance and then devise a strategy that will incorporate it (and the support
materials) into his/her teaching. This requires time,a scarce commodity for
the hard pressed teacher and not usually allowed for in the school
timetable. |

(£) The teacher should be able to use the resource The success of

television as a teaching/learning medium depends to some extent on the
effectiveness of the user in handling the resource. Thus teachers need to
be trained in using television. J. NEWSOM (1963) first drew attention to
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this requirement almost 20 years ago in the context of providing a suitable
education for the less able but, of course, his observation applied more
generally. Yet by the mid-seventies F. GRANT (1976) maintained that there
were few training institutions which had heeded this advice. R, LEFRANC
(1978} also refers to this need for suitable training: he reports that
teachers often do not follow the advice that is provided on how to use a
programme and often just use it in isolation without its accompanying
support materials. Such bad practice might not exist if suitable training
was provided for teachers.

(9) The pedagogical drawbacks In the past a teacher has often chosen not
to use a television programme because the approach conflicted with his/her
own views on what to teach and how to teach it. This attitude was perhaps
most marked in Britain where teachers had a certain amount of freedom to

make their own decisions on content and approach because of the variety of
syllabuses that were available and because of the vague way in which these
syllabuses were laid out. (A report by the CENTRE OF EDUCATIONAL TECHNOLOGY
at the UNIVERSITY OF SUSSEX (1968) suggests that this was not such a problem
in other countries where education was more centrally controlled.) Hence,
until fairly recently, television has tended to be more concerned with
rather general topics for use as enrichment material rather than direct
teaching - in this country at least. This in itself has been an obstacle,
for the demands of examination syllabuses often mean that there is no time
for enrichment material., However, shifting trends in educational thinking,
along the lines of a core curriculum and a reduction in the number of
examination syllabuses, should mean that there is more scope for using
television as a direct teaching resource in the future. Attitudes towards
the activities of teaching and learning are also changing and this too
suggests that television could become a much more acceptable resource in the
classroom - from a pedagogical point of view.
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Probably because of all these obstacles television has not made as much
impact in the classroom as it might have done (F. GRANT (1976)). Hopefully
though, now that people are more aware of the obstacles, programme makers
will be in a better position to plan the programmes and their accompanying
support materials and users will be more willing to prepare better for the
use of such materials. 8o although television may not have been
particularly successful in the past this does not necessarily mean to say
that it will not be a useful classroom resource in the future.

(iv) Television and mathematics

The history of television in mathematics reflects the points made above.
Table 1.2 (see p.l5) indicates all the mathematics series that have been
produced by the BBC in the past 25 years. (The reason for concentrating on
the provision of programmes by the BBC is that this has been by far the most
active network in schools broadcasting.)
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Table 1.2 Mathematics Series hroadcast by the BBC aince 1958

Date Series

Target
Audience

No. of weekly/

Programmes Portnightly

Ancillary
Material

1958 Mathematica

1961 Mathematics and Life
1962~-65 Pure Mathematics

1963-67 Middle School Mathematics
1964-65 Modern Mathematics
1965~70 Mathematics (Radio)
1965~70 Mathematics in Action

_sg}Pr imary School Mathematics
1567 ' "Mathematics around you
1967-72 Maths Today - Year 1
1968-73 Matha Today -~ Year 2
1969-77 Maths Workshop - Stage 1
1970-77 Maths Workshop - Stage 2
(1971: Open University broadcasta started on radioc and taleviaion)
1970-71 People and Computers [

1

1972-78 Countdown
1975-80 Mathshow

1976- Keep up with the times

1977-81 It's Mathal

9N Pocus - on Numeracy
1978-82 Everyday Maths
1978-79 Prospect (Radio)

1979 It Pigures
1979- Matha Topicsa

1982- Mathg Help - Part 1
1983~ Maths Help - Part 2

11-12
11-12
6th Porm
13~14
6th Porm
11-12
6th Form
9-11

7-9 (backward)
11-12
12-13
9-10
10-11

6th Porm

14-16 (Blow learners)
11-13

7~9

9-10

FR Students

14-16 (8low learners)
16-18

{C.E.)

13-16

{C.E) 0 Leval

(C.E) O Level

S

10
9%
>3
1s
8

23

-]
8

14
4
14
14

P
4
8

14
10
u
5

10
10
12
12

EEENEENENEUWNE WNUYNLELE I‘.tststt
£ X

Teacher's notes (TN)
™
Student's notes (SN}
™

SN
Pupil's pamghlet, ™
SN

™

™

N, Workcards (W)
8 mm Eilm loopse
™ with W

™ with W

N

‘™, Pupil's workbook
™ with W

™

N with W
Booklet
™ with W
™

Book

™

Book

Book

Source: Broadcasting and Mathematics 1979

Note The table does not include the recent series on micro computers.

Table 1.2 demonstrates that most of the programmes that have been made up
till now have been aimed at primary/middle schools or have been concerned

with fairly basic mathematics.

This is perhaps a direct result of obstacle

(9) (p.13), and simply demonstrates the fears of programme—makers to provide
programmes that were directly related to any particular examination

syllabus. Or it could reflect obstacle (b)(p.1l), since timetabling tends
to be more of a problem in secondary schools - particularly for examination
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orientatéd classes. Whatever the reasons, there have been very few
television series aimed at CSE, O Level and A Level mathematics, and it is
only recently, with Maths Topics and Maths Help, that programmes have been
concerned with topics that appear specifically on various examination
syllabuses.

The table also demonstrates that, although the BBC have always recognized
the need for some form of guidance on how to use the programmes (ancillary
material being provided with all series), the form of this ancillary
material has changed over the years. This perhaps reflects the change in
attitude towards obstacles (a)(p.10), and (d) (p.12) in that the materials
have gradually involved more and more student activity.

The BBC's own attitude towards television as a resource for teaching
mathematics in the classroom has certainly evolved with experience as might
have been expected. In the early days there was an implicit assumption that
television could be used on its own as an alternative means of teaching
mathematics and that it might even replace the teacher - at least in
understaffed schools (J. CAIN (1965)). Same years later it was recognized
that television could only be effective in the classroom if suitable
activities were provided for students and if these were carried out under
the guidance of a teacher (D. ROSEVEARE (1972)). Also, over the last 10
years the limitations of live broadcast TV (obstacle (b)(p.1ll}) have been
widely recognized with the result that all schools programme are now
transmitted on the understanding that they will be recorded, for use as and
when required., Thus, the programme—makers have become more and more aware
of the need to overcome all the obstacles listed in Chapter 1(iii), and this
must surely have resulted in an improvement in the effectiveness of the
programmes as a teaching resource.

As for the 'success' of the various uses of television in the mathematics
classroom, it is extremely difficult to comment. In the end - as for any
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other resource - this can only be judged by the teachers and students who
have actually used the materials. Suffice to say perhaps that the BBC
themselves operate an extensive feedback system designed to improve the
effectiveness of their TV provision to schools, and it is reasonable to
suppose that the 'success' of television as a classroom resource has
improved over the years and will continue to do so in the future.

But what of the future? Will TV be used more or less? How will it be used?
Perhaps the best clue to the possible answers to these questions lies in the
way that up till now the use of television in the classroom has tended to
reflect current thinking towards the teaching of mathematics in general.

For example, the series 'Modern Mathematics' was introduced just when this
was a subject of major discussion; today there is no real distinction
between 'modern' and 'traditional' mathematics and in recent series, such as
Maths Topics and Maths Help, a mixture of topics and approaches is included.
Also, in the mid-seventies there was particular emphasis in the Great Debate
on the need for basic mathematics and this attitude was reflected in series
such as 'Countdown', 'Focus - on Numeracy' and 'Everyday Maths'. And in
recent years there have been numerous programmes on computing, and
particularly, on micro-computers; such series reflect the huge increase in
interest in this area.

The following extract from the Cockroft Report (W.H. COCKROFT (1982) p 71)
provides some idea of the current attitude towards mathematics teaching:
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Mathematics teaching at all levels should include
opportunities for
. exposition by the teacher
. discussion between teacher and pupils and between
pupils themselves
. appropriate practical work
. consolidation and practice of fundamental skills and
routines
. problem solving, including the application of
mathematics to everyday situations
. investigational work.
In the past it was certainly recognized that all these activities were
beneficial to younger children and for the less able, but the general
feeling seemed to be that perhaps not all of them were necessary for
examination classes. The rather limited use of television in secondary
mathematics has perhaps simply reflected this attitude, for the medium of
television is appropriate in many of the types of activity listed here.
However, if in the future all these activities are to be encouraged at all
levels of mathematics teaching, then from now on there might be more scope
(and enthusiasm) for using television in all mathematics classrooms for a
greater variety of purposes.

(v) The project
The above discussion on the history of television in mathematics made no

specific mention of the programmes that have been produced by the Open
University. But this multi-media teaching institution, by its very nature,
has probably made the most significant contribution towards increasing the
effectiveness of television as a teaching/learning medium in the last ten
years. Why? Because all the courses that are produced by the University
are designed from the outset to be multi-media, and the extensive debate and
discussion on what constitutes the most appropriate medium for any given
teaching/learning situation has resulted in carefully selected television
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programmes designed to reflect the unique qualities of television. The
mathematics courses that have been produced in recent years are no exception
to this and the course teams responsible feel that they have been especially’

successful in making effective use of television. This view is confirmed by
student feedback.

The reasons for the particular success of television in recent mathematics

courses at the Open University would seem to be as follows:

. programmes are only used for the purposes listed in Table 1.1

. all the programmes are tightly integrated with other materials and these
are designed so that the student is unlikely to gain maximum benefit
without watching the television component

. television programmes are transmitted at regular intervals and this helps
to pace the students through the course.

The first two points suggest that the Mathematics Faculty has effectively
overcome obstacles (a) and (d) on pp.1l0-12, And the last point partly
explains why the limitations of live broadcast TV do not apply here
(obstacle (b) on p.11)}, although Open Unversity students are highly
motivated and will put up with a considerable degree of inconvenience. The
remaining obstacles ({e) (f) and (g) on pp.12-13) are irrelevant since the
programmes are not shown in a classroom situation and there is no need for a
teacher.

Now the interesting thing is that some of these Open University television
programmes may also be relevant to students of A level mathematics, and
there is therefore a possibility that they could be used in the mathematics
classroom. This would go some way towards filling the gap in the provision
of suitable schools' programmes (see Table 1.2 on p.15). It could also go
some way towards meeting the specific need for more stimulating teaching
materials in sixth form mathematics, a need identified by the Cockroft
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Report as the following extract indicates (W.H. COCKROFT (1982)
pp. 170-171).

It is also possible for mathematics at A level to be
presented as a very technical and somewhat arid subject
with little relation to other school subjects except,
perhaps, physics or to the activity of the world at large.
It is therefore important that teachers should seek to
counteract this impression by making use of opportunities
which arise to emphasize the broader role of mathematics.
The very varied applications of mathematics should be
stressed and illustrations of these applications drawn
from as wide a range as possible.

The increasing use of 'mathematical modelling' in, for
example, the social sciences provides many possibilities
for an enterprising teacher and many more traditional
applications are to be found in the physical sciences.
Reference to the historical background of some of the
topics which are being studied can both help to explain
their importance and also add interest and depth to the
A level course. A micro~-computer can provide a stimulus
to adventurous thinking, very often initiated by the
students themselves; the investigative work which can
arise in this way should be encouraged. Occasional
discussion of some of the assumptions underlying
mathematics and of the nature of the knowledge it provides
is necessary if students are to be enabled to talk about
mathematics in ways which others will understand. There
is at present a lack of teaching materials which assist

sixth~form teachers to work in these ways and more are

rejquired.
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This project investigates the potential classroom use of television
programmes from the Open University mathematics foundation course. As has
already been indicated, there is reasonable evidence to suggest that the
Mathematics Faculty has already successfully overcome some of the obstacles
in using television (namely obstacles (a) and (d) on pp.l10-12), although
some modification will be needed if only parts of the materials are to be
used. Also, since most schools have video-recorders, it will be assumed
that obstacle (b} (p.11l) is no longer a problem. However, it remains to be
seen whether
. the programmes are relevant to sixth form mathematics and acceptable to
teachers (obstacle (g) on p.13)
. the programmes can be used effectively in the classrcom (obstacles (c¢),
(e) and (f) on pp.12-13).

In Chapter 2 the relevance of the programmes to various A level syllabuses
is considered and the question of teachers' attitudes is first tackled. The
investigation continues in Chapters 3, 4 and 5 with a description of a pilot
study which looks at the suitability of the programmes for use in the
classroom,
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2. Sixth Form Mathematics: the Possibilities of using TV Programmes from
the Open University Foundation Course in Mathematics M101

{1) M101l: an outline

The Open University mathematics foundation course is an introductory course

in mathematics lying somewhere between 0 level, A level and the first year
of an undergraduate course. The entry behaviour, i.e. the level of
mathematics which students are expected to have attained before starting the
course, is well defined and corresponds roughly to the mathematics covered
in the first four years of secondary school. The age of Open University
students can range from 20 to 80, with a large proportion in their thirties
or forties and it is therefore assumed that students have only encountered a
traditional approach to mathematics before embarking on the course.

M101 is divided into six blocks.

Block I builds upon the assumed entry behaviour and introduces some basic
ideas such as iteration, transformations, trigonometry and functions. It is
recognized that students tend to be weak in algebraic manipulation and one
of the main aims of the early material is to provide appropriate experience
in this area.

Block II extends the work on functions to cover logarithms, exponential
functions and the idea of sketching a graph with the help of
transformations. The iteration thread is picked up again and in the
discussion of whether an iteration process converges or diverges the concept
of a 'scale factor' emerges. Other topics covered in this block are
inequalities, an intuitive look at limits and line-fitting using the least
squares method.

In Block III the 'scale factor' of Block II is seen to be the derivative and
this leads to a study of the calculus. The connection between
differentiation and integration is explored and various techniques of
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differentiation and integration are introduced. Some applications are
included such as areas, speed and acceleration, Taylor polynomials and the
Newton-Raphson method of solving equations.

Block IV provides a change of direction., Here the theme is algebraic and
centres on the properties and applications of matrices. Topics include
probability, equivalence relations and the connection between geometric
transformations and their matrix representation.

The title of Block V is 'Mathematical Modelling' and this block provides an
introduction to applied mathematics. Students are encouraged to think about
the application of mathematics to some real life problems. Stock control at
the National Coal Board provides an introduction to the steps involved in
attacking a problem using elementary mathematics. Then the administration
of drugs and the problems posed by pollution in the River Thames provide the
setting for a study of how to set up differential equations. Other topics
covered are statics and statistical sampling.

Block VI introduces students to some aspects of pure mathematics and the
emphasis is on mathematical structure. The topics covered include complex
numbers, groups, proof by mathematical induction, axiom systems and
isomorphisms and homomorphisms.

In addition to the six blocks there is a 'floating unit' in which students
are encouraged to reflect on the approach that they adopt when tackling
mathematical problems.

Throughout the course students are encouraged to be active rather than
passive learners. Many ideas are introduced via the use of an electronic
calculator and exercises are structured in order to promote understanding
and to make students think about what they are doing. The approach is
multi-media: most of the course is contained within printed texts but
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television and audio—tape are also used. Audio—tapes are designed to be
used alongside the printed texts and 'talk' students through new ideas or
techniques. The television programmes, transmitted weekly, help to pace
students through the course and provide another way of looking at important
concepts; computer animations and models are used gquite extensively and it
is felt that these help to stimulate students' understanding.

The course has been extremely successful in that it is fairly popular with
students (at least it is as popular as one might hope a mathematics course
to be!) and has a pass rate which is comparable to that of the other
foundation course at the Open University;

(ii) The potential of the M0l programmes as a classroom resource

It was recognized at the outset that M101l might have something new to offer
to teachers of A level mathematics (or eguivalent)., The content of the
foundation course was comparable to that of many A level syllabuses and the
materials involved a variety of media: print, audio-tape and television.
More important, it was felt that the approach adopted towards the
development of key ideas was fresh and stimulating. Initially there was
some hope of selling the complete package to schools and colleges on a block
basis. However, the sale of Open University materials is regarded as a
profit making exercise and the cost of one block of M101 (including the
associated television programmes) was set at about £1000. Excluding the
television programmes, the cost was more modest at about £10 per block, but
the teaching texts and audio tapes alone were unlikely to be of interest to
conventional teaching institutions since they were designed for self study.
Undoubtedly, if there was any potential for using MI01 in the classroom it
was centred on the use of the television programmes. Used on their own,
these were less likely to interfere with the teaching strategy adopted by
the feacher, and they had the definite attraction of offering something
which the teacher might not be able to achieve using a blackboard.
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Thus it was decided to concentrate only on making this component of the
course available to teachers, provided it could be made a viable
proposition. There was, of course, one major obstacle - that of making the
programmes available to teachers. As implied above, the cost of the
programmes was prohibitive. And there were licensing problems involved if
teachers were to be encouraged to record the programmes off-air.
(Unfortunately, Open University television programmes do not fall under the
auspices of the Schools Broadcasting Council and a licence fee must be paid
if they are recorded.) However, there was no point in tackling this problem
before investigating further

. how the ™ programmes fitted in to various A level syllabuses

. whether they would be well received by teachers

. how much support material would be needed.

Comparing the topics covered in the TV programmes with some commonly used A
level syllabuses provides an initial indication of the relevance of the Open
University materials for use in sixth form teaching. Table 2.1 (pp.26-32)
demonstrates that there does seem to be a significant overlap - especially
with those syllabuses where a more 'modern' approach is adopted. The left
hand column of the table outlines the topics covered in the 33 MIi01
television programmes. A cross in the table indicates that a topic is
gpecifically mentioned in an A level syllabus. A cross in parentheses
indicates that an implicit reference is made to a topic; perhaps the topic
is covered in the preceding O level syllabus or it may be assumed that the
topic is included under a broader heading.

The overlap is most marked in the early programmes corresponding to Blocks I
to III. This is not surprising since the calculus and the work leading up
to it plays an important role in any introductory mathematics course, The
material in Block IV is less commonly covered at A level but programmes TV
18, TV 19 and TV 20 could certainly provide enhancement material. The
programmes in Block V (TV 21 - TV 25) provide what was in 1978 a rather new

Ctd. on p.33



Table 2.9 OVEIiLAP BETWEEN M101 TV AND SOME COMMONLY USED A LEVEL SYLLABUSES
CONTENT OF A LEVEL SYLLABUSES

L L 0 0 JMB JWMB JMB JMB AEB AEB [ C c c
CONTENT OF M101 TELEVISION PROGRAMMES (8} (B) (i W @ (B} (P/h} (ALY (a) (A) (B) (&)
F F F F F F
BLOCK I
1. Symbols and Equations
Taockling a practical problen (x) X )y )y Xy (x)y oy (X} (%) x) Xy ) Xy o
Solving quadratics 4 X X X S X X X X X ¢ X X X
Iteration processes X X X X x X (X3 X X
Numerical method for finding JZ QIR SERNS SN ¢ $) X X x X X
2. The Binomial Theorem
Expanding brackets () 0 X)) (x)y & &) Xy &y (xX) axy  (x) @y o)
The Binoamial Theorenm : X X X X X X (X) X X X X X
The notation "C_ X 0 % X XX 0
3. Irigonometric formulas
Rotations )y ) o )y (49 (X) (X
Sin (e P ) X X X X X X X 4 X } 4 X X X X
Cos (e B) X X X X X i X X X X X X X X
Translations ) X )y o) Xy (X (X) (X)  (X)
The meaning of tan & X X X X X X X X X X X
4, Inverse Funutions
Domain, codomain, rule X X X X X X {x) X X
One-one functions ¢ ) SIS ST ¢ X X (x) X X
I Inverae functions X X X X X X X X X
Arooos, arctan X X X X X X X X X X
5., Tackling an Assignment Question
Revision of techniques in Block I
How to tackle a solutlion
BLOCK II
6. Rational Numbera and V2
Computational view of numbers (x) X (x)
Geometrical view of numbers (x) X (X}
Idea of proof by contradiction X X X X X (X} (x) X. X X
N, Z,Q.R : an exploration X X X x) X X X X ) (x) x X
Geometrical constructions 0 X o) ) O (X) Xy (X0
Iteration X X X X } 4 X }H X X

ctd.
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CORTENT OF A LEVEL SYLLABUSES

interpretation of derivatives

L L 0 0 JHB JHB JMB JMB  AEB AER [ c c c
CONTENT OF M101 TELEVISION PROGHAMMES (8) (B (A) (&) (B) (B) (P/A) (ALY (W) (& (B (B
F F ¥ F F F
7. Functions and Graphs
Translations (X) Xy Xy () (xy (X ($9] (X) X
Scalings Xy XXy (xy (x) ) (x) (X} Xy ()
Reflactions (x) OO (X X )y  XxX) (X) (xX) )
The effects of these transfor- x) X X O xy N (X) (x) X
mations on graphs of functions
8. Inequalities
Increasing and decreasing functions
Inequalities X X X X X X X X X X X
Exponential/logarithm functions X X X X X X X X X X X 4 X X
Finding loga (1.5) X oy X X X X X (X X -X X
9. Iteration and Convergenoca
Scale factors Xy 0
Iteration 1 X X } 4 X X } 4 X X
Convergence and divergence of X X X X X X
iterative processes,
10. L'—_?% : An Area for Reviaion
Area under xv>1 R S S S S VS N SR S N S E SIS SIS SRS ¢
Rules of logarizhma X X X X X X X 4 X 1 X X X X
Log, x X X X X b 4 X X X X X X X X X
BLOCK IIT
11. The Derived Function
Scale factors
Definition of the darivative () (X Xy Xy (xXy (X X X {X) (X) X X X X
Differentiation from First o) GO )y )y )y 0 X X o) (x) X X X X
principles
Tangents: a geometrical X - X X X b 4 X X X 4 X X X X X
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CONTENT OF A LEVEL SYLLABUSES

L L 1] o] JMB JMB JMB JHB AEB AEB C c c c
CONTENT OF M101 TELEVISION PROGRAMMES ) B (a) (A (B) (B) (P/0) (ALY (a) (a) (B) (B}
F F F F F F
12. The Behaviour of Functions i
Techniques of differentiation X X X X X X X 4 X X X X X X
Maxima, minima X X X X X X X X X X )¢ X X X
Point of inflection 9 X X X 4 4 X X (X) X X X X X
Sketching polynomials using X X X X X X X X X X X X X 4
calculus techniques
13. The fundamental Theorem of Calculus
Integral as a limit X X ) Xy X x x i (xX) X (x) xX) «x X
Integral as an area X X X X X X X X X X X X X X
Idea of approximate sum X X (x) X) X X X X X X Xy ) X X
Integration as inverse of X X X X X x X X X X X X X X
differentiation
Techniques of integration X X X X ¢ X X X X X X X X X
14, Taylor Polynomials
Taylor polynomials xX) X X X X 4 X X
Taylor {Maclaurin) seriea X X X X X X X X
Expansion of s3in x, cos x, (1+x)r X {(x) (X) X X X X X
I[dea of convergence X X X X
15. Why e?
Idea of a* and 1ogx X £ X X X X X M L % X
Hg (e*) and g2 (1og x) ¥ X X X 1 X X X
Expansion of exand lose (1 + x) X 00 X X X X
BLOCK IV
16, Networks and Matrices
Using networks
Matrix representation of networks
Matrix aultiplication o Xy Xy o (X) (X) ) (X) X X

8T
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CONTENT OF M101 TELEVISION PROGRAMMES

CONTENT OF A LEVEL SYLLABUSES

L L o0
() (B)
F

0

F

JMB  JHB JMB
(4)

(1)

F

(B)

JHB  AEB
(P/A)

(B)
F

AEB c c c c
(aL) (A (a) (B8) (B)
F F

17. An Introduction to Relations
The idea of a relation
The use of dots and arrows to
depict a relatiecn
Application to a problem involving
linked and unlinked rings

)

X
(x)

X
(xX)

X}

18, Coniocs
A Greek approach to the conie
sections
The geometry of conics
Focus-distance property
Focus-directix property

(X3
a0

> M

(X3
)

P

>

fo ]

19. Transformatlions and Matrices

Transformations in R 2

Matrix repreaentation

Image grids of matrix tranafor-
mations

$.9]
o
8.9]

Lo
el ]

PP

(X}
(x)
(x)

Lo ]
Lo
Lol ]

20, Dilation in Skew Directions
A scaling with two invariant
lines {also mentloned in TV 19)

Matrix representation by QDQ"‘I
where D is a diagonal matrix
Implicit idea of eigenvalues,
elganveotors

Pouwers of makrices

x) X

b (X}

BLOCK V

21. Hodelling Stock Control
Introduoing mathematical modelling
Making asaumptions
Formulating and solving
mathematical problems
Interpreting the solution

o ) )

x)

x)

3¢

(X}

(X}

(X}
(X}

{x)

(x)
X)W 0 @ @

(x3

Ctd.

62



CONTENT OF A LEVEL SYLLABUSES

L L 0 0 JMB JMB JHB JHB AEB AEB C c c c
CONTENT OF H101 TELEVISION PROGRAMMES (B) (B) {a) (a) (B) (B) (P/8) (ALY (A) (A) (B (B)
F F F F F F
22. Modelling Drug Therapy
Case study concerning the use
of the drug theophyline
Setting up a simple differential X X (xy Xy Xy (X X X X X X
squation
Solution by separation of variables | X } 4 X X X X X X X X X X
23. Modelling Surveys
Binomial diatribution X) 1 X X X ) ¢ X X
Idea of estimatlion based on a 1 X X X X X X
sample
24, Modelling Cranes
Designing cranes using modelling
methods
Parallelogram of forces X X )y (X X X X x X X
Forces in equilibrium X X (X) (X X X X X X X
25. Modelling Pollution
The development of & mathematlcal
model applied to pollution in the
River Thames
Setting up differeatial squations X X (X} (x) (X} (xX) X X X X X
Solution by separation of variables | X X i X X X X X X X X X
BLOCK ¥I
26, Complex Numbers
Notion of i = J—1 4 X X } 4 X X X X X X X
Geometric treatment of the complex X } 4 4 X 4 X X X X X X
roots of unity
Modulus, argument H X i X X X X X X X X X
27. Group Theory
Syumetries of a rectangle X Xy ) Xy (X (x) x) X
Symmetries of an equilateral X {xX) (X} x) (X x) Xy x
triangle
Combination table of symmetries X X b ¢ X} xX) x
Groups axioms, X X X X X X

Ctd.
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CONTENT OF M101 TELEVISION PROGRAMMES

CONTENT OF A LEVEL SYLLABUSES

L

(8)

L
(B}
F

0

0

F

JMB JHB JMB

(A)

()
F

14:})

JHB8
(B)
F

AEB
(P/A)

AEB
(AL)

c
(4

c
(A
F

c
(8)

c
(B}
F

28,

A Non-Euciidean Universe
Axioms for Euclidean geometry
Consistency and independenace in
pxiom aystems

A non-Euclidean axiocm asystem

29.

Hister Klein looks at geometry

A catalogue of geometries:
Projectiona

Affinicies

Similaritles

Isometries

Symnetries

Rotations

(x>

(x)
(1)

¢4

£ 8]
(x)

()
(x)
($ 9]
x)

(X)
(X}
(X}
)

x>

(2}

¢ 9]
(x)
(x)
¢9)]

(x)
(x)
X}
(x)

8 ¢

(X
(X

(X

(x)

(x)
¢.9]
()
(X}

R ]

30.

The Fundamental Theoream of Algebra

Complex functions f:d:->
Winding numbers

Application to the fundamental
theorem of algebra

5(a) .Mathematical Induction

Proof by induction

(xX)

(X)

31. Problem Solving

fiefleoting on the processes
involved in problem solviag

(x

X)

(89

)

(x)

x)

(x)

x

¢ 9]

x

(X}

(x)

)

x)

32.

Catastrophe Theory

An introduction to catastrophe
theory via some case atudies
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Notes (i) The following abbreviations are used in the table

L (B London (Syllabus B)

L (B) F London (Syllabus B), Further Mathematics

1] Oxford Delegacy of Local Examinations

0 F Oxford Delegacy of Local Examinations, Further Hathematics
JMB () Joint Matriculation Board (Syllabus A)

Jua (A) F Joint Matriculation Board (3Syllabus A), Further Mathematics
JHB (B} Joint Matriculation Board (Syllabua 8)

JMB (B) F Joint Matriculation Board (Syllabus B), Further Mathematics
AEB (P/AK) Assoclated Examining Board (Pure and Applied)

AEB (AL) Assaociated Examining Board (Alternative Syllabus)

c (&) Cambridge Local Examinations Syndicate (Syllabus A)

c (&) F Cambridge Local Examinations Syndicate (Syllabus A), Further Mathematics
¢ (B) Cambridge Local Examinations Syndicate (Syllabus B)

c (B F Cambridge Local Examinations Syndicate (Syllabus B), Further Mathematics

(i1) The information in the table is taken from 1983 syllabuses

(i11) In cases where a syllabus contains a number of optiona the contents of all options have been
conaidered,

A%
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approach to mathematics. However, now that the role of mathematical
modelling is more widely recognized, these programmes are particularly
relevant to today's sixth form students even though they may not be
parﬁicularly mentioned on any syllabus. Similarly, although the programmes
in Block VI do not necessarily fit into the syllabuses particularly well,
they nevertheless provide some stimulating material. Each of these
programmes is designed as an introduction to some topic in pure mathematics

and so requires little preparation on the part of the student. These
programmes can also lead on to more specialized work and so are particularly
suitable for more able students. Finally, the last two programmes, TV 31
and TV 32, are designed to enable students to reflect on the nature and
purpose of mathematics: TV 31 is concerned with the processes involved in
problem solving, TV 32 takes a look at the place of mathematics in society.
These programmes should therefore be suitable for all students of

mathematics.

Thus the content of the programmes does appear to be relevant but it is
difficult to draw any firm conclusions from the table. The main problem is
that examination syllabuses tend to list topics vaguely and the level of
understanding required is not made very c¢lear. So, although the content of
the programmes appears to overlap, the approach may not be suitable. It is
possible to get a better idea of the level of understanding required at A
level by studying the actual examination papers, but even that would not be
particularly conclusive because there still remains plenty of scope for an
individual teacher to decide at what level he or she wants to tackle a
topic.

But perhaps this is exactly where the attraction of the M101 TV programmes
might lie for they can provide treatment of topics at various levels

depending upon the guidance given by the teacher., They can provide an
introduction to an idea without becoming bogged down in mathematical

symbolism and they can also provide an alternative approach to a topic that
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has already been encountered, making them suitable for revision purposes or

for the stimulation of further ideas. A good example of this flexibility

may be found in TV 10 'xlﬁ>%:

be used to introduce the idea of an~area under a curve. It could also be
used to remind students of the properties of logarithms or of the nature of

an Area for Revision'. This programme could

the graph of x\A}i , as well as revising integration, for the programme

draws all these ideas together. It also demonstrates how the function xr%-%
may be manipulated using scalings and translations, and this could lead to

work in other areas.

In addition to this flexibility in approach the TV programmes certainly help
to liven what is often thought of as a rather 'dry' subject. Extensive use
is made of graphics, models and computer animations, and all programmes are
made in colour. However, they do tend to be unconventicnal and they are
fully integrated with the accompanying teaching texts (often specific
references to the texts are included in the programmes). This means that,
although the programmes appear to be relevant and certainly have some
attractive features, it is impossible to assess their likely potential in
the classroom in the absence of any feedback from teachers themselves.

Thus in May 1978 teachers were invited to view some television programmes at
a one-day conference at Chelsea College, London (R.M. REES. (1979)).
Members of the course team outlined the philosophy and contents of M101 and
a maths advisor from the London area described how the TV material related
to core areas of various A level syllabuses. Participants then had the
opportunity to watch some of the programmes and to discuss their reactions
in small groups. The response suggested that many of the programmes were
eminently suitable for A level work., Some participants also pointed out
that the materials had potential as a basis for the discussion of teaching
methods in teachers' centres and teacher training courses. Particular
reference was made to the liveliness of the programmes. One of the



35

conference speakers remarked that some of the programmes reminded him of his
favourite mathematics lessons. Another speaker referred to the fact that
the Open University materials were aimed at generating genuine pleasure and
thrill in working with mathematics, an experience which he considered to be
rather rare these days. And the author of the conference report, Ruth Rees,
stated that she was particularly impressed by the way that the medium of
television helped to make mathematics 'come alive'. Encouragement indeed!

But the conference also highlighed the fact that the programmes would not be
effective unless they were supported by appropriate back-up materials.
Synopses of the programmes were required, along with a clear description of
the background that students would need before watching the programme and
some suggestions for follow-up work. This was not unexpected for the
programmes were never designed to stand on their own. The course team
recognized that effective learning cannot be brought about by television
alone; television may provide the stimulation but students can only gain
understanding by working through the ideas themselves at their own pace.
That is why the television programmes were closely integrated with the
teaching texts in the first place.

The next step was therefore to create a suitable package of support
materials based on the teaching texts. However, because of the problems
involved in ensuring that the project was financially viable and because of
pressure of work on other projects, there was no immediate follow up.

Then in 1980 John Richmond, Executive Producer in Mathematics at the BBC
Open University Production Centre, prepared some video-tapes on various
aspects of the calculus using edited excerpts from the MI01 TV programmes -
along with suitable back-up materials. These were demonstrated at a
teachers' meeting at Brunel University. Again the response was favourable
and several teachers borrowed the tapes to use in their own classrcoms -
with reported success. But again this project was not followed up, partly
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because of pressure of work and partly because it was at this stage that it

was necessary to consider the following practical aspects of making the Mi0l

television programmes a viable proposition for use in the classroom.

. The cost of making either the complete programmes or edited tapes
available to teachers was still the biggest obstacle to be overcome

. It was necessary to consider how the materials might be made available to
schools and colleges throughout the country

. If all the programmes were to be edited this would require some manpower
input from the BBC which was unlikely to be forthcoming at that time
because of the requirements of other courses.

It was at this stage of development that the project was adopted as the
basis for this digsertation and instead of continuing John Richmond's
investigation into the potential of edited tapes it was decided to
concentrate once again on the use of complete programmes as broadcast. The
reasons were as follows.

. It avoided the necessity of obtaining manpower input from the BBC thus
reducing Ehe likely cost of the operation.

. Tenuous discussion with the Schools Broadcasting Council in Autumn 1981
suggested that it might be possible to overcome the licensing problems
involved in recording off-air. This meant that there was a possibility
that teachers might be able to record the programmes (for later use) as
they were transmitted by the BBC in the University year - without
incurring any costs. There was also some hope that the University might
be able to use some additional off-peak slots to transmit the M101
programmes again during school hours.

. The edited tapes produced by John Richmond were very tightly integrated
with the support material. Teachers were directed when to show an
excerpt from the tape and when to work through specific exercises. This
meant that there was very little scope for working with the material in
different ways and at different levels. 1t was felt that offering the
complete programmes would lead to more flexibility, especially if
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decisions such as when to use the programme, how to view it and when to
work through accompanying exercises were left to the individual teacher.

(iii) A preliminary workshop

The next step was to investigate further the feasibility of working with
complete programmes. Draft support materials were therefore prepared for

TV 10 'x+» 1 . An Area for Revision' using Block II Unit 5 of MI01.

These materials are reproduced in Appendix 1.

Teachers were then invited to a workshop in December 1981 in order to

. view the television programme and discuss its suitability for use in the
classroom

. comment upon the appropriateness of the draft support materials and make
suggestions about the format.

. view the MI01l course materials and discuss reactions to the project as a
whole.

It was also hoped that, by attending the workshop, teachers might become
interested in the project and would offer to assist with the developmental
testing of the materials. Unfortunately the date chosen for the workshop
coincided with one of the worst blizzards of the winter and several
participants phoned to say that they could not attend because of blocked
roads. In spite of this, 12 teachers from Milton Keynes and Leighton
Buzzard did manage to get there. All were involved in teaching A level
mathem§tics.

The workshop began with a discussion about TV 10 and its back-up materials.
The enthusiasm shown by all teachers present for using both the programme
and the support materials was particularly encouraging. There was a
surprising range of suggestions as to when and how this material might be
used. One teacher said that he would use it with his fifth form in order to
convey the idea of integration at an intuitive level - prior to A level



38

study, another commented on the suitability of the material for his
brightest students - giving them 'something to think about'. Some teachers
thought that they would use the entire programme as it stood, others felt
that they would only show excerpts and not necessarily all on the same
occasion. This seemed to confirm that this programme at least had the
desired flexibility.

Teachers were then asked about the format of the draft support materials and

the following points emerged.

. The summary of the television programme should be given first and this
should include an indication of the times of various sequences.

. The exercises should be laid out in such a way as to require the minimum
amount of copying.

Another issue raised at this stage was the use of Open Unviersity jargon and
terminology. (This was one of the reasons why John Richmond prepared edited
tapes: the tapes cut out all references to other M10l materials.) However,
the teachers felt that this would not cause any problems because such
references were unlikely to interrupt the flow of the programme.

Then followed the most agreeable part of the workshop, a lively discussion
on the various ways of teaching integration. One of the problems with
television is that the teacher is expected to use someone else's approach,
and responses such as 'I wouldn't teach it that way' were certainly
anticipated. This type of response was indeed given at the workshop but not
in a negative sense, rather the reaction seemed to be 'I couldn't teach it
that way!' The teachers drew attention to the fact that it was not always
possible to show things clearly on the blackboard (in this case the idea of
approximating an area using seguences of under- and over-estimates) and so
they usually had to adopt a different approach. Ideally, they would prefer
to use a variety of approaches and television would provide a valuable
alternative if it were available.
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Finally there was a brief discussion of the other topics covered by the M101l
TV programmes. Particular interest was expressed in the programmes covering
pre-calculus work and the calculus (TV 1 to TV 15), and those associated
with Mathematical Modelling (TV 21 - TV 25) and Mathematical Structures ((TV
26 - TV 30).Several teachers also mentioned the need for similar materials
in mechanics and statistics. (These two subjects are not covered in any
depth in M101 but they are included in other Open University courses and
there are possibilities of adapting other suitable television programmes for
use in the sixth form. Indeed, another member of staff is at this time
independently working on the adaption of mechanics programmes from a
second-level course.)

Thus the clear message conveyed by teachers at the workshop was

Carry on with what you are doing. We are very

interested and would like to use anything that

you can provide. .
It was therefore decided to go ahead with the production of draft support
materials for other M10l programmes with a view to developmental testing and
a pilot study was set up as described in Chapters 3, 4 and 5.
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3. The Pilot Study: an Outline of the Contents
It was decided that the pilot study should concentrate only on the

television programmes from Blocks I to III of M10l, covering pre-calculus
work and some aspects of the calculus. The following thirteen programmes
were involved (see Table 2.1 on pp. 26-32):

1. sSymbols and Equations

2. The Binomial Theorem

3. Trigonometric Formulas

4. Inverse Functions

6. Rational Numbers andufi—

7. Functions and Graphs

8. Iteration and Convergence

10. x k?%: an Area for Revision

11. The Derived Function

12. The Behaviour of Functions

13. The Fundamental Theorem of Calculus
14. Taylor Polynomials

15, why e?

(Note Television programmes 5 and 8 were omitted from the pilot study: TV5
is primarily concerned with the assessment procedure in M10l, TV8 contains a
number of gimmicks which meant that it was difficult to prepare suitable
back-up materials.)

A draft package of support materials based on the teaching texts in Blocks I

to III of M0l was prepared to accompany these television programmes, taking

into account the suggestions made at the December workshop. The package was

intended to:

. enable teachers to assess the content of each television programme and to
decide if and when that programme (and its accompanying work) might be
fitted into his/her teaching
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. provide suitable exercises for students to work through before and after
the programme

. help teachers to prepare for lessons involving the M0l television
programmes in the shortest possible time. Unfortunately, as with all
television, there is no substitute for watching the M10l programmes in
order to plan for their use in the classroom, but it was hoped that the
support materials would help to minimize the time required.

The package of support materials essentially comprises thirteen separate
sections, one for each of the selected programmes, and, wherever possible,
each section is designed to be complete within itself. Occasionally one
section may be directly related to the work in an earlier section and
whenever this occurs appropriate references are provided.

The introduction to the package outlines the background of the project,
lists the various themes running through the programmes and provides
guidance on how to use the materials. '

Each section begins with a summary of the associated television programme
and includes the times for the various sequences. Then follows a list of
pre-requisites which students will need if they are to gain maximum benefit
from watching the programme and working through the accompanying material.,
The rest of the section mainly consists of exercises for students to work
through before and after the programme. Not all the exercises are essential
but the questions marked with an asterisk should certainly be tackled before
watching the television programme: such questions may be directly referred
to in the programme or they may demonstrate a particular approach or a type
of notation that is used which students may not have encountered before.
The exercises are laid out in such a way to facilitate copying for students'
own use and full solutions are provided. Finally, each section ends with
some suggestions for extending the work covered by the programme. These

include references to other relevant sections.

The draft support materials are reproduced in their entirety as Appendix 2.
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4. Developmental Testing

(i) The aims

As outlined in Chapter 3, the pilot study involved the use of thirteen
complete Mi01l television programmes together with supporting written
material. The materials were tested by a number of schools in the period
January - July 1982. Throughout this period of developmental testing the
television programmes themselves were regarded as fixed (i.e. there was no
intention to alter the programmes in any way). This meant that the aims of
developmental testing were simply to

. determine the likely response of teachers to the use of the Open
University materials in the classroom

.. identify those programmes which were unsuitable for use in the classroom

. improve the written support materials.

Teachers were especially requested to make use of television programmes TVi-
TV4 because for the purpose of this dissertation only Sections 1-4 of the
written materials were to be revised. However, feedback was of course
welcomed on all aspects of the pilot study.

(ii) The organization

The draft package of support materials was circulated to 10 local schools in
January 1982, (Restricting the circulation in this way helped to keep the
cost and administration of the pilot study to a minimum. However, the

project did attract a certain amount of attention and copies were sent to
other schools on request.)

Two copies were made of each of the thirteen programmes on VHS cassettes.
The cassettes were available from the Open University on request, either by
letter or telephone. Every effort was made to dispatch the cassettes
promptly on receipt of the request and it was suggested that in order to
facilitate this, each loan should be for a maximum period of two weeks.
Details of all loans were recorded and if necessary teachers were informed
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when a loan was overdue. The limited availability of video—tapes was
another reason for encouraging only a small number of schools to take part
in the developmental testing and even then there were problems in supplying
cassettes on demand (see p.44). It would certainly have been desirable to
have had more copies but, as has already been mentioned, it was necessary to
keep the costs of the pilot study as low as possible.

In June 1982 a questionnaire was sent to all teachers who had received the

draft package of support materials. The first part of this questionnaire

requested the following information:

. the A level syllabus used in the school

. which (if any) of the M10l television programmes had been used in the
period up to June 1982

. which (if any) of the M101 television programmes the teacher planned to
use in the future

. the reasons for not using any of the materials

. general comments on the suitability of the materials.

The second part of the questionnaire requested more detailed feedback on the

suitability of the support materials for those programmes which the teacher

tad already used. For each section in this category the teacher was asked

to comment on

. the relevance of the work to the A level syllabus

. preparation time

. the length of time students spent watching the programme and working
through the accompanying material

. the suitability of the TV summary

. the appropriateness of the pre-requisites

. the suitability of the suggested pre-programme and post-programme work

. errors, omissions and suggested additions to the written materials.

The questionnaire is reproduced as Appendix 3.
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Teachers were requested to reply to the questionnaire by the end of July and
a second workshop was planned in order to discuss their reactions more
fully. However, this workshop did not take place, partly as a result of
other commitments on the part of the author and partly because of the
understandable lack of interest shown by the teachers at the end of the
summer term. An alternative more popular proposal was that the author
should visit local teachers who had used the Open University materials and
who had responded to the questionnaire, and a series of such follow-up
visits was therefore arranged for -September.

(1ii) The response from teachers

(a) Take-up of programmes

As reported in Chapter 2(iii) the initial response of local teachers at the
December workshop was very enthusiastic. However, there was a
disappointingly low take-up of the programmes in the early months of 1982 as
shown in Table 4.1 (p.45) which provides details of requests for loans.
This may have been due to lack of interest or it could have resulted from
the fact that teachers were very much bound by the exam syllabus in the
months leading up to June and just could not fit the progammes into their
teaching. Then in June and July there was a very heavy demand for
programmes and it was extremely difficult to respond to all requests
promptly. Indeed it was impossible to supply all schools with all the
programmes they requested because of the limited number of copies available.

5 of the 6 schools which borrowed cassettes at some time were local.

(Verdin Comprehensive is situated in Chester and was not originally included
in the developmental testing. However the teacher was extremely keen to use
the Open University materials and one does not refuse offers of help.)

Thus, of the 10 local schools originally involved, 5 actually used some of
the materials.
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Table 4.1 Record of loans January-Jjuly 1982

Programme Nos  Date School
2, 4, 7, 15 12.3.83 Vandyke Upper
3, 6 12.3.82 Cedars Upper
9, 10, 11 30.3.82 Aylesbury Grammar
15 5.4.82 Vandyke Upper
1-9, 12-15 7.4.82 Aylesbury Grammar
1-9 19.4.82 Aylesbury Grammar
9-15 9.5.82 Verdin Comprehensive
11, 12, 13, 14 12,5,82 Denbigh
9, 10, 15 15.6.82 Aylesbury Grammar
10, 11 23.6.82 Denbigh
12, 13, 14 1.7.82 Vandyke Upper
1, 4 1.7.82 Cedars Upper
2, 3, 4, 6 ,7 1.7.82 Verdin Comprehensive
1, 9 1.7.82 Lord Gray
2 5.7.82 Cedars Upper
9, 12 7.7.82 Denbigh

(b) Response to the questionnaire

The questionnaires were sent to all ten local schools plus Verdin
Comprehensive. Replies were received from the six schools which had used
the programmes but only one reply was received from the remaining five.Here
the reason given for not using the materials was the fact that staff
shortages meant that A level classes were only receiving a fraction of the
teaching that they might otherwise expect and that this was strictly centred
on the examination itself. Also, the teacher in guestion was leaving and
therefore did not plan to use the Open University materials at a later date.
The author then contacted the other four schools. 1In two schools the
teachers were interested but had not been able to use the programmes up till
then, although they did indicate that they planned to use the materials in
the future as and when the syllabus allowed. In the other two schools the
teachers were just not sufficiently interested in the project.
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(iv) Feedback

The comments from teachers who had used some of the programmes are
summarized below. This summary is based both on the completed
questionnaires and on the follow-up visits to the 5 local schools (the
author did not visit Verdin Comprehensive).

{(a) General comments

A number of A level syllabuses were in use in the six schools: Oxford, AEB,
JMB and MEI, and all the teachers responded very favourably. They felt that
the materials provided a useful resource for the sixth form no matter what
syllabus was being followed. The use of computer graphics and animations
was particularly welcome. Indeed the general impression conveyed seemed to
be

The sixth form alway tends to be low in the priority stakes

for resources and so any material that might be provided is

worthwhile — especially if it can be provided at a reasonable

cost.

There was surprisingly little criticism either of the programmes or of the
support materials. None of the programmes was regarded as unsuitable for
use in the classroom. Even where a teacher had experienced difficulties
because the approach differed from that used in the syllabus, or had used
the materials in a different way to that indicated, there was no suggestion
that the materials should be substantially altered. Of course, there was
some criticism and this usually concerned the television programmes
themselves rather than the associated written materials. For example, one
teacher reported

Too much time was spent explaining less complex work and the
style of presentation was rather condescending.
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But such criticism was not necessarily discouraging, as demonstrated by the
following comment - from the same teacher!

Students found the manner of the presenters rather entertaining
at times and this may have distracted them from the purpose of
the programme.

Only two teachers reported difficulties in obtaining access to a suitable
video~recorder at the appropriate time. 1In one school the only
video-recorder available was a Philips machine which would not take VHS
cassettes. However, a suitable video-recorder was borrowed specifically for
the project. (This problem would not arise if schools were to record their
own tapes and, in fact, need not have arisen during the developmental
testing period; had the teacher reported the problem at an earlier stage it
would have been possible to supply Philip's cassettes.) In another school
the teacher reported that the video recorder was already booked out when he
had wanted access to it because classes lower down the school had more
priority in the use of audio-visual resources. However, the teacher did
plan to argue his case more thoroughly in the following school year.

Understandably, all the teachers reported that there were bound to be some
organizational problems in using television in the classroom (partly because
students were unused to this medium). But these did not discourage them
from planning to use the materials further. On the whole, sixth formers
tend to be more responsible than younger pupils and so it was felt that the
organizational problems would not be as acute as they might be if television
were to be used lower down the school. BAlso, the attitude seemed to be that
such problems were a small disadvantage in comparison to the livelier
mathematics lessons that might result when television was used.
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{b) Future use

All the teachers reported that they planned to use the materials again.

Many of the programmes had been shown experimentally in the post-examination
period: some were used for revision purposes, others were used in induction
courses for fifth formers who planned to take A level mathematics. The
teachers felt that the programmes were particularly suitable for such
activities and would use them again in the same way. In addition, now that
they had seen the materials in use they felt more confident about fitting
them into more direct teaching activities as and when appropriate.

(c) Cost and availability

It was felt that in order to encourage widespread use of the materials the
cost should be kept as low as possible. It was recognized that the problem
of how to obtain the programmes was as yet unresolved but there was no
adverse reaction to the proposition that schools might be asked to record
the programmes off-air using their own video-tapes. The cost of providing
these tapes was regarded as a reasonable outlay for a useful resource. As
for the written materials, the teachers reported that a cost of about £10
would be acceptable. The author pointed out that in order to achieve such a
low cost the amount of material would need to be reduced. It was then
suggested that the best way to cut the material would be to amit the
solutions and to provide only final answers, possible exceptions being for
those questions marked with an asterisk.

(d) Format of the written support materials

The written materials were regarded very favourably and the general feeling

seemed to be that they helped to minimize the amount of preparation time

that was reéuired on the part of the teacher. Some changes in the format

were proposed by various teachers and these were discussed in more detail in

the follow-up visits. The proposed changes are listed below.

. The sections should be re-ordered in sequences of related programmes 1In
the draft package the sections are simply presented in order of
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transmission. It is certainly true that ignoring the transmission order
would mean that several programmes fit into nice sequences (these are
already indicated in the introduction to the draft support materials).
However, even if the suggestion were implemented, a certain amount of
cross-referencing would still be required because some programmes fit into
several such sequences.

For the moment no decision has been taken on this point. If the
programmes are simply to be recorded off-air then the order of
presentation of the written materials should ideally be related to the
transmission order of the programmes. If special arrangements can be made
to have the programmes broadcast separately for schools then it might be
possible to alter the transmission order and hence to re-seguence the
written materials, otherwise the programmes will just be broadcast as part
of the Open University year and the order of presentation should perhaps
remain unchanged.

Each section should include a list of discussion points on various aspects

of the programmes The intention of this would be to draw teachers'

attention to difficult or interesting parts of the programme which might
be worthy of further explanation or exploration.
It was agreed to implement this suggestion.,

There should be more references to computing under the heading 'Possible

Extensions' Computing was not included in the syllabus in any of the six
schools concerned but there was general approval for this suggestion. It
was recognized that many sixth formers are very interested in
micro-computers and that it might be useful to channel some of this
enthusiasm into work that is more directly concerned with A level
mathematics. Indeed, some teachers suggested that detailed computer
programs might be included here. On the other hand, the author felt that
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it was unwise to be too specific because of the variety of hardware and
software that is currently available.

In the end it was therefore decided to extend the references but to
continue to keep them at a very general level.

. The exercises in each section should be printed separately and in the

smallest possible space in order to facilitate copying It was also

suggested that the exercises should ideally be provided as spirit~masters.
The author agreed to look into this possibility, although it is not likely
to be a feasible proposition because of cost implications.

(e) Detailed comments on programmes
Table 4.2 (see p.51) indicates the numbers of teachers who commented on the
various programmes and the associated written materials.
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Table 4.2 Programmes for which detailed comments were received

TV programmne Number of teachers who commented
1 3
2 5
3 3
4 3
6 2
7 3
9 2

10 4
11 1
12 2
13 1
14 2
15 2

It was agreed that for the purposes of this dissertation the author should
consider only the detailed comments on TV1-TV4, for which the support
materials are to be revised, and these are outlined in Chapter 5. However,
although the detailed comments on the remaining programmes were not required
here they will not be ignored and will be taken into account when the
appropriate written materials are revised at a later date.

(v) Conclusions

Although the developmental testing was only on a small scale it does appear

to have achieved its aims (see p.42).

. The response of teachers seemed to be that the materials would be suitable
for use in the classroom - and very welcome.

. None of the programmes was identified as unsuitable for use in the
classroom (although some were less suitable than others).
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. Various suggestions were made which would lead to improvements in the
written materials. These suggestions were of two types:
comments on the general format
detailed comments on various sections.
As a result of developmental testing, Sections 1-4 of the written materials
were revised and the revised materials are reproduced in

Chapter 5.
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5. The Revised Support Materials for TV1-TV4
The following suggestions from Chapter 4 (iv) on format and layout were
incorporated in the revised written materials.

. Each section should include a list of discussion points. Such a list was
added to each section and it was decided that this new heading should also
incorporate those points which had previously been included under the
heading 'Possible Extensions'.

. The package should include more references to computing activities Such
references were added where possible.

. The exercises in each section should be printed separately In the revised
material the exercises are set out on separate pages and it is intended
that eventually these exercises will be set using a smaller print size.

. There is no need for full solutions to the exercises. It is intended that
only the final answers should be provided although these answers have not

been included at all here, partly to save space and partly because they do
not really differ from those in the original draft materials (except in
length !).

Detailed comments, received from teachers during the developmental testing
period as a result of the guestionnaires and visits, were also considered
and these are indicated under the various section headings. The author did
not necessarily follow up all these comments and suggestions. Much of the
feedback just seemed to confirm that the existing draft materials were
satisfactory and it was felt that some comments simply reflected the range
of reactions that might be expected. Also, several comments related to the
television programmes themselves and these were rather difficult to deal
with since there were no plans to alter the programmes in any way. However,
teachers will be reminded in the revised introduction to the package that
there is always the option of not watching the programme for a few minutes
if they want to handle some aspect slightly differently. It is also
intended that the introduction should include some reference to the
importance of the pre- and post-programme work. (The introduction has not
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been rewritten at this stage because it is so dependent on the way in which
the programmes will be made available to schools and this is still to be
decided.) '

In addition the draft materials were discussed with a number of colleagues
and their suggestions were also considered at this stadge.
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(i} Section 1: Symbols and Equations
The completed questionnaires indicate that:

students enjoyed the programme

the amount of time spent on this section ranged from 1 - 2 hours

the teachers would use the material again

in each case the complete programme was watched in one viewing

the TV summary provides a reasonable idea of what is involved in the

_ programme

the pre-requisites are realistic
the pre-programme work, if not essential, helps to promote understanding
the post-programme work is essential,

In addition, the following detailed comments were received.

This work is eminently suitable at the beginning of an A level

course or for use in an induction course for fifth formers.

Although the material is not directly covered on many A level
syllabuses (i.e. those which do not include iteration) the

programme is neverthless very useful.

The first few minutes of the television programme are rather
slow and repeat some of the pre-programme work.

The algebraic manipulation in substituting r = 3 definitely

needs to be covered before the programme. ALso, thé post-programme
work should include another question which involves this type of
manipulation. (This teacher had however, omitted Question 5 from
the pre-programme work (see Appendix 2).)

The revised written materials are reproduced on pp.56-64 and these indicate

how the various suggestions were incorporated.
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SYMBOLS AND EQUATIONS

This section is concerned with the setting up and solving of quadratic
equations, The solution of quadratic equations by factorization and by the
formula method is revised, then an iterative method of solution is
introduced which students are invited to explore with the help of a
calculator.

This section does not require any mathematics above 0 level standard. It
therefore provides a good introduction to sixth form mathematics.

PROGRAMME SUMMARY

The programme essentially tackles two problems about international paper
sizes. One purpose is to show the process of changing a given practical
problem into a mathematical one in the form of an equation, the other is to
introduce an iterative method of solving equations.

The programme begins with a brief reference to a problem about organizing an
exhibition which students should have tackled beforehand (see Question 1 in
the suggested pre-programme work).

3 mins | Then a problem is posed about international paper sizes (A3, A4, AS
etc): what is the ratio of sides of a piece of A size paper? The first step

is to explore the problem in a practical sense.

3 mins| Symbols are introduced and the problem is expressed algebraically
as an equation - and consequently solved.

|2 mins| The presenters reflect on the process of problem solving with
reference to the framework in Figure 1.1.
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Figure 1.1
Skate . Put 'n . | State problem
_preblem 7 symbols 71 as equation

N

Sclue
equqk:ion

Interpre\:
salution

™

5 mins| A second problem is introduced: what is the ratio of a rectangle
such that after cutting off a square of side equal to the width of the

rectangle the resulting shape is the same as the original (i.e. the shapes
are gimilar)? See Fiqure 1-2.
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The problem is tackled with reference to the framework for problem solving
in Figure 1.1 and is solved using the formula method.

5 mins| Such methods of solution are all very well for quadratic equations.
But what about situations where there is no formula? The programme goes on

to discuss the essential ingredients of an iterative process. (The
bisection method is mentioned although only as an aside reference; for more
details of this see SECTION 6: RATIONAL NUMBERS AND | 2.) A method of
formula iteration is introduced in order to solve the equation

r2.— r -1 =0 (from the problem above).
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3 mins{ The notation for the iteration formula

1
r ==+1
n+l r,

is explored with reference to the flow diagram in Figure 1.3.

Figure 1.3

2 mins| Finally a third problem is introduced which is to be tackled
immediately after the programme. This concerns the overall stopping
distance of a car travelling at various speeds as found on the back of the
Highway Code.

PRE-REQUISITES

Before working through this section students should be familiar with the
following:

2

(i) the solution of gquadratic equations of the form ax™ + bx + ¢ = 0 by
factorization
(ii) the solution of guadratic eguations of the form ax2 +bx+c=0

using the formula

-b iJ.b2 - dac

X = 2a
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(iii) ratio and proportion
(iv) the use of a calculator to evaluate expressions of the form

1 1 100 - v
A T0.05
(v) subscript notation.

DISCUSSION POINTS

1. The algebraic manipulation in the programme centres on the

replacement of the term g by the symbol r. It would be useful to
discuss this type of manipulation before the programmne (see Question
3 in the suggested pre-programme work).

2. Do students understand how their own calculator works, i.e. do they
know the type of algebraic precedence it uses? can they use the
memory correctly? '

3. Practical mathematics always involves a certain degree of
approximation. The idea of Mathematical Modelling might be discussed
further.

4. Numerical methods of solving equations are necessary. Although the

iterative process introduced in the programme is only for a quadratic
equation the method also works for higher order equations for which
there are no formulas.

5. The flow diagram in Figure 1.3 could lead to a study of the more
conventional f£low charts used in computing. It could also be
extended to incorporate a specified degree of accuracy in the answer.
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Usually there are many ways of rearranging an equation into a form
suitable for iteration: for some rearrangements the iterative
process will converge, for others it will diverge. This could lead
to further exploration. For example, is it possible to predict in
advance whether the iteration based on a given rearrangement will
converge or diverge? (See SECTION 9: ITERATION AND CONVERGENCE.)

What is so special about numbers like J_Z_? SECTION 6: RATIONAL
NUMBERS AND | 2 might provide an interesting follow-up here,
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STUDENT EXERCISES

Pre-programme work

*1l

(a) An exhibition organizer for a local craft exhibition is offered a

room with floor dimensions 12 metres by 16 metres. He wishes to
arrange exhibits around

the sides of the room, T
leaving space for people ‘ bczﬁer

to circulate in the
centre. The local 3 kotal area
regulations state that |
at least half the floor
area must be left clear.

Suppose the exhibits take up a border of equal width all around
the room. This exercise investigates the width ¢of this border if
exactly half the total floor area is to be left clear in the
centre,
(i) Using x metres to stand for the width of the border write
down expressions for
. the length of the clear floor space
; the width of the clear floor space
. the area of the clear floor space.
{(ii) The value of X is restricted. Between which whole numbers
must the value of x lie?

(iii) The total floor area is 16 x 12 = 192m?. Use this to

write down an equation which expresses the fact that the
clear space should have an area equal to half the total
floor area.

(iv) Solve the resulting equation by factorization. wWhat does
the solution mean in terms of the original problem?
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(b) How wide should the border be if the room has floor dimensions 15
metres by 20 metres and exactly half the total floor area is to
be left clear in the centre?

(¢} How wide should the border be if the room has floor dimensions 14
metres by 14 metres and exactly half the total floor area is to
be left clear in the centre?

(Hint: you will need to use the formula method here.)

2. (a) Measure the length and width of a piece of A4 paper and calculate

the ratio ‘ h :

longer side - —T

shorter side. | T

. . ! .Ath
(b) Fold the paper in : W
half and repeat the ] l
above calculation. I

+
Yold here
*3. The following equations involve the two symbols x and y. In each case

replace 3 by r in order to obtain an equation just involving r.

X_xX+ty =¥
(@ & " (b) x =S5 +y-

Post-programne work

4. The stopping distance d feet of a car travelling at v mph is given
(approximately) by the formula

d=1.0v + 0.05v°.
To f£ind out how fast you can drive and still stop in 100 feet
therefore requires you to find the solution to

100 = v + 0.05v°.

{a) Use the rearrangement

_ _ 2
vn+‘| = 100 0.05vn

with starting value v, = 40 to try to solve the equations.’
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(b) Use the rearrangement
100 -~ v
v = —-———---—£1
nl 0.05
and a starting value of vy = 40 to try to solve the eguation.

5. (a) Try to solve the equation x2

-1 2_
w1 -3 %7 X

with starting value x; = 1.

(b) Suggest a rearrangement that might help you to solve x2 = a as
accurately as you wish for any positive value of a. Check your
suggestion by trying it out for a few different values of a.
what happens if a is negative?

= 2 using the rearrangement

6. Consider the equation
x = 2X¥
X
(a) Use the substitution r = § to rewrite this equation in terms of r
only.
{b) Solve the resulting equation using the rearrangement
+
n

with starting value r, = 1.
(By the way, you should of course check that the equation that you
obtained in Part (a) can be rearranged into the form given in Part
(b} .)

7. The original rearrangement of the eguation r2 -r-1=0 as obtained

in the television programme was
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However this rearrangement was not used for the formula iteration
method. This exercise explains why.
(a) Use the rearrangement

r = et e

nl r, - 1
with starting values
(i) 1 (ii) 0.5 (iii) 2
to try to solve x:2 - r-1=0, WwWhat happens?
{(b) Investigate what happens with the rearrangement

= .2 _
In#1 = In 1

with starting values
(i) 1 (ii) 0.5  (iii) 2.
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{ii) Section 2: The Binomial Theorem

Thé completed questionnaires indicate that:

those students who were at the beginning of an A level course found
the programme very useful, those who watched it after one year in
the sixth form found the programme too easy and a bit boring

the amount of time spend on this section ranged from 25 mins (i.e.
only watching the programme) to 1 hour

the teacher; would use the material again

in each case the complete programme was watched in one viewing

the TV summary provides a reasonable idea of what is involved in
the programmue

the pre-regquisites are realistic and should certainly include
familiarity with the idea of coefficients

the amount of pre- and post-programme work that is required depends
upon students' past experience: for students at the beginning of an
A level course the the work is essential, where the programme is
used for revision purposes the work could be omitted.

In addition, the following detalled comments were received.

In our syllabus this is a major topic and will be dealt

with in greater detail with numerous more examples.

However I would certainly use this as an introduction -

especially in the induction course for next year's

intending lower sixth. It was an excellent choice of

programme; it gives them a chance to look at A level

work and vet follow the ideas involved, even though it

is very different to what they have met at O level.

The multiplication of brackets at the beginning of the
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programme was rather laboured. A reasonable A level
student is too familiar with brackets to need to spend
time on this. (Here the programme was used for revision
at the end of the first year sixth.)

The section of the programme regarding routes from
Charlotte Square to the Scott Monument was too long.

I would edit that section and do combinations by listing.
(Here the programme was used at the end of the first year
sixth.)

The notation 2 should be mentioned since this is used
in many A level syllabuses,

More repetitive exercises should be included.
Some reference should be made to the Binomial Series.

The revised written materials are reproduced on pp.67-75 and these indicate
how the various suggestions were incorporated.
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2. THE BINOMIAL THEOREM

This section investigates the expansion of (a + b by considering the

number of different ways of obtaining terms involving at (0 € rg n) from
the n sets of brackets. In the course of the investigation the construction
of Pascal's Triangle is explored in terms of the equation

nc - n-1 n-1

C + C .
r r r-1
This section provides an excellent introduction to A level mathematics since
it does not require any mathematics above 0 level standard. However,

students who are already familiar with the ideas may find that the pace is
rather too slow.

PROGRAMME SUMMARY

The expansion of (a + b)6 is investigated. wWhat does it mean? How is it
obtained? The problem is reduced to a route finding exercise which is
easier to visualize, and which leads directly to Pascal's Triangle. The
link between Pascal's Triangle and the Binomial Theorem is then explored
further.

2 mins| How to expand (a + b) N2 Before the programme students should have

seen how to expand (a + b)2 and (a + b)3 (see Questions 1 and 2 in the

suggested pre-programme work). The special case (a + b)6 is introduced.

6 mins| The meaning of (a + b)6 is investigated by referring back to the

simpler cases (a + b)2 and {(a + b)3. The expansion of (a + b)6 is seen to
involve the same principle - choosing symbols from each of the brackets in

turn. The coefficient of each term (e.g. the coefficient of a4b2) indicates
the number of different ways of choosing those particular symbols.
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5 mins| The idea of choosing symbols is compared with the number of ways of
getting from one grid point to another (in a minimum number of steps). This
is illustrated by considering the number of different routes from Charlotte
Square to the Scott Monument in Edinburgh as shown in Figure 2.1.

Figure 2.1
Chavlotte . Cask
Square
A South

5

Scott
Monument

1 min | The coefficient of a4b2 and the number of different routes from A
to B in Figure 2.1 both involve the number of different ways of choosing 2

things out of 6.

2 mins| The route problem is easier to visualize. The number of routes to
any grid point is obtained by adding together the numbers of routes to the
two adjacent preceding grid points. This leads to Pascal's Triangle as

shown in Figure 2.2 .

Figure 2.2

P tast

i t
‘ 3 Seuth
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3 mins| Moving one place South corresponds to choosing the symbol b, moving
one place East corresponds to choosing the symbol a. All the coefficients in '

the expansion of (a + b)6 can be obtained just by extending the grid.

1 min |The link between Pascal's Triangle and the expansion of (a + b)n for
various values of n is explored further by looking at the diagonals on the

grid.

3 mins| The notation nCr is introduced to stand for a general point on the
grid system on the nth diagonal and the rth row. The structure of Pascal's
Triangle can then be completely explained in terms of the eguation

n, _nl n-1
Ce = Cp + Cra

since all the numbers on the borders are ones.

PRE-REQUISITES

Before working through this section students should be familiar with the
following:

(1) the expansion of brackets of the form (a + b)2 and
(a + b) (a® + 2ab + b?)

(ii) the meaning of a coefficient
(iii) some idea of symmetry.

DISCUSSION POINTS

1. Students might find that the Edinburgh sequence in the programme is
rather slow and longwinded. You may therefore prefer to amit this
sequence and to deal with the idea in some other way.
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In the programme Pascal's Triangle is presented in a somewhat unusual
format which may require some explanation if students have already
met the idea before.

This section of work could be used as a starting point from which to
discuss other number patterns in Pascal's Triangle.

It might be worthwhile spending some time discussing the Binomial
Theorem more formally. In particular it might be appropriate to
discuss the fact that it is restricted to expansions of the form

(a + b)n where n is a positive integer. This could lead to a

discussion of the Binomial Series for (1 + x)r(\xl <1, ced)) (see
SECTION 14: TAYLOR POLYNOMIALS) .

The notation rlCr may need to be discussed further. Also, the

connection between this notation and the notation (2) might be
pointed out.

The relationship

n, _nnl
Cr T r Cr---l
can be used to show that

n _ nl
Cr r!t{n-r)!

and hence various binomial coefficients can be evaluated,

Further repetitive work might be set on using the Binomial Theorem.
In particular, its application to the evaluation of numerical

expressions of the form (1.01)n, (0.99)n etc might be further
explored.
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STUDENT EXERCISES

Pre-programme work

*1.

*2.

(a) Write down the expansion of (a + b)2.
(b) Write down the expansion of (a + b)3. You might find that it

helps to write (a + b)3 as {a + b)(a2 + 2ab + b2).

One way of obtaining the expansion of (a + b) 2 is to write it as

(a +b) (a.+Db) and tomultiply out the ‘brackets, and that is probably what
you did in Question 1. Alternatively, you can think of the expansion
in the following way: every contribution to the expansion is the
product of two symbols - an a or b from the first bracket multiplied

by an a or b from the second. The expansion may then be found by
considering the number of ways of obtaining all the possible

combinations of symbols that might be selected. Thus in (a + b)2
(a + b)(a + b) the term involving a2 can be obtained in only one way,

by choosing an a from each bracket. This means that

the coefficient of a2 in the expansion of (a + b)2 is 1.

(a + b) (a + b) Similarly the coefficient of b® is 1.
N
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(a+ b){(a + b) On the other hand, the product ab can be obtained in

| two ways, either by choosing an a from the first
bracket and a b from the second or by choosing a

(a + b)(a + b) b from the first bracket and an a from the second.
the coefficient of ab is 2.

So

Hence (a + b)2 = a® + 2ab + bZ.

(a) Use a similar argument to explain the expansion of (a + b)3.

(b) The expansion of (a + b)4 may also be obtained using this
alternative method of choosing symbols.

{i) Use this method to write down the coefficients of ab3 and

a2b2 in the expansion of (a- b)4.

{ii) Check your answers by multiplying out the expression
(@ + b) (a + b)°.

(Hint: Use your solution to Question 1l(b}).

Post-programme work

3. The expansion of (a + b)6 is

a® + 6a%b + 15a%b2% + 20a7b° + 15a%% + sab® + bP.

Use this expression to find the number of ways of choosing
(a) three b s
{b) four b s

from six brackets (and a s from the remaining brackets).
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4. The route chosen in the programme from Charlotte Square to the Scott
Monument was '
Charotte A East
Square ]Gouth
) - & Seokk
Monument

This corresponds to the following choices of direction at each

junction.

E | S E|E [{[S|E

What choices correspond to the following route?

Charlokte f - Fast
Square -
\[fSChtEh
B Scott
" Monument
5. In the following diagram count the number of (different) shortest
routes from
(a) A toB {(b) A to C.
B
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6. (a) Complete the following diagram by giving the number of shortest
routes from A to each of the remaining junctions on the grid.

A ( { \

A a—

3 & 5

| 2
3

iz 10 1=

(b) Use your answer to Part (a) to write down

(1} the coefficient of a3b2 in the expansion of (a + b)5

3b4 in the expansion of (a + b)7

(iii) the coefficient of a4b4 in the expansion of (a + b)s.

(ii) the coefficient of a

7. Use Pascal's Triangle to write down the expansion of (a + b)5.

8. {a) Work out Pascal's Triangle up to and including the seventh
diagonal on the grid.

(b} Hence write down the expansion of (a + b)7.

2¢ obtain the expansion of (2c¢c + b)5.

9. (a) (i) By substituting a

(ii) By substituting b = 3d obtain the expansion of {a + 3d)5.

(iii) Now find the expansion of (2¢ + 3d)°.
{b) Use a similar approach to find

(i) (s + at)d (i1) (2t + 5u)3.
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(a) (1) Write x -y as x + (-y) and so obtain the expansion of

(x - y)s-
(ii) By writing 2v - u as 2v + (-u) obtain the expansion of

(2v -u)6.
(b) Use a similar approach to find

) -5 i) Gs - an? (i) 65t - 203,

(a) By writing 1.001 as (1 + 0.001) use the first three terms of the

expansion of (a + b)’ to find an approximation to (1.001)7.
(b) By writing 0.999 as (1 - 0.001) use the first three terms of the

expansion of (a + b)® to find an approximation to (0.999)8.

Compare your answers with those given by a calculator.
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(iii) Section 3: Trigonometric Formulas
The completed questionnaires indicate that:

. those students who watched the programme at the end of the lower
sixth found the programme interesting and helpful, but when the
programme was used in order to introduce the ideas students found
it too hard

. the TV summary provides a reasonable idea of what is involved in
the programme but parts of it might be extended a little and more
diagrams included

. the pre-requisites should mention that students will gain more from
the work if they have met the formulas before and it will help if
they have met them in the context of matrix multiplication

. the pre-programme work helps to promote understanding of the
programmne

. The post-programme work is not essential but it does indicate the
sort of work that should be done .

In addition the following detailed comments were received.

I felt on reflection that I used the programme poorly and
did not really prepare the students properly for it. I
had intended that it would provide a 'nice' introduction
to sin (e(-i-‘S) etc. but the students did get very lost
during the programme. It is the one programme that I did
not feel happy about and the student reaction confirmed
this.

The work is relevant to those syllabuses which include work
on transformations but it is unlikely to be of interest
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where the syllabus is more traditional.

I found myself wanting to use matrices. The programme
provides a nice geometrical approach but it would help if
the connection between this and the matrix method (which I

usually use to introduce these formulas) could be made more
explicit.

The revised written materials are reproduced on pp,.78-85 and these indicate
how the various suggestions were incorporated.
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3. TRIGONOMETRIC FORMULAS

This section takes a geometric look at the formulas

cos{®+p) = cos ot cosp - sind sin's

sin{et+p) = cos L sinp + sind cosp
and shows how they can be obtained by considering the point (1, 0) rotated
through « then rotated through F; .

This section is more appropriate for use with those syllabuses which have a

more modern slant. It is best used for revision purposes, particularly if

students have already met the formulas in the context of matrix

multiplication, in which case the programme provides a good illustration of

the connection between matrix algebra and the geometry of transformations.

PROGRAMME SUMMARY

The programme derives the formulas
cos{d +(?.)
Sil’l(o{+‘3) = cog ok sinp + sin ok cosf?,

]

cos o cos[:\. - sin sinp

using rotations and translations.
The meaning of tan ® is investigated using another transformation - a
dilation {(or scaling).

5 mins| The link between rotations and trigonometry is reviewed by

examining the definitions of sin® and cos & as shown in Figure 3.1, and
their graphs. (Note: © is measured in radians.)

Figure 3.1 YA
%
| 1
s
B y N
o:f—ccse-) R x
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3 mins | Using the original definitions, and the fact that the graphs of sin@
and cos @ are very similar, the properties

sin (g+ 8)=~ cos &
oos(g-i- B) = -3in &
are obtained.

3 nins| The presenters now consider what is meant by a rotation through

(ol + P). This is demonstrated by looking at the point (1, 0). The rotation
may be looked at in two ways: either as a rotation through the angle (L +P)
or as a rotation throughol followed by a rotation through |E'> (see Figure 3.2).

Figure 3.2

Fa
; (cos b, sin (44 1 (2,2)

\'(Ccsel. , 5in dl\

) N ’S.

0 (,0) % °© oo %

The formulas are derived by considering both approaches. It transpires that
it is necessary to find out what happens to the point (cos<«{, singl) when it
is rotated through Fs The notation rg is introduced to denote rotation
through 8.

5 mins| A rectangle with corners (0, 0} (x, 0) (0, y) and (X, y) is rotated
through 8 as shown in Figure 3.3.

Figure 3.3

7N

(o)
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The dimensions of the shaded right—angled triangles suggest that under the
rotation rg

(x, 0)+—=>(x cos @, x sinB)

(0, ¥) ¥>(-y sinB, y cos§).

The next step is to consider the general point (x, y).

Figure 3.4
AN é{gsfr\GK—

A

e x (055 —>»

v

By translating the shaded triangle marked A as shown in Figure 3.4 it is
shown that under the rotation rg
(X, y)r>(x cos & - y sin@®, x sin @ + y cos8).

2 mins | Hence under the rotation rg
{cosel, sinel) > (cos oL cosp - sin oL sinfs . cosdsinp + sin « cos F» )

and this gives the required formulas.

5 mins|{ Finally the programme looks at the meaning of tan®. Tan@ is
commonly introduced via the definition

tan® = —-=
but it may also be expressed geometrically as a single length with the help
of another transformation - a dilation {(or scaling) as shown in Figure 3.5.

Y4
/ : t;l;nﬁ
1y
0

Figure 3.5

- —— -
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This leads to an exploration of the graphical properties of tan O .

PRE~REQUISITES

Before working through this section students should be familiar with the

following:

(1) the definitions of cos® and sin© as the x- and y-coordinates of
the point P on the unit circle obtained by rotating the point (1, 0)
through ©

(ii) the graphs of x +>»sin x and X v>c08 X

(iii) the idea of radian measure

(iv) the use of a scientific calculator

(V) the effect of a translation of (a, b) on the point with coordinates
(u, v) as movement to the point with coordinates (u + a, v + b)

(vi) the effect of a dilation (or scaling) by a factor A with centre the
origin on the point with coordinates (u, v) as movement to the point
with coordinates (Au, A v},

In order to gain most benefit from the programme students should previously

have met the formulas for cos(ot+|3) and sin(aL+F,). {These formulas are

derived rather quickly in the programme, perhaps too quickly for students

who have not seen the ideas before.) It will also help if students are

familiar with the algebraic and geometric interpretation of expressions such

(290

DISCUSSION POINTS

as

1. The properties of the graphs of xi+»sin x and x +>c0os x might be
discussed further with the help of the computer graphics used in the

programme.



2.

82

The programme investigates the effect of a rotation through of
followed by a rotation through (3 in terms of what happens to the
coordinates of the point (x, y) in the Cartesian plane. You might
like to pause at this stage in order to look at this in terms of
matrix algebra; the result is the same since
c0s® - sin@\/x\ [xcosO -y sinG)

(sine cosg)( y)_ (x sin© + y cosO /.,
This could lead to further discussion on the connection between
matrix algebra and geometric transformations.
The geometric interpretation of a tangent is not usually discussed at
the same time as the trigonometric definition; further discussion
might be worthwhile.
The post-programme work can be extended to cover other standard
exercises on trigonometric formulas.
The various geometric effects of transformations might be explored
further (see SECTION 7: FUNCTIONS AND GRAPHS which looks at the
effects of various transformations on graphs of functions).
Reflections were not mentioned in the programme. Nevertheless they
can be explored using a similar approach. In particular, if dg
represents a reflection in the line through the origin making an
angle ® with the x-axis, then the effect of qg On the general point
(x, y) may be described as

(X, Y)*> (x cos 28 + y sin 28, x sin 28 - y cos 20)

or fcos 28 sin 20\ [x\ _ xsin29+ysin29)
sin 20 —cos 28 J\y/ = | x sin 20 - y cos 28/.
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STUDENT EXERCISES

Pre—-programme work

1. Two translations £ and g are specified by the rules

£:(x, YYF>(x + 3, y - 1)
g: (X, Y)r>(x - 2, y + 4)

(a) Apply £ to (0, 0) and then apply g to the result.

(b) Apply £ to (2, 3) and then apply g to the result.

(c) what point do you obtain by applying £ to (x, y) and then
applying g to the result?

(d) Describe the owverall effect of applying £ then g.

U
2. P On this diagram P is obtained by rotating the
| .‘Jns line OA through an angle @ . Thus, since QA has
R

7 T2 unit length, P is a point on the circumference
¢ x . . .
&my of a circle of unit radius.

(a) Use this definition to obtain each of the following
(1) cos 0 (ii) siny (iii) cos 5 (iv) cosTT (v) sin 3 .
mw_1 . T 1
{b) Cos—j-—-z- and sing=73.

Hence write down

(1) cos M (ii) sin E-
3 6
3. (a) Use your calculator to complete the table on the next page.

{Give your answers to one decimal place.)

(Note: x is measured in radians so make sure your calculator is
in the appropriate mode.)
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(b) Use the table to draw the graph of x-t—)sin X.
(c) Use the table to draw the graph of xF»cos X.

Post-programme work

4. (a) Use this triangle to write down A
. N\y . LT
(i) cos 3 {(il) sin 3 *
2
8 C
[
by X Use this triangle to write down

(1) cosT{ (ii) sin LI.

ya l/" ya

(c) Use Parts (a) and (b) and the formulas for cos(«X +@) and
sin(oL+[3) to evaluate
(i) cos %T (ii) sin %" .
5. The formula for cos{«<+pR) is
cos(d+P) = cos A cosp - sind sinp .
(a) (i) Replace FS by o« to obtain a formula for cos 2.
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(ii) Use the result

cos%l + sin%l = 1
to obtain a formula for cos 2 in terms of cos ol alone.
(iii) Find a formula for cos 2& in terms of sin & alone.
(b) Treat (L-P) as (ol + (-'F,]) to obtain a formula for cos(et-p).

The formula for sin(«{+B) is
sin(ol+R) = cos« sinP + sin« cos B .
(a) Replace B by of to obtain a formula for sin 2of.
(b) Treat (o-B) as (o+ (-3)) to obtain a formula for sin(o(-p).

i o sin®
Tan & is defined as 9059 (cos & # 0).
Hence tan(w+p) = 2%8%}% (cos (ol +B) # 0.

(a) Write down a formula for tan(oL+p) involving cosol, sine, cosf.';
and sin F-L .

(b) Divide top and bottom throughout by cos cosf?: to get a formula
involving tan of and tan P only.

(a) Find a formula for cos 3« in terms of cos 24, sin 2o, cosol and
sinof .

(b) Use your solutions to Question 5 and 6 to express cos 3oL in
terms of cos tA only. '

(a) Use the formulas for sin(0(+f-3) and sin(oL—P) (see Question 6)
to show that

sin(d+p) - sin{el-p) = 2 cos aLsin[&'.
(b) By writing A for (&+ FS) and B for (oL-f_',) show that

sin A - sin B = 2 cos (‘—A%g) sin (A =~ B).

2
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{iv) Section 4: Inverse Functions

The completed questionnaires indicate that:

. the work is directly relevant to those A level syllabuses which
include some work on functions but it is not really appropriate
where the course is more traditional {(although the work on arccos
and arctan might be useful)

. students who were already familiar with functional notation enjoyed
the programme and found that it helped them to understand the
mathematical concepts

. the only indication of the amount of time spent on the section was

2
post-programme work

about ll hours but here the students had not worked through the
. the teachers would use the materials again
. in each case the complete programme was watched in one viewing
. the T summary provides a reasonable idea of what is involved in
the programme ’
. the pre-requisites are realistic
. the pre- and post-programme work aids understanding but is not

essential .
In addition, the following detailed comments were received.
The graphics used are good - especially as an illustration
of the graph of a function., The idea of the inverse function

comes over particularly well.

I did not like the flow diagram approach to finding the inverse
of a function.
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The easier functions could have been dealt with less slowly so
that more time could be spent on the more complex ones.

The revised written materials are reproduced on pp.88-94 and these show how
the various suggestions were incorporated.
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4. INVERSE FUNCTIONS

When does a function have an inverse? This guestion is investigated in the
context of the formal definition of a function in terms of the domain,
codomain and rule.

Computer graphics are used to demonstrate the need for the function to be
one-one. But even when a function is not one-one it can be split into a
number of parts, each of which has an inverse, and this leads to the
definitions of arccos and arctan as evaluated by a calculator.

This section is particularly appropriate for use with thogse syllabuses which

have a more modern slant. It is probably best used in the first year of an

A level course.

PROGRAMME SUMMARY

The programme investigates the 'reverse' of the function

t: [0, 4]

t: xv>4x - xz.
A similar approach is used in order to define the meaning of arccos and
arctan.

1 min | The programme begins by reminding students of the definition of a

function in terms of the domain, codomain and rule. It is essential to know
the domain and codomain in order to find the inverse of a function.

2 mins| A Ballista is a weapon used by the ancient Romans; it fires a ball

in a fixed trajectory given by the function
t: [0, 4] >R

£: Xvr>dx - x2.
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2 mins | So, given the distance x to a fixed post, it is possible to

calculate the height of the post by finding t(x). But in practice the
ancient Romans knew the height of the post and wanted to determine where to
position the Ballista. This involves reversing the effect of the function

t, but there is a problem because t is not one—one.

2 mins | What about the simpler function
g: R >R

2
g: XFr»X ?
Again g is not one-one so it does not have an inverse. However, the graph

of g suggests that the function can be split into two one-one functions
1: N>R and r: P >R

1: xl—%»x2 and r: xt—>x2

where N = {Negative Reals + zero}
P

and each of these functions does have an inverse,

1

{Positive Reals + zero},

3 mins|{ The next step is to find an inverse for r. The domain of r_l is

the image set of r. Hence

_ PP

r_l: xt—aJ??
whereJ x is the positive square root of x.

Similarly

l-l: P~>N

l_l: X >\,
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2 mins| The same approach is used for the Ballista function t since this

too can be split into two one-one functions.

2 mins| The technique for reversing the rule is demonstrated with the

function
h: ﬁi“)'“e
h: x5 - 4x.

5 mins| The Ballista problem is solved.

5 mins| A similar approach leads to the idea of arccos and arctan as

evaluated by a calculator.

PRE-REQUISITES

Before working through this section students should be familiar with the
following: '

(i)  the Real line [Rand intervals of the form [a, b].

(ii) the manipulation of functions expressed in the form

f: ﬁi->‘¥2

£: x F>2x° - 3.
(In particular the terminology domain, codomain, rule and image set
should have been met before.}
(iii) the properties of a one-one function
(iv) the graphical representation of a function (linear and quadratic}
(v) the sine, cosine and tangent functions and their graphs (using
radian measurement)
{vi) the use of a scientific calculator.
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DISCUSSION POINTS

1. Students may need to be reminded of how to find the image set of a
function, especially when the function is quadratic. )

2. when sketching the graph of a function it is important not to forget
the domain., And what is so special about the graph of a one-one
function?

3. There are many methods of reversing the rule in order to find the
inverse; the method used in the programme may not be familiar to
students.

4. The formal argument used to show that a function is one-one may need
further discussion - or it could be completely omitted.

5. Students might explore the graphs of the trigonometric functions in
order to find other suitable definitions for the functions arccos x
etc. They can always check their findings using a calculator.

6. This section could lead to further work on the properties of
functions; in particular the composition of functions might be
explored. When is it possible to find an inverse for such a
function? (SECTION 7: FUNCTIONS AND GRAPHS looks at the effect of
transformations on the graphs of functions and may be worth looking
at if students wish to explore the more general properties of
functions.)
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STUDENT EXERCISES ¢

Pre—-programme work

*1. Determine which of the following are graphs of functions.

(a\ ) (¢ )
\<iir an

(9} (F) Yy (3) y

baaVd
RV

3A\
\<; N U x
*2. which of the graphs in Question 1 above are graphs of one-one
functions?
*3. A function is a one—-one function if, whenever f£(a) = £(b}), then a = b

(where a and b are elements of the domain).
(a) Prove that the function £ defined by
' £f: R—R
f: xv>2x -1
is one-one.
(b) Show that the cosine function defined by
cos: (R—> K

CosS: XHYCos X

is not one-one.
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*4, (a) Sketch the graphs of the functions
(@) 1: {xeflR:xgK01=>R (i) r: {xelR, x201—=>[R

l:xﬁg ang.

(b) Prove that each of these functions is one-one using the
definition in Question 3 above.

*5. The function t is defined by
ez [0, 41 >R

t:ﬂ%h-x{

(a) Solve the equations
(1) t(x) =0 (ii) t(x) =4 (iii) t(x) = 5.
(b) Show that t is not a one-one function.

(c) Multiply out 4 - (x - 2)2 and so show that the rule for t can be
written as

){h§x4 - (x - 2)2.

(d) a and b are distinct numbers in the domain of t for which
t(a) = t{b). Use the result of Part (c) to f£ind an equation
connecting a and b.

(e) Draw the graph of the function t.

(f) what is the image set of the function t?

(g) Suggest two intervals lying within the interval [0, 4] which,

when used as domains for the rule xv>4x - xz, produce one-one

functions.

Post—-programme work

6. k is a one-one function such that
k: 2v=>4 and k(4) = 7. -
1

Find (a) K 1(4) (b) K 1(7).
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7. The function m is defined by
m: [0, 4] >R
m: x—=>2x - 1.
(a) Sketch the graph of m. Is m a one-one function?
(b) what is the image set of m?

(c) Define the function ml,

8. The function v is defined by
v: [2, 41 >R

v: Xt 4x - x2.

Obtain a definition of the function v_l and sketch its graph.

9. (a) Show that the sine function is not one-one.
(b) Suggest three possible intervals which, when taken as domains for
the rule x &»sin x, produce one-one functions.
(c) Experiment with the 'inverse sine' key on your calculator to
determine which interval is used for the domain of the rule
X+rsin x in order to produce the inverse function arcsin.
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6. Summary and the Way Forward

(1)  Summary
Although very little is known about the process of learning from television

it is possible to identify a number of possible uses of television in
teaching/learning situations in mathematics. However, in order that
television should even stand a chance of being a suitable medium for use in
the classroom there are a number of obstacles to be overcome. For example,

it is very difficult to use live broadcast TV: it is much better if a
video-recorder is used. And the use of a television programme in isclation
is not particularly suitable: it is essential that it is backed up by
adequate support materials. It is also essential that teachers feel
enthusiastic about the materials and that they prepare adequately for their
use.

The project set out to investigate the potential use in the sixth form of
the television programmes from the Open University mathematics foundation
course. These programmes already went some way towards overcoming some of
the obstacles listed above. It remained to be shown whether the programmes
were relevant and acceptable to teachers and whether they could be used
effectively in the classroom. The first step was to determine whether the

programmes were relevant and acceptable to teachers and this was tackled in
Chapter 2. In theory, as Table 2.1 (pp.26-32) indicates, most of the
programmes, at least in Blocks I, II, III, and V, appear to cover topics
specifically mentioned in a number of commonly used A level syllabuses. And
the Chelsea Conference (pp.34-35) demonstrated that teachers were very
enthusiastic about the programmes - in principle anyway.

Next, were the programmes suitable for use in the classroom? At this stage

it was necessary to consider the ways in which the programmes might be used
and to provide appropriate support materials - using the existing teaching
texts. A pilot study, based on the first 15 programmes (excluding TV5 and
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TV8), was set up in order to investigate'how the Open University materials
worked in the classroom, and the results, albeit based on a rather small
sample, suggest that these programmes at least, can be used effectively (see
Chapters 3 and 4).

Naturally there were some reservations (see Chapter 4(iv) and Chapter 5);
and these concerned both the programmes and the support materials.

However, since there were no plans to alter the programmes at all, the only
way of improving the materials was to revise the written component. Such
revision was duly implemented as demonstrated by Chapter 5.

The pilot study suggests therefore that it will be possible to provide a
package of Open University materials for use in the sixth form that
overcomes almost all the obstacles that have been identified in using
television. The only remaining obstacles concern the time that is required
by the teacher in preparing to use the materials and the lack of training in

using the resource. However, the reactions of teachers suggest that the
materials do help to minimize the time required and that this preparation is
worthwhile even if it does take time. As for the lack of training, it can
only be hoped that such provision will be improved in the future.

(ii) The way forward

The pilot study demonstrates that the M101l programmes - plus support
materials - do have potential as a teaching resource for sixth form
mathematics but there is still some way to go before they can be made
available on a large scale.

First, the support materials require further attention. The pilot study
just involved TVi-TV1S5, and at the moment it is only the materials for TV1-
TV4 that have been revised. The remaining draft materials in the pilot
study need to be similarly revised. It is also necessary to extend the work
that has been done to include other programmes from the course. Draft
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materials do now exist for some of the programmes in Blocks IV, V and VI but
these have yet to be develoémentally tested. It might also be a good idea
to retest the revised materials for T1-TV15. It is intended that such work
should be carried out over the next year with a view to publishing the
package in 1984.

Second, it is necessary to find some mechanism for making the programmes

available to teachers. There are essentially two options here.

. Teachers might be asked to record the programmes as they are transmitted
during the University year. Alternatively, special arrangements might be
made to transmit the programmes during school hours.

. Some means might be found of selling the programmes.

There are difficulties with both options: if teachers are asked to record

the programmes then it is necessary to find some way around the licensing

problem, if the programmes are to be sold then it is necessary to find some
way of selling them at a reasonable cost. Discussions are under way but as
yet this problem is unresolved. This is another reason for not making the

package available until 1984.

Finally, it is necessary to find some way of making the printed support
materials available to teachers at a reasonable cost. Again there is as yet
no decision here although there is good reason to suppose that the cost of
the package can be kept to about £10. It might be more difficult though to
find a suitable means of informing teachers and distributing the materials.

This issue is also currently under discussion.

The fact that the materials cannot be made available for widespread use
until 1984 should not however be viewed as discouraging since the extra
thought and effort put into them at this stage can only be beneficial in the
long run. Indeed a recent article on the use of educational television by
M. GALLAGHER (1982) suggests that the method adopted for developing the Open
University materials for use in the classroom is the best way of ensuring
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that the resulting package will be useful to teachers and will be
implemented succesfully.
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AerENDIK

LOGS AND THE AREA UNDER f:xl—*%

This section deals with the link between log X and the corresponding area
under x--y % And the rule

log ab = log a + log b.

can be demonstrated by adding together the corresponding areas. No
knowledge of integration is needed. Indeed, this TV programme could
well be used as an introduction to integration.

PRE-REQUISITE KNOWLEDGE

Before working through this material students should be familiar with
the following :

(i) The idea of logs and knowledge of the rule
log ab = log a + log b.

Preferably students should know about log e = although this
could be introduced via the programme.

(ii) The idea of a closed interval on the Real line of the form
[a, b].
(iii) Inequalities of the form a < b < c.

(iv) Scali_.ng graphs in the x- and y-directions. Alternmatively, in
some 53|labuses this is known as one-way stretch. Students
should have some idea of the fact that an x-scaling of )
transforms f(x) to (%x), and a y-scaling of u transforms
f(x) to pf{x) (although not necessarily in this fomm).

Section TP? of this package provides a good illustration of these
ideas.



PRE WOERL.

1. (i) Complete the table below and so plot the graph of
: 1
f: xHx.
111 1 1
x53211222§3456
i
X

1 @ @), o), @ .

(iii) Use your answers toParts (i) and (ii) to calculate the
following shaded areas.

q4 ' 44

- A
Fxvo Fixvsk
/
K -
S & 1 2
'R Wy 2 e e

2. This question involves logarithms to the base 10.

(i) Use your calculator (log-tables) to find
(a) log10 3, loglu 6, (c) 1og10 2

(ii) Hence find (a) 1og1018, (b) 10g1012.

(iii) Now write down log10 {(ab) in terms of log10 2 and
10g10 b.
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3. Your calculator may also have a key which gives logarithms to the
base e. (e is just a number, its value is about 2.72). These lqgs
are often called Naperian or Natural logarithms and are frequently
denoted by Ln. - So the key on your calculator may be labelled Ln.

(i) Find log, 2 using your calculator. You should get a
result in the interval [0.693, 0.694].

(ii) Use your calculator to find
(2) log, 3, (b) log, 6.

(iii) From narts (i) and (ii) calculate
(a) log, 3 + log, 6, (b) log, 6 + log, 2.

(iv) Use the 1nverse key on your calculator to check

that (a) log, 3 + log, 6 = log_ 18

and (b) loge 6 + 1oge 2 = loge 12.

This demonstrates that the addition rule also works for
loge. That is loge ab = 1(:-ge a + loge b.

In fact this rule works for logs to any base.

4. The shaded square below has area 1.

Y
‘1%
+ ——b

1 x

(1) The square is scaled in the x-direction by a factor of 2.
Draw a diagram to represent the resulting shape. What is the
area of the resulting rectangle?

(ii) '™e square is scaled in the y-direction by a factor of 4.
Draw a diagram to represent the resulting shape. What is
its area?

(iii) The square is first scaled in the x-direction by a factor 2,
then scaled in the y-direction by a factor 4. Draw a

diagram to represent the resulting sqguare. What is its
area?

— .3 -



(iv) The square is now scaled in the x—direction by a factor r, then
in the y-direction by a factor s. Draw a diagram to represent
the shape. What is its area?

SUMMARY OF THE PROGRAMME

The graph of xl—?-}; has the following property. If A(r) denotes the area
under the graph fromx =1 to x = r. Then A(r) + A(s) = A(rs). This
is the same (apart from t_he notation), as the logarithm rule

log r + log s = log rs.

In fact A(r) is the logarithm of r to base e, loge r. The programme
deduces same evidence that A(r) is indeed a logarithm. The logarithm
property is demonstrated by weighing pieces of card cut to fit the area and
we explain how the area A(2) can be calculated. The result of such a
calculation is compared with the tabulated value of log, 2. The method
used involves repeatedly calculating under estimates and over estimates

of the area by dividing it into rectangles. Each calculation gives an
interval which includes thearea. By dividing the area into more

rectangles the interval becomes smller. So we can trap the exact area

in a nest of intervals.

The proof that A(r) has the logarithm property uses two results about
scaling in the x and y-directions. First, a scaling by a factor s in
either direction multiplies the area by s. Second, a scaling by s in
the x-direction, followed by a scaling of % in the y~direction leaves
the graph of xr—»% unchanged. ' -

POST WORK

No specific post work is necessary for this' programre, although it may
be hélpful to go over the part on scaling at the end of the programme,
relating this to the scaling of shapes as in the pre-work. Also,

some explanation may be needed as to why .a scaling of s in the x—direction
followed by a scaling of -é— in the y-direction, leaves the actual graph

of xt—b% unchanged. Perhaps, try it with some specific examples.

e.g. vhen x = 2, s = 3. etc.

“Al:



POSSIBLE EXTENSIONS

This programme could clearly lead in to a discussion of integration.
Specifically, it could be used to show that

[r—l-dx=1og T
Jlx e’

with a neat demonstration that 1oge 1=20.

It draws attention to the fact that, when integrating,one should always
use Naperian (Natural) logs rather than 1og10. The programme also
provides a very visual demonstration of the logarithm rule:

log ab = log a + log b.

Hence the programme could lead into further work on logs.

- @i 5—



SOLUTIONS

AL~

. 1 1 1 1 1
1. (i) X g § E ] 1‘5 2 2‘2‘ 3 4 S 6 ’
1 2 |12 1112
x1%13%121Y]3 215 3456‘
s
4 1
3 “\;xt"—bi'
4:: ES
4 7, _ 4
(ii) (a) 1 (c) f(Z) ==
S U’ NS (R NS B NS B
.(111) (a) Area.-(4x5)+(4x6)+(4x7)+(4x8) 0.634
-l 1. 4 1. 4 1.4, _
(b) ma_(le)"'(4x5)+(4x6)+(4x7)-0-760
2. (i) (a) To 4 deciml places. log,q 3 = 0.4771.
(b) log10 €& =0.7782
(c) log10 2 = 0.3010.
(ii) (a) 18 =3 x 6, s0 log,q 18 = 1og10 3.+ log, 4 6 = 1.2553
: (b) 21 =6 x 2,50 loplo 12 = log10 6 + 1og10 2 =1.0792
(iii) loglo ab = log10 a+ log10 b.
3. (i) loge 2 = 0.6931 (to 4 decimal places)
(ii) (a) 10ge 3= 1.0986;lqge 6 = 1.7518
(iii) (a) loge 3+ 1oge 6 = 2.8904
(b) log_ 6 + log_ 2 = 2.4849
e e
(iv) From part (iii) (a) 2.8904 = 1oge 18
(b) 2.4849 = log_ 12.
a. (iy 89
7.
2 >
Area = 2 x 1 = 2 squnits.
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N
N

X
Area = 2 x 3 = 1 sg units.
S0 the resulting area is the same as the original.

(iv) jT |
W, .

Area = rs sqg units.
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INTRODUCTION

The Open University Mathematics Foundation Course, Mi01, was first
presented in 1978, It was immediately apparent that there was
significant overlap with parts of mény A—}evel syllabuses. Indeed, at
the outset there were intentions of making the material more

generally available to sixth form teachers. But the costs involved in
buying an Open University course are prohibitive for most schools and
anyway the teaching texts are designed for self study and would not be

suitable for classroom teaching.

However, M101 does incorporate extensive use of television and it was
felt that this aspect of the course would be particularly relevant to
schools, Needless to say there were still problems - the 32 television
programmes were designed as an integral part of the teaching texts and
referred specifically to work covered in the written material so it
would be difficult to use them out of context. In addition Open
University programmes are not.broadcast as schools programmes and
recording them off air would introduce licence problems, Moreover

the cost of buying the television programmes is quite unrealistic

(£205 per programme!)

However initial discussion confirmed that sixth form teachers would
welcome the opportunity of using television to demonstrate important
ideas, so members of the University continued to investigate the
feasibility of making the programmes available. Special tapes were
made - extracting parts of several programmes, concentrating on the
use of computer graphics and computer animations, and forming them
into resource packages with accompanying material. But again there

are problems in making these special tapes generally available.

Last year we decided to investigate the possibility of using the
programmes as they stand, together with supporting written material.
It is intended that we should publish the written material as a book
and that the price should include a licence fee which will allow
schools to record the programmes when they are broadcast in the

University year.

This package forms a pilot study for the project. It covers the first
half of M101 and mainly involves work leading up to and including the
calculus. Tapes of the television programmes may be borrowed from the

Univergity (details of obtaining them are given in HOW TO USE THIS

-f2:1 -



MATERIARL). We hope that you can find time to look at some of the
material and use it im your classroom. Any feedback you can supply

will be greatly appreciated.

If all goes well we hope to make the material generally available in

1983.

To report feedback or to obtain further information please contact
LYNNE GRAHAM TEL 0908 — 653145
MATHS FACULTY
THE OPEN UNIVERJ{TY
MILTON KEYNES
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HOW TQ USE THIS MATERIAL

This package is designed to be very flexible and so we do not recommend
specific ways of using it. However, we have tried to organize the
contents into a suitable format which allows you to determine quite

quickly when and how you can fit the material into your teaching.

There are thirteen sections:
. Symbols and Equations
. The Binomial Theorem

.  Trigonometric Formulas

1

2

3

4. Inverse Functions
6. Rational Numbers and V2

7. Functions and Graphs

8. Iteration and Convergence

10. x|->%¢ an Area for Revision

11. The Derived Function

12. The Behaviour of Functions

13. The Fundamental Theorem of Caleulus
14. Taylor Polynomials

15. Why e?

Note: The section numbers correspond to the programme numbers as

broadeast. Unfortunately programmes 5 and 8 do not fit easily

into the format and have therefore been omitted - hence the

gaps).

Whenever possible we have tried to ensure that each section stands on
its own. Occasionally though, a section builds specifically on the work
of an earlier section, and whenever this happens we suggest students

should work through all or part of that earlier section first.

Indeed there are several themes running through the material. These

are summarised below for easy reference.

t. ITERATIVE PROCESSES OF SOLVING EQUATIONS., SECTIONS 1, (6), 9.

Iterative processes are introduced in Section 1: Symbols and Equations

and the issue of whether or not an iterative process converges 1is

followed up in Section 9: Iteration and Convergence. Also, Section

6: Rational Numbers and vY2, although not directly related to these

sections, does involve one particular iterative method of finding v2,

—A2:3 -



2. GEOMETRIC TRANSFORMATIONS. SECTIONS 3, 7,. (10).

In Section 3: Trigonometric Formulas we derive the sine and cosine

formulas by considering the effect of successive rotations on a
point in the Cartesian Plane. The effects of translations, scaling
and reflections on various graphs are investigated in Section 7:

Functions and Graphs and we show how this knowledge can help in

graph sketching. Then in Section 10: mbe-%: an Area for Revision

. 1 . .
we examine the area under the graph of x e and this 1nvolves

looking at the effect of successive scaling on areas under the curve.

3. FUNCTIONS. SECTIONS &,7,(12)-

Section 4: Inverse Functions investigates when a function has an

inverse and, if it has one, how to find it. Section ?: Functions

and Graphs explores the graphs of various functions in terms of the
effects of geometric transformations such as scaling, translations
and reflections. Furthermore we show how these transformations can

be used to sketch the graphs of quadratics and functions such as

ax + b
x'-->o:1x + d°

investigates how to sketch the graph of a polynomial function wsing

Finally Section 12: The Behaviour of Functions

calculus techniques.

4, GRAPH SKETCHING. SECTIONS 7, 12,

In Section 7: Functions and Graphs we show that scaling, reflections

and translations are very useful in sketching graphs of the form

3X * b Ihen in Section 12: The Behaviour of
cx + d

Functions we use calculus techniques to sketch the graphs of various

xt—}axz + bx + ¢ and xF>»

polynomial functiouns.

5. DIFFERENTIATION: SECTIONS 9, 11, 12, 15.

The idea of a scale factor is introduced in Section 9: Iteration and

Convergence. This definition of scale factor is all very well for
polynomial functions but it breaks down with functions such as sin x.

In Section 11: The Derived Function we consider a slightly different

definition of the scale factor which holds for all functions and which
turns out to be the derivative. In the same section we go on to show
how the derived function can be constructed geometrically by consider-

ing the tangent to the original function. Section 12: The Behaviour

of Functions discusses how the analysis of the first and second
derivatives is used in sketching the graph of a function. Finally, in

Section 15: Why e?, we look at the significance of the functions e"

and 1ogex by examining the derivatives of a® and log x,
a

-Q2:4 -
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6. INTEGRATION: SECTIONS 10, 13

The idea of the area under a curve is first introduced in Section 10:

1 . 1
Ty An Area for Revision where we show that the area under x U

between x = 1 and X = r is log r. Section 13: The Fundamental Theorem

of Calculus builds upon the idea of areas under a curve to demonstrate

diagrammaticélly the Fundamental Theorem of Calculus.

SECTION FORMAT

At the beginning of each section you will find a summary of the
associated TV programme with an indication of the time spend at each
stage. Each TV programme has a total length of about 23 minutes.
Immediately after the Programme Summary we indicate the pre-requisites
which students will need in order to gain maximum benefit from the

work in that section. Occasionally we suggest here that students
should have worked through a previous section. Usually this is

because a direct reference is made back to the work in that particular

section.

The rest of the section consists of exercises for students to work
through before and after the programme. To save time, these have been
laid out to facilitate copying. Not all the questions are essential
but those marked with an asterisk should certainly be tackled before
watching the television. Sometimes this is because the question is
specifically referred to, or it may be because we adopt a particular
approach to a topic which could differ from that already encountered

in the classroom. And occasionally students need to be familiar with a

particular type of notdtion.

(Note At the end of each section full solutions are included for all

exercises., )

Finally we suggest possible ways in which the york may be extended.
These include references to cother sections which may be relevant.
Of course we recognise that our suggestions are by no means exhaustive;

they are included just to set you thinking.

REFERENCES TO M101

The TV programmes were designed as an integral part of M101: Maths
a Foundation Course and specific references are made to the teaching
texts associated with that course. {(Such references take the form

Block A: Unit B Section N). This is usually to remind Open University

-—R2:5 -



students of where they have seen an idea before. In many such
instances students in your class will have met this idea earlier

in the syllabus and sometimes, if the reference is more specific, we
have tried to ensure that there is an opportunity for them to become
familiar with it immediately beforehand in the pre-programme work.
Thus we feel that the odd reference to an Open University text should
not affect the general flow of the programme and should not detract

from its value.

OBTAINING THE PROGRAMMES

It is intended that eventually teachers will be able to tape the
television programmes as they are broadcast. This package is only a
pilot study and VHS cassettes (or whatever you require) can be
borrowed from

LYNNE GRAHAM

MATHS FACULTY TEL 0908 - 653145

OPEN UNIVERSITY

MILTON KEYNES

MK7 6AA

We shall try to ensure that you receive the tape(s) promptly. It
would be appreciated if tapes could be returned immediately after use

and preferably no more than two weeks after they are borrowed.

WHERE DOES THE MATERIAL FIT IN TO THE SYLLABUS?

We recognize that M101 does not correspond to any particular A-level
syllabus, but it does cover areas which are common to all sixth form

courses (e.g. 1in calculus) and other topics which are now found in

many syllabuses. Unfortunately, in order to determine exactly what each

programme has to offer and how it can be used,it will be necessary to
watch the programme yourself. Nevertheless we hope that the TV
summary, together with the pre-programme and post-programme exercises,

give you a good indication of what each section involves,
You will then be in a position to decide which ones fit into the

syllabus which you are currently teaching and where and when they can

be used in your work in the c¢classroom,

-f2:6 -
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1. SYMBOLS AND EQUATIONS

PROGRAMME SUMMARY

This programme tackles two problems about international paper
sizes., The main purpose is to show the process of changing a
given practical problem into a mathematical one in the form of
an equation., The programme also introduces an iterative method
of solving equations which can be further explored in the follow

up work.

The programme begins with a reference to a problem about an
exhibition organizer, which students should have tackled

beforehand. (See the suggested Prework.)

3 mins The first problem is to find the ratio of the

sides of a piece of A size paper (A3, A4, A5 etc.). We begin

by investigating this in a practical sense.

3 mins Symbols are introduced and the problem is expressed

algebraically as an equation - and consequently solved.

2 mins We reflect on the process of problem solving with

reference to the framework below,.

State | Put in N Sinte
problem > sﬂmbols "~ as equation
Inkerpret i Solve
Selution -~ a.c:Luql:ian
5 mins The second problem is to find the ratio of sides of a

rectangle such that after cutting off a square of side equal to the
width of the rectangle, the resulting shape is the same as the

original one.

-A2:7 -
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This leads to the golden section numberé=1}618). The problem
is tackled with reference to the same framework and is solved

using the quadratic formula.

5 mins But what happens in situations where we can't use

a formula? Well, there are other methods, for example, the Bisection
method. (Note: this is only an aside reference; it is not needed
in any of the associated work. For more details see SECTION 6:
RATTONAL NUMBERS AND v2). The method of formula iteration is

introduced. It is demonstrated by solving (again) the quadratic
equation r2 -t - 1=0 (from the problem above) using the re-arrange-

ment

r = L 1.
r

l 3 mins The notation for iteration formula

1

T = — + 1
n+1 r

n

is explored with reference to the flow diagram

C={a
~A2:8 -
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2 mins Finally we introduce a problem to be tackled after

the programme. This concerns the overall stopping distances of
a car travelling at various speeds — to be found on the back of

the High way Code.

PRE-REQUISITES

Before working through this section of work students should be

familiar with the following:
(i) solution of quadratic equations of the form ax2 +bx +c =0
by factorization and using the formula

-b inz - 4ac

2a

X =

(ii) ratio and proportion

(iii) use of a calculator to evaluate expressions of the form

1 1 100 - v
Ty oo o ete

(iv) subscript notation,

-A2:9 -



pRE-PROGRAMME WORK

*1.

An exhibition organizer for a local craft exhibition is coffered
a room with floor dimensions 12 metres by 16 metres. He wishes

to arrange exhibits around

the sides of the room,

Bocrder

leaving space for people

\
to circulate in the centre. E'ﬁhﬂm

The local regulations state

that at least half the floor

area must be left clear.

How wide must he make the border so that half the total area

is ¢lear in the centre?

(1) Using x-metres as the width of the border write down
expressions for
(a) the length -of the clear floor space
(b) the width of the clear floor space
(c) the area of the clear floor space.

(ii) The value of x 1s restricted by physical considerations.
Between which whole numbers must the value of x lie?

(1ii) The total floor area is (16 x 12) sq metres = 192 sq metres.
Use this to write down an equation expressing the fact
that the clear space must have an area equal to half the
total floor area.

(iv) Solve the resulting problem by factorizing. What does

this mean in terms of the original problem?

How wide should tha border be if the room has floor dimensions

15 metres by 20 metres?

How wide should the border be if the room has floor dimensions 14

metres by-14 metres?

(Hinty vyou will need to use the quadratic formula here.)

(1) Measure the length and width of a piece of A4 paper and

calculate the ratio 2 | th >

longer side

i )
. ! T
shorter side. : undth
(ii) Fold the paper in half \ '

]

J

and repeat the above

calculation.

zFold here .

—-AL.10 -
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5. The following equation involves two symbols x and y:

X _X +Yy

y X

Replace %-by r to obtain an equation just inveolving r.

POST=-PROGRAMME WORK

6. The stopping distance, d feet, of a car travelling at v miles an

hour is given by the formula

d =1.0v + 0.05v2.
To find out how fast you may drive and still stop in 100 feet

requires a solution of
1.0v + 0.05v2 = 100.
(1) Use the rearrangement

_ _ 2
vn+1 = 100 0.05vn

with starting value

v, = 40

to try to solve the equation.

(ii) Use the rearrangement

/100 - v
v = __-—-_n
n+1 0.05

and a starting value of

v1 = 40

to try to solve the equation.

7. (1) The original form of r2 -r-1=0 in the television
programme was
r = —
r-1"

This rearrangement was not used in the formula iteration
method. This exercise explains why.

1 . .
Use T = ——— with starting values

n+1 r -1
n

{a) 1 (b) 0.5 () 2

to try to solve r2 -r-1=0.

-f2:11 -



(ii) Investigate what happens with the rearrangement

2
T =r -1
n+1 n

with starting values (a) t (b) 0.5 (c) 2.
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POSSIBLE EXTENSIONS

1.

This section provides an introduction to iterative methods of
solving equations. Usually there are many ways of rearranging
the ecquation into a form suitable for iteration. For some
rearrangements the iterative process converges; for others it
diverges. Such processes could be explored further. For example
is ‘it possible to predict in advance whether an fteration process

converges or diverges for a given rearrangement?

NOTE SECTION 9: ITERATION AND CONVERGENCE iinvestigates further

the variation in behaviour of formula interations.

This section could also lead to work on computer programs to find

solutions of equations using iterative methods.

You may also wish to discuss the need for numerical methods of

solving equations. Although we illustrated the method fora quadratic
equation it also works for higher order equations where there are

no formulas to make things easier.

This section shows that some equations do not have exact solutions.

However it is always possible to find the solution as accurately as

~we please. What's special about numbers like these? This could

lead to a discussion of irrational numbers,

NOTE SECTION 6: RATIONAL NUMBERS AND v2 might be useful here.

This section also introduces another iterative method of finding
Y2; this involves repeatedly subdividing the interval [1, 2] into
10 equal intervals.

-f2:13 -
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SOLUTIONS

1.

(i) F A
3
¢
— Yo-2x ——| A
oup JN 2-Zx |12
+ .
x .
¥ \ )
o le > :
(a) Length = 16 - 2x
(b) Width = 12'- 2x
(c) Area ="(16 - 2x)(12 - 2x) = 192 -~ 36x + 4x2 sq m.
{ii) From the diagram x must be positive and x must be less

than half the width, 12, ‘Thus the value of x ﬁﬁét be
between 0 and 6.

(iii) 192 - 56x + 4x> = %{192) - 9.

This can be rearranged as

4x% - 56x + 96 = 0. ;

(iv) The left-hand side factorizes to give ;

4(x - 2)(x - 12) 0.

This has solutions x = 2 or x = 12, But the value of x

must lie between 0 and 6. So the solution must be x = 2,
That is, the border width should be 2 metres. (Check by

substitution.)

Here the value of x must lie between 0 and %;—(= 7.5).
The area of the clear floor space is given by
{20 - 2x)(15 = 2x) or 300 - 70x + 4x2 sq m.

Half the total floor area is %—(300) = 150, so the equation is

300 - 70x + 4x2 = 150 or 4x2 - 70x + 150 = 0.
The left-hand side factorizes to give

2(2x - 5)(x - 15) =0
which has solutions x = 2.5 or x = 15. Since the value of x must
lie between 0 and 7.5, the solution we want is x = 2.5. This
means that the border width should be 2.5 metres. (Check this

result by substitution.)

Here, the value of x must lie between 0 and %; (= 7).

—A2: 14~



Using the same method we get the equation
4x2 - 56x + 98 = 0
or 2(2x2 - 28x + 49) = (.

The solutions to 2x

1

"28x + 49 .= 0 are given by

.22 /en? - w@ey
4
Hence x = 2§_Ezli;ﬁ§ =7 % % V2 .

(Note: You may like to draw attention to the fact that using
a calculator to evaluate this expression gives only

an approproximate value for the solution. It is not

possible to obtain an exact numerical solution,but
it is possible to find the solution as accurately as
we please - using iterative methods like the one

introduced in the programme.)

Again, the physical constraints on x mean that the solution we

require is
7 - %-V5:4k2.05 {to 2 decimal places)

so that the bofder width must be 2.05 metres.

(Note: This is accurate enough for practical purposes.)

(1) Length = 29.6 cm (to 1 decimal place)
Width = 20.9 cm (to 1 decimal place)
Ratio =‘%%$g-= 1.4 (to 1 decimal place).

(ii) Length
Width

20.9 em (to 1 decimal place)

fl

14.8 cm (to 1 decimal place)

Ratio Tzlg = 1.4 (to 1 decimal place),

On the right-hand side divide top and bottom by y to obtain

E.-t-l i.{.]
X_Yy ¥ _Y .
y x x
¥y y
Now put r =-§ to obtain
_r+1- _ 1
r = T .orr =1+ s



o g St S Yo s ——

-

a4 i

(Note: The television programme involves manipulation of this
type and also uses the fact that r = 1 + % is a
2
rearrangement of r° - r - 1 = 0.)
(i) You should have found that the values did not settle downm.
vy = 40
vy = 20
vy = 80
v, ==220 (1) etec.
This process seems unlikely to lead to a solutionm.
(ii) This time the results are more helpful:
v, = 4O,v2 = 34.64,v3 = 36.15.’\14 = 35.73’v5 = 35.85,
ve = 35.821v7 = 35.83,v8 = 35.83.
vy and Vg agree to two decimal places. Thus we have an
approximate solution of 35.83 mph.
(Check this result by substitution.)
. R .
(i) The results for L T are given below.
(a) r, = 1. Error calculating r, (since it involves dividing
by zero)}.
(b) r, = 0.5, r, = -2, ry = -0.3333333, t, = ~-0.75,
rg = 0.5714286 Cea ry = -0.6170213,
Tig = -0.6184211, r, = -0.6178862
LT and r,, asree to three decimal places so r = -0.618
is an approximate solution,
(c) r, = 2, r, = 1. Error calculating T, (since it involves
dividing by zero).
This tearrangement has found the negative solution to
r2 -r—-1=290,
But - in the programme we were interested only in positive
values of r, So‘this rearrangement is not very useful,
(ii) The results for ey ~ Ty ~ 1 are given below,
(a) r, = 1, r, = 0, r, = -1, r, = 0, rg = -1 and so on:

-~ A2116 -



The values continue to alternate between O and -1.

) , 2
(Note: These are not solutions tor =~ 1 = 1 = 0,)

(b) r, = 0.5, r, = 0.75, r, = -0.4375, r, = -0.8085938
r5 = -0.3461761 ... Tyg = -1, LI 0, r17 = -1
After several iterations the values alternate between
-1 and 0.

., 2
{(Note: These are not solutions tor -r - 1t = 0.)

(e)r, =2, r,=3,r =8, 1, =63

1 2 3 4
The values do not settle down and so the process

is unlikely to lead to a solution.

- 2317 -
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2, THE BINOMIAL THEOREM

PROGRAMME ' SUMMARY

Two alternative methods of obtaining the expansion of (a + b)6 are

investigated. One of these methods involves the use of Pascal's triangle.

. n .. . .
The notatlon Cr is introduced and the construction of Pascal's triangle
is represented by the equation

n _ n-1 n-1

. n
2 mins How can ‘we expand (a + b} ? Before the programme students

should have seen how to expand this expression for :small values of n.

We look at the special case where n = 6. What does this mean?

6 mins We investigate the simpler cases wheren =2 and n = 3.

The expansion of (a + b)6 involves the same principle - choosing symbolsg
from each of the brackets in turn. The coefficient of each term (for
example aabz) indicates the number of ‘different ways of choosing those

particular symbols,

5 mins The idea of choosing symbols is compared with the number

of ways of getting from one grid point to another (in a minimum number

of steps).

This is illustrated by means of streets in Edinburgh.

Charlotte
Square. A T . J:—ﬂ'Ens&;
South.
*
‘ Py B Scotl
Monumenk
1 min The coefficient of a4b2 and the number of routes from A

to B in the diagram above both involve the number of ways of choosing

2 things out of 6.

2 mins The route problem is easier to visualize. We show that the

number of routes to any point is obtained by adding together the number

- A2.18 -
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to the two adjacent preceding grid points. This leads to the

following diagram.

3 wmins

Ay
2 N — Bask
i
. 1f€5°ut}\
. a (R T ‘5“8

Moving é&outh corresponds to choosing the symbol b; moving

east corresponds to choosing the symbol a. By expanding the grid we

can obtain all the coefficients in the expansion of (a + b)6.

1 min

The link between Pascal's triangle and the Binomial

Expansion of (a + b)" for various values of n is explored further by

looking at the diagonals on the grid.

3 mins

. n . .
The notation Cr is introduced to stand for a general point

on the grid system on the nth diagonal and the rth row. The structure

of Pascal's triangle can then be explained using the equation

n

_ n-1 n-1

c_ + C
r r-1

and the fact that the numbers on the border of the triangle are all 1is.

PRE-REQUISITES

Before working through this section students should be familiar with

the following:

{1) expansion of brackets of the form
(a + b)2 and (a + b)(a2 + 2ab + bz)
(ii) writing down coefficients of algebraic terms

(iii) some idea of symmetry.

-fA2:19 -



"PRE-PROGRAMME WORK

*1

(1) Find the expansion of (a + b)z.

(ii) Find the expansion of (a + b)3 by writing

(a +5)° = (a +b)a +b)2

From this you may guess that the expansion of (a + b)" has the form

(a+ )% =a" +[Ja" b + [ Ja" 262+ ... «[Jad™! + b
The general formula for the coefficients in this expression is called

the Binomial Theorem.

| .. . 2 . . .
%), One way of obtaining the expansion of (a + b)~ is to write it as

WORK

(a + b)(a + b) and multiply out the brackets. Alternatively, every
constribution to the expansion is the product of two symbols — an
a or b from the first bracket multi;iied bf_an aorb from the
second bracket. The term involving a2 can be obtained in only 1
way by choosing an a from each bracket, so the coefficient:of 52.
is 1. Similarly the coefficient of b2 ig 1. On the other hand,
the product ab can be obtained in two ways, either by choosing an

a from the first bracket and a b from the second or by choosing a b

from the first bracket and an a from the second. Hence the coefficient

of ab is 2.

(i) Use an argument similar te this to explain the expansion of
(a + ).

{ii) The expansion of (a + b)& may also be obtained using two
methods.

(a) Use your solution to Question 1 (ii) to expand
(a + b)a = (a + b)a + b)3.

(b) Use the method of choosing symbols to obtain the

coefficient of a2b2 in the expansion of (a + b)a.

TO BE TACKLED DURING OR AFTER THE PROGRAMME

The expansion of (a + b)6 is

a6 + 6a5b + 15a4b2 * 20a3b3 +-.1532b4 + 6ab5 + b6.

Use this expression to find the number of ways of choosing
(i) three b s (ii) four b s

from six brackets (anda s from the remaining brackets).

The route chosen in the programme from Charlotte Square to the

Scott Monument was

~R11720 -
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A
C;‘L"i":‘ — —>East

> \L South

B Scott
Monu ment

This corresponds to the following choices of direction at each

junction.

e | s| E|E|] S |E

what choices correspond to the following route?

chf\ﬁ&i A
Square
q .
' B Scott
Monument
5. (1) Complete the following diagram by giving the number of
shortest routes from A to each of the remaining junctions.
\
F‘ e ] 1 |
0 2 3 W S
t 3 b o =
ig
(ii) Use your answer to Part (i) to write down
(a) the coefficient of a3b2 in the expansion of (a + b)5
{(b) the coefficient of a3b4 in the expansion of (a + b)7

(c) the coefficient of akbé in the expansion of (a + b)8
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6.

Use Pascal's Triangle to write down the expansion of (a + b)s.

POST=PROGRAMME WORK

7.

8.

Work out Pascal's triangle up to and including the seventh diagonal.

Use Pascal'’s triangle to write down the expansion of (a + b)7.

(1) By substituting 3t = a and 4s = b obtain the expansion of
(3t +4s)5.
(ii) By writing 2v -~ u as 2v + (-u) obtain the expansion of
(2v - u)6.

The symmetry of Pascal's triangle means we can write the expansion
of (a + b)" as

nC a® + nc an_r b+ ... + nC an_1 br + ... % nC a bn“1 + nC bn.
0 1 T n—-1 n

. . . . . . n
This expansion 1s called a Binomial Expansion and the numbers, Cr’

are called Binomial Coefficients. The result which enabled us

to write down the expansion is called the Binomial Theorem.

~ QA2:22 -
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POSSIBLE EXTENSIONS

1. The section may be used as a starting point to discuss other
number patterns in Pascal's triangle, which is more usually

written as

i1 3 3
| K b & |

2, nCr represents the number of ways of choosing r things from n, The

programme provides only an introduction to this concept and,
expressions of this form could be further investigated. 1In particular,
using the relatiomship

“C - E_n—1
T T r-1

it can be shown that

n. . nn - 1)(n-2) ... (n-1 + 1)
r r{r - 1)(r - 2) ... x3 x 2 x1

n n!

or Cr B r'(n - ry!

3. The Binomial Expansion may be used to find approximate values for

expressions of the form (1.01)" or (0.99)".
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SOLUTIONS
1.

(i)
(ii)

(1)

(ii)

2 2

(a + b)2 a~ + 2ab + b",

(a + b)3 (a +b)(a + b)2

(a + b)(32 + 2ab + b2)

il

a3 + 2a2b + ab2 + a2b + 2ab2

20,

[}

a3 + 3a2b + 3ab

Every term in the expansion involves the muliplication
of three symbols - an a or b from the first bracket, an

a or h from the second bracket and an a or b from the

third bracket. The term involving a3

only one way.namely by choosing an a from each bracket.

(a +b\(a-\-b\(o.-\-b\
! t t ¢

Hence a3 has a coefficient of 1. The term involving a2b

is obtained by choosing an a from two brackets and a b

from one.

(a+o)(are) (arbo)
4 + 3

(o ro)arb) (arb)
¢ t1

(arv)(a +b)(q+b\
) S ¢

Similary, the coefficient of ab?
of b3
4

(a) (a +b)

is 1.
(a +b)(a + b)>

a(a3 + 3a2b + 3ab2 + b3)

a(a2 + 2ab + b2) + b(a2 + 2ab + bz)

+b

can be obtained in

There are three ways

(a + b)(a3 + 3azb + 3ab2 +b

+ b(a3 + 3a2b + 3ab2 + b3)

al' + 3a3b + 3a2b2

34 + 4a3b + 632b2

+ ab3+ 331) + 332b

3

[

—_—

PR

of doing this so the ;

coefficient of azb is 3.

is 3 and the coefficient

3

2, g3 4 8

i

+ Aab3 + ba.

(b) We can choose a's from two brackets and b's from the

remaining two brackets in six ways.

~A2:26 -



(q*\h(u-\—bs (ar®) (ar \;\ (a+ p)at b\(aﬂh (a ¥ b}

L | t +ttr 1 4
{ ax®) (a+®) (a-\-b\ (q+b3 (a+b\(a+b5(q*- b) (q-\-b)
t t ¢ k) + ¢ hilk
(o-ﬂ—b\ (a-i-b\(o.-\-b\ (arbv) (axv)(a+b)(arb) (a+b\
4 t ¢+ ¢ t t 1 $
(i) The number of ways of choosing three b s and 3a s is the
coefficient of 33b3, 20.
(ii) The number of ways of choosing four b s and two 2 s is the
2.4

coefficient of a"b ', 15.

S E E E S | =

(i)

lg— \ \ { \
! 3 4 s
\ 3 b o S
! 4 0 20 35
\ s 15 3s o]

(ii) (a) 10 (b) 35 (c) 70

Taking the coefficients from the fifth diagonal in Pascal's triangle

-f2:25 -



32 2.3 4 5

(a + b)5 = a5 + Saab + 10a"b” + 10a b” £ 5ab € b~.

an

2 3 K 85 b 1
3 w \s 21
y lo 20 35

s \s 35

b

2

{a + b)7 = a7 + 7a6b + Ziasb2 + 35a4b3 + 35a3b4 + 215121:5 + 7ab6 + b7.

(1)

(ii)

5
(a + b)5 = as + Sal'b + 10a3b2+ 10a2b3+ Sabz’ + b,

So (3t + 45)° = (3t)° + 5030)*(4s) + 1030)°(4s)% + 1036)2(4s)3

+ 5030) hs)? + (4s)°

= 243¢° + 1620t4s + 4320t352 + 57601:253 + 38!40ts4 + 102435.

(a + b)6 = a6 + 6a5b + 15:14132 + 20a3b3 + 15a2b4 + Gab5 + b6_

Putting 2v = a and -u = b,
(2v - u)6 = (2\1')6 + 6(2v)5(-u) + 15 (2\1’)4(-l-1)2

+ 2003 =03 ¢ 15 2EW? + 5v) (cw)? + (—u)®

= 6av® - 192v%u + 200v%u? - te0viud + 60vRuS - q2vd® 4
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- e

P 4

NTCY N

v 0 ATeeapea

Wb

RN



3. TRIGONOMETRIC FORMULAS

PROGRAMME SUMMARY

The formulas

cos (o + B) cos a cos B — sin o sin §.

n

sin {a + B) cos o sin B + sin a cos B.
may be obtained by considering a rotation of the point (1, 0) through

a followed by a rotation through 8.

5 mins We begin by reviewing the link between rotations and

trigonomety in terms of the definitions of sin © and cos ©.
Ys

8
Qw
Ky

and in relation to the graphsof sin 6 and cos 8.

(Note: @ is measured in radians.)

3 mins The graphs look very similar and together with the original

definition this leads to the properties.

sin (g-+ 8) = cos 6
and cos (% + 8) = - sin 0.
3 mins What happens when the point (1, 0) is rotated through

(@ + B)? We can look at this in two ways - first as a rotation through
(o + B); second as a rotation through o followed by a rotation through
B. This is how we derive the formulas we want. The notation

r for rotation through o is introduced.

4 mins We consider the effect of the rotation Ty on the coordinates

(1, 0), (x, 0), (0, 1) and (0O,y ). With thehelp of translations we can

determine the effect of r, on the general point (x, y) .. as

(x, Y)F>(x cos & - y sin 8) (x sin 6 + y cos 6).
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3 mins .... And so we get the reguired formulas,

. .
5 mins We turn our attention to tan & What's the meaning of

R ——— .

tan 8? It comes from the definitiom

sin 8
cos 8 °

tan 8 =

But we can also express tan 8 as a single length with the help of
another transformation - a dilation (or scaling). This allows us to

explore the graphical properties of tan 8.

PRE-REQUISITES

Before working through this section of work students should be familiar

with the following:
(i) the effect of a translation of (a, b) on the point with co-
ordinates (U,V) as movement to the point with coordinates (u+a, v+b).
(ii) the effect of a dilation (c;r scaling) with centre the origin
on the point with coordinates (u, v) as movement to the point

with coordinates (lu, Av).

(iii) the definition of cos 6 and sin 6 respectively as the

x- and y-coordinates of the point P on the unit circle illustrated

below, g4 .
P
OP is obtained by
| ) "omt'ur\c) QR Ehruxsh
B the Qﬂ3|e 9" Ro -
\omse' ﬂ ;
(iv) the graphs of Xx+»sin x and X+»cos x
(v) the definition of the radian.measure of an angle as arc

length over radius

(vi) the use of a scientific calculator.

—A2:28 -
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PRE-PROGRAMME WORK

1. A first guess at formulas for cos (a + B) and sin (¢ + B) might be

cos (o0 + B) = cos & + sin B

sin a + sin B.

sin (a + B)
Find suitable values of o and B to show that these formulas

do not hold,

2. Two translations f and g are specified by the rules

f: (x, v)r=>{x + 3, y - 1)
g: x, y}J=>x - 2, vy + 4).

(1) Apply f to (0, 0) and then apply g to the result.
- What are the coordinates of the final point?
(ii) Apply f to (2, 3) and then apply g to the result.
What are the coordinates of the final point?
(iii) (a) What point do you obtain by applying f to (x, y)
and then applying g to the result.
(b) Describe the overall effect of applying f then g.

3. (i) Use your calculator to complete the table below,
(Note: 6 is measured in radians so make sure your

calculator is in the appropriate mode.)

SN (oY A3 EEGT LY P REY LY L5 R L] A RRE] P
61413123 |46 6lat312]3]|4] 6
sin 8
cos 6

(ii) Use the table to draw the graph of O+=a»sin 8.
(iii) Use the table to draw the graph of 68+>cos 8.

%

o o e e

OR= |\
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~On this diagram P is obtained by rotating the line OA through

an angle 8. Thus, since OA has unit length, P is a

point on the circumference of a circle of unit radius.

Use this definition (and Pythagoraé‘Theorem) to obtain cos 8

and sin 6 for each of the following angles.

(i) (@ 6=0 (®8=7 (o= (@o=3.
(i) (@ 6=2 () 6=3T
A A
WORK TO BE TACKLED DURING OR AFTER THE PROGRAMME
5. (1) Check the formula for rotation through an

angle 6,
“(x, y)pfykk'cOS 9 - y sin eg(ﬁ sin 8 € y cos 9»
by finding the image of the point (1, 0).
(i1) Use Part. (i) to find the effect of a rotatiom through

% on the point (%1, 0).

6. The programme yields the two formulas
cos (@« + B) = cos a cos B - sin a sin 8.

sin {(a# + 8) = cos o sin B + sin & cos B

(i) Use Part(ii) of Question 4 to write down
(a)cos-% and (b) sin %.

(ii) Use the triangle below to write down
(a) cos %-and (b) sin g

8

e 3 A

B‘SC

(iii) Use Parts (i) and (ii) and the formulas for cos (a + B)

and sin {a + B) to evaluate

1w . In
(a) cos 17 and (b) sin 3

- A2:30 ~
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POST-PROGRAMME WORK

7. The formula for cos (a + B) is
cos (¢ + = cos a cos B - sin o sin R
(1) (a) Replace B by a to obtain a formula for cos 2a.

(b) Use the result
2 .2
cos o + sin o =1
to obtain a formula for cos 2a in terms of cos a alone.

{c) ¥ind a formula for cos 2a in terms of sin a alone.

(ii) Treat (o - B) as (a + (-B)) to obtain a formula for cos (o — B).

8. The formula for sin {(a + B) 1is

sin {o + B) = cos a sin B + sin o cos B.
(i) Replace B by a to obtain a formula for sin Zo,
(ii) Treat (o - B) as (a + (-8)) to obtain a formula for

sin (a - B).

9. Tan 6 is defined as —o o (cos 8 = 0).
cos 8
sin (¢ + B)
Hence tan {a + B) =7 (g + 8)
(1) Write down a formula for tan (o + B) involving

cos o, sin o, cos B and sin B.
(ii) Divide top and bottom throughout by ¢os a cos B

to get a formula invelving tan a and tan B.

10. (1) Find a formula for cos 3e¢ in terms of cos 2a, sin 2a,
cos o and sin a.
(i1) Use your solution to Questions 7 and 8 to express

cos 33 in terms of cos o alone.

1. (1) Use the formula for sin (a + B) and sin (a - 8)
(Question 8) to prove that
sin (o + B) - sin (@ + B) = 2 cos o sin B.
(ii) By writing A for (o + 8) and B for (a - B) prove
that

. o _ fa + BY . [A-B\
sin A sin B = 2 cos \ 5 sin 5 / .
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POSSIBLE EXTENSIONS

1. The post programme work could .be extended to cover other
formulas such as.
sin A + sin Bj cos A ¥ cos B, cos A - cos Bj

tan (a - B); tan 2a; and so on.

You may wish to use the formulas to obtain the exact values
of expression such as.
sin —%; cos —
12’ 12°
sin —; cos - cos T = = 2 cosz(I) -1
8’ 8 & V2 8

ete., and so on,

2. This section could be used as a basis for further work on
rotations. For example, the links between a rotation through

a (centre the origin) and the matrix
cos a sin a
- sin a cos o

might be explored.

3. Also — the effect of a rotation through 8, centre (a, b) on

a general point (x, y) could be explored.

4, Reflections were not mentioned in the programme.
Nevertheless they can be explored using a similar 'approach.
In particular,reflectionA inany line passing through the origin

making an angle 8 with the x-axis canbe represented by the transformation.

(x, y)¥>(x cos (26) + y sin (28), x sin (28) - y cos 20 )
or the matrix

cos 20 sin 20

sin 28 - cos 28
NOTE SECTION 7: FUNCTIONS AND GRAPHS looks at the effect of

various transformations on the graphs of various functions.

-A2:32 -

Foawa ety e aw

WE wmors m e e ki ) 2rv M Tt i o A Lt



SOLMIIONS

1. Putting a = B = - we get

ST

cos (oa + B) = -1 wvhereas cos a + cos B = 0

and sin (o0 + B) = 0 whereas sin a + sin B = 2.
(There are many values of o and B which you could have chosen).

2. (1) f: (0, OOv=>(3, -1)
g: (3, -1)—>(1, 3).

(ii) f: (2, 3)v=>(5, 2)

g: (5, 2)r—>(3, 6).

(iii)  (a) £: (x, YIV>x + 3, 3y - 1)
g: (x+ 3, y-1h—>»{x+ 1, y + 3),
(b) The overall effect is the translation h, where
h: (x, Y )—>x + 1, y + 3).

3. (i) To one decimal place:

6 (radians)lo 2|2l m{n] 20§ 37 57 In| 57 { 4my 3uf5s j7m | 11w
(radians) i e e e i i s e e v el el -
sin e . |0 lo.slo.7lo.9}1] 0:9] 0.7].0.5] 0|-0.5]0.7 |-0.9\-1 {-c.q|-0.7[-0.5
cos © 1 10.9{0.7{0.5{0]-0.5|-0.7|-0.9{-1]-0.9]-0:7 }-0.5]0 {0.5] 0.7 0.9

(ii)
ji 3r &
2
6 r—> sinl
(iii)

B v—> s &

~AZ2:33 -




4. (i) (a) cos (0)

—
o
-
It
(]

; 8in

1l
'—‘
-

(B) cos (E)._ - 0; sin &), =1

1l
=]

(¢) cos (w) = =1;.sin ()

(d) cos .(ﬁ) = 0; SiI.l“(E—) = -1

(ii) (a) YA

KV

OAB is the right angled triangle
1
where 0A=AB='5. _ Po) i R
Ty . . OV
Hence cos (Z) =73 sin (4)-/5.

(b) LY

Dicmue=p ™
3

o
by 4

A similar argument to Part (i) shows that
3my _ 1, . 3y _ 1
(a) cos (4)— /7 Sln(t.) /7

5. (i) (1, 0)r—{(cos 8, sin 9)}.

(ii) Putting © %we get (1, 0)+»(0, 1).

. m_ 1, oom 1
6. (i) (a) cos 7 =/ {(b) SLnI-ﬁ
(ii) From the triangle

1 W
2 {b) sin 3

=

(a) cos 7 =

i
2

w

Tn, T .7 T _ % N S
(iii) (a) cos (ﬁ)“ cos (—3- + Z) = cos 3 cos o - sin 3 sin g

1,,1 V3,1
(5) (75) - (3—) (75)
_t-4
272

-fA2:34 -
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7. (i)
(i1)
8. (i)
(i1)
9. (1)
(ii)
10. (i)
(ii)

(b) sin 2% = s

1

-(a) cos 2

(b)lsin

{c) cos

2

a = C

= C

cOs

in

o5

[¢ 13

™
(3

o

a

0

T T W n
+ z) cos §-s1n 7 + sin 3 cos
10,1 “V3;
= (EJ(TE? (2 )(;rJ
1+ 3
272 '
cos a - sin o sin a
. 2
- sin @« ,
2
s ‘a.

cos 2a - {1

2 cos za -

_ .2
e =1 -sin “a.

Hence cos 2«

cos (o -

R)

cos

cos

(since cos (-B) =

sin 2a

sin (a -

= sin (o + o)

]

B)

)

(1 - sin 2“

1 - 2 sin

- cos 2u)

1.

} - sin zu

a.

a cos (-B) - sin a sin (-B)
o cos B + sin a sin B
cos B and sin (-8) = - sin 8).

cos Q

2 sin

cosa sin (-B) + s

sin o + sSin o cos @
o cos o,

in o cos (-B)

~ cos o sin B + sin o cos R.

(since sin {-B) =

tan (a +

Dividing

tan (o +

cos 3a

fl

cos 2a

sin 2a =

B) =

- sin 8 and cos (-B) = cos B).

sin (a + B)

cOos

a + B

_ Cos o sin B+ sin & cos B

cos & cos B - sin ¢ sin B~

throughout by cos o cos Bwe get

ceﬁ/; sin B sin

a gps’?f

_ ¢Ps a cos g "

u‘SDS’B .

cCOs~ EQB’E'; sin

¢ sin B

293/31£987§ cos

_tan B + tan'a [

o cos B

tan o + tan B\

1- tan « tan B \or

cos (2a + a)

1 ~ tan a tan B/

cos 20 cos o - sin 2a sin a

2 cos

o - 1, sin 20 + cos 23 =1, and

2 sin a cos a,
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2 . .
(2 cos "a - 1) cos a - (2 sin a cos a) sin a

hance cos 3a

3 ., 2
.= 2 c¢cos "a-cosa~2sin a cos a
3 2
=2 cos "a-cosa-2(1-cos“y) cos a
3 3
=2 cos a-=-cosa=-2cosa+ 2 cos "a
3

=4 cos “a - 3 cos a.

(i) lsin (a + B) = sin (a - B)

= {(cos a sin B + sin « cos B) - (-cos a sin 8 + sin a cos B)

2 cos a sin B,

(ii) If A=-q+Band B =a - 8,
a =A-8=B+ g,
S0 28A=‘A'-Band-B=A;B
- A+ B
Then a« = A - B8 = A - A By =
2 2
Hence sin A — sin B = 2 co3 (A ; B) sin (A ; B) .

-RA2:36 -
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4, TINVERSE FUNCTIONS

PROGRAMME SUMMARY

In order to have an inverse a function wust be one-one, Also,
if a function is not one-one it can be split into a number of

one-one parts each of which has an inverse.

1 min We begin by reviewing the properties of a function

in terms of the domain, codomain and rule. The importance of the
domain and -.codomain is illustrated when we try to find the

inverse of the function.

2 mins | A Ballista is a weapon used by the Ancient Romans.

It fires a ball in a fixed trajectory, which is given by
t: [0, 4]1—R

t: xl—?&x - x2.

2 mins Suppose x is the distancetoafixed post, then t{x)

is the height of the post. Thus knowing the function of the
trajectory we can calculate t(x) for any value of x. But, in
practice, the Romans knew the height of the post and wanted to
determine where to position the Ballista. This means reversing
the effect of the function t. But there is a problem because

t is not one-one.

2 mins We look at the simpler function
g: R—R
2
£: XX .

Again g is not one-one so it doesn't have an inverse. But looking

at the graph of g suggests that g can be split into two one-one

functions:

£: N—R and r: p —R

2
£: Xv3Xx r: xsz.
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I

where N

P

{Negative Reals + zero}

{Positive Reals + zerol.

and each of these functions has an inverse.

3 mins We begin by finding an inverse for r. This

demonstrates that we need to consider the image set of r as

the domain of r—1. We show that
r : P-—>.P
r '+ ox Y.
Similarly
-1
L I p—=N

2-1: Xbr - Vg_

indicates how to find the inverse of the two one-one functions.

2 mins The actual technique of reversing the rule is

demonstrated with the function

h: xi&»5 - 4x.

5 mins This allows us to solve the Ballista problem.

5 mins Finally we look at the cosine and tangent functions.

Using similar procedures we arrive at the ideas of arccos and

arctan — as evaluated by a calculator.

PRE-REQUISITES

Before working through this section of work students should be

familiar with the following

(i) the Real line R, and intervals of the form [a, b]

(ii) the sine, cosine and tangent functions and their graphs
(in terms of radians)

(iii) manipulation of functions expressed using:the notation

f: R —R

£: X b 2x2 - 3.

-fA2:38 -
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In particular the terminology domain, codomain and

image set should have been met before.

(iv) properties of one—one functions
(v) graphical representation of functions
(vi) use of a scientific caleulator,
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PRE-PROGRAMME WORK

%1

*3,

4,

*5.

Determine which of the following are graphs of functiomns,

(i) 4 (ii) Y4 (1ii) C | (iv) Y

>
X

(s
P
v

. Which of the graphs in Quéstio_n 1 above. are graphs-of one-one

functions?

A function is a one-one function if, whenever £(a) = f(b), then
4 = b (where a and b are elements of the domain.)

(i) Prove that the function f, defined by

f: R—R
f: xv>2x -1
is one-one.
(ii) Show that the cosine function defined by
cost: R—R
cOos: X ™ cos X

1s net one-one.

(i) Draw the graphs of the functions

(a) ¢ {x ERxs0}—>R andr: {x€ER: xz0}R

I'H xt—-)xz r: xi—-—)xz.

(i1) Prove that each of these functions is one-one using the

definition in Question 3 above.

The function t is defined by
t: [0, 4]—R
t: X +4ix - x2

- fH2:40 -
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(i) Solve the equations
(a) t(x) =0 (b) tlx} =4 (c) t(x) = 5.

(ii) Show that t is not a one-one function.

(i11) Multiply out 4 - (x - 2)2 and so show that the rule
for t can be written as

x4 - (x - 2

(iv) a and b are distinct numbers in the domain of t for which
t(a) = t(b). Use the result of Part (iii) to find an
equation connecting a and b.

(v) Draw the graph of the function t.

(vi) What is the image set of the function t.

(vii) Suggest two intervals lying within the interval [0, 4]

| vhich, when used as domains for the rule xl»4x - x%

produce one-one functions,

"POST-PROGRAMME WORK

6.

7.

8.

9.

The function £ 1is defined by
2: {x € R: x £ 0}—R

£y x ksxz.

Obtain a definition of the inverse function 2—1 and a graph

of 2—1.

Given that k is a one-one function such that
k: 2v>4 and k(3) = 7
Find (a) k=1(4) and ) k™! (7).

The function m is defined by
m: [0, 2]—>R
m: xrf-Zx -1
(i} Prove that m is a one-one function.
(ii) Draw the graph of m.
(i1i1) What is the image set of m?

(iv) Define the function m™! and draw its graph.

The function v is defined by
v: [2, 4]—>R

Ve x}jyhx - x2

~ Q2141 -



10,

Obtain a definition of the function v’1 and draw its graph.

(1)
(ii)

(iii)

Prove that the sine function, is ngt a one=gne function.
Suggest three possible intervals, which, when taken as
domains for the rule xtfasin x, produce one-one functions.
Experiment with the ‘inverse sine® functiom om your
calculator to determine which interval is used for the
domain of the rule x+>»sin x in order to produce the

inverse function arcsin.

-—-R2f42 -
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POSSIBLE EXTENSIONS

1-

You may wish to explore further the graphs of the trigonometriec

functions and the use of a calculator to find “other values of

arcos x and so on.

This section could of course lead to further work on functions
and their properties, In particular, the composition of functions
might be a next step. When is it possible to find an inverse for

such functions?

SECTION 7: FUNCTIONS AND GRAPHS looks at the effect of trans-—

fbrmafioﬁs on graphé Of functions, This could be used to

investigate more general properties of functions.
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SOLUTTIONS

1. (i), (ii), (iii), (v} and (vi) are graphs of functiensjg
(iv) and (vii) are not.
2. (i) and (ii) are the only granhs of one-one functions.
3. (1) Suppose that a and b are two elements in the domain of f
for which £(a) = E£(b).
This means that f(a) = 2a -1
= £(b)
=2 - 1.
That is, 2a -1 = 2b - 1
S0 2a = 2b
hence a =h. -
Therefore whenever f(a) = £(b) it follows that a = b
and so f is a one-one function.
(1i) We need to find two numbers a and b in the domain of
the cosine function such that cos a = cos b But a = b.
Two suitable values ;re a =0and b = 21, since
cos (0) =cos (27) = 1. In fact any two numbers which are
a multiple of 27 apart would do.
4. (i) (a) Y (b) ya
—> .
E-. szq_ x f:xr—-—)r_" x
(ii) (a) Suppose a and b belong to {x € R: x 5 0} and

L(a) = 2(b).
This means that

a2 = bz.

b or a = =b,

So a

If a

il

b then we are finished; if a = -b

then if a and b are not both zero, they must have
opposite signs., However this is not possible as

both 2a £ 0 and b § 0. Thus, whenever £(a) = 2(b)

we have a = b and hence £ is a one-one function.

~R2: 44 -
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(1) (a) t(x) =0, so 4x - x2 =0
and x = 0 or x = 4.
(b} t(x) = 4, so 4x - x2 =4 or x2 - by + 4 = Q.
This has solution x = 2.
(e} t{x) =5, so x2 -~ 4x + 5 = 0. This has no solutions.
{ii) From Part (i) when x = 0, t(0) = 0 and when x = 4, t(4) = O.
Hence t is not one-one,
1ii) 4 - (k- 2% =4 - (x° - b4x + 4)

n

=4 - x2 + 4x - 4

= 4% - x2.

(iv) From Part (iii), if t(a) = t(b)}, then
4 - (a - 2)2 =4 - (b - 2)2.

Thus (a - 2)° = (b - 2)°

50 either a = 2 = b - 2, in which case a = b,

ora-2==(b-2)
= 2 - b which gives a = 4 - b,
(v) Ya
* 3
|
3 i
- !
21 i
|
LI )
—_— .
' 2 3 \r x
£ X > yx -
(vi) The image set is [0, 4]

{(vii) From the graph in (v) the two intervals are [0, 2] and [2, 4]

9.-1;{x€ll: xZO}——?{x:ER: x £ 0}

"
)
J
N

NV

Crxvr—>>-Jx
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(a) K ' (4) = 2 and k_1(?). =3,

(i) Suppose 2 and b belong to [0, 2] and m(a) = m(b).

Then 2a - 1 = 2b -~ ¥

hence a =>b.

Thus m is one-one;
(ii) Y

27

““’/ v 2 E-

m\xr—a 2x-1

(iii) The image set is [-1, 3].

(iv) m-1: (-1, 31—>I[0, 2].

o xl_‘),;x;1
A
24

v—1: tO, 4]—f[2, 4].

Putting y = 4x = xz
we obtainy = 4 - (x - 2)2
which gives x = 2 £ V& - y,
v has domain [2, 4] so we must take
X =2+ /4 - y.
Hence v ': yv>2 + ¥4 - y or vl xes2 s Ao

-R2¢46 -
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10. (1) sin 0 = sin m = 0 50 the sine function is not ocne-one.

(ii) YA
1\ 4 + — ]
-3 T X o w NS ¢ x
2 2 2 2
xy—p SN X

From the graph three intervals are

[‘ %, %J, [%, %—],{%TL, %‘L] although there are many
other possibilities.

(iii)  You should have found that the inverse sine of 1 is =

2
. . . . . .
and the inverse sine of -1 is ~ 5 So 1f the function

sin* is defined by
. W 11-]

x. |-.IF 7.
sin*; [ > ZJ-—-f R.
sin¥*: xyv»sin x

then sin*f‘l: [-1, 1]— {.. %’

|

rof =

. o1 .
sin* @ X+2arcsin x,
Its graph is illustrated below,

YA
%

H\r
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6. RATIONAL NUMBERS AND v2

PROGRAMME SUMMARY

This programme considers two views of numbers - first in a computational

sense such as used in numerical calculations; secoand as numbers to measure
with - lengths of lines, constructed geometrically. We consider the

meaning of ¥2 from both points of view.

1 min The programme begins with a short introduction about

functions whose domain and codomain are both R . For such functions

it is necessary to have some understanding of the properties of numbers.

2 mins There are two views of numbers - first as numbers to

calculate with (calculations); second as numbers to measure with

(geometry) and the same thing holds for functions. There is however aconflict

between the two approaches which has its origins in greek mathematics.
By resolving this conflict it is hoped :to increase students understanding

of the concept of nuomber.

3 mins Natural numbers (N), integers (Z) and rationals @) may

all be constructed geometrically.

2 mins We can also arrive at [N, Z and ) using the computational

approach. Notice that all calculations on a calculator or computer

are done using raticnal numbers in the form of decimals.

4 mins The conflict arises over v2. This can be constructed

exactly by means of Pythagoras' Theorem but we can only obtain an

approximation by calculation. [The method used is the ten-subdivision

method - see suggested Pre-programme work]. This suggests that /515 not a

rational number - so how can we calculate with it?

5 mins We then prove that Y2 is irrational using the standard

proof by contradiction.

-H2:48 -
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3 mins In fact there are many examples of irrational

numbers. Such numbers may not be nice {(in the sense that they

can't be calculated exactly) but they are important - particularly

when it comes to graphs of functions. If we just ignored the irrational
numbers then there would be gaps in the graphs of functions. This

leads to the idea of the Reals (R ) as a number line.

4 mins In fact v2 does have a meaning when looked at in a

computational sense. Its wvalue can be thought of either as a symbol
whose square is 2, or as a length of a lire which we can calculate

as accurately as we please. This means that we can use approximations to
perform calculations which imvolve irrational numbers ~ and the

conflict between the two approaches is resolved.

PRE-REQUISITES

Before working through this section of work students should be familiar
with the following:

{i) the natural number (1, 2, 3 ...) represented by [N

(ii) the integers (... =3, -2, -1, 0, t, 2, 3, ...) represented byZ

(iii) the rationals, represented by {3 as fractions of the form %

where a and b are integers, bz 0
(iv) geometrical constructions
(a) of a 1line perpendicular to a given straight line through
a given point - using ruler and compass.
(b) of parallel lines - using set sqﬁare and ruler
(v) angle properties of a line intersecting parallel lines
“(vi) similar triangles and the properties of ratios of sides

(vii) the idea of functions and the notation

f: x\—bxz, (x € R)
and the concept of domain and codomain
(viii} the idea of intervals on the Real line of the form [a, b]

(ix) use of a scientific calculator

— 2249 -
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PRE-PROGRAMME WORK

2 2 2
1. (i) Calculate (a) 17 -2 (b) 2° -2 () 37 - 2.
(ii) Between which pair of consecutive whole numbers does
V2 lie?
2

So, Y2 lies: somewhere in the interval (1, 2]. We can
of course locate it more accurately. One possible way
is to divide the interval [t1, 2] into ten intervals of

equal length—/[1.0, 1.1], [1.1, 1.2] ... [1.9, 2.0].

PR— P & P —

10 1 12 13ty 15 ke 11 1% W 20

2. (1) Calculate 1.12 -2, 1.22 - 2, 1.32 - 2 and so on.

(ii) Hence find which of these smaller intervals contains v2.

3. Divide the interval you obtained as the solution to Question 2 (ii)
into ten intervals of equal length, By a similar method to that

used in Question 2, locate ¥Z in one of these smaller intervals,

This process can be repeated indefinitely —pinching v2 in smaller

and smaller intervals as follows:

V2 g [1, 2] { 2

I € (1.4, 1.5] ' ey LS

Y2 € [1.41, 1.42] RT4 142
YZ € [1.414, 1.415] 1t Lys

Y2 € [1.4142, 1.4143] 1

Y2 € [1.41421, 1.41422]. L2t
ete ...

Luigt

This method isccalled the ten-subdivision method of calculating v2.

Note: The Bisection method is similar to the ten-subdivision
method. This time the interval [1, 2] is divided into

two equal intervals. Then, by evaluating I.O2 -2, 1.52 -2

and 2..02 - 2 we can locate v2 in the interval [1.0, 1.5]. The

process is repeated to give the sequence:

- A2:50 ~
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4, (i)
(ii)
(iii)

x5, (i)
(ii)

2 € [1, 2] ‘L l o
V2 € [1, 1.5] LI S— 2
Y2 € [1.25, 1.5] t, 2
v2 € [1.375, 1.5] L p— 2
etc.,

Plot the graph of the function

f: R— R

f: Xy xz
Use your graph to find (a) £(1) (b) £(-2) () f(g).
(a) Try to find £(v¥2) from the graph.
{(b) Evaluate f(fi):

Show that the square of an even integer is always a
multiple of four,

Show that the square of an odd integer is always odd.

WORK TO BE TACKLED BEFORE OR DURING THE PROGRAMME

6. Using ruler and compasses only

(1)

Mark off four equal distances omn a straight line and

label your diagram as illustrated below.

N % N
> L8 + + +

o } Z 2 4
Construct a line at right angles te this straight line

through the point marked 1.

A | A 3 -

o . ' 2 3 Y
Hence construct the isosceles triangle illustrated
below.
1
1
o . 0 Y o

Use Pythagoras' Theorem to calculate the length of x

in triangle ABC below.
C



‘7. . In the diagram below

the lines BC, DE and FG are parallel
the lines HC, JE and BG are parallel,
and 4B = BD = DF. G

A H T & D ¥
(1) (a) Show that triangle ABC and triangle AFG are similar
(b) Show that AC = %-AG.
(ii) (a) Show that triangle AHC and triangle ABG are similar.
(b) Hence show that AH = %-AB} . '

" "POST-PROGRAMME WORK

We do not suggest any specific post programme work as the programme itself

provides a mnice conclusion.. However, the proof that Y2 is irrational

and the nature of a proof by contradiction could promote an interesting

discussion.
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POSSIBLE EXTENSIONS

1.

This section could form the basis of a historical discussion on
different types of numbers. In particular, geometrical construc-
tions, such as those used by the Greeks could be further investi-

gated.

It could also lead to further work on the nature of irrational
numbers and how we deal with them. For example, what is the
meaning of 2“2? This could be looked at both from a purely
computational view; and Qia the graph of the function

f: R— TR

f: x\-—)Zx.

We describe the ten-subdivision method of obtaining v2 to
any desired degree of accuracy. This could be converted to
a computer programme. The bisection method may also be

N

investigated using a computer.

The ten-subdivision method is only one type of iteration process.
You may wish to discuss other methods of finding Y2. TFor example
the iteration process based on
2

)

.4 =l(x +  —
n+1 2 T ox

(known as Newton's method) .converges quite quickly,

 NOTE SECTION 1: SYMBOLS AND EQUATIONS discusses what is

involved in an iteration process. This is followed
up in SECTION 9: ITERATION AND CONVERGENCE where we

examine whether the iteration process based on a given

rearrangement of an equation converges or diverges.
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1.

SOLUTIONS

(i)

(ii)

(1)

(ii)

(a) 12 -2 =
®) 22 -2 =
(c) 32 -2 =7

The change in sign shows:that v2 lies between 4 and 2.

[Note: This may also be illustrated by the graph of
f: M%J-Z(xERL]
1.17" = 2 = -0.79

1.27 - 2 = -0,56
1.3 -2 = -0.31

1.4%2 = 2 = -0.04
1.52 =2 = 0.25

Because there is a change of sign v2 € {1.4, 1.5].

n

Divide the interval [1.4, 1.5] into ten intervals of equal length.

1.42° - 2 = 0,0164

2

1.40% - 2 = -0.04
1.412

-

~-0.0119

J
]
I

1.43% = 2 = 0.0449

This suggests that v2 € [1.41, 1.42].

(i)

—f2:55 —



(ii)

(ii)

(1)

(ii)

From the graph

(a) £(1) . =1
£(-2) = 4
f(-%) A 2,3

(Note this is only approximate because of the scale

used on the graph).

(a) It is not possible to locate V2 exactly on the x-axis.
However, from Question 3 above we know that
/E“é-[1.41,'1;42]. This gives an approximate value
for £(¥2) as 1.9.

(b) £(V2) = (/5)2 = 2. So it is possible to calculate
£(/2) exactly, although it is not possible to read
the value exactly from the graph.

An even integer must ha?e the form 2n where n is an integer.

Now (2n)2 = 4n2 which is a multiple of 4, so the square of

an even number is always a multiple of 4.

An odd integer must have the form 2n + 1 where n is an

integer.

(2n + 1)?

]

4n2 + 4n + 1

4(n2 +n) + 1,

Since la(n2 + n) must always be even, A(n2 +n) + 1
must always be odd. Hence the square of an odd integer

is always odd.
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(i)

(ii)

(iii)

(a) (b) (c). Your diagrams should look like the illustrations
- although they should be more accurate!

(d) Pythagoras' Theorem states that

AB2 = AC2 + BCZ.
Hence x2 = 12 + 12 = 2
and x = V2. (As x is a length we must take the positive

square root).

- - !
ABC = AFG (corresponding angles for the parallel lines BC and AG)

A is common to both triangle.

Hence ACB = AGF. (either by corresponding angles or from

the angle sum of a triangle).

As corresponding angles are equal triangle ABC and

triangle AFG are similar.

The property of ratio of corresponding sides of similar

triangles shows that

1

3
AC 1 = =
22 - 2 and AC =

Hence AG 3 3

(a) A similar argument to that used in Part (i) shows
that triangle AHC and triangle ABG are similar.

(b) The ratios of corresponding sides are the same, so

AB  AG BG’

' . AC _ 1 AH _
From Part (ii) (b) G- ° -

1
3

and AH = AR,

1
3
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7. FUNCTIONS AND GRAPHS

PROGRAMME SUMMARY

The programme deals with the effects of the following transformations

on graphs:

(L) translations in the x- and y-directions
(ii) scaling in the x- and y-directions
(iii) reflections in the x- and y-axes.

3 mins We begin by looking at the graph of

f: x!-): : 3 (x € R) . This can be obtained from the graph of f: XH%
as follows:

(i) fi;st a translation left by 2 . -

(ii)- followed by a scaling of 2 in the y-direction

(iii) followed by a translation up by 1.

2 mins In fact, the graph'of any hyperbolic function can be

obtained in the same way. To cope with functions such as

f: xH—=1 -

= 3 7 we need to introduce the idea of reflection in the

X-axis.,.

3 mins Indeed we can gemeralize for any function:

Starting with the graph of x >f(x):
(1) an x-translation through a to the left gives the graph of

x>f{x + a)

(ii) a y~translation through R, up gives the graph of xr¥f(x) + 8
(iii) a y-scaling by a factor p gives the graph of xr>u f(x)
(iv) a reflection in the x-axis gives the graph of xw3f(x).

2 mins Scaling in the x-direction seems rather odd, since, for

example, stretching the graph out by 2 corresponds to a scale

factor of %. Thus we show that an x-scaling by a factor A gives the

graph of xr—vf(% x).

1 min We then examine the effect of reflecting in the y-akis.
e
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This takes the graph of x+>f(x) to the graph of xv>»f(-x).

4 mins Some problems about the properties of functions are

introduced. These should be worked through after the programme.

They are included in the post-programme work.

8 mins Finally we consider the effect of a reflection in the line

y = x,

Some practical examples of functions and their ipverses
' 77

illustrate what is involved and we look at the graph of x F»—— x

and its

100
inverse in some detail. This demonstrates how to obtain

the graph of xiéif—l(x) from the graph of x r»f(x).

PRE-REQUISITES

Before working through this section of work students should be

familiar with the following:

(i)
(ii)

(iii)

(iv)

manipﬁlation of functions and their graphical representation
plotting graphs of the form
xr—-‘raxz + bx + ¢
ax + b

X by ——
cx + d

and some knowledge of the graphs of
xr¥sin x and x+»2%
the effects of translation (in the x- and y-directions)
scaling (in the x- and y-directions)
and reflection (in the x- and y-axis)
although these could be introduced via this section of work
the notation and manipulation of inverse functions and in
particular the necessary conditions in order that a function

has an inverse.

(KOTE SECTION £: INVERSE FUNCTIONS covers this area of work:)
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PRE-PROGRAMME WORK

[Note; All functions here have domain R unless otherwise specified]

1.

(1) Write each of the following expressions in the form (x + a)z.
{a) x2+6x+9 (b) xz- 21TX+11'2 (c) x2+%x+%2
2
(d) xZ s 22,0
- a 2
4a
(i) Write each of the following expressions in the form
Az + a)?
(a) %xz + x + % (b) 2x - (1 + xz) (c) m2x2 + 2mx + 1
2

(d) ax2 + bx + E_a

(iii) Write each of the following expressions in the form
(x+a) + 8

(a) xz + 2x + 3 (b).x2 - %x + %-(c) x> + 2mx + 1
(d) x> + bx + ¢
(iv) Write each of the following expressions in the form

A(x+u)2+8
2 2 2 2
{(a) 4x +8x+3(b)2x-(2+x)(c)mx + 2mx

2
(d) ax” + bx + c.
Question 1 demonstrates that any quadratic of the form
2 3 .
ax  + bx + ¢ can be written in the form

Alx + a)2 + B;

which is called the completed-square form.

Which of the following quadratic functions are in completed-

square form:

. 1 2 1 11 .. 1,2
(i) tzf - 9% o (ii) X {(x + -2—) + 2

... 2 1 . o142
(1ii) xtHx° + x + Z (iv) xr—(x + E) + 2x + 2
(v) xb*>% x-n%-3 (vi) x»{x + %)2

. . 2 ... 2
(vii) XH»x + 2 (viii) x—>2x + 1) + 1,
(i) Plot the graphs of each of the following functions

() x>x? (8) x+>x? + 2 () x (x + %)2
@ x>~ NP -1 (@ xakx s PP - L
(ii) All the graphs in Part (i) are parabolas,
For each of these parabolas write down the coordinates

of the vertex.

Parts (i) and (ii) of this Question, applied to the graph
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2
XbE>X | demonstrate the following properties:
A A translation of a to the left changes the graph of

f(x) to the graph of £(x + a). (What happens when
a is negative?)

B A translation of B up changes the graph of f(x) to the
graph of f(x) + B. (What happens if B is negative?)

C A translation by a to the left followed by a tramslation
of B up changes the graph of f(x) to the graph of
f(x + o) + B. That is, the graph of x F}X? is changed
to kiw(x + a)? + 8.

So putting the quadratic into completed square form provides a

useful way of sketching the graph of a quadratic function.

Match each of the following functions to its graph

1) x> -DF 1 G xrax o+ D4
{(iii) x> (x + 1)2 -1 (iv) xt—;xz - 2x
5 3 gd\ 3.‘
| o
(i) Plot the graphs of each of the following functions
() x>2x° (1) xb>ax’ () xrr-x’.

Question 5 demonstrates that a scaling of A in the y-direction
changes the graph of f(x) to the graph of % £(x). (What happens
if A is negative?) So, the graph of x¥>A(x + a)2 + B can be
obtained from the graph of f: x F5x2 as follows.

A first a translation of a left.

B followed by a scaling of A in the y-direction.

C followed by a translation of B up;

Use this information to match each of the following functions to

its graph
() xbrae - D2 -3 @) x> sx® - 1 (D) x> -3k 4 1?2
(iv) x+>1 - %xz

—~A2:61 -




b
“

~{ ~ ' >x
A 8 G D

Sketch the graphs of each of the following functions by putting

the gquadratic into completed-square form.

(i) xb>x® + 6x + 9 (ii) x F>x - %‘x +§ (iii) xt+>4x2 + 8x + 3.

Write down the inverse of each of the following functions.

(i) g: R >R’ (ii) h: R->R
77 . X
g: xh%iaax | h: x+>2

POST-PROGRAMME WORK

9.

10.

11.

If the graph of x|‘>x3 is reflected in the y-axis and the result
is then reflected in the x-axis the final graph coincides with the
original one. What property of the function explains this

phenomenon.

(1) If the graph of x ¥ sin x (or x+>2 sin x) is translated
parallel to the x-axis sufficiently far we obtain the
original graph. Why? How far do we have to tranglate?

(ii) The graph of xt>sin x (or x+>2 sin x) is unchanged by
reflection in the y-axis followed by reflection on the

x—axis. Why?

A y-scaling by a factor 2, and an x translation to the left of 1
unit have the same effect when applied to the graph of x> 27,

Explain.

The function x >»sin x does not have an inverse but the process
of finding an angle given its sine 1is quite common in trigonometry.

Resolve this contradiction.
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POSSIBLE EXTENSIONS

1.

The graph of'rck?%ﬁ—;—g can be obtained from

q _ ps
the graph of xrﬁ-l by expressing PX* 9 jn the form =—X— + B
X IX + S <+ 5 T
r
and applying the following transformations:
(1) first a translation of % to the left.
(ii) followed by a scaling of‘%~— %%_in the y-direction

(iii) followed by a translation of % up.

You may wish either to examine this general result — or the more
X + a
x +b

particular case of x>

This section could lead to further work on the properties of
functions. The particular properties of x F72x may be worth

investigating.

It could alsc lead to further work on the geometrical effects of

transformations applied to coerdinates.

(SEE SECTION 3. TRIGONOMETRIC FORMULAS).
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SOLUTIONS
1. (i)
- (ii)

(iii)
(iv)

b2

@ &+ DB x-n2E &+DH? @ &+ L2

(@ 2+ D2 ®) - = D? @ aix+ H? @) atx + 22
m 2a

(@ x + D%+ 2 ®) x-DZ 3@ xrm?s (1 -ad)

2

@) (x +%)2 + e - 2

@ 6x + D2 =1 ®) & - D% -1 () n°(x + .;;)2 -1

(d) alx + %)2 v e -2y,

2. Functions (ii), (v), (vi} and (vii) are in_completed square form;

the other functions are not.

3. (1)
(ii)
4, (1)

%
g4 Y4
/ \ -
) = S
IH(I I)—I zt——»(x-«-i)‘-i

The vertices of each of the graphs are marked on the
diagram above. The vertices are:

(2) (0, 0 () (0, 2) (&) (-3, 0 @ (1, -1) (&) (- 5, -

— A

(ii) =— D

(iii) — C

(iv) —— B.

-R2.64 -

L
X e\ PN \/_,(x«-t)

P ey

_,
'

B T e o |

R L R



(i) —— B
(ii) ——=— D
(i1i) —= C
(iv) ———— A
{1) XFrx” + 6x + 9 = xb{(x + 3)2.
\\\\\1///// A9
-3 -2 -y © j‘
. 2 _ 2,2 12 1
{i1) x Hx -§-x+§-—xf-—‘>(x 3) tg -
). |
Yo |\ o
U O
(1ii) xv>4x° + 8x + 3 = x4 (x + 12 -
&:‘ .
Vi
- - ’ - _l
(i) g R R (ii) ©': R*>R
-1 100 =1
g : xl»-)—7—7~x b xr—blogzx

Consider the function f.

graph of f(-x).

obtain the graph of -f{-x). For x|—>x3

3

original graph because -(-x)3 = x".

- Q265 -

Reflection in the y-axis gives the

If the result is reflected in the x-axis we

this coineides with the



10.

11,

12.

(Note A function, f, such that
f(x) = -(£(-(x))

is called an odd function.)

(i) An x translation through a changes the graph of xp3sin x
to the graph of xt¥sin(x + a). But sin(x + 27} = sin x,
so a translation to the left of 27 leaves the graph
unchanged. {(The same is true of tramslationms through
4w, 6m and $0 on-—and of translations to the right by the
same amounts).

(i1) -sin(-x) = sin(x).

A y-scaling by 2 changes the graph of xt+>f(x) to the graph of
x¥»2 f(x). An x-translation by 1 unit to the left results in
the graph of x> f(x +.{). 'For Lhe function xH>2° these two are
equal since

2 x 2% = 2¥*1,
The function

sin*: —%, %} + R

sin*: x+»sin X
is one-one and so does have an inverse which is
. Tow
arcsin: [-1, 1] [- =, =]
. 27 2
. T T . .
arcsin: x> the angle between-i-and > (inclusive) whose
sine is x.

[Compare this with what happens on your calculator].

- A2t 66 -

. mwe g s

R e Lo PRI e R



9 ITERATION AND CONVERGENCE

(Note This section follows on directly from the work in SECTION 1:
SYMBOLS AND EQUATIONS).

PROGRAMME SUMMARY

The variations in behaviour of formula iterations may be explained

and analysed using the idea of the scale factor.

2 mins Two problems concerning the equations
X = 2—(x + 0.3)2
8
and
x =% G - 20x2)

. are introduced,

We recall that the formula iteration based on

5 2
Xn+1 = '8_ (Xn + 0-3)

with starting value %, = 0.5, converges to 0.1.

5 mins But why does this process converge? And why is it that

we don't get exactly 0.1? The reasons are demonstrated pictorially
using mapping diagrams where we investigate the effect of successive
iterations near to the solution, It turns out that the idea of

convergence can be related to the scale factor 2 at X, which is

defined as

b (X + 8) - £(X)

-x- 5 . (to first order)

4

Here X is the value of x at the solution to x = f(x). In fact the
iteration process will always converge if A is positive and less than

1 near the solution.

3 mins_J This can also be demonstrated by looking at the graphs

of x\—)% (x + 0.3)2 and xb>»x. We illustrate the iteration process

by means of a staircase diagram.

i 4 mins Using a staircase diagram we show that the formula iteration
_5 2
X1~ B (xn + 0.3)
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with a starting value x, = 1| diverges. Again this is related to the

1
scale factor at the solution X = 0.9, which in this case is greater than

one.

2 mins The idea of convergence and divergence is generalised

by looking at the slope of the function at the solution to x = f(x).

(Note This part may need some expansion).

5 mins We now turn to the function
xl"'?% (1 - 20x2)
which has a negative slope at the solution to x = % (1 - 20x2).

This time successive iterations are illustrated by means of a cobweb
diagram. Again such a diagram predicts convergence or divergence
for any iteration process based on x = f(x) depending on the slope

of the function £ at the solution to x = f(x).

3 mins We summarize what's been done. A sketch of the graphs of

x}—»ﬁ(x) and x +>»x predicts convergence (or divergence) of the iteration
process based on x = f(x). If the sketch indicates convergence then we
can obtain a starting value from the diagram and so find a solution.

If the sketch indicates divergence then the modulus of the scale factor
at the solution is greater than one and we need to investigate alter-

native arrangements of the original equation.

PRE-REQUISITES

Before working through this section of work students should be familiar

with the following:

(1) functions and mappings; domains, codomains and images

(ii) mapping diagrams _

(1ii) iteration processes as introduced in SECTION 1: SYMBOLS AND
EQUATIONS.

(iv) the idea of the slope of a graph at the point X in terms of
the tangent

(v) use of a scientific calculator.
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PRE-PROGRAMME WORK
Students will benefit by working through SECTION 1: SYMBOLS AND EQUATIONS

before starting this Section.

Suppose an iteration process is based on the formula

X1 = f(xn)

and the exact solution is X. That is, X satisfies X = f(X) exactly.

A starting value x  is fed into the formula to give X, = f(x1). Now,

1

for the iteration process to converge we want X, to be closer to X than

2

K. Since x, = f(x1) and X = £(X) this means that we want f(x1) to

be closer to £{(X) than %, is to X, This suggests that we should
investigate the effect of functions on errors and that's the purpose of

the following work.

Suppose f is a function and x is an approximation to X with error

8§ = x - X, Then f(x) is an approximation to f(X) with error p, where
f(x) - £(X)

f(X + 8) - £(X).

and p is called the error propagated by f. This error may be larger or

]

u

smaller than the original error as shown by the following mapping

diagrams.

)
x-————““"’;q’_’ﬂ’rf‘ x
d=x-%X u"—ﬁﬂ ‘P(}()
K— X

£x)

Here Mis greater than 4. Hfare/" is less ¥han &

1) - )

N

Example, f is the function xl—}&xz - 56x + 192 {(x € R). In this case
(X + 8) - £(X)

{4(X + 8)7 = 56(X + 8) + 192} - {4X% - 56X + 192)

4X% + 8X6 + 46° — 56X - 565 + 192 - 4X° + 56X - 192

8X6 - 566 + 46°

K

il

If ¢ is small then we can ignore the term involving 62 to get
u = (8X - 56)8 to first order
and the coefficient of §, (8X - 56),1is called the scale factor A.

Alternatively, X can be defined as
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A:H:f

(X + 8) -~ £(X)

§
in which case

4 8X8 ~ 568 + 45°

8
in the example above

= BX - 56 + 48,

8
This time if &

A = 8X - 56 as

$
is small we ignore the term involving § to get

above,

Now A can be evaluated for wvarious values of X.

1. f is the

Evaluate the scale factor, X, at each of the following values

of X, .

(i) X =2 (i) X =0.1 (iii) X = 8

2. (i) (a) What is the error p in f(x) as an approxiation to f(X)?
- (to first order) when-f-is- the funetion- -- .- .- -
xl—-)3x2+7x+2 (x € R).
(b) Hence write down the scale factor A for f at X.
(c) Evaluate x for
X=1and X = -3.

(ii) (a) What is the error p in £(x) as an approximation to £(X)?
(to first order) when £ is the function
x\-—?Mx—Bx2+9 (x € R).

(b) Hence write down the scale factor A for f at X.
{(¢) Evaluate ) for

3. (1) For
{a)
{b)

function x!—?&xz - 56x + 192 (x € R).

X=0.1 and X = 2.

each of the functions
f:xt—‘72x-x2+3 {(x € R)
g:xl—?xz--;:x+3 (x € R)

calculate the scale factor at X = 2,

(ii) For
(a)

and

each of the functions in part (i) find the image of
x =2 (b) x=2.1.

illustrate your answers using mapping diagrams.

{(iii)What does this suggest about the effect of the functions f

and

g on errors near X = 27

*4., In this problem we give you a number of functions f and starting

R R R

Pp—

o s
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PR,

values X, You have to calculate successive terms in the iteration

process based on X = f(xn) using your calculator, uantil you are

n+t
confident that you understand the long term behaviour of the process.
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Does it converge? If so, which solution of x = f(x) is it approaching?

Do any of the processes diverge?

function f Solutions of x = f(x) | Starting { Number of
(x € R) ' value iterations to
x, be performed
. 5
(1) [xr>3 x+0.3)% 0.1 and 0.9 (a) 0.5 12
(b) 1.0 9
(i1) | xesg (1= 20x)) | -0.5 and 0.1 0.05 12
(iii) x‘-—)—i—xz + 0.3 approx 0.33 and 3.0 7
3.7

*5, The scale factor of f at various points is going to be important in
the discussion of why some of these iterations processes converge
and some diverge.

(1) (a) Write down the scale factor A of xl-—)—g- (x + 0.3)"2 (x € R)
"~ at X.
{b) Evaluate X for X = 0,1 and X = 0.9.
(ii) (a) Write down the scale factor A of xl—}-;— (1 - 20x2) (x € R)
at X.
(b) Evaluate A for X = -0.5 and 0.1,
(i11) (a) Write down the scale factor A of xF}%xz + 0.3 (x € R)
at X.
(b) Evaluate A for X = 0.33 and X = 3.7.

*6, Complete the mapping diagram on the next page for the function
5
f: xw» glx + 0.3)2 (x € R)

Use the points marked in the domain; calculate their images; mark

the corresponding points in the codomain, and join them up.
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POST-PROGRAMME WORK

7. Here are the graphs of the-functions - : -

2
£ x;—-)KT + 0.3 (x-€ R)
3 .
g: Xp»1.3 - x (x-€ R)

sEmrs

(i) Draw on the first graph the staircase or cobweb diagram for
the sequence starting at x = 2. On the second graph draw

the diagram for the sequence starting at x = 0,6,

(ii) Use your diagram to predict whether the iterative process
based on
3
X =41.3-x
n+1 n

with starting value X, = 0.7 will converge or diverge.

(iii Check your prediction by using the formula to work out
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x2 x3 x4 x5 and x6.

(1) Use the Quadratic Formula to work out approximate

. 2
solutions to x - x - 1 =0,

1

‘. . 1
(i1) The function f: x+—>1 + ;-has scale factor A = --;FL

and the function

- 1 I has scale factor A = ————l——jz
(X - 1)

Write down the scale factor of the function h: x‘—)xz - 1.

g: x>

(iii) In Section 1 we discussed solving the equation x2 -x - 1=

using the rearrangements

_ 1 _ 1 = -
(a) X 41 = 1 + % (b) LI 3;:1 (c) LIRS 1.

with various starting values.
Use Parts (i) and (ii) to predict which of these rearrange-
ments you would use to find the positive solution of

r2 - r-1=0. Which would you use to calculate the

negative solution?

This problem illustrates the dangers of using formula iteration to
solve an equation when the chosen rearrangement has scale factor

close to one near the solution.

The equation

8x3 - 12x2 +6x-1=0
has one solution in the interval [0, 1]. Calculate this solution

to three places of decimals using the rearrangement
X = %—(1 + 12x2 - 8x3)

with starting values
(1) 0.505 (ii) 0.501
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POSSIBLE EXTENSIONS

1.

" rearrangements to get the equation into the form ~°

This sectiom could be used to introduce the concept of the
derivative, or if students are already familiar with calculus,

it presents a different way of looking at the derivative and

this can be followed up by a comparison of the various approaches,
(SEE SECTION 11: THE DERIVED FUNCTION).

In Exercise 8 we gave the scale factors for the functions
1 . . .
x »;‘E and X t—-‘rﬁ You may wish to explore the derivation

of the scale factors from first prinmciples.

Students are now in a position to investigate the solution of any

equation using iterative methods. They can formulate their own

x = f(x)
and use the methods introduced here to predict whether such a

rearrangement converges or diverges.

The work in 3 above could also be extended to cover the solution

of equations to a desired degree of accuracy using a computer.

-fA2:74 -
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SOLUTIONS

1. A = BX - 56
(1) When X = 2, & = =40
(ii) When X -55.2
(iii) When X = 8, A = 8.

"
e
.
-t
n

2. (1) (a) p

n

fF(X + 8) - £(X)
(3(x + 8)2 + 7(X + 8)+ 2} - {3%% + 7X + 2}
6XE + 786 + 362

i} fl

H
~

{b) To first order p 6X + 7)8 and so A = 6X + 7.

fl

o=

Alternatively, X ~ X + 7 (ignoring the term

involving §).
(c) When X = 0.1, A = 7.6
When X = 2, A = 19,
(ii) (a) p = £(X + &) - £(X)
{16(X + 6) - 3(X + &)% + 9} - {14X - 3%% + 9)
-6X5 + 148 - 38°. '
(b) To first order p = (-6X + 14)6 and so A = -6X + 14

Alternatively, X = Y o~ —6X + 14 (ignoring the term

fi

O

involving 6.

3. (1) (a) p = £(X + & - £(X)

S {QM+ &) - X+ )23} - {2 - %X+ 3)
= = 2X6 + 28 - 62
= (-2X + 2)8 to first order.
Hence A = — 2X + 2 and when X = 2, % = =2
(b) p=g(X +8) - g(X).
S+l -t e v - ¥ - gx e 3)
= 2% - 15 + 52,
= (2X - %)6 - to first order.
Hence A = 2X - %—and when X = 2, X = 3.75.
(ii) £(2) = 3 g(2) = 6.5
’ £(2.1) = 2.8 - _““g(2r1) = 6.9
e B memn s 1. e et

, —
1 . B
Exe> -3

GadaEiies
In both cases the distance between f(2) and £(2.1) is

(iii)

t

larger than the distance between 2 and 2.1. This

- A2.75 -



7.

(i)

(ii)
(iii)

(i)

(ii)

(iii)

suggests that the effect of both functions £ and g

is

to increase the errors.

Notice that when the scale factor is negative the lines

in

the mapping diagram cross over.

(a) When x1 = 0.5, the iteration process converges
to 0.1.
(b) When x, = 1, the iteration process diverges.

1

The process converges to 0.1; terms alternate smaller

and larger than 0.1,

The process converges steadily to 0.33,

(a) X = 2 (2% + 0.6).

(b) When X = 0.1 X = 0.5
When X = 0.9 A = 1,

(a) » = -5%

(b) When X = =-0.5 A = 2.5
When X = 0.1 A = -0.5.

(a) X' = 2%

(b)) When X = 0.33 X = 0.165
When X = 3.7 X = 1.85,

ou?f‘--_ﬁ___“_h_““‘;TL&
O&f“*—-h~____h___‘:04¥
<L3'““*—~___h_____‘_-h¢13
err———_ }oa
o et

° :::::::::::::::::::: o
-of +-04

(1) Your diagrams should look like those below

$p

7 A

~

Ny

+ 3.5 Y

F 3
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(ii)

(iii)

(1)
(ii)

(iii)

The process will diverge.

e 1,084 Xo -0.897
e~ 0,026 x6 e '3 022
e 1.23

X~ 1,618 and x =~ -0,618

The scale factor for h is 2X.

For each of the rearrangements we need to calculate the

scale factors at the approximate solutions.

(b)

(c)

1 1
: + — = = —
f: x 31 . has scale factor A e
At X = 1,618 ) ~ -0.382
At X = -0.618 X = —-35.431,
At X = 1,618 |1} is less than 1, so iteration based

on this rearrangement with  starting value near to
1.618 will converge to the positive solution.

At X = -0.618 |x| is greater than 1, so, iteration based
on this rearrangement with starting value near to -0.618

will diverge.

g: xi-',—xl—1 has scale factor A = ~ ! 7+
®K-1)
At X = 1.618 X = -2.618
At X = -0.618 ) = -0.382.
At X = -0.618 || is less than 1, so iteration based on

this rearrangement with starting value near -0.618
will converge to the negative solution.

At X = 1.618 x| is greater than 1, so iteration based
on this rearrangement with starting value close to
1.618 will diverge.

h: xgé}xz - 1 has scale factor i = 2X.

At X = 1.618 X =~ 3,336,
At X = -0.618 ) = -1,336.
In both cases |X| is greater than 1 so iteration based

on this rearrangement will diverge for starting values

near to both solutions.
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If you used the starting value 0.505 you would_conciude that thé
solution was 0.505 to three decimal places: if you used the

starting value 0.501 you would conclude that the solution was

0.501 to three decimal places. In fact the solution is 0.5 exactly.
This illustrates the danger of working without checking the scale
factor, which in this case is 1 at X = 0.5. So the 'convergence'
which appears to take place is unreliable. Check this by constructing
the appropriate staircase diagram. You will find that the process

appears to converge while still far from the solution.

- RA2:78 -
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A
10. X > X AN AREA FOR REVISION

PROGRAMME SUMMARY

This programme deals with the link between logex and the corresponding
area under the graph of y: x}—)i". Furthermore, the rule
log ab = log a + log ®

can be demonstrated by adding together the corresponding areas.

3 mins The graph of f: x\Ja% (x € H{+) has the following property:

if W(r) denotes the weight of the area under the graph from x = 1 to
X = r, then

W(r) + W(s) = W(rs).

2 mins In fact the areas themselves are connected and

A(r) + A(s) = A(rs).
This is related to the logarithm rule
log r + log s = log rs.

We aim to show that A{r) = log(r) to a certain base.

| 8 mins First we show numerically that A(2) = 1oge2. This 1is

done by repeatedly calculating under-estimates and over-estimates of the

area between 1 and 2 by dividing it into rectangles. Each calculation
gives an interval which includes the area we want. By dividing the area
into more and more rectangles the interval becomes smaller and we can

trap the exact area in a mest of intervals.

{ min In fact A(2) = loge(Z).

7 mins Next we prove that the property

A(r) + A(s) = A(rs).
This involves two results about scaling in the x- and y-directioms.
First, a scaling by a factor of s in either direction multiplies areas
by s. Second, a scaling by s in the x-direction followed by a scaling

of %-in the y-direction leaves the graph of f: x Fivi-(x € B{+) unchanged.

1 min This demonstrates that A(r) is indeed loge(Z). Since there

. . X . . .
is a connection between logex and e”, this suggests that there is a link

between the function xtdyg'and x‘—?ex.
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1 min Finally we recap the main ideas used in the programme:

the properties involved in scaling functions and the idea of trapping

a real number in a nest of intervals.

PRE-REQUISITES

Before working through this section of work students should be familiar
with the following:
(1) the idea of logs and knowledge of the rule
log ab = log a + log b.
Preferably students should know about loge - although this could

be introduced via the programme,

(ii) the idea of an interval on the real line of the form
[a; b] - ’
(iii) inequalities of .the form a < b < ¢
(iv) scaling graphs in the x- and y-directions. Students should

have some idea of the fact that an x-scaling of A transforms
£(x) to f(%x), and a y-scaling of p transforms f(x) to pf(x)

(although not necessarily in this form).

NOTE The effect of scaling on graphs s iZZustrated!IN SECTION 7:

FUNCTIONS AND GRAPHS

(v) use of a scientific calculator.

~R2.:80 -
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PRE-PROGRAMME WORK

*1.

(1) Complete the table below and so plot the graph of
f: xbdyl.
x
11111 1 1
1513132 1 12 2 25 3la15]6
1
X

(1) (@) £, B £, © £.

(iii) Use your answers to Parts (i) and (ii) to calculate the

following shaded areas.

Fd

Y4

*2. This question involves logarithms to the base 10.

*3,

(1) Use your calculator (log-tables) to find
(a) log103, (b) 10g106, (c) 1og102

(ii) Hence find (a) 1031018, (b) 1031012.

(iii) Now write down logIO(ab) in terms of log10 a and 1og10 b.

Your calculator may also have a key which gives logarithms to the
base e. (e is just a number, its value is about 2.72), These logs

are often called Naperian or Natural logarithms and are frequently

denoted by Ln. - So the key on your calculator may be labelled Ln.

(i) Find 1og62 using your calculator. You should get a result
in the interval [0.693, 0.694].

(ii) Use your calculator to find

(a) 1oge3, (b) log, 6.

(i1i) From parts (i) and (ii) calculate

(a) 1oge3 + 1oge6, (b) 1og86 + 1°ge2'

(iv) Use the inverse key on your calculator to check

that (a) loge3 + log 6

1oge18

and (b) log 6 + logeZ 1og812.

This demonstrates that the addition rule also works for
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In fact

loge. That 1is logeab = logea + logeb.

this rule work for logs to any base.

4. The shaded square below has area 1.

\

(1)

(ii)

(iii)

(iv)

Ay

D.__..

The square is scaled in the x-direction by a factor

of 2. Draw a diagram to represent the resulting shape.
What is the are of the resulting rectangle?

The square is scaled in the y-direction by a factor of %.
Draw a diagram to represent the resulting shape. What is
its area?

The square is first scaled in the x-direction by a factor

2, then scaled in the y-direction by a factor %. Draw a
diagram to represent the resulting square. What is its
area?

The square is now scaled in the x-direction by a factor r,
then in the y-direction by a factor s. Draw a diagram to

represent the shape. What is its area?

POST-PROGRAMME WORK

No specific

post programme work is suggested here although it may be

helpful to go over the part on scaling at the end of the programme,

¥

B WAt v b Ry o

it 12 s

relating this to the scaling of shapes as in the pre-work. Also, some
explanation may be needed to show why a scaling of s in the x-direction
followed by a scaling of % in the y-direction. leaves the actual graph

of }{h}i;unchanged. Perhaps try it with some specific examples.

e.g. when x = 2, s = 3, etc,
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POSSIBLE EXTENSIONS

1.

This section could clearly lead into a discussion of integrationm,

NOTE SECTION 13: THE FUNDAMENTAL THEOREM OF CALCULUS investigates
the link between the area under a curve f between a and b
and the integral.

[ teras

a
Specifically, it could be used to show that
T
J —dx = log r
X e

1
with a neat demonstration that loge 1 = 0, The programme draws

attention to the fact that, when integrating, Naperian (Natural)
logs should always be used rather than 10g10.

The section could also lead to further work on the properties of
logarithms.

We mention that there is some link between the graph of x{—>%
and x+>e*. This could be followed up.

Note SECTION 15 WHY e? discusses this connection

In the programme we suggested that logEZ can be calculated as
accurately as we please by dividing the area into narrower
intervals. This could be converted into a computer program to

calculate loge2 and indeed 1ogen for anyn 2 1,
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SOLUTIONS
1.

(i)

(ii)

(iii)

(i)

(ii)
(iii)
(i)
(ii)

(iii)

(iv)

(1)

11 1 R
xga'-2-11§22—2-3456
1 211121118
=213 12 32| 5(3(%|5]%
9 4

5 M

'f-'

3!

2..- 1\—9‘_
t )

2] . e e B » x - -

.‘2-3[*5— x

5, . 4 6 _ 4 7y _ 4
@ £G) =3, B @) =%, (.1

=
LRV 1,4 1.4 13y 2

(a) Area = (4 x 5) + (é x 6) + (4 x 7) + (4 * 3 0.634
AR 1 4 1.4 J <8 2

(b) Area = (Z x 1) + (z x 5) + (4 x 6) + (4 x 0.760

(a) To 4 decimal places 103103 = 0.4771.

(b) log 6 = 0.7782

(c) log,42 = 0.3010.

(a) 18 = 3 x 6, so log1018 = 10g103 + 10g106 = 1,2553

(b) 21 f 6 x 2, so 1031012 = 1og106 + 1og102 = 1.0792
1og1oab = 108103 + log10b.

log, 2 = 0.6931 (to 4 decimal places)
(a) loge 3 = 1.0986; logeﬁ = 1,7918
(a) loge3 + logeﬁ = 2.8904
(b) log 6 + log 2 = 2.4849
From'Part (iii) (a) 2.8904 = 103318
(b) 2.4849 = 1oge12.

an

...

Area = 2 x 1 = 2 sq units,
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(i1) My

1 1 .
Area = 1 x 7°3 units,

e -

Area = 2 x %-= 1 sq units.

So the resulting area is the same as the original.

(iv) Y A

r

Area = rs sq units.
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11. THE DERIVED FUNCTION

(NOTE This section builds upon the work of scale factors in SECTION
g9: ITERATION AND CONVERGENCE).

PROGRAMME SUMMARY

The programme is in three main parts. First by looking at scale factors
we lead up to the definition of derivative. Then, we look at a
geometrical interpretation of the derivative. Finally we look at the

derived function for which we use the notation f£’.

2 mins For some functions it's quite easy to find the scale factor

using the definition

- f(X+ 8) - £(X) (to first order).

A= s

e

10 mins But there are snags with f: xb>sin x. However, it is

possible to evaluate for X = 0.6 and various values of §. And as

o=

B
8
gets closer to zero, This gives a new definition for the scale

§ gets smaller we get a sequence of values - which converges as §

factor as

lim ¥ _ lim £(X + &) - £(X)

60 &  §20 5

This definition applies more generally and we say that the derivative

of £ at X 1is

lim £(X + §) - £(X) |
0 8

u

1 min We turn to the geometrical interpretation of 5

as the slope

of the chord joining

(x, £(X) and ((X + &), £(X + 8)).
As § + 0 the slope of this chord approaches the tangent to the graph of
f at the point X and this gives a different picture of the derivative

at X as the tangent to the graph of f at the point X,

7 mins This altermative approach allows us to build up the derived

function of f: xl—bO.?xz + 1 geometrically. We look at the derived
functions for various functions. For polynomials the derived functions

has degree one less than the original functien.

-A2.86 -
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1 min We then return to x v+3sin x. Again the derived

function is obtained diagramatically., It looks as though the

derived function is xy—cos x.

2 mins Finally we look at increasing and decreasing linear

functions and constant functions. The geometrical approach turns

out to be quite useful.

PRE-REQUISITES

Before working through this section of work students should be

familiar with the following:

(1) the definition of scale factor as introduced in SECTION §:
ITERATION AND CONVERGENCE.

(ii) the idea of the degree of a polynomial and some of the
characteristics of polynomial graphs

(iii)  the gfaph of x +3»sin x and x y»cos x

(iv) the idea of increasing, decreasing linear functions and
constant functions

(v) an intuitive idea of a limit
£(b) - £(a)

(vi) the slope of a straight line as —

(vii) use of a scientific calculator.
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PRE-PROGRAMME WORK

Students will benefit by working through at least the first three
exercises of SECTION 9: ITERATION AND CONVERGENCE before starting

this section.

1. (1) Find the scale factor at X for the function
f: xt—>0.7x2 + 1 (x € R),
(ii) Hence find the scale factors at
(a) X=0.6 (b)) X=2.0 () X=3.5 (d) X = -1.5,
2. (i) Draw the graph of g: x v>1.4x.
(ii) Use your calculator to draw the graph of
£: xr4>0.7x2 + 1, _ -
3 (1) Use your calculator to complete the table below.
(Note 6 is measured in radians, so make sure your
calculator is in the appropriate mode}.
T|mn|n |2r |3n| 5w 7 { 5n | 47w | 3w 5n 7w P w
P lElE T e T W S e s s
sin 8
. cos ©§
(ii) Use the table to plot the graphs of

(a) B v+»sin 8 (b) B+>cos 8.

4, Decide whether each of the following graphs is a graph of an

increasing linear function, a decreasing linear function or a

constant function,

| Ay A | v JV
/ lr
-, A

® @

e § N 9 A YA

™~ ~
'® @ (%
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POST~PROGRAMME WORK

5. Let f be the function given by

f(x) = x - 3x2 + 2.
(1) Find the scale factor for f at X and calculate its value
when X = 1,
(Use the method introduced in Section 9).
(i1) Use your calculator to calculate
£(1 + 8) - £(1)
$
for (a) & = -0.1 (b) & =-0.01 (c) & = -0.001
(d 8§ =0.1 (b = 0,00 (£} & = 0.001.
6. Use the definition
derivative = éig f(X + Gé £X)
to find the derivatives of each of the following functions at
). 48
(i) f: xrwx

i1) f: x}—99x2 - 4x - 21
(iii) £ KH% (x # 0).

7. This question concerns the geometrical interpretation of the

derivative as the slope of the tangent to the graph of a function.

YA

“The slope of the
Chord P 15 A
d
whar happeas as &
gets smallec ©

(1) On the diagram on the next page draw the chords through P

corresponding to values of & °6f your choice.  Make sure
that |6] gets smaller and smaller. Try a few with §
negative, § = -5 for example.

(i1i) What is happening to these lines?
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8. The graphrof a function f is given below. . Indicate where its slope

is positive, negative and zero.

4

-

X+ F(x)

9. The graph of a function g is given below. We have sketched four

possibilities for the graph of the derived function. Which one

(6) ya (Eb "

is most likely to be correct?

P
24
2 N
T— —F 2
-24
.:n—afjlx)
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10. In this question we use the notation sin'(x) and cos'x to stand

for the derived functicn of sin x and cos x respectively.

(1)

(ii)

(iii)

(iv)

(a)

(b)

(c)
Find
(a)

(b)
(c)

Write down an expression for sin'Q using the limit
definition of the derivative,

sin &
8

of positive and negative values of & (measured in

Use your calculator to evaluate for a range

"‘-
radians!)’

(For example, try 0.1, 0.01, 0.00%, 0.0001, -0.1,

-0.01, -0.001, -0.0001.)
lim sin §,
0 8

What do you conclude is the value of sin'0.?

What can you conclude about

cos'(0) using a similar method.
Use the sine formula
sin{a + b) = sin a cos b + cos a sin b

to show that

sin(0.8+51-sin(0.8) _ sin(O.B)(fOif_I) . COS(O.S)(Sinﬁ)‘

6

Hence explain why sin'(0.8) = cos(0.8).

Show that sin'X = cos X at a general point X.

Use a similar argument and the cosine formula

cos{a + b) = cos a cos b - sin a sin b

to show that cos'X = -sin X at a general point X.
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POSSIBLE EXTENSIONS

1.

This section could either be used as an introduction to
differentiation or as an alternative approach to something
already familiar. In both cases it opens the way to further
work on differentiation {(from first principles) - and also

differentiation techniques.

In particular the derivatives of sin x and cos x might be
further investigated — especially with reference to the
graphs of these functions and the slopes at various points.

The graphs of Sl: X anq £98 i -1

could be plotted using a calculator

and this could help the understanding of the limits

lim sin § and lim cos § = 1 )
+0 8 &0 8 :
The graphical approach to the derived function leads to the

principles involved in curve sketching.

(Note SECTION 12: THE BEHAVIOUR OF FUNCTIONS looks at this

aspect of curve sketching).
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SOLUTIONS.

1. W) po= £(X + &) - £(X)
= {0.7(X + )2 + 1} - {0.7%% + 1)
= 0.7%% + 1.4X6 + 0.78% - 0.7%° - 1

1.4X8 + 0.762.

1.4X%6 (to first order)

It

Hence the scale factor is t1.4X.
(ii) (a) 0.84 (b) 2.8 (c) 4.9 (d) -2.1

2. (i) 51‘

9ix> Lux

Ky

(ii) \\\\\\\‘hjji",f”’

» £ x> o1x+)
x.

3. (1) To one decimal place:
o loz m 1 =2 3 Sn 7m 5n 4w Jmsn 7w mc,
& 4 3 23 & & "6 & 3 .23 .&. & -

sin 6/0 0.5 0.7 0.9 1 0.9 0.7 0.51 -0.5 -0.7 -0.9 -1 -0.9 -0.7 -0.5 O

cos B[ 1 0,9 0.7 d;S 0 -0,5 -0.7 -0.9-1%0.9-0.7 -0.50 0.5 0.7 0.9 1

(ii)

21T (a) v sn&
(=

pe 3 (P)O > cos &

4. (a) and (e) are graphs of increasing linear functions (b) is a
graph of a constant function, ({f)} and (h) are graphs of decreasing

linear functions.

Note (d) is an increasing function but it is not linear.

(g) is a decreasing function but it is not linear.
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(1)

(ii)

(1)

(ii)

(X + 6)3 = 3(x + 8)% + 2

£(X + 8) =

= %3+ 3x%6 + 3%6% + 60 - 3%% - 6X6 - 62 + 2

= (x3 - 3x2 + 2) + (3x2 - 6X)8 + (3X - 1)62 + 83

2 2 3
Hence f{(X + &) ~ £(X) = (3X" - 6X)8 + (3X - 1)6° + §
= (3X2 - 6X)¢& to first order.

Hence the scale factor A is 3X2 - 68X (the coefficient of &) .
When X = 1, » = =-3.
When X = 1, £(X) = 0., Hence

£+ 8) - £Q1) _£Q1 + &)

§ $
£(1+8) £(1+8)
8 — 8 —3
-0.1 -2.99 0.1 -2.99
-0.01 -2.9999 0.01 -2.9999
-0.001 -3.0 0.001 -3.0
So, as & gets smaller in magnitude gj—%—él-gets closer to

-3, the value of the scale factor at 1.

the entries in the ctable are obtained using a calculator,
. £(1 - 0.001) £(1 + 0.001)
this does not mean that —— 5,001 and 0001

are exactly -3, only that the differences between

(Note

their values and -3 is too small to be noticed by a

calculator.)

fE(X +8) - f(X) = (X +68) - X
= 4.
Thus E(X +8) - £(X) _ 8§ _ 1.
8 §
As § tends to zero f(X + Gi - £(X) does not changé
so £ (X) = lim £(X + &) - f(X) _ i.

&0 )

(9(X + 8)% = 4(X + 8) - 21} - {9X% = 4X - 21}
2

g(X + 8) - g(X)

1l

18X8 + 962 - 4.
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So g(X + 8) - g(X)
)

As 6 tends to xero so does 98 and so 18X - &4 + 94

= 18X - 4 + 96

gets closer and closer to 18X - 4. Hence

gy = }inalXr O - gl _ gy g,
(iii) h(X + 8) - h(X) = i_}'f_a -%
_X-(X+8)_ -6 .
X(X + 6) X(X + 98)
h{X + §) - h(X) _ -1
Then ; = TR

As & gets -closer to zero, X + § gets closer to X, so

1
gets closer and closer to —

X(X + 6) x> :
/.« _ lim h(X + 8) - h(X) _ -1
Hence h (X) = 50 ; == -
X
(1) Your diagram should look something like this.

Loy . . - ' —
2 wu [ o 2 =

(ii) The chords are getting closer and closer to the tangent

to the curve at x = 5.

The slope is

positive for x € ]-=, -1]
zero at x = -1

negative for x € ]-1, 1|
zero at x = 1

positive for x € ]1, =[

The first thing to note is that g has zero slope at three points,

X ==-2, x=0and x = 2, So the derived function must have value
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10.

zero at these points. This eliminates (a) and (c). Also
the slope of g is negative for x < -2 and 0 < x < 2 and
positive for -2 < x < 0 and x > 2, so the correct choice

is (b).

. .t _ lim sin(0 + §) - sin O
(i (a) sin (0) = 50 3
_ lim sin & . _
= 50 3 (as sin 0 = Q).
(b)
sin § sin §
8 5 § 5
0.1 0.9983341 -0.1 0.9983341
0.0 0.9999834 - 1 -0.01 "~ 0.9999834
0.001 1 -0.001 1
0.0001 1 - 0.0001 1
The tables suggest that as § tends to zero 512 J

gets closer and closer to 1.

That is, éig 312 §

=1

(Note This is not a proof (that would be much more

difficult) But it is a useful demonstration).

1lim sin § -

Fa
(c) Hence sin 0 =

§->0 8
(i1) By definition
0s*(0) = lim cos{0 + 8) - cos 0
< 60 8
_ lim cos § - 1 . =
= 550 5 (since cos 0 = 1),
This suggests that we should investigate the behaviour
of EEE—%—:—l for wvarious values of §.
cosd-1 cosé-1
8 R 8 ——
0.1 -0.0499583 -0.1 0.0499583
0.01 -0.005 -0.01 0.005
0.001 -0,0004999 -0.001 0.0004999
.0001 | O -0.0001 | O
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Again, the tables suggest that as & tends to
cos § - 1

zero ————— gets closer and closer to O.
. lim cos &6 - 1 _

That is 20 5 ° 0.

Hence cos’(0) = lim cos 8 -1 . 0.

60 &

{(1ii) (a) sin{0.8 + &) = sin 0.8 cos & + cos 0.8 sin §.

Hence

5in{0.,8+8)-5in0.8 sin0.8(c056-1)+c050.8 sin§

and

51n(0.8+6é-51n0.8 - 5in0.8 (foi?—1) + cos0.8 (flﬂ%)’

§

lim cos 6§ - 1 _ lim sin &, _
(b) As o —=2———— =0 and S, -Ta—t=

iig sin 0.8 (%Bi_g_:_%) + cos 0.8 (E&%_E) = cos 0.8.

lim sin(0.8 + §) - sin 0.8

. ! _ =
Hence sin {(0.8) = 540 5 cos 0.8.

(c) Replacing 0.8 by X in Parts (a) and (b) gives

} ’X - lim sin(X + &) - sin X
sin §+0 3
_ lim . cos & = 1 sin 6)
_6_)_051nx( s )‘+cosx(6
= cos X.
(iv) By definition
?X _ lim cos(X + 8) - cos X
cos 6+0 5
- lim cos X cos 6 - sin X sin § - cos X
§+0 8
lim cos 6 - 1 ] sin ¢
= 530 cos X(r——jgﬁ——) sin X(T?r—)
= - sin X.
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12. THE BEHAVIQUR OF FUNCTICNS

PROGRAMME SUMMARY

This programme show how the information -that is obtained by analysing

derivatives can be used to sketch the graph of a polynomial function.

5 mins The graph of a quadratic function can be sketched using

scalings and translations by completing the square, (SEE SECTION 7:

"FUNCTION AND -GRAPHS) but this doesn't help with a function like

f{x) = 3x4 + 2x3.

We could plot a few points and then 'fit' a curve but this isn't much
good as several graphs provide a good fit. Indeed it is possible
that even by plotting a lot of points we can make mistakes. For

example what about the graph of

_ 10 000 x s
E) = 35000 x =7 °
4 mins We look at the graph of a typical function f and 1its derived

function f£', and examine the relationship between the slope of the
original function and the corresponding value of the derived function.

This leads to the idea that a local minimum occurs at a point where

the derived function is zero and changes sign from negative to positive,

(A local maximum is also defined). This gives the first derivative

test.

2 mins The first derivative test is then applied to the function

fF(x) = (x - I)2 + 2.

4 mins It's not always easy to apply the first derivative test and

we now look at the second derivative to find out what information that

gives about the original function. This leads to the second derivative

test : a local minimum occurs at a point where the first derivative
is zero and the second derivative is positive. A local maximum is also

defined.

The second derivative test is applied to the function

£(x) = 3x4 + 2x3

but it doesn't give a complete picture,

-f2:98 -
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5 mins In fact the second derivative provides more information about

the graph of f. We introduce the idea of concave up and concave down

and a point of inflection.

3 mins Finally this is applied to the functien
3

f(x) = 3x4 + 2x

and we consequently sketch the graph.

PRE-REQUISITES

Before working through this section of work students should be familiar
with the following: '

(1) plotting quadratic graphs

(ii) functional notation

(iii) differentiating polynomial functions and the terminology

first derivative and second derivative

{(iv) some idea of increasing and decreasing functions
{v) factorisation of algebraic expressions
(vi) "interval notation of the form [a, b] and ]a, bl[.

Note Sketehing a quadratie by completing the square and using
scalings and translations is mentioned in the programme.
This 18 covered in SECTION 7: FUNCTIONS AND GRAPHS. However,

the reference is only fleeting and it 18 not a necessary

pre-requisite.
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PRE-PROGRAMME WORK

1.

*2.

Find the first and second derivatives of each of the following

functions
(i) £(x) = x°
(ii) g{x) = (x - 1)2 + 2

e 5 3 2
(1ii) h(x) = x7 - 4x° + 3x - 2
(iv) 4(x) = 3x4 + 2x3.
Factorize (i) 3x4 + 2x3

(11) 12x3 + 6x2
(iii) 36x2 + 12x.

Let £f(x) = 3 + 2% - x2.

(@)

(ii)

(iii)

Let g(x) = xz - 2x + —

(i)

(ii)

(a) Plot the graph of £ for x lying in interval [-1, 4]
{b) From your graph determine where the slope of the graph
is positive,negative and zero.
(c) Which value of x corresponds to the maximum value of f(x)?
(d) Which value of x corresponds to the minimum value of £(x)?
(a) Differentiate f(x)
(b) Determine where
£'(x) =0
£'(x) <0
£'(x) >0
Compare your answers to Parts (i) and (ii). What do you
notice?
i

2
(a) Plot the graph of g for x lying in the interval [-1, 4]

(b} From your graph determine where the slope of the graph
is positive, negative and zero.
(¢) Which value of x corresponds to the maximum value of
g(x)?
(d) Which value of x corresponds to the minimum value of
g(x)?
(a) Differentiate g(x)
(b) Determine where
g'(x) =0
g'{x) <0
g'(x) > 0.

Questions 3 and 4 demonstrate the following properties :

e if £'(x) > 0 for all x in some interval then f is
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5.

increasing on that interval

# if f'(x) < 0 for all x in some interval then f is
decreasing on that interval

» if f'(¢) = 0 and f'(x) changes from positive to negative
as X increases through ¢ then f has a maximum at c

e if £f'(c) = 0 and f'(x) changes from negative to positive

as x increases through c¢ then f has a minimum at c.

Use the properties listed above to mark on the graph below
(a) the minimums of f(x)

(b) the maximum of f(x).

44

KY

P> §D) v

This question demonstrates that, according to the properties listed

above, f{ has two minima and one maximum.

And as for the maximum — there are other points where the function
takes much higher values. Strictly speaking the properties above

refer to a8 local maximum (or a local minimum) in the sense that

of all the points nearby this is the one where the function takes
its largest (or smallest) value. So all the rules for using

derivatives will do is to find a local extremum. (Note the word

extremum (plural extrema) is used for 'a maximum or minimum' when

we don't want to specify which.)

POST-PROGRAMME WORK

6.

The function f{(x) = x3 - 6x2 + 9% + 1

has local extrema where x = 1 and x = 3. Use the information in

the table below to sketch the graph of f(x).

X 0 1 2 3
3 2
f(x) = x7 - 6x° + 9x + 1 1 5 3 1
£7(x) = 3x° - 12x + 9 +l+]O]l -] -|-]-|-10]+
f'(x) = 6x - 12 =i=1=- -0 +]+] +}+
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10.

3

1+ 4x - %%“and so sketch the

Construct a similar table for g{x)

graph of g.

2x3 - 9x2 + 12x - 4 and so

Construct a similar table for h(x)

sketch the graph of h,

Sketch the graphs of each of the following functions?

(i) Xb=>1 + x2 - %}(3 - %x"

5
(ii) X —nx - —x3 + 4

(iii) xi—7x5 - 5x4 + Sx3_

. X X X X 1
{iv) xl—,T f’ --3— + 5 - T
x5 x3 1

(V) XH—S_— - T + g.

The second derivative test may seem attractive but it does not

solve every problem,

The function given by f(x) = x4 has one extremum.
(1) Find it.
(ii) Find the value of the second derivative of f at the local

extremum. What help, if any, does it give you in classifying

the local extremum?

(iii) Use the first derivative test to classify the local extremum.
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POSSIBLE EXTENSIONS

1.

This section has looked only at the techniques involved in
sketching polynomial functions. 1In such cases it is not
necessary to consider the behaviour of the function for large
values of x. Nevertheless this additional technique is important
when sketching other types of graphs. This could be added to the
method introduced in the section and students could go on to
sketching other typ?s %gographs. In particular, they could explore
X

the graph of x X =

We have concentrated on the derivative in terms of the slope of a
graph, In many practical applications this has a special meaning,
(speed, acceleration, rate of change). These practical applications -

could be introduced via this graphical approach.
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"~ SOLUTIONS.
1.

(1)
(ii)
(iii)
(iv}
(1)
(i1)

(iii)

(i)

(ii)

(iii)

F7(x) = 2x ; £"(x) = 2

g'(x) = 2(x - 1) ; £"(x) = 2.

h'(x) = Sx4 - 12x2 + 6x ; h'"(x) = 20x3 ~ 24x + 6,
' (x) = 12x3 + 6x2 ; £'(x) = 36x2 + 12x%.

3xq + 2x3 = x3(3x + 2)

12x3 + 6x2 6x2(2x + 1),
36x2 + 12x 12x(3x + 1),

(a) Your graph should look something like this.

9

Yy N

(b) The slope tis
positive for x € ]-1, 1[
negative for x € ]1, 4[
zero at x = 1.
(¢) £(x) has its maximum vlaue at x = 1,
(d) On the interval [-1, 4] f(x) takes its minimum value
at x = 4 when f(x) = -5,
(a) £"(x) 2 =-2x=2(1 - x)
(b) £'(x) = 0 when x = 1
£'(x) > 0 when x < 1
£'(x) < 0 whea x > 1

When £'(x) = 0 £f(x) has its maximum value

When £'(x) > 0 the slope of f(x) is positive and f is
increasing

When f£'(x) < O the slope of f(x) is negative and f is

decreasing.
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(i) (a) Your graph should look something like this.

3 9--—-

¥
i
! Tr—y x=2x4 L
, z
|

- W rz

(b) The slope is
positive for x € 11, 4]
negative for x € ]-1, 1]
zero at x = 1.
(¢} On the interval [-1, 4] g(x) takes its maximum value
at x = 4 when g(x) = 8.5.
(d) g(x) has its minimum value at x = 1.
(ii) (a) g"(x) = 2x = 2 = 2(x ~ 1)
(b) g"(x)
g'{x) > 0 when x > 1
<

0 when x = 1
g'(x) < 0 when x < 1
(iii) When g'(x) = 0, g(x) has its minimum value,

When g'(x) > O the slope is positive and g is increasing

When g'(x) < 0 the slope is negative and g is decreasing

9a
' Moximym :
' i
} {
|
L _ﬁ —
Miaimum \\\\hh“J”//’
e:x HRQ M\.ﬂ‘ MWL
X 0 1 2 3
3 2 1 5 3 1
f(x) = x° - 6x" + 9x + 1
V4 Y AN N N N g
f'(x) = 3x2 - 12x + 9 + |+ lol-1-1-1-1-1o
F"(X) = 6x - 12 - - - -— - 0 + + +

- R2:105 -



The table show that f is increasing on ]-=, 1]

has a local maximum at x = 1

is decreasing on -1, 3]

has a point of inflection at x = 2 where the
graph-changes from concave down to concave up.

has a local minimum at x = 3

is increasing on 13, «[

This gives the sketch

zw%i%bf+Qx+\

—»
x

(Note it is always useful to consider the value of the function

at x = 0,

X -2 0 2

3 2 1

s(X)=l+4x—-}53— v -3 ! &5
N VA P P ] S D

\ 2

g'(x) = 4 - x - 0 + + + + + 0 -
g"(x) = -2x + 1+ + |l+3071-1-1- -

This gives the sketch below,

-7 .
&

NY
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X 0 1 % 2
- 0.
h(x) =2x°=9% >+ 12x—4 A /__‘_,’ VI NS \ \9_,’ 7
h'(x) = 6x° - 18x + 12
=6(x-2)(x-1) + [ +]O0}-f-|- -1-10 |+
h"(x) = 12x - 18
= 6(2x - 3y . -y -1-1-1-10 ]+ ]+ |+
This gives the sketch below
YA
(0 I,
0.8¢------fL L.
' s 2 x

OJV%J

. \\;
"

XYy -ty
3y,

-1,0.18) 1

AN/
/’ \\.af”TC:;E%)

(0(05) /

2 1 5 3

x> LSttty 22T xty L
S &« 3 2 S S 3 5
10. (1) f(x) = x4
£'(x) = &x3 =0 at x = 0. So f has a local extremum at x = 0,
(1)  £°() = 12x°
=0 at x = 0.

This does not help us to classify the local extremum.
(1i1)  £'(x) = 4x°
So £f'(x) >0 for x > 0
- A2:107 -



and f'(x) < 0 for x < O
Hence using the first derivative test f is decreasing for
x < 0 and increasing for x > 0 and hence has a local

minimum at x = 0,

Here is the graph of x\—avx4.
YA r

X=X
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13. THE FUNDAMENTAL THEOREM OF CALCULUS

(NOTE: This programme builds upon the work on areas in SECTION 10:

2 -—»%: AN AREA FOR REVISION).

PROGRAMME SUMMARY

This programme demonstrates the links between the notions of
differentiation and integration in the form of the Fundamental
Theorem of Caleculus, which states that if F is any primitive for

the function f then

b
1 f(x) dx = £(b) - f(a).
a

4 mins We begin by examining Question 4 which students should

have attempted beforehand, and the concept of an area so far
function is explored for a given function f. The area so far
function, A, with starting point a is defined by

A{x) = area under the curve x> f(x) from a to x.

3 mins By definition A(b) c¢an be written as
b
J £f(x) dx
a

and this can be found by dividing the area between a and b into
rectangles., This gives a sequence of over- and under-estimates for
the area. [Note: We refer here to SECTION 10: xr47%: AN AREA FOR

REVISION]. More precisely we can define the area as

lim
0 L f(xi) Gxi
but how can we evaluate this?

Sometimes it can be found by algebraic manipulation but only in

particular cases. More generally, we need to look for another method.
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S mins The area so far function can be defined precisely using

the idea that
lim

Area =_i+0 X‘E(xi)_éxi,.

This allows us to show that the area under f between x = a and x = b 1is

A(b) - A(a).

2 mins But surely A(x) depends on the starting value? - and indeed

it does. There is a whole family of area so far functions. But the
area between x = a and x = b is unaffected 5o in practice we only need

to find one area so far function.

5 mins We now investigate A(x) more closely, and by looking at the

slope of A(x) and the corresponding value of f(x) we show that
A'(x) = £(x).
Next, we explain how to use this observation to evaluate integrals. If

A is an area so far function for f then

b

J £f(x) dx = A(b) - A(a).

a

So in order to evaluate the integral we should look for an area so far

function.

4 mins This theory is applied to

w/2

cos x dx.
n/3

In fact we don't need to check that sin x ii an area so far function.

It is sufficient that sin x is a primitive for cos x = since all primitives

differ by a constant. So, in order to evaluate any integral of the form

b
J f(x) dx?

a
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it is enough to find any primitive F for f, in which case

|

f(x) dx = F(b) - F(a).

PRE-REQUISITES

Before working through this section students should be familiar with

the following:

(1)
(i1)

(iii)

(iv)

(v)

(vi)
(vii)
(viii)
(ix)
(x)

(xi)

differentiation

integration as the process of finding a primitive - (that is -

a function which differentiates to give the original function.)
the integral as a way of representing the area under a curve,
including the idea that areas beneath the x—-axis give a negative
contribution to the integral

finding the area under a curve as introduced in SECTION 10:
©}9 214N AREA OF REVISION,

manipulation of expressions of the form
e i,2
7 oak - &%
. n
1=1

subscript notation

finding'the areas of rectangles and triangles

reading information from a graph

the slope of a straight line..

the interpretation of the derivative as the tangent at a point
and the definition of the derivative from first principles.

both functional and Leibnitz notation (that is f'{x) and é% )
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PRE-PROGRAMME WORK

1

Students will benefit by working through SECTION 10 > T -2 AN AREA
FOR REVISION before starting this section.
1. (1) Differentiate each of the following functions.
3
(a) xy>x + 3
(b) x—>2x + 1
x3 2
(c) XE>o v X+ X - 1
4
(d) x+—2x + 3x + 274
(ii) Find primitives for each of the following functions
(a) £(x) = 2
(b) g(x) = 8x> + 3
(c) h(x) = 3x°
(@) e(x) = x> + 2x + 1
2. This question concerns the curve f: x vl -‘xz.
(1) Calculate each of the shaded under-estimates and over-

estimates for the area under the curve between % = Q and

x =1,
(a)
ot-xt P
o [ >
(b) b
% xrs1-% X / Ay 1-x*
7 X
04\ %\ 3|
(c)
% g A e A Rats
7
o s % )
(d) 7
Z f// xra\-xt
i

U A Y ey ey et M e
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In each case the true area is pinched between the under-estimate and
the over-estimate - but even with four rectangles-it cannot be
pinched very accurately.
(ii) Show that the under-estimate and over-estimate of the
area under f(x) = 1 - xz between x = 0 and x = 1 obtained
by dividing the area into n-rectangles are given by

i

o i\2
under-estimate = § — |1 - (_ .
i=t a

) 1 oy i\2
over-estimate = — + I —{1 - 1{*-
n ._, D n

i=1
n 9 : .
(iii)(a)Given that L i" =¢£n (a + 1) (2n + 1)
i=1
show that
the under-estimate i 2.3 1
53 2n &n

. . 1 1
the over—-estimate 1% 3 + — -

3 20 6n?
(b)What happens as n gets very large?
g .
— ; 21 Fix)
Rt =

In general, the area under the function f between x = a and x.= b
can be obtained by dividing the interval [a, b] into a number of sub-
intervals, n say. In each sub-interval we select a point - X, in the
first sub-interval, Xos in the second ... X in the ith, Then the
required area is approximated by the sum of rectangles given by

n

I f(x.) 6&x.
. i i
1=1

where Gxi is the length of the ith interval. The exact area is

denoted by
b
J f{x) dx
a

and we say

b .
J f(x) dx = lim
a

i+0

LI =

f(x.) 6x..
i i
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b

Thus J f(x) dx is the area under the function f between x = a and x = b

a

3. (L)

J % x dx is the shaded area in the diagram helow.
a

Ya

23 X

Write down an expression for this area by considering the areas of

two triangles.

(i1)

(iii)

*4. (1)
(ii)

Use a similar method to find J %-x dx in the diagram below.
a .

(Remember areas under the x-axis give a negative contribution

to the integral?)
14

y
N

= 7 /// //// 41;
b

:_’/{////ﬁhﬂ -

h
Let a = -1. Hence find J % dx.
-1

You should ebtain a function in terms of b. This

function is called an area so far function because its value

at a point is the area under the graph 'so far' That is

as far as the point in question. We can define an area

so far function A for any function f and any starting point
a as

A (x) = Area under the graph from a to x.

Plot the graph of g: xtf9x3 + 10 for x € [-5, 6].

Find the derived function of the function g: x|€>x3 + 10,
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Here is the graph of the derived function g'. Use the shaded
areas to complete the table below to give approximate values

of the area so far function A(x). Notice that areas'to the left

of x = 0 should be given a negative value.

x |-6 |=5]-4 [-3|-2}=1]O0]1|2(3]4([5]6

A(x)

(iv) Use the table to plot the graph of A(x) on the axes below.

14 ' .
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POST-PROGRAMME WORK

S. Evaluate (i) ' cos x dx

r'IT/2
(ii) cos 3x dx
‘0

—AZ 1115 =



(iii)

R

R ot et o L

P

©m mem = = &
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POSSIBLE EXTENSIONS

1.

2.

This section could clearly lead to further work on finding
integrals:

The programme demonstrates a very complicated concept which is
often difficult to appreciate. To many students the Fundamental
Theorem is just taken for granted. This programme could provcke

discussion on why this is so.

To this end students would probably benefit by going over the

main points of the programme again - more slowly,

The proof of the Fundamental Thecorem of Calculus is mot usually
required at A-level - but it could be tackled at this stage if
wanted,

b
The interpretation of J f as an area could be used to explore
a

rules such as

ra
ft=0
Ja

b ra

—-A2:117 -



SOLUTIONS
1. () (a) x93x°

(b) xr>2

(e) xl——)xz + 2x + 1

(d) x> 8x2 + 3.

(ii) (a) xr—22x + ¢ (where ¢ is some constant).
(b) xt——?Zxa +3x + ¢
(e) xHx3 +c

3

(d) xl—)% +x2+x+c,

Notice the connection between (i) (a) and (ii) (c);(i) (b) and (ii)(a);

(1) (¢) and ({i)(d); (i)(d) and (ii)(b).
2, (1) (a)Uhdeér+estimate = 0, Over-estimate = 1

nder—esti B R Y A YA IO
(b)Under—‘estlmate; =3 (1 (2) ) 3

3 2
esti 213 1, (2 (1 27
Over-estimate = {2 x 1} + {f x \1 (2) )ﬁ =3
(¢c)Under-estimate = % x %) + (% x %) = l.:;_
QOver-estimate = % X 1) + (% x % + (% x %) %
' -esti Y RV ] 12y f1 3N 17
(d)Under-estimate 7 16) + (4 % 76) x \z x %) "3
. (A N A |- 112\ 175
Over- com - - X = - X = o X e
eréstlmate 4x1}+\4x1 +(4x1}+4 )
(ii) 94
X\ -X
(o] \ x
For n rectangles the points of sub-division are at %, % ... 2 ; ! ,

n-1
n

giving the sub-intervals [0, %], [%, ;21-] eee [ , 1].

- A2:118 -
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Hence each rectangle has base ;11-

For the under-estimate we take the rectangles formed by the heights

of the graph at the right-hand end points of the sub-intervals

R T N )

Hence the under-estimate is

I
I
I e~12

S P
~

|
I
--'_/

~
S

The over—estimate is pgiven by the rectangles formed by the Weights
of the graph at the left-hand end points of the sub-intervals

2
1= 0%, 1 (1)2.... 1-(n 1)_
n/ ? n

Hence the under—-estimate is
(1 - 02) +l(1 - (1)2) + ... +1( 1_(11- 1)2)
n H n
n .
1 1 1\ 2
Y +.z "y (1 - (E) ).
i=1

(ii1) (a) Under-estimate = /;:1 LY ._i2
iii a \i&-l - i

TN

R
I
=1-¢{:—g{%n(n+1)(2n+1)}

n

1-Lashoedh,
6 n n
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(b)

(1)

(ii)

K] . 1 n 2
Over-estimate - 1 , z 1(1 - &) )
n . n n
1=1
1 2 1 1
ECRE R TP
= g + _‘_ _ 1
3 2n bat
1 P
(b) As n becomes large both b and Tt tend to zero,

so that the underestimate and the overestimate

get closer and closer to % -

Using the formula for the area of a triangle,

1b{b‘) _ la("a'\_ :

shaded area =’§-\§: 3 E) ‘ -
Iy
4 4 -

Shaded area to the right of the y-axis is

z2\2] %
Shaded area to the left of the y-axis is

()

but this area is below the x-axis, so its contribution to
the integral is negative.

Hence

- b
(111) J—]'i dx = % "5 (from Part ii)

. A
(1)
m--
mp
ﬂh
T 7 } |L + 1}
! 2 3 b S bx

3'.1!—-9134'[0

-1y
—-AZ2: 120~




(ii)

(iii)

(i)

(11)

(1ii)

g'(x) = 3x2.

Sin x is a primitiv
(/2

I

cos x dx sin

JTr/3
= 1 -
1

N oAyl
3 Nehice he Similarity
behwgen this curve
T and +he %mpho‘F
9L X3+ 1o
loo ¢+
&lb
Al \ 2 3§ 4 s X
—SD"
-toot
o} X -3 A(x)

e for cos x. Hence

Ll . m
T 51n -

2 3
3 _2-73
2 2

-3 s5in 3x is a primitive for cos x. Hence

m/2
I cos 3x dx
o
1 . . e
- % 1s a primitive

e dx
T X

t
1
1
0
F
=]

1 s (l;)—%sin (0)

2T 1 oL
2n i’
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14. TAYLOR POLYNOMIALS

PROGRAMME SUMMARY

This programme compares the graphs of the Taylor polynomials of a function
with the graph of the actual function. This demonstrates what we mean
by an approximation. It also indicates that scmetimes the approximation

only holds for a particular range of values of x,

2 mins Questions 3 and 4 which students should have tackled

beforehand can be solved using the Taylor polynomials for sin x.

6 mins But how can a function with a graph like

5‘\ - - . - . - . - -

- I~
g X

be approximated by a polynomial? Computer graphics allow us to
demonstrate the graphical effect of adding the terms
3 5 7

-X

_ X
T3 s
Hence we show that the polynomial of degree 7 fits the graph of

X >»sin x to within one decimal place over one complete cycle.

2 mins As the degree of the polynomial increases the graph becomes

a better approximation to that of sin x, and the region of accuracy to
one decimal place increases. For example, the polynomial of degree

17 gives one decimal place accuracy over two complete cycles.

1 min We return to the method of finding the Taylor polynomials of
sin x.
By assuming
sin x s a, +ax +a xz + a x3 + ...
0 1 2 3
and repeatedly differentiating both sides we obtain
3 5
. X X
SLnx=x-§T+_5!_+'“ .

- RA21122 -
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6 mins For the general function f, a similar process gives

2 3

f(x) = £(0) + £'(0)x + £"(0) %T + £"0) %T + ...

This can be viewed as a recipe for f(x), with the ingredients 1, x,
2 3

®x x . . ..
3170 3T and so on to be taken 1In various quantities.

Computer graphics illustrate what happens as the quantities of the

ingredients are varied. In particular we consider

x2 x3 4
O T A YU RS
2 mins In fact this is a Taylor polynomial for
sin x + cos x (among others),
4 mins For some functions the Taylor polynomials behave exactly

as we would like and get closer and closer to the actual functien.

But this is not always the case. For example the graphs of the

] l - only get close to the graph of

for x lying in [0, 1].

Taylor polynomials of

=

1 +x

PRE-REQUISITES

Before working through this section of work students should be

familiar with the following:

(1) differentiation of polynomials, sin x, cos x and expressions
1
such as T+ =
(ii) the general form of a polynomial, and the degree of a polynomial

(iii) the graph.of x —>rsin x

(iv) the relationship between the degree of a polynomial (odd or even)
and the behaviour for large x of the corresponding graph. In
particular students should recognise the shapes of graphs of
functions such as x &k, xrskx, x hvkxz, x\—ikx3, for various
values of k.

(v) the method of Integration by Parts

(vi) use of a scientific calculator

(vii) both functional and Leibnitz notation (that is f'(x) and é%).
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PRE-PROGRAMME WORK

1.

*2,

*3,

4,

Write down the degree of each of the following polynomials
G %%+ 3

(11) - 1 + x4 - x3 + 2x2

.o 4

(iii) 3 + x5 - 2x + t7x

(1v) X - x2 + x3 - x4 + x5 - x6 + x7.

The fourth Taylor polynomial for sin x about 0 is given by

P(x) =a, + a,x + a x2 + a x3 + a xa.
0 1 2 3 4

(i) Find (a) P'(x) (8 P"(x) () P () (@ PV (x)
This Taylor polynomial of degree four is such that its
derivatives at 0 .up to and including -the fourth -

derivative are the same as the derivatives of sin x

at x = 0.
(ii) Find > )

d . d . d .

(a) — (sin x) (b) — (sin x) (¢) ——3-(51n %)
dx dx dx

. 4

(d) jLZ (sin x).
dx

(1ii) Use Parts (i) and (ii) to write down the fourth Taylor

polynomial for sin x about x = 0.

The nth Taylor polynomial for £(x) about O is the polynomial with
the same derivatives at 0 as f 'up to and including the nth derivative

(provided of course that f can be differentiated repeatedy). This

can be written as

P(x) =a.  +ax+a x>+ ax +a P T
0 1 2 3 4 n
(1) P(x) is such that P(x)} = f(x) at x = 0, Use this to write
down the coefficient aq in terms of £(0).
(ii) Also P'(x) = £'(x) at x = 0. Differentiate P'(x) and hence

obtain the coefficient a, in terms of £'(0).

(iii) Continue this process to find-
(a) a

(b) a, () a, (d) a

2 3 4 n’
(iv) Hence write down the nth Taylor polynomial for f£(x) about
x = 0,
(i) Write down the fifth Taylor polynomial for sin x about x = 0.
(ii) Write down the seventh Taylor polynomial for sin x about x = 0,

-fL24 -
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*5. (i) Complete the table below to give the values of the Taylor

polynomials for sin x of degree 1, 3 and 5 about x = 0 when

(@) x=g% (b) x = 0.5
x
3
. _ X
*T 3T
x3 x5
*T3r v ey
(ii) Check your results by using a2 calculator to find sin %
and sin 0.5. [Note — These angles are measured in
radians!].
6. (i) Would you say that the integral
L sin x
J Tx ¥
0.5
can be evaluated using Integration by Parts?
(ii) By replacing sin x with the Taylor polynomial of degree 3

about x = 0 find an approximate value of
! sin x
[ sy,
0.5

*7, Suppose f: xi—?—1—- .

1 + x
a1 a? PR
(1) Find (a) ax (-1+_x) (b) — (1 + x) (c) —3 (1 - x)'
dx dx

(ii) Sketch the graph of f(x)
(ii1) Use the Result of Question 3 to write down the 3rd Taylor

polynomial for xr® about x = 0.

1 + x

(iv) Find the nth Taylor polynomial for xi? about x = 0.

1 + x

POST-PROGRAMME WORK

8. Find the 6th Taylor Polynomial for cos x about x = 0.

9. Find the 8th Taylor polynomial of the function
Xr»sin X + cos x

about x = 0,

- A2:125 -



10.

it.

(i)

(1)

(ii)

Find the kth Taylor polynomial for x #¥>(1 + x)r about
x = 0.

Find the kth Taylor polynomial for xt—‘rll—x about

x = 0,

Use the identity

1 1
'i—x"-_1+x+1—x

to find the 10th Taylor polynomial for XH“‘T

about x = 0,

-fA2:126 -
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POSSIBLE EXTENSIONS

1.

In this section we have restricted ourselves to the discussion of
Taylor polynomials. Taylor Series are very similar but carry on

indefinitely.

We have been concerned only with Taylor polynomials about x = O,
The work could be extended to Taylor polynomial about any value of

X.

Questions 7 and 10 touch on the question of adding Taylor polynomials.
Similarly, Taylor polynomials (and Taylor Series) may be differentiated
and integrated, or other values of x may be substituted. For example,
the Taylor Series for cos 3x may be obtained by substituting x = 38

in the Taylor Series for cos x.

In SECTION 15: WHY e? we investigate the Taylor Series for ¢© and

Zoge(l +x).
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SQLUTIONS

1. A polynomial of the form

2y

2 n
+ax+ax + ... t+tax
1 2 n

has degree n. That is, the degree of the polynomial is the

highest power of x.

(i)
(ii)
(iii)
(iv)

2. (1

(ii)

(iii)

Degree

Degree

2
4
Degree = &4
7

Degree

2 3
a; + 2a2x + 3a3x + 4a4x

2a, + () (Dagx + (1) (Dayx

(a) p'(x)
(b) P"(x)

(c)np;héx) =_7633“+‘(zr)'(i’o-)(2-);3.1‘!}1{

2

(d) p'Y(x) = 24a

4
d .
(a) E—(51n x) = cos x)
X
d2 d
(b) ~“7(sin x) = —(cos x) = -sin x
dx
dx
3 d
(¢} —=(sin x) = -——(~sin x) = -cos X
d 3 dx
X
d4 d
(d) ——z(sin x) = E—(-cos x) = sin X.
dx X

The coefficients ags 21 3y, ag and a, can be found
as follows:
When x = 0, p(0) = ay = sin 0.

Hence ag = 0.

When x = 0, p'(0) = sin'(0).
From above, p'(0) = a,

and sin'(0) = cos 0 = 1.
Hence a, = 1.

When x = 0, p"(0) = sin"(0).

From above, p"(0) = 2a, and sin"(0) = -sin 0 = 0.

2
Hence a, = 0.
When x = 0, P""(0) = sin "'(0).
From above p"'(0) = 6a3 and sin"'(Q) = -cos x = -1,
S SR
Hence a3 = r3 31"

When x =0, P(0) = sin Y(0).
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From above p W(0) = 24 a, and sin'V{0) = sin 0 = 0.
Hence a, =90 x3
So P(xX) = x - 3T
3. (1) P(0) = £(0) = ag
Hence a, = £(0).
(ii) P'(x) =a, + 2a,x + + na x -1
: 1 2 n
p'(0) = a; = £'(0).
Hence a; = £'(0).
(ii1) (@) P"(0) = 2a, + (3)(Dagx + ... + n(n-Da_x"
P"(0) = 232 = £"(0).
_ fl!(o)
Hence a2 = 5

() P (x) = (3)(Day + (WD) (Dagx + ... + n(n-l)(n-Z)anxn;3
P"(0) = (3)(2)a, = 3lay = £"'(0)

Hence a = w
3 3

@ P = (W) (Da, + (A () (Dagx + ...

+ n(n—l)(n-—Z)(11-3)&141»111_4

2(0) = (4)(3)(Da, = 41a, = £ "(0)

4
Hence a, = £ IV(O)
4 4
(d) P™MO) = n(n-1)(n~-2) .... (3)(2)(1)an
= nla = €8 '
n.ann £ (0).
I _ £(0)
ence a_ = ———-.
n n!
n m n
(iv) PG = £(0) + £ (0x + 502 £2(0, 3 £0)n
21! 3! n!
4. (1) From Question. 3 the fifth Taylor polynomial is
" A ) v
f(x) = £(0) + £'(0)x + £ 2§O)x2 + 1 3!(0)33 + f;Y(O)x4 + f5§0)x5.

Question 2 tells us that £(0)
£7'(0) = ~1, £'Y(0) = 0.

4
dx

Hence fY(0)

0, £'(0) = 1,£"(0) = 0,

£V(x) = —(sin x) = cos x.

=ecos 0 =1 and
x3 x5

P(x)=x-ﬁ+§.

(ii) Extending the proaess,f(6)(0) = 0 and f(7)

(0) = -1.

Hence the seventh ﬁolynomial is

x3 5 7
*-37 3T

w
|b<

.
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(ii)

(1)

(ii)

(1)

(ii)

(a) x = % (b) x =0.5
0.5235988 0.5
0.4996742 0.4791667
5
’5‘—, 0.5000021 0.4794271
sin %-= 0.5. The Taylor polynomial of degree 5 gives this

to five decimal places.
sin 0.5 = 0.4794255. Again, the Taylor polyncmial of

degree 5 is accurate to five decimal places.

Trying to integrate by parts we get either

1 . 1 7l
J sin x, _ [1°ge x sin x] - J log, x cos x dx.
0.5 ¥ 0.5 0.5
1 sin x - ¢Oos x11 ! cos X
or J ——;——dx = [_m,;;,__ f'l ‘“;;Ide
0.5 ‘0.5 “70.5

In both cases the resulting integral is more complicated

than the original, which does not help!

3
Putting sin x = x - %T’
1. SN
J s51n xix___ X X * dx
0.5 * Jo.s %
1 ( x2
= 1 - ——)dx
0.5 6
[ x3]1
=X - — 0.45.
18Jo.5
df 1 \_ d -1 -2 1
(a) —~( =—1 +x) =-(1+x) "= - ————,
dx\1 + x/ dx (1 + x)2
2
dc f 1 Y _ d -2 -3 2
(b) 2 S -+ =20+ 2 .
dx2 L+x) dx (1 + x)3

=31

dea+o™ - @v@oar0™-

i(1\= -1
dx\1l + x/ 1+ x2

This is never equal to zero so £(x) has no local extrema.

-
x)
L
In
ww
P
—
N
o
b
i

For positive large values of x, f(x) tends to zero and is
positive; for negative large values of x, f(x) tends to

zero and is negative.

—_Hz-.lao—

(1 + x) .

R e D )

R A b Y <



For x just greater than -1, f{(x) is very large and
positive; for x just less than -1, f(x) is very large
and negative. At x = -1, f(x) is undefined. This

gives the sketch below.

1\ Y4
|
'&

|
"'l{ x
|
[
X A
'f 14X
(iii) From Part (1) £(0) =1
£7(0) = -1
£"(0) = 2
_ £ (0) = -3¢
Hence the Taylor polynomial of degree 3 is
x2 x>
£(0) +£f'(0)x + f“(O)ET + f”'(O)ET
= l -x + x2 - x3.
(iv) Extending the process, the nth Taylor polynomial is
1= x + x2 - x3 + xt - x5'+ e+ DT

[Note: This approximation only holds for |x| < 1].

The 6th Taylor polynomial for cos x is
2 4 6

21 41 61

The Taylor polynomials for sin x + cos x can either be obtained
from first principles as set out .in Question 3, or they may be
found by adding together the separate Taylor polynomials for
sin x and cos x. Hence, the 8th Taylor polynomial is

2 3 4 5 6 7 8

X _ X
L U T

. The kth Taylor polynomial for (1 + x) is

1 + rx +

r(r-1) 2 . r(r-1)(r-2) 3 . r{r-1)...{(r~k+l) k
71 K 3! X ‘e K X .

[Note: This only holds for |x| < 1].
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11.

(1)

(ii)

The kth Taylor polynomial for
k

2
1l +x+x + ... +Xx.

1_

[Note: This only holds for {x| < 1].

The Taylor polynomials for 1 7 can be found by
1 -x
adding together the polynomials for 1 and 1

1 + x 1 -x°

Hence the 10th Taylor polynomial is given by adding

1 =1 +x + x2 + ... + xlO
1 -x
and
1 _ 2 3 10
T+ % - 1l - x+x" -x" + ... +x .,
to give —__l_f =2 + 2x2 + 2x4 + 2x6 + 2x8 + leo.
1 - x o

[Note: Again, this only holds for |x| < 1].
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15, WHY e?

(Note: This television programme makes explicit reference to
SECTION 10: X V>1/X: AN AREA FOR REVISION. It also uses
the method of constructing the derived function which was
introduced in SECTION 11: THE DERIVED FUNCTION.

PROGRAMME SUMMARY

What's so special about the number e? By examining the functions a®
and 1oga x together with their derived functions we show the origins

. c  aps . X
of e. This also demonstrates the significance of the functions e
d

X, _ X d _1
dx(e } = e” and dx(loge x) =

and 1oge, as we show that

2 mins In . the television programme frow SECTION 10: X +3>1/X:

AN AREA FOR REVISION we showed that

*1
J —dx = log 2.
1 ¥ e

But what does e mean? — and where does it come from?

2 mins l The Fundamental Theorem of Calculus (SECTION 13).

suggests that in order to find

1.5
[
1
we need to find a primitive F(x) such that F'(x) = i3 in which case
1.5
J Lix = F(L.5) - FQU).
X
1
But is 1oge X a primitive for %?
2 mins We look at the characteristics of the graphs of 2x, 3%

and a”* - and their inverses log2 X, 10g3 X and loga X,

2 mins | Now, if f(x) = a*, then f'(x) = axka (See Question 3 in

the Pre-programme work), and the graph of the derived function, f', is

similar to the graph of f. The exact shape of f' depends on the

value of a.
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(See

1
X.A

3 mins Similarly, if f(x) = 1oga x, then f'(x) =
a

Question 4 in the Pre-programme work), and the graph of the derived

function, f', is similar to the graph of x+>»1/x. Again, the exact

shape of f' depends upon the value of x.

3 mins We look for the value of a such that A j is one and such

that the derived function of a™ is exactly the same —a”™ and the
derived function of log, x is exactly 1/x.

This value of a is called e.

. . P e 1 .
2 mins Thus 1oge X is a primitive for ;-and_so the

Fundamental Theorem of Calculus tells us that
by
tdx = -
Ja s 1oge b loge a.

Furthermore, if a = 1, then

b 1 |—1.5 1
J —dx = log b and so —dx = log 1.5.
L X e Jl x e

S5 mins | But how do we f£ind loge 1.57 We could leook it up in

tables, or work it out by approximating the area with rectangles

(as in Section 10). Alternatively, we could use Tayler polynomials.
Unfortunately there are problems with the Taylor series for
1oge x as 1oge 0 is not defined. However we can translate the

function along by one to get

x2 3 4 x5 a+l xP
loge(1+x) =x -5+ %— - %e~+ T et (-1) %r + ...
and this holds for lx|<1.
1.5 1
2 mins This allows us to find [ ;dx as accurately as we please.
1

PRE-REQUISITES

Before working through this section students should be familiar with
the following:
(1) the definition of the derivative from first principles

(ii) the chain rule
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(1ii)

(iv)
(v)

(vi)

(vii)

construction of the derived function by looking at the tangent

at each point {as introduced in SECTION 11: THE DERIVED

FUNCTION

graphs of the form 2x, 1032 x, 1/x
the result

2
[ ldx = log 2
Jl X e

as derived in SECTION 10: Xi=»1/X: AN AREA FOR REVISION

See Note below

algebraic manipulation of logs and indices

the Fundamental Theorem of Calculus (as introduced in

SECTION 13)

(Note. This section provides an introduction to the derivatives
of e® and Zoge x. Famliarity with these functions is not
required. It is sufficient that students know that there is

a number e, and that its value is about 2.7. SECTION 10:
Xym>1/X: AN AREA FOR REVISION provides an adequate background.)
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PRE-PROGRAMME WORK

Students will benefit by working through SECTION 10: Xt»1/X: AN
AREA FOR REVISION before starting this section.

1. The derivative of a function f at X is defined as

Suppose f(x) = 2".

(1)

(ii)

(iii)

2. (1)

g L(X*8) = £(X)

£'(X) = 1i 3

§->0

X
Show that

S
£'(x) = 2% 1im (Z_“%_l)
§-+0
(a) Use your calculator to find the value of (——3——~}
8§ = 0.1, 0.01, 0.001, 0.0001, -0.1, -0.001, -0.0001.
(2% - 1)
(b) Hence write down lim to two decimal places.
g0\ 8/

Hence find approximate values for (a) £'(2), (b) £'(3).

Use a similar argument to show that if f(x) = 3% then

£'(X) = 3%
where A 1s some number, and calculate the value of X

to two decimal places.

3. The calculation of the derivative of a™ {for an ositive a)
Yy P

will be much the same, Show that if f(x) = ax, then

£'(X) = aXA
a

for some number Aa and find an expressions for A,.

4, xbi)loga x is the inverse function of xp3a’.

(1)

(ii)

Draw a rough sketch of the graphs of a® and loga x for

various values of a.

One way of saying that ka}loga x is the inverse of a*
is to say '
loga X
a = X.
loga X
(a) Put u = loga x and let y = a . Use the
Chain Rule and the result of Question 3 to find
du . dy
I B terms of Ix"
Ioga X

(b) Now use the fact that y = a = x ‘to show that

du d / \ . 1
a— mloga X} = an .

-A2:13b-

2'5 - 1\ for

e

[

e R s T



(¢) Use the results of Questions 1 and 2 to find

(a) é%(logz x} and (b) é%{logB x).

WORK TO BE TACKLED DURING OR AFTER THE PROGRAMME

5. Suppose f(x) = log, (1+x)

(1) Find
(a) £'(x), (b) £"(x) (c) £""(x) (@) £'V(x).
(ii) Hence write down the first four terms in the Tayler

Series for 1oge (1+x).
(iii) Guess the nth term in the series.
(iv) .Use the Taylor Series to find log, 1.5 correct to three

decimal places.

POST-PROGRAMME WORK

6. (i) Show that for any a > 0
(loge a)x
a =e .
(ii) Use this result to find the derivative of xkdbax and so

interpret the constant ), in the expression

d x _ x .
prc il A, a. (See Question 3)
7. (1) Calculate the values of £'(0), £"(0), £"'(0) and £'V(0) for
£(x) = e*.
(1i) Hence write down the first five terms in the Taylor

Series of e* about x = 0.
(iii) Guess the nth term. Check your answer by differentiating.
(iv) Obtain a series for e by putting x = 1.
(v) Use the first B8 terms in your series to calculate the

value of e correct to four decimal places.

8. (For those who have met Complex Numbers).
(1) Substitute i8 for x in the Taylor Series for e®
(i) Separate your series into real and imaginary parts.
Do you recognize the two series?

(iii) What happens when 6 = w,
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POSSIBLE EXTENSTONS

1. This section introduces the derivatives of e* and loge X and
does of course lead to further exercises involving differentiation
and integration techniques on function involving these functions.
2. The graphs of functions involving e* and 1oge X could be explored

using graph sketching techniques.
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SOLUTIONS
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L () £ = 1in 23280 - T
§-+0
] 2X+6 _ 2X
= lim 3
&0
. 2X26 ZX
= lim 3
§+0
& ra G
= lim 2x(2 = 1) - 2% yin (2 = 1)
50 / &0 N
{(ii) (a) 8 0.1 {0.01 |0,001]| 0.0001 | -0.1 |-0.001 | -0.001
2% - 1)
( 3 / 0.7210.70 | 0,69 0.69 0.67] 0.69 0.69
(2° - 1)
(b) Hence 1lim = 0.69 (to two decimal places).
\ &
§+0
(ii1)  (a) £'(2) =~ (22)(0.69) ~ 2.76
() £'(3) =~ (27)(0.69) =~ 5.52.
2. A similar argument to Question 1 Part (i) gives
6 .
£1(x) = 3% 1im (3 - 1).
&0
§
Hence A = 1im (3 6_ 1).
&0
8 0.1 |10.01 |]0.001 | -0.1 [|-0.01]| -0.001i{-0.0001
35
6 1.16/ 1.10{1.10 1.04 1.09 1.10 1.10
§
This table suggests that lim (3 6- 1) =1,10.
§0
Hence X = 1.10 (to two decimal places).
3. £1(x) = 1in L0 - £OO
§+0
X+ X
. a - a
= lim ;
&0
()
= aX lim (a 6_ 1).
&0
§
Hence X = lim (a 6- 1).
2 50




4, (1) The graph of loga x can be obtained by reflecting the

graph of a® in the line x+>x.

|°321-
\ojfn

log x
(ii) (a) y=a ¢

Let u = ].«:rga X. We want to
u
Now, vy = a and

dy _ dadu

. du
find d—x'.

Tx - du ox (using the Chain Rule)
= a') du (from Question 3)
a dx -
du_ 1 gy
addx-u dx
a i
a
log =x
(b) Since y = a a < X, dy 1.
dx
du _ 1
Hence — =
dx u
a i
a
. d 1
That is E;(loga x) = —
a i
4 log x a
But a = a a = X.
d 1
So E;(loga X} = o
a
d 1
(iii) (a) a;(logz X) = EX;
From Question 1, Az = 0.69.
d 1
Hence dx(1og2 x) > 5769%"
(b) From Question 2, A3 ~ 1,10,
d 1 1
Hence dx(log3 X) = o = T 1o

3
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(i) (a) £'(x) = é%(loge (1+x)) = T 1 =
- -2 -1
b) £ 51(_1_\=1(1 1y el - .
(b) £"(x) = 5- 1+x/ dx (1+x) ) (1+x (1+x)2
d -2 -3 2
(c) £'""(x) = —=(-(1+x) 7) = 2Q1+x) ~ = -
dx (1+x)3
d -3 -4 6
(d) £'v(x) = -(2(1+x) ") = -6(1+x) " = - .
ax (1)

(ii) The Taylor Series for f(x) is

2 3
£(x) = £(0) + £'(0)x + £"(0)37 + f"'(o)%T

£ 0)x™

+ ... t
n!

+ .,

From Part (i) f(0) = log_ 1 = 0

e
£7(0) =1
f"(0) = -1
£"'7°(0) = 2
£'V(0) = -6.

Hence the first four terms of the taylor series for
loge (1+x) are
: 2 3 4
log, (1+x) = x - %r'+ %r-- %r
(Note This only holds for [x| < 1.

n
(1ii) The nth term is (-1)n+1 %r. This can be checked by

differentiating.

2 3 4
(0.5) {0.5) (0.5)
2 Y~ 3 "~ 4 %t

Taking the first eleven terms

(iv) log, (1.5) = 0.5 -

log,, (1.5) = 0.405 - (to three decimal places).
(i) Since log, (a*) = (1oge-a)x
X
(loge a)x 1oge(a ) .
e =e =a",
(ii) jL(ax) = A a" from Question 3
dx a )
(log  a)xy (log al)x
d, x, _d f e P _ . e
Also a;(a } = E;\g ) (loge a)e
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(1)

(ii)

(iv)
(v)

(i)

(ii)

- X
= (loge a) a
Hence A a™ = (log -a)a®
a e

and Aa = 1oge a,

If £(x) = e*, then £'(x) = e*, £"(x) = e,
£"'(x) = e* and so on.
When x = 0, e = e0 = 1.

The Taylor series for f£(x) is
2 _ 3
E(x) = £(0) + £'(0)x + £'(O)57 + £7(OIF7 + ...

Hence the Taylor Series for e® is

2 3 4 5
¥ =1+ x +-§T + %T + %T +-§T o

—-.n... . - - e -

T, X
The nth term 1is =~

d" /x™\ _ n(n-1) (a-2)....
n!

Differentiating n times, : 1
n ny dx .
- d” fx") _
SO, whenx—O,E\n!} 1.
4"
Also ——E(ex) = e*, and when x = 0, e* = 1.
dx '
n n, n
d x dx \ .
So —(e™) = —{ =5 | when x = 0, as required.
dxn dxn ' } , ¢
e1 =1 + 1 +-%T +-%? +‘%T +'%T +
e =~ 2,7183
. e a2 iy 3 can b . ...b
is _ . (is) (is) (in) (ie) (i9)
e =lr b+ oyt ar— gyt 5 toer o *
_1+.B_gz__ia3+9"+ies_e6_ie7+
B T2 T 3T T aT T ST T et T
R M N WY GRS S W L
\" T 2T T Al Yoot ) T\ 3 T sy T 7 o
= ¢cos 8 +1 sin 8.
When 6 = 1
e'™ = cosn+ i sinw=-1+0.
That is e = -1.

This is a nice result as it combines the numbers e,
and 1 in one simple looking elegant result. What does

it mean?
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APPENDIX 3

Television in the teaching of Sixth ferm Mathematics

: ‘gg'estionnaire

PRART T
i, Name 6. (a) Would you consider using any of the
materials in the future?
2, ‘
School Yes D
3. A=level Syllabus
used in your course : No [

4. Have you used any of the Open University {b) 1f yes, vhich sections?

materials?

Yes D Please turn to Question 7

= " e e e oty e
5+ I youbewe oot wed sy of e swcecins N PR P

Inappropriate to A~level syllabus D 7. D 9. D 10. D 1. D 12, D
Insufficient time D i3, D 14, D 15. D

D 8. Which sections do you plan to use but have

Difficult to organize .
8 not yet had an opportunity to do go?

Unsuitable in other ways.

(Please specify) : 1. Cj 2'.D 3. D 4. D 6. D
7.0 9. [Jre. [ 1. Q2. [

13w . []

Continued at the top of next column

9.7: l;leue indicate yqut'géﬁeﬁﬂ coument 8 sbout the suitghility of the materials

The next part of this questionnaire comprises gix identical sets.of questions. Etdwm;i: I:: E:t
helpful if you could complete one set of quesuonn.for eack_l gection you.have wor i :n hn he
classroom. As I indicated, in wy earlier letter I'am particularly seeking commen 511 Sections e
1 to 4, but 1 realize that these way not be relevant at the m:.ment and of course, aq__i T

will be used to improve the materials. (If you have worked with more than six §ect1?nﬂ;e ¢ tions
would like to forvard more comments please let me know and I can send extra coples o q

as required).
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AT I Section Number Title

" .4, How relevant was this work to your A=
level syllabus?
7. The TV ProgTamme

Directly relevant, used as a .
teaching resource (a) Did the TV gummary provide a reason-
able idea of what was involived in

the programme?

Yes[ | No[_]

(b) 1If no, how could it be improved?

Not directly relevant, but
supportive

Rot really relevant, but
interesting

Ud oo

Completely irrelevant,

2, At which level (or levels) do you
feel this work to be most useful?

{c) How much of the programme did the
students watch?

All of it [ |
Over half of it D }

3. 1f possible, please indicate how long Less than half of it E:]
you spent preparing for the teaching
sessions which specifically involved
this section of work?

Pre—A-level

First year of A level Course

oo

Second year of A level Course

Please give

a2 rough indi-
cation of
which parts

{d) How did the students watch the TV programme?

4. How long did the students spend working In one viewing [::]
on this section? .

In several viewings but on the same [ |
same occasion

5. How did the students react to the work? Several viewings on separate
. ocassions [::]
They enjoyed it D Please tick as ]
many as appro- §, The Pre-Requisites
It helped with their priate.
understanding of the {a) Were the prerequisites realistic?

mathematical concepts

Yes [::] No [::]

It made a change

(b) If not, please indicate in which
ways they were unsatisfactory

It was useful

It was too hard

It was too easy

Dooon o

It was boring
9, The Pre Programme Work

Other (Please specify)

(a) Did the students work through any of
of these exercises? 1f so, please
indicate which ones

6. i : - - ..
{a) Would you use these marerials again? (b) Did you provide any additional

Yes [ ] WMo [ material? If so please give a rough
indication of what this covered?
(b) If no, please pive the reason T )
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{c)

After having used the materials can
you identify any areas vhere more/less
pre programme work is needed? If so
please indicate which topics require
more Attention

{(b) Did you provide any additional

{c)

material? 1f ao please give a rough
indication of what this covered

Can you now identify any areas where
more/less post programme work is

needed? If so please indicate which
{d) In retrospect, how do vou feel the topics Tequire more attention
pre programme work relates to the
TV programme?
It is essential = -
It aids understanding but
is not essential D
It could be omitted [::] (d) In retrospect how do you feel the
- post programme work relates to the
Other (Please specify) < TV programme?
It is essential [::]
]
- £ It aids understanding but is
not essential
10. The Post Programme Work It could be omitted 1
(a) Did the students work through any of Other (Please specify) 3
the post programme exercises. If so
which ones?
Possible extensions
Can you identify any omissions here?
1f so please specify
Continued at the top of next colump
12, Did you spot any errors? If so please indicate below
13, 1f you have any other general comments please indicate these below. (These could include

suggested additions or deletions to the materials, a change in format, additional diagrams
and so on.)
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