This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A computer-aided learning package for engineering students: BTEC mathematics at First and National level

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER
Loughborough University of Technology

LICENCE

CC BY-NC 4.0

REPOSITORY RECORD

Ford, Robert E.. 2021. "A Computer-aided Learning Package for Engineering Students: BTEC Mathematics at First and National Level". Loughborough University. https://doi.org/10.26174/thesis.lboro.14618997.v1.

A COMPUTER-AIDED LEARNING PACKAGE

 FORENGINEERING STUDENTS. B/TEC MATHEMATICS AT FIRST AND NATIONAL LEVEL. by

ROBERT ERNEST FORD.

A Master's by Course Dissertation submitted in partial fulfilment of the requirements for the award of the degree of MSc in Computer Education of Loughborough University of Technology, January 1988.

Supervisor: H.E.BEZ, B Sc, M Sc, D Phil(Oxon)
(C) by ROBERT ERNEST FORD 1988.

ACKNOWLEDGEMENTS

I would like to thank the Principal of Stamford College and the Lincolnshire Education Authority for the support I have received in producing this Computer-Aided Learning package. Particularly for the unlimited use of computer equipment which included the following:
(i) RM NIMBUS computer and colour monitor.
(ii)Epson dot-matrix printers LX-80 and LQ-800
(iii) Software for word-processing "WRITE" by Oxford CC Software for screen dumping. "PRNDUMP" by ILEA

Software for program writing. "RMBASIC" by
Research Machines Ltd Oxford
I would also like to express my thanks to the students
of the B/TEC National Certificate in Engineering Course who took part in the evaluation of the CAL package by answering the questionnaire and making constructive comments.

DECLARATION

I declare that this Computer-Aided Learning package is entirely my own work and is not a copy or a modification of any existing software.

R.E.Ford January 1988.

Abstract

This Computer-Aided Learning package for Mathematics has been written for the use of both teachers and students primarily in further education,although it can equally be used in the secondary education sector. The options I have chosen are topics taken from the mathematics objectives produced by the Business and Technician Education Council, B/TEC, who are responsible for validating many of the courses of a vocational nature offered in colleges of further education.These particular topics are taken from a bank of objectives considered to be relevant to students of engineering.

The educational theory that I have based my work on is that of Skinner and Crowder who pioneered the use of linear and branch programming for the purposes of improving the learning of people of all ages. I have attempted to create an environment in which the student is stimulated to interact with a computer in order to increase his/her awareness of a topic of mathematics. Also through this interaction the student will become computer literate and will lose any apprehension he may have in working with computers.

The computer is now being used in so many situations

 that soon the vast majority of people will need to be able to interact with them without any fear. Particularly in the various engineering fields, where computers are being used for design,research and development, and for the control of manufacturing processes the engineering student must become aware of their uses.The Computer-Aided Learning package is being used more and more by the manufacturers of many production and processing systems, to teach the technicians and the operators of the future how to run the systems and also how to diagnose faults
when they arise. By using this package it is my intention that the technicians of the future will become familiar with CAL packages for what ever purpose they are written for.

This CAL package has been produced as an open ended
exercise as I intend to continue to add to it as the need arises. The program has been written using RMBASIC incorporating procedures. It will be possible to write a procedure for each additional topic and simply add it on to the end of the existing program.

CONTENTS

Acknowledgements and declaration. page (ii)

ABSTRACT. page (iii)
SECTION ONE - The Aims of the program in their educational
context. \quad page 1
SECTION TWO - How the aims are achieved by the program. page 7

SECTION THREE - Review of similar software produced by a commercial company. page 10

SECTION FOUR - How the program fits into the educational context. page 15

SECTION FIVE - Documentation. page 22

SECTION SIX - Program listing. page 33

BIBLIOGRAPHY
page 84

APPENDIX - Screen dumps of diagrams and graphs.
page 85

SECTION ONE

The Aims of the program in their educational context.

The Business and Technician Education Council, B/TEC, have developed courses for students who wish to obtain vocationally orientated qualifications. The philosophy of $B / T E C$ is to create varied learning situations such as formal classroom teaching, self motivated learning, work experience and so on. We in the Further Education service are being asked to direct our minds to the question of competency based learning. In the consultative document on competency based learning produced by the Further Education Unit in 1984 they made the point that the subjects of science and mathematics, which occupy a central place in the engineering curriculum, are important, but that they are tools of engineering rather than the essence. The measure of a good engineer is that he/she is competent in their performance of various tasks be they motor skills or mental/intellectual skills.

Many of the recent reports are showing that changes are needed in the engineering curricula to keep pace with the changes in the new technologies, which include the uses and applications of microprocessors and computers. It is generally accepted that the quality of education and training of engineers is a key factor upon which national prosperity depends. The Finniston report of 1980 ,"Engineering our Future" was a catalyst for proposals by the Engineering Council for the future accreditation of engineering courses. And recently the National Council for Vocational Qualifications has been formed to ensure that vocational qualifications not only have a
realistic theoretical content but also that the students receive realistic training in a work placement.

It is essential, because of the changes in technology, to continually consider the curriculum content and the way it is presented to the students. A quote from the report of the Futher Eduction Unit,FEU, states that "the availability of computing facilities from the pocket calculator level upwards has profoundly influenced the futher requirements of engineers for mathematical skills. I see these CAL programs that I have written as one of the means by which my students can learn and reinforce the topics of mathematics that are covered in the formal teaching situation, and will help them to not only improve their mathematical ability but also to become familiar with the use of computers.

The B/TEC courses that are offered in colleges today are not only for the school leaver, but are also for the older person who through the support of the Manpower Services Commission and employers are retraining for different occupations. The older person generally is more apprehensive than the younger person when it comes to using the new technologies. Also some B/TEC students are studying with the Open college and therefore are not able to obtain formal teaching, and must rely on other forms of learning such as the CAL package.

The new courses recently introduced by B/TEC contain a core curriculum which contain the following areas of study.
(i) Communications
(ii) Mathematics
(iii) Engineering science
(iv) Engineering systems
(v) Information Technology and computing
(vi) Engineering materials
(vii) Tools, processes and equipment
(viii)Industry, environment and society.

The intention is that all these various strands of engineering knowledge will be taught for part of the time as integrated studies,thereby making the student aware of the close relationship that exists between the various topics.This software is a means of combining the knowledge of computing and mathematics. It has been written for use by students studying mathematics for B/TEC Certificates and Diplomas in Mechanical, Production and Electronic Engineering. Students without appropriate G.C.E/G.C.S.E passes will embark on a course of study called the First Certificate,if they are studying part-time,and First Diploma if they are studying full-time. Students with the appropriate G.C.E/G.C.S.E passes will study for the National Certificate if they are part-time students, and the National Diploma if they are full-time students.

Mathematics is an essential subject in both First and National programmes of study. Level I work is comparable with G.C.S.E level whilst level II is comparable with Additional mathematics. At level III there are two units of mathematics comparable with Advanced level mathematics. For students who wish to continue their studies at either a University or a Polytechnic there is a double unit of mathematics at level III.

As I have already mentioned some students are studying
through an Open learning situation. B/TEC suggest that learning materials may include texts, workbooks,study guides,assignment briefs, case studies,practical kits and COMPUTER SOFTWARE. The materials adopted for any particular purpose will depend upon the learning objectives. Computer software, I believe,though
very time consuming to produce, can be used both to introduce a new topic or to supplement topics already taught to the students.

Programmed instruction made its appearance in Britain in the early 60's. The innovators of programmed learning claimed that the presentation of organised lesson material to the individual student in a prearranged sequence, and at a pace determined by the students own responses, can help to overcome some of the deficiencies associated with the classroom teaching techniques. One of the problems is the lack of continuous feedback. One of the main aims of this educational software is to create the situation where there is continuous feedback to the student whilst he is working his way through the various tasks created by the software and the computer.

I have based the structure of the programs on the
theories of B.F.Skinner and Chowder and their work on linear and branching programmes. It was in 1954 that B.F.Skinner published his article,"The science of learning and the art of teaching". Skinner's reinforcement learning theory was applied to the process of self instruction. His theory was that if a learners actions are followed by rewards they are likely to be repeated and learned. Unreinforced actions on the other hand will disappear from the learners repertoire. Skinner said that "behavioural patterns may,therefore,be shaped at the will of the instructor by use of a series of controlled stimuli".

Crowder who was both a psychologist and statistician
suggested modifications to the process of self instruction as advocated by Skinner. Basicly what he did was to introduce alternative sequences into programmes of learning. This is what I have attempted to do in this Computer Aided Learning package. The next instruction on the screen, when running the program, is
dependent upon the previous response. Skinner produced what is known as the Linear-type programme which in effect moved from one point to the next in the line without any opportunity to follow an alternative route if say the respondent made an incorrect response. Crowder on the other hand constructed his programme so that the learners responses could be utilised in the determination of the content and the actual presentation of the material.

The advocates of programmed learning claim that if a subject can be taught then it can be programmed. According to this claim therefore there are no limits to the areas in which programmed learning can be put to use.

The early forms of programmed learning made use of
either books or teaching machines. In the case of books the answer given by the repondent would determine which page to turn to. Similarly with the teaching machine the response would cause a certain frame to appear on the screen. In the design of my program I have created on the screen revision material followed by questions with randomly created parameters. The response from the computer will depend upon whether the students response is correct or not. If it is correct then the next question is created. If it is not correct then the student may have further attempts. If after three attempts the response is still incorrect then the correct method of solution is displayed on the screen and a hard-copy is produced on the printer for further consideration. In fact a hard-copy of all student and computer responses is created as the program is being executed within the computer.

Example of Branching.
Each response will cause a certain procedure to be executed.

SECTION TWO

How the Aims are achieved by the program.

The program is made up of a number of procedures and each procedure contains within it the facility to either create the graphical representation of diagrams or to create questions associated with the diagrams. The diagrams act as a source for refreshing the students awareness of the particular topic of mathematics which he has chosen from the menu presented on the screen. There are four main areas offered on the menu.
(1) Trigonometry
(2) Graphs
(3) 3-Dim Trigonometry
(4) Properties of the Circle
and in one case, Graphs, there is a sub-menu for selecting either problems associated with straight line graphs or quadratic graphs depending upon the group the teacher is working with.

The main aims of the program of learning as I see it is to offer to the student the topic in such a way that he will be able in the future to tackle similar problems with confidence. My intention is to present a topic by creating realistic questions for students of engineering, and to create questions which require looking at the problem in different ways depending upon the data available. As each question is created the student can then respond via the keyboard and his response is analysed by the computer. The correct response is acknowledged by the word "CORRECT" appearing on the screen, whereas an incorrect response is followed by the words"NO,that is not right,TRY AGAIN". This is incorporating the idea of rewarding the student with an encouraging response
if he is correct, or giving him the opportunity of determining the correct answer to the same question. All the time the answer is incorrect the student attempts the same question for a maximum of three tries. If after the third attempt it is still incorrect then a procedure takes over which shows the student, step by step how to obtain the correct answer. The computer then creates a new question of a similar type for the student to attempt. this procedure continues until the student has successfully answered four questions of a similar type, then a different procedure is called up to create further questions on that topic,but with different unknowns.

Also within the program is the facility for obtaining a printout of the students responses whether they are correct or not, and with full model answers if he was unable to input the correct answer after three attempts.This enables him to analyse his responses and this is also a help in reinforcing what he has learnt. When the student runs the program he is asked to input his name,this in turn is printed out so that if he is working on a network with other students all using the same software, he will be able to identify his own printout.

This group of procedures is creating a branching technique which puts up on the screen the appropriate response to the students, response. This is producing a close interaction between the student and the computer. The majority of students seem to respond favourably to this environment.

Many students of engineering will eventually be
involved with using the computer as a means of control with CNC machines or engineering processes. Some will be involved with using the computer for design and research. Whatever their jobs are in the future one of the main aims of using CAL packages is to help students become aware of computing facilities.

This CAL package has been written using the RMBASIC high level programming language. A supplimentary function of the package could be to use it to show students of computer programming how the language can be used to create graphics,diagrams and carryout numeric manipulation. The program listing can be analysed to see how the procedures are used to create the total package.

SECTION THREE

Review of similar software produced by a commercial company.
Over the years I have made use of a number of software packages written for the teaching of applied mathematics to engineering students at various levels of study. They have ranged from poor to first-class. Some have been written by "amateur" programmers,like me,but many have been written by the professional programmer employed by a software house. These are generally a much better package since they are produced in bulk and therefore a lot more time and money can be invested in them. Thereby creating a much more sophisticated program than the amateur can produce.

Many of these type of packages are produced as a collaborative scheme between a practising teacher and a professional programmer. This is the ideal situation for producing software,so that the teaching aims can be achieved by the use of the software. The design and production of software to achieve well defined aims is by no means an easy task, as I have discovered whilst being involved with this project.

One piece of software that I have used with mathematics and computer studies students is one that teaches the theory and uses of LOGIC gates and TRUTH tables. This collection of programs, produced by RJE software at $£ 15$ consists of,
(i) a program for teaching and testing the knowledge required for producing truth tables for 5 different logic gates. (a) AND gate (b) OR gate (c) NAND gate (d) NOR gate and (e) EXOR gate. Each gate is produced on the screen graphically and the truth table is built up step by step as the two inputs are changed from HIGH voltage (1) to LOW voltage (0) status. There is also the facility for applying inverters to each gate and again truth tables are created for each condition. The rules that
apply to each gate are displayed on the screen, and then gates are displayed and the student has to decide and input the expected output. If the answer is incorrect, the rule is again displayed and the student continues until he gets it right.
(ii) The second program enables students to build up a circuit of logic gates with upto 8 gates per circuit with 4 inputs and 4 outputs to LED's simulated on the screen. Each circuit can have inverters added to any gate and a timing diagram can also be displayed showing the status of each output from each gate and the output at each LED. Example circuits are supplied for use with the second program such as the Full-adder, RS flip-flop and D-type flip-flop switch.
(iii) The third program is a set of multi-choice questions suitable for any introductory computer studies course.

I use this set of programs with students attending the
B/TEC National Diploma course in Computer Studies and I have evaluated them against the twelve (12) aspects recommended to the M.Sc in Computer Education group.
(1) Do you think that the program achieves the stated aims?

I consider that the program does in as much as it teaches the students the rules to be applied when selecting gates for a particular logic circuit. The students respond to this program with enthusiasm and it creates a certain amount of competition between two or more students using it.
(2) Does the program provide helpful messages to
correct errors? Does it provide ways to help the students understand the program. Is it versatile so the student can control what it does?

The program of truth tables puts up on the screen the rules of logic if the student makes a mistake. It is not
versatile enough for the students to control the total output but the program of logic gates does allow students to design a circuit and control such things as output and the choice of having a timing diagram or not.
(3) Does it provide useful feedback to the user? Does it adapt to the students performance? Does it keep records of the students performance?

It does adapt to student performance but only in as much as it puts on the screen the rules to apply if the student makes a mistake. The feedback is in the form of rules of logic in program 1. In program 2, on logic circuits,once the student has embarked on the layout there is no chance of deleting a gate. The whole circuit has to be started again,which means reloading the program from the beginning. There is no record of the students performance, which is a weakness found in many software packages.
(4) Does the user have to make several different types of input or just key presses?

All the programs are executed by the pressing of just one appropriate key and will only operate if the correct key has been pressed. The changing from HIGH level to LOW level,ie from 1 to 0 is done by pressing either the X or Y keys.
(5) Is any use made of the students own language?

No. There is no opportunity to use standard english.
The student is only required to respond by pressing just one key.
(6) What is the approximate time between student inputs?

This is under the control of the student. For the truth table program the inputs are on average every 20 to 30 seconds,but obviously it will depend on how confident the
student feels when answering the questions.
(7) Is the student asked significant or trivial questions?

I did not consider any of the questions in the programs to be trivial as they all seemed important if the student is going to learn the rules of logic.
(8) Using answers for 2 to 7 , do you think the programs encourage an interactive learning environment?

Yes, these programs particularly the first two encourage the student to respond to the questions by pressing the appropriate keys and as I have already said a competitive atmosphere develops as the students progress through the programs.
(9) Does the program/documentation allow the teacher to modify the program in any way?

Programs 2 and 3 , that is the logic circuits and the multi-choice programs allow some variation particularly 3 which enables the teacher to put into the program a set of their own questions. Therefore as the course progresses the questions can be changed.
(10) Does the program use graphics. If so are they intrinsically important to the learning process?

Graphics are used and are essential for the first two programs, The programs have built into them facilities for producing on screen the logic gates and the circuits, and these are important to the learning process. The student can see at a glance the effect of any changes that are made to the logic circuit diagram. Without the graphics the programs, particularly the second one would be quite useless.
(11) Does the program use colour/animation, if so are they intrinsically important to the learning process?

Colour is extensively used for indicating the HIGH and LOW status levels. Red for HIGH and Green for LOW. these are very useful particularly in the logic gate program as the status of the inputs are indicated and in the logic circuit program the changes of colour can be slowed down so that the effect of changing the inputs can be seen moving around the circuit.
(12) Does the program use sound?

No. Sound is not used and is not really necessary for these applications.

Generally speaking these programs are professionally produced but the one thing that I have incorporated into my program which these do not have and I have not seen it in other programs, is the hardcopy produced on the printer as the program is run, so that students and the teacher can analyse the responses to the questions created.

SECTION FOUR

How the program is used in an educational situation.
I am making use of this software with a number of students who are attending either full-time or part-time B/TEC courses in Engineering. The software is being used on the network system under MS-DOS operating system. Each student can work independently and at his own speed. This is one of the educational advantages of using CAL packages for teaching purposes. The material can also be used as an assignment for the students. At the beginning of a teaching period I can ask them to work their way through the various options which I can choose, and then I can collect the output from the printer and then allocate a mark for their work. There is no way that they can alter the output from their individual workstations as each response is immediately sent to the spooler and saved ready for output to the printer when the appropriate keys are pressed.

TEACHERS' NOTES FOR USING THE SOFTWARE.

The package has been created for use with students studying for $B / T E C$ mathematics at F and N level. It can also be used with students attending classes for GCSE mathematics. It is proposed that the package is used to suppliment the formal classroom teacher centred learning with sessions of student centred learning at the computer. Each option has been written to occupy a student for approximately 20 minutes, which is considered to be the optimum time that a student will find a session at the computer stimulating.

By using this package you will find that teaching
sessions will become more stimulating for both you and your students. As you know, the frequent change of activity helps to
improve the learning and many students enjoy the opportunity of working on a computer. Not only will it help with their learning of mathematics but will also help them to become computer literate.

There are four options for your students to choose from
(1) Trigonometry
(2) Graphs
(i) Straight-line graphs
(ii) Quadratic equation graphs
(3) 3-Dimensional trigonometry
(4) Properties of the circle

You can use them either as a means of supplimenting your teaching of a new topic or they can be used as a means of revision either during a formal teaching session, or students can use them on their own. Comprehensive documentation is supplied with the package.

The facility of obtaining a printout of all the students responses will enable you to analyse them with your students. You may also wish to use the output as a means of assessment. Once the student has chosen an option he must work through it from beginning to end. The students are not told of the facility for breaking out of the program. If you wish to do so it can be done by pressing the CTL/BREAK keys together.

I hope you find this CAL package a useful addition to your teaching facilities.

EVALUATION OF SOFTWARE.

The software was tested with a class of students who
are studying for the $B / T E C$ unit of Mathematics N level which is part of the National Certificate in Engineering. They are studying in the part-time mode. I decided to use this particular group of students as it contained a number of older people who are returning to studying after a break of several years.

Each student was presented with a copy of the documentation and a questionnaire and was asked to work their way through the options at their own pace. They filled in the questionnaire as they worked their way through the options. At the time of the pilot test the group had covered the work on Straight-line graphs and the graphical solution of Quadratic equations, and that week had begun the work on Trigonometry, which was really revision since they should have had basic knowledge of the subject from the previous year,but of course in the case of the older students they had some knowledge but it had been gained a number of years before and were a little "rusty". This was the situation that I had hoped for so that I could get some measure of how useful the software would be for people returning to formal studies.

As the students worked their way through the options I asked them to make comments either in the space provided or to me direct, so that I could take their comments and possibly modify the software in the light of what they said.

One comment that was made by several students was that there was no facility mentioned in the documentation for "breaking out" of the options if they had had enough of the option. I pointed out to them that it was my intention that they did not break-out of the option as this would mean that I
would not be able to get a full measure of their ability when I analysed the print-out with them. If it is necessary to break out of the program this can be done with the CTRL/BREAK keys but this is not made known to the students through the documentation.

Analysis of questionnaires.
Option 1 Trigonometry.

clearer to them.

The responses to the other options were very similar to the responses to option 1.

The overall reaction was favourable and the students said they enjoyed working through the options. Perhaps a measure of their interest was that they were prepared to continue the session beyond their normal finishing time. This was a twilight class running from 5.30 to 7.00. Most of them stayed on to finish the options for another 15 minutes which means there is enough in the package to keep someone busy for nearly two hours. Normally I would use the package by looking at one option only for about 30 minutes. This I think is long enough for a CAL session.

QUESTIONNAIRE

Pilot testing of software.
Course of Study:

Title of software:

Level of study:

Topic:

Tick where appropriate.
Section A
Question (1)
Have you studied this topic before. Yes/No (If No go to section B)

Question (2)
How long ago was it.
last week/last month/six months/at least one year
Question (3)
Did you find it,
easy/not very easy/difficult/very difficult
Section B
Select the topic of your choice and work through the programme answering questions at the appropriate time. Question (4)

Do you find the graphics and/or diagrams very helpful/quite helpful/not very helpful/not at all helpful

Question (5)

Do you find the documentation
very helpful/quite helpful/not very helpful/not at all helpful

Question (6)

Do you find the method of interaction between you and the computer i.e via the keyboard
easy/not very easy/quite difficult/very difficult
Question (7)
Do you like the method of response to your answers yes/no

Question (8)

Do you find the output to the printer
very helpful/quite helpful/not helpful in analysing your overall response to the questions.

Question (9)

Do you feel that you understand the topic clearer now
that you have worked through the software.
It is no clearer/a little clearer/considerably clearer.

SECTION FIVE

DOCUMENTATION

B/TEC MATHEMATICS FOR ENGINEERING STUDENTS

Introduction.

The following programs have been produced to help you understand more fully the mathematics associated with various aspects of engineering. At the end of the topic you have been working through you are able to obtain a hardcopy of your answers and the responses from the computer. With this printout you can then analyse the results either on your own or with your teacher. I hope you find the programs both interesting and stimulating.

NOTE. This software will only run on RESEARCH MACHINES NIMBUS computers running under either MS-DOS or MS-NET operating system.

Instructions.
How to load the programs.
(a) On a standalone system.
(i) Insert the disc into the disc drive.
(ii) Type BASIC and press the ENTER key.
(iii) Type LOADGO "PROJ" and press the ENTER key.
(b) On a Network system.
(i) Type in your identity and password code.
(ii) Your should now see the $: N$ prompt.
(iii) Type BASIC and press ENTER key.
(iv) Type LOADGO "PROJ" and press the ENTER key.

You will now see the introduction screen, which after a few seconds will change to the screen which gives you some instructions and asks your to input your name. This is so that when your print out your answers on the printer your name will
be printed out at the top of the sheet for easy recognition. When you have input your name you will be presented with the MENU screen which will allow you choose one of 5 options.
(1) Trigonometry.
(2) Graphs.
(3) 3-dimensional trigonometry.
(4) Properties of the circle.
(5) End the session.

Select the number of your choice. Each program has instructions on the screen to guide you to the next stage.
(1) Trigonometry. F Level

You will see before you a right-angled triangle and
some of the trigonometrical functions associated with right-angled triangles, i.e. SIN 0, $\operatorname{COS} 0, \operatorname{TAN} 0 . \quad$ Press the space bar to continue. The computer will now randomly generate values and you will be asked to calculate, using an electronic calculator the unknown value. You will be given upto three attempts at the question. If you are correct then the next question will be created. If you are not correct after three attempts then the correct answer will be put up on the screen, and another question created.

After you have successfully answered 4 questions of the same type then further questions will be created associated with different trigonometrical functions. On completion of the set of questions on trigonometry the HELLO screen will appear again. Input your name and then you can output your answers to the printer by pressing CTRL/ALT/PRTSC and continue with another program or bring the session to a close.
(2) Graphs. F Level \& N Level.

On selecting the option GRAPHS, you will see that you

can either work through questions on STRAIGHT-LINE graphs or QUADRATIC equation graphs. Make your choice.
(i) Straight-line graphs.

The computer will generate random integer values for both A and $B, t h e ~ G R A D I E N T$ and INTERCEPT respectively. You must decide from the graph the values of A and B and then input them via the keyboard. They can be either positive or negative values. If you are correct then the next line will be generated. If you are not correct then you must try again until you eventually get it right. There is no limit on the number of attempts you can make.
(ii) Quadratic equation graphs.

The computer will create X and Y axes and randomly
generate values for A, B and C from which it will draw the curve. You must determine the roots of the equation by reading from the graph. Accuracy is to one decimal place. Five questions will be created for you to answer by reading from the screen direct. A further five questions will be created which you must answer by calculating the roots from the general equation for a Quadratic. You can then input your answer into the computer.

There is no facility in this program for a printout of your responses. At the end of the program the HELLO screen will appear again so that you can either select another program or end the session.
(3) 3-Dimensional Trigonometry. N Level.

This option produces a number of diagrams on the screen which you can look at for as long as you like. You are in control of the rate at which you move from one screen to another. The questions produced are,
(a) Associated with cylindrical prisms.

This is the situation found in the workshop when calculating the angle at which to set the compound vice on the milling machine to create a particular oblique area, and
(b) The measurement of external dovetails.

This gives practice in the mathematics associated with producing dovetails by using a milling machine. You are asked to input your answer to each question.

If correct the next question will appear. Otherwise you will be given three attempts at each question. If still incorrect, the correct answer will appear on the screen before another question is created for you to answer. After you have answered all the cylindrical prism questions then questions associated with external dovetails will be produced. At the end of the option press CTL/ALT/PRTSC keys to printout your responses to the questions so that you can analyse them at your leisure.
(4) Properties of the Circle. F Level.

This option produces a number of diagrams on the screen which you can look at for as long as you like. The control is through the keyboard. After you have looked at the diagrams you will be asked to answer a number of questions. You will be given upto three attempts at each question. If they are all incorrect then the correct answer will be given on the screen, and then another question will be created. Work to at least 2 decimal places of accuracy.

After the option is completed then you can output your results for analysis to the printer by pressing the CTL/ALT/PRTSC keys.
(5) End of the session.

This option will bring the session to a close and will automatically printout the results if they have not already been printed. This ensures that all your printouts are complete and nothing is left stored away in the SPOOLER if you have been working on the network system.
(1) Trigonometry
(3) 3-Dimensional Trigonometry
(4) Properties of the circle

If $a=81 \mathrm{~cm}$ and $b=101 \mathrm{~cm}$ then calculate angle A.

Input your answer for angle A 53.31 CORRECT

```
    If a = 45 cm and b = 58 cm then
        calculate angle C.
    Input your answer for angle C 39.11
CORRECT
```

 If \(a=40 \mathrm{~cm}\) and \(b=60 \mathrm{~cm}\) then
 calculate angle \(C\).
 Input your answer for angle \(C 5\)
 No! That is not right, try again
 Input your answer for angle \(C 7\)
 No! That is not right, try again
Input your answer for angle $C 3$
No! That is not right, try again
THIS IS THE CORRECT METHOD OF SOLUTION
ANGLE C $=\operatorname{ArcCos}(\mathrm{a} / \mathrm{b})$
$\operatorname{ArcCos}(40 / 60)=48.18968$ degs
If $a=72 \mathrm{~cm}$ and $b=92 \mathrm{~cm}$ then
calculate angle C.
Input your answer for angle C 38.49
CORRECT
If $a=97 \mathrm{~cm}$ and $b=117 \mathrm{~cm}$ then
calculate angle C.
Input your answer for angle C 33.99
CORRECT
If $a=74 \mathrm{~cm}$ and $b=87 \mathrm{~cm}$ then
calculate angle C.

Input your answer for angle $C 6$ No! That is not right, try again

```
fred
3-Dim Trigonometry
```

```
                                    EXAMPLE
                                    ニニ=ニニ==
                                    CYLINDRICAL PRISM
                =ニ===============
    OBLIQUE AREA = PI*RAD^2/COS A
    IF THE RADIUS IS = 71 MM
    AND THE ANGLE IS = 32 DEGS
THEN CALCULATE THE OBLIQUE AREA
    INPUT YOUR ANSWER 3
    No ! That Is NOT Right, Try Again
    INPUT YOUR ANSWER 5
No ! That Is NOT Right, Try Again
    INPUT YOUR ANSWER 7
No ! That Is NOT Right, Try Again
THIS IS THE CORRECT METHOD OF SOLUTION
    AREA=RADIUS^2*PI/COS ANGLE
71 * 71 * PI/COS 32 = 18674.37 MM2
                    EXAMPLE
                    ニニ=====
            CYLINDRICAL PRISM
            ニニニニ=ニニニニ===ニ====
    OBLIQUE AREA = PI*RAD^2/COS A
    IF THE RADIUS IS = 13 MM
    AND THE ANGLE IS = 37 DEGS
THEN CALCULATE THE OBLIQUE AREA
INPUT YOUR ANSWER 664.79
                                    CORRECT
                    EXAMPLE
            =======
    CYLINDRICAL PRISM
    ニ=ニニ=ニ=ニ==ニ=ニニニ==
OBLIQUE AREA = PI*RAD^2/COS A
IF THE RADIUS IS = 58 MM
AND THE ANGLE IS = 0 DEGS

INPUT YOUR ANSWER 10568.32 CORRECT

EXAMPLE
ーニニニニニ
CYLINDRICAL PRISM
ーニニニニニニニニニニニニニニニ
OBLIQUE AREA \(=P I * \operatorname{RAD}^{\wedge} 2 / \operatorname{COS} A\)
IF THE RADIUS IS \(=96 \mathrm{MM}\)
AND THE ANGLE IS \(=36\) DEGS
THEN CALCULATE THE OBLIQUE AREA

INPUT YOUR ANSWER 4
No ！That Is NOT Right，Try Again
INPUT YOUR ANSWER 7
No ！That Is NOT Right，Try Again
INPUT YOUR ANSWER 3
No ！That Is NOT Right，Try Again

THIS IS THE CORRECT METHOD OF SOLUTION
AREA＝RADIUS＾2＊PI／COS ANGLE
\(96 * 96 * \mathrm{PI} / \operatorname{COS} 36=35787.77 \mathrm{MM2}\)

EXAMPLE
ニニニニニニ
CYLINDRICAL PRISM
ニニニニニニニニニニニニニニニニ
OBLIQUE AREA \(=P I * R^{\wedge} 2 / \operatorname{COS} A\)
IF THE RADIUS IS \(=12 \mathrm{MM}\)
AND THE ANGLE TS \(=27\) DEGS
THEN CALCULATE THE OBLIQUE AREA

INPUT YOUR ANSWER 507.72
CORRECT

EXAMPLE
＝＝＝＝＝＝＝
CYLINDRICAL PRISM
ッニニニニニニニニニニニニニニニ
OBLIQUE AREA \(=P I * R A D \wedge 2 / \operatorname{COS} A\)
IF THE RADIUS IS \(=35 \mathrm{MM}\)
AND THE ANGLE IS \(=8\) DEGS
THEN CALCULATE THE OBLIQUE AREA
```

If the radius r = 32 cm then calculate

```
the area of the circle shown above.
AREA \(=4\)

No: You have made a mistake,try again
\(\mathrm{AREA}=5\)

No! You have made a mistake,try again
AREA \(=7\)

No: You have made a mistake,try again

THIS IS THE CORRECT METHOD OF SOLUTION.
\[
A R E A=P I \times R A D I U S \times R A D I U S
\]

AREA \(=3216.991 \mathrm{CM} 2\)
If the radius \(r=34 \mathrm{~cm}\) then calculate
the area of the circle shown above.
AREA \(=3631.68\)

WELL DONE
If the radius \(r=12 \mathrm{~cm}\) then calculate
the area of the circle shown above.
AREA \(=452.38\)
WELL DONE
If the radius \(r=8 \mathrm{~cm}\) then calculate
the area of the circle shown above.
AREA \(=201.06\)
WELL DONE
If the radius \(r=3 \mathrm{~cm}\) then calculate
the area of the circle shown above.
\(\mathrm{AREA}=28.27\)
WELL DONE

\section*{SECTION SIX}

The program listing.
The program was written in the High Level language called BASIC and particularly in the dialect RMBASIC developed by Research Machines Ltd of Oxford. It is a language which is easily learned and the RMBASIC is much more structured than the original dialect of BASIC. This dialect contains a number of advanced facilities including procedures which makes the program more structured. The program can be built up of simple modules to create a comprehensive program. It also contains facilities for colour and sound,a choice of a 40 column or 80 column mode for screen presentation, and graphics facilities for creating diagrams and graphs. Text can also be created in either graphics or normal print mode thereby giving variations in text style and presentation. Global variables can be used within programs so that a variable can be used in a number of procedures. Also arrays of text and numbers can be handled and sub-routines and functions can be incorporated into procedures.

Graphics and text areas can be specified and upto 9
different areas can be written to in any one program. This makes for a more professional presentation on the screen. I found it a very user-friendly language to work with and it was quite adequate for this project. The program requires 60KBytes of memory.

\section*{Explaination of Program Listing.}
\begin{tabular}{|c|c|c|}
\hline Line & 310 & Clears the graphics from memory. \\
\hline Line & 320-470 & These create the "HELLO" screen and waits for the inputting of the students name. \\
\hline Line & 480 & Receives name. \\
\hline Line & 490-670 & Creates "MENU" screen. \\
\hline Line & 690-740 & Options are selected and according to which option is chosen appropriate procedures are executed. \\
\hline
\end{tabular}

Lines 750 - 820 These lines are executed if option 5, "end the session" has been chosen.

Lines (830-4270) Procedure named TRIG. This procedure starts by giving instructions for answering the 830 - 1020 questions created further on in the procedure. 1030 - 1300 This block of coding creates drawing \(1 .(\) see screen printouts in documentation section.)

1310 - 1650 This block of coding creates drawing 2.
1660 - 1950 This block of coding creates drawing 3.
1960 - 2120 This creates the rectangular prism.
2130 Start of the first calculations.
2390 Awaits answer.
2400 Prints out answer to printer.
2410 Calculates true value.
2420 Compares values.
2470 Keeps the total number of attempts at question.
2510 Keeps a count of the number of questions created of a given type.

2540 - 2610 Sub-routine to print correct answer on the screen.

2620-3060 Creates different type of question associated
```

with oblique areas.
3070 - 3460 Creates third type of question involved with
oblique areas.
3470 - 3820 Creates drawing of external dovetail on the
screen.
3830 - 4270 Creates questions and if necessary the
sub-routine is executed in order to give the
correct answer.
Lines (4280 - 5160) Procedure for GRAPHS option.
4320 - 4360 Creates introduction panel to GRAPHS option.
4370 - 4440 GRAPHS menu screen.
4470 Choose GRAPHS options from menu.
4480 Choice of procedures to draw axes for graphs.
4500 Executes AXES procedure.
4510 - 5150 Creates questions of GRADIENT and INTERCEPT.
Lines 5170 - 5450 AXES procedure defined.
5470 Executes AXES2 procedure for Quadratic equation
option.
5480 Executes TEXT procedure. 2
5490-5660 Creates values of A,B and C for AX + BX + C
5670 - 5890 Creates further questions about quadratic
equations.
Lines (5900 - 7030) Main procedure for creating diagrams for
Properties of a Circle option.
5940 - 6000 Introduction screen.
6010 - 6270 Creates first diagram.
6280 - 6500 Creates second diagram.
6510 - 6740 Creates third diagram.
6750 - 6970 Creates fourth diagram.
6980 - 7020 Executes procedures named ROUND1 to ROUND5.
Each procedure creates questions and prints the

```
correct answer if necessary by calling up
a sub-routine.
Lines 7040-7470 Procedure named ROUND1 defined.
\begin{tabular}{lllll}
\(7480-7910\) & \(\ldots\) & \(\ldots\) & ROUND2 & \(\ldots\) \\
\(7920-8430\) & \(\ldots\) & \(\ldots\) & ROUND3 & \(\ldots\) \\
\(8440-8940\) & \(\ldots\) & \(\ldots\) & ROUND4 & \(\ldots\) \\
\(8950-9410\) & \(\ldots\) & \(\ldots\) & ROUND5 & \(\ldots\)
\end{tabular}

Each procedure has a built-in sub-routine for printing on the screen and the printer the correct answer if necessary.

9420 - 9730 Procedure AXES2 defined.
\(9740-9790\) Procedure TEXT defined.
9800 - 9840 Procedure TEXT1 defined. Used for variation in Quadratic equation questions.

Lines (9850 - 10380) Procedure TRIG1 defined. This creates the diagrams and trigonometrical functions associated with a right-angled triangle.

10320 - 10380 Executes in turn the procedures, ALPHA, BETA, GAMMA,ALPHA1,EPSILON and PHI. Each procedure creates questions and puts up on the screen the responses of the student and also prints out the correct answer if required.

10390 - 10830 Procedure ALPHA defined.
\begin{tabular}{llll}
\(10840-11270\) & \(\ldots\) & BETA & \(\ldots\) \\
\(11280-11710\) & \(\ldots\) & GAMMA & \(\ldots\) \\
\(11720-12150\) & \(\ldots\) & ALPHA1 & \(\ldots\) \\
\(12160-12590\) & \(\ldots\) & EPSILON & \(\ldots\) \\
\(12600-13040\) & \(\ldots\) & PHI & \(\ldots\)
\end{tabular}

The student is required to answer the questions created by using an electronic calculator. The combined use of calculator and computer is
required throughout the question and answer session for most of the options chosen. Each procedure has built-in subroutines to printout the correct answers before moving on to the next question.

13050 - 13120 Procedure TRIANGLE defined. This creates a right-angled triangle at the top of the screen for students to refer to when answering questions.

10 REM *H.SC PROJECT COMP ED:
20 CLS : HOME
30 SET MODE 40

40 GLOBAL Freds
50 REA * CREATE LOSO *
60 SET PAPER 1 : SET BORDER : : CLS
70 FOR I : \(=150100\) STEP 10
BO SET BRILS I / 10
90 AREA \(5+1,200-1 ; 105+1,200-1 ; 105+1,100-1 ; 5+1,100-1 ; 5+1,200-1\)
100 NEXT I
110 SET BRUSH 0
120 CIRCLE 20, 145, 60
130 SET RRUSH 15 : CIRCLE 17, 145, 60
140 SET BRUSH \(8:\) CIRCLE \(15,145,60\)
150 SET BRUSH 1: AREA 190,\(80 ; 190,85 ; 196,85 ; 196,80\)
160 SET RRUSH \(0: \operatorname{CIRCLE} 2,145,32 ; 145,15 ; 170,50 ;\) area 143,\(32 ; 147,32 ; 147,15 ; 143 ; 15\)
170 SEI BRUSH 15 : AREA 105 , 105; 145, 105; 145, 85; 105, 85
180 SET RRUSH 2 : PLDT "CAMET", 106, 90
190 SET BRUSH 15 : pLbT "LOUGHBdRDUGH University of TEChndiogy", 10, 240
200 PLOT "H. Sc. COHPUTER EDUCAIION", 60,230
210 PLOT "(C) R.E.FORD", 100; 220
220 plot "centre for advancenent of mathematical", 10, 210
230 PLOT "EDUCAIJON IN TECHNDLDEY", 60, 200
240 SET ERUSH 4 : PLOT "B/TEC MATHEMAIICS", 160,180
250 PLOT P \(\&\) a LEVEL * 200,170
260 PLOT "FOR EMGINEERING", 180, 160
270 PLDT "STGDENTS", 220, 150
280 SET BRUSH 5: PLOT "A COMPUTER-AIDED", 180, 130
290 PLot "Learning package", 180, 120

300 FOR I := 1 TO 5000 : NEXT I

310 CL6
320 SET MODE 80
330 SET PAPER \(3:\) SET BORDER \(1:\) SET PEN \(0:\) CLS
340 SET ERUSH 2 : AREA 5, 5; 5, 244; 634, 244; 634, 5 STYLE 3
350 AREA 7,\(7 ; 7,242 ; 632,242 ; 632,7\) STYLE 3
360 PLOT *Hello,* 20,220 SIIE 2
370 PLOT "melcome to a wathematics revision se5sion. You will be asked to select", 50,210
380 PLOT 'the topic of atheatics that you would like to revise, and as you work your', 15, 200
390 PLDI "way through the exercises an output to the printer will be created. If yous, 15,190
400 PLOT "are working on a MIMBUS NETHORK systen then at the end of your session press", 15, 180
410 SET BRUSH 1 : PLOT "ctrl/alt/prtsc", 15, 170: SET BRUSH 2
420 PLOI "keys siaultaneously 50 that you can obtain your own individual", 130,170
430 PLor "printout with your name on it for easy recognition. Please tell ge your name", 15, 160
440 PLOI "and I hope you find the revision session stimulating. io for it!", 15, 150
450 SET HRIIING 1 TO 5, 11; 75, 22
460 SET BRUSH 1 : PROT "that is your nage", 80,47 SIle 2
470 SET HRITING \(1:\) SET CURPOS 50,20
480 SEI HRITING I : INPUT Fred \(\$\)
490 SET MODE 40
500 SET PAPER 1 : CLS : SET RORDER 9
510 AREA 5,\(5 ; 5,235 ; 315,235 ; 315,5\)
520 SEI BRUSH 8 : AREA 6,\(6 ; 6,234 ; 314,234 ; 314,6\)
530 FOR I := 2 TO 200 STEP 40
540 SET BRUSH 15 : AREA \(11,9+\mathrm{I} ; 11,19+\mathrm{I} ; 31,19+1 ; 31,9+1\)
550 SET RRUSH 4 : AREA \(10,10+\mathrm{I} ; 10,20+\mathrm{I} ; 30,20+\mathrm{I} ; 30,10+\mathrm{I}\)
560 NEXT I
570 PLOI "MENJ", 145, 220
580 PLOT "ENgineERING hathematics", 70,210
```

590 SET BRUSH 14: PLOT "1 TRIGONOMETRY", 18, 172: PLOT "F LEVEL", 200, 172
600 PLBT "2 GRAPHS', 18, 132: PLOT "FtN LEVEL", 200, 132
610 PLOT '3 3 DIMEHSIONAL', 18, 92 : PLOT "FIN LEVEL', 200, 92
620 PLOT "TRIGONOHETRY", 50, 82
630 PLOT "4 Properifes of", 18,52: plot "F level', 200,52
640 PLOT "THE CIRCLE", 50, 42
650 PLOT '5 END SESSION', 18, 12
660 SET RRUSH 2: PLOT "SELECT THE NUMBER", 170, 30
670 PLOE 'OF YOUR CHOICE", 185,20
68O SET CURSOR O
690 Ansmer: := GET$()
700 IF An5mer$ = "1" ThEN Trig| : CLG : GOTO 310
710 If Answert = '2" THEN Graph:CL6: SET MODE 40: 60T0 310
720 IF Ansuer % = "3' THEN Trig : CL6: g0T0 310
730 IF Answer % = = 4' THEN Round : CLG : GOTO 310
740 IF Ansmer = "5" THEN CLS ; SEI BRUSH 15 ; PLOT "END OF SESSION", 105,150
750 PRINT 42!!!! TAB (10) "END OF gESSION"
760 PLOT "DO NOT FORGET YOUR PRINTOUT"; 50, 140
770 PLOI "I hope you have found the session useful', 1, 130
780 SET BRLSH 14: PLOT "GOODBYE", 100, 100 SILE 2
790 FOR I := 1 TO 5000 : NEXT I
800 PRINT h2 ! ! ! !, "GODDBYE', Fred%
gIO REM BYE
820 If Answer! > "5" OR Ansmer! < "1" THEN 570
930 PROCEDURE Irig
840 GlOBAL Fred\$
850 PRINT h2, Fred\$
860 PRINT h2, "3-Dia Trigonometry*
870 CLG : SET BRUSH 0 : AREA 35, 95; 25, 105; 25, 185; 35;195; 295;195; 305, 185; 305, 105; 295,95

```
    950 SET BRUSH 15: PLOT 'This set of exercises is to help you", 7, 235
    960 PLOT " understand some applications of", 7, 225
    970 PLOT 'ENGINEERING TRIGONOMETKY. The coaputer', 7, 215
    980 PLOT "mill create questions for you to ", 7, 205
990 PLOT "ansmer,You will need a calculator.", 7, 195
1000 PLOT "The diagrase are for revision purpose5.", 7, 185
1010 SEI CURSOR 0: SET CURPOS 10, 20 : PRINT "PRESS ANY XEY tO CONTINUE"
1020 An5wer % := GET$0): CLG
1030 REN F DRAW FIGURE I %
1040 SET BRUSH 10
1050 AREA 20, 50; 150, 150; 300, 150; 170, 50
1060 SET BRUSH 2
1070 LINE 70, 70; 170, 245
1080 SET BRUSH 15:LINE 170, 240; 170, 100; 70, 70 STYLE 3
1090 PLOT '0', 85;80
1100 PLOT 'A', 175, 235
1110 PLOT 'B', 175, 100
1120 PLOT "C", 60,60
1130 LINE 150, 95; 150, 120;170,126
1140 FLOT "D", 140,150
1150 PLOT "E", 305, 150
1160 PLOT "F", 175,40
```

1170 PLOT "G*, 10, 40
1180 PLOT "POINT A IS *, 185, 225
1190 PLOT "PROJECTED DOHN", 185, 215
1200 PLOT "TO POINT B OR", 185, 205
1210 PLOT "PLANE DEF8"; 185, 195
1220 SEI bRUSH 2 : PLOT "PLANE DEFG', 185, 125
1230 AREA 5,$240 ; 140,240 ; 140,200 ; 5,200$
1240 SET BRUSH 15
1250 PLOT "the amgle betheen', 5, 225
1260 PLDT "LINE AC AND PLANE", 5, 215
1270 PLOT ${ }^{\text {D DEFG }}$ IS 0 ", 35,205
1280 SET CURPRS 10, 23 : PRINT "PRESS ANY KEY TO CONTINUE"
1290 Answert :=GET\$()
1300 CLS
1310 REM + DRAG FIGURE 2 *
1320 SET BRUSH 8
1330 AREA 50,$50 ; 50,125 ; 200,200 ; 200,125$
1340 SET BRUSH 7
1350 AREA 50,$50 ; 50,125 ; 200,90 ; 200,15$
1360 SET RRUSH 2
1370 LIHE 200, 163; 50; 87; 200, 53 STYLE 5
1380 PLOT 'A', 205, 90
1390 PLOT ${ }^{\text {" }} \mathrm{B}^{\prime}, 205,5$
1400 PLOT "C', 40, 45
1410 PLOT "D", 40, 125
1420 PLOT 'E', 205, 200
1430 PLOT ${ }^{\prime \prime}{ }^{\prime}, 205,115$
1440 SEI ERUSH 14
1450 PLOT "I", 40, 85

```
    1460 PLOT "H', 205, 158
    1470 PLOT "J", 205, 48
    1480 PLOT "0", 65,83
    1490 AREA 5, 240; 150, 240; 150, 210; 5; 210
    1500 SET BRUSH 2
    1510 Plot "the angle betueen'; 10, 230
    1520 PLOT "THO INTERSECTING', 10, 220
    1530 PLOT * PLANES*, 10, 210
    1540 SET BRUSH 3
    1550 PLOT "PLANE ABCD", 120,40
    1560 PLOT "PLANE CDEF", 120, 150
    1570 AREA 220, 220; 319, 220; 319, 150; 220, 150
    {580 SET BRUSH 14
    1590 PLOT "THE ANGLE", 225, 205
    1600. PLOT "betheen the", 225, 195
1610 PLDT 'THD PLANES", 225; 185
1620 PLOT "IS ANGLE HIJ", 225, 175
1630 PLOT "SHOHN AS 0", 225, 165
1640 SET CURPQS 28, 21 : PRINT "PRESS ANY KEY" : SET CURP0S 28, 22: PRIHT - TO CONTINUE"
1650 An5mer %:= 6ET${) : CL6
1660 REM THIRD FIGURE
1670 GREA 5, 230; 100, 230;100, 180; 5, 180
1 6 8 0 ~ S E T ~ B R U S H ~ 6 ~
1690 PLOT "LENGTHS AND", 9, 220
1700 PLOT "AREAS ON AN", 9, 207 ; PLGT "INCLINED", 20, 194 ; PLOT "PLAHE", 30, }18
1710 SET GRUSH 2: AREA 220, 220; 310, 220; 310, 120; 220, 120
1720 SET BRUSH 7 : PLOT "DE", 289, 200 : PLOT "COS 0 = --", 225, 190 : PLOT "OC", 289, 180
1730 PLOT 'ABCD=---"', 225, 150: PLOT "AFED', 265, 160; : PLOT 'COS 0", 265, 140
1740 SET BRUSH 3 : AREA 50, 100; 150, 200; 200, 150; 100, 50; 50, 100
```

```
    1750 SET BRUSH 4
    1760 AREA 100, 50; 200, 150; 200, 100
    1770 SET BRUSH 7
    1780 LJHE 50, 100; 150, 150; 150, 200 STYLE 3
    1790 LINE 150, 150; 200, 100 sTYLE 3
    1800 PLOT 'A", 40, 90
    1810 PLOT 'B', 150, 205
    1820 PLOT 'C", 205,150
    1830 PLOT '0', 97, 35
    1840 PLOT "E", 200,85
    1850 PLOT "F", 156, 150
    1860 PLOT "0", 130,70
    1870 SET BRUSH 4
    1880 AREA 150, 10; 300,60; 300, 10
1890 SEI BRUSH 7
1900 PLOT "D", 140,5
1910 PLOT ''C', 302,62
1920 PLOT "E", 305, 5
1930 PLOT '0',180,8
1940 SET CURPOS 2, 23: PRINT "PRESS ANY KEY" : SEI CURPOS 2, 24: PRINT" TO CONTINUE"
1950 Ansmer! := 6ET$() : CLG
1960 RE# INSTRUCTIONS FOR CALCULATIONS
1970 SET PAPER 1 : SET BRUSH 9 : CLS ; AREA 5, 245; 314, 245; 314, 170; 5, 170
1980 SET bRUSH 15 : plot "the Obligue area of a prisk", 45, 230
1990 PLOT "OBLIQUE AREA =
                        ,20, 190: SEI BRUSH 2 : PLOT "CROSS-SECIIOMAL AREA', 150, 20
2000 PLOT "COS 0", 200,180
2010 SET BRUSH 14 : AREA 5, 165; 314, 165; 314, 5; 5, 5
2020 SET ERUSH O : LINE 10, 150; 260, 150; 260,100;10,100;10,150
2030 SET BRUSH 2 ; AREA 260, 150; 285, 130; 285; 80; 260,100
```

2110 SET CURPOS 2, 23 : PRINT "PRESS ANY KEY TO COMIINUE"
2120 Ansmer $\$:=$ GET\$0): CLG
2130 REH STARI FIRSI SEI OF CALCULAIIONS
2140 Total $:=0:$ Count $:=0$
2150 Radius $:=\operatorname{INT}($ RND $(1) \div 90)+10$
2160 Angle : $=\operatorname{INT}(\operatorname{RND}(1) * 45)$
2170 CLS : HOME
2180 SEI PAPER 14 : SET RAD TRUE
2190 CLS
2200 SET PEN 2
2210 PRINT TAB (15) "EXAMPLE"
2220 PRINT h 2, ! ! TAB \{15\} "EXAMPLE"
2230 PRINT TAB (15) '=ت=ニ=ニ="
2240 PRINT 42 , TAR (15) ${ }^{\circ}======0$
2250 PRINT IAB \{H1\} "CYLINDRICAL PRISM"
2260 PRINT h 2 , TAB (11) "CYLIHORICAL PRISH*

2280 PRJNT 42, TAB (11) $:================$ "
2290 PRINT ! TAB (5) ${ }^{*}$ ORLIQUE AREA $=$ PI F RADXRAD/COS A'
2300 PRINT 42, ! TAR (5) "OBLIOUE AREA $=$ PI \because RADyRAD/COS A"
2310 PRINT ! IAB (5) "IF THE RADIUS IS = "; Radius; "HM"
2320 PRINT H 2 , ! TAB (5) "IF ThE RADIUS $15=$ "; Radius; "min"

```
    2330
2410 True Area := PI * Rad * Rad / COS(Angle * PI / 180)
2420 If AGS{True Area - Oblique Areal ( le-02 THEN SEI BRUSH 1: PLOT "CORRECT', 90, 10 SIIE 3 ELSE 2450
2430 IF ABSiTrue Area - Oblique Area) < le-02 THEN PRINT :2, "CORRECT"
2440 FOR I := 1 T0 2000: NEXT I : IF ABS\Irue Area - Oblique Area) < le-02 THEN 2510
2450 PRINT TAB {2} " Ho ! That Is NOT Right, Iry Again *
2460 PRINT 42, TAB (2) ' No ! That Is NOT Right, Iry Again *
2470 Total := Total + 1
2480 IF Total < 3 {HEN 2390
2490 GaSuB 2540
2500 6010 2130
2510 Count := Count + 1
2520 IF Count < 4 THEN 2150
2530 6030 2620
2540 PRINT ! ! TAB (1) "THIS IS THE CORRECT METHBD OF SOLUTION"
2550 PRINT h2, ! ! TAB (!) 'THIS IS THE CORRECT METHOD OF SOLUTJON"
2560 PRINT ! TAB (7) "AREA=RADtRADFPI/COS ANGLE"
2570 PRINT H2, ! [AE (7) 'AREA=RAD*RADAPI/COS ANGLE*
2580 PRINT ! TAB (2) Radiu5; '*'; Radius; "* PI/COS"; Angle; "="; Irue Area; "MN2"
2590 PRINY 12, ! TAB (2) Radius; "*"; Radius; "* PI/COS'; Angle; "="; Irue Area; 'MN2"
2600 FOR I := 1 TO 5000: AEXT \
2610 RETURN
```

```
    2620
    2630
    2640 Oblique Area := InT(RND(100) + [100)
    2650 CLS : HOME
    2660 PRINT TAB (15); "EXAMPLE"
    2670 PRINT #2, ! ! TAB (15); "EXAMPLE"
    2680 PRINI TAB (15)"====ะ=="
    2690 PRINT 42, TAB (15) "===z==="
    2700 PRINT TAB (1|) "CYLINDRICAL PRISN*
2710 PRINT 42, TAB (I]) "CYLINDRICAL PRISM'
```



```
2740 PRINI TAB (5) "ANGLE A=ARCCOS(RIR*PI/OBLIQUE AREA)"
2750 PRINT &2, TAR (5) "ANGLE A=ARCC05(R*RaPI/DBLIGUE AREA)"
2760 PRINI ! TAR (7) 'IF THE RADIUS IS = "; Radius; "MM"
2770 PRINT 42,! TAB (7) "IF THE RADIUS IS = "; Radius; "mm"
2780 PRINT ! TAB (7) "AND THE ORLIQUE AREA="; Oblique Area; "HN2"
2790 PRINT &2,! TAB (7) "AND THE OBLI位 AREA="; Oblique Area; "MM2"
2800 Print ! tag (5) "Calculate the orligue angle"
2810 PRINT 42,! TAB (5) "Calculate the OEligue angle"
2820 PRINT ! TAB (10) 'INPUT YOUR ANSHER'; : INPUT A
2830 PRINT 42,! TAB (10) "JWFUT YQUR ANSWER"; : PRINT h2, A,
2840 Y := PI & Radius & Radius / Oblique Area
2850 Oba := (- ATA/Y / SRRT-Y & Y + 11) + PI/2) * 180/PI
2860 If ABS(Oba - A) ( le-02 THEN SET BRUSH 1 : PLOT 'CORRECT', 80, 10 SIIE 3 ELSE 2900
2870 IF ABS(Oba - A) ( le-02 then PRINT A2, "CORREC\"
2880 FOR I := 1 TO 2000: NEXT I 
2890 JF ABS(Oba - A) < 1e-02 THEN 2960
2900 PRINT TAB (5) "NO!That is nat right,try again"
```

```
    2910 PRINT H2, {AG (5) "NO!That is not right,try again"
    2920 Total := Total + 1
    2930 IF Total < 3 THEN 2820
    2940 605482990
    2950 6010 2620
    2960 Count := Count + 1
    2970 IF Count < 4 THEN 2630
    2980 60T0 3070
    2990 PRINT ! ! tab (1) "This IS the correct methdD of SOlution"
    3000 PRINT t2, ! ! tag (1) 'jhis is the correct method of solution"
3010 PRINT ! "ARCCOS(R&REPI/ORLIQUE AREA)=ANGLE A"
3020 PRINT 122;!"ARCCOS(R:RAPI/OBLIQUE AREA)=ANGLE A*
3030 PRINT! "ARCCOS("; Radiu5; "*"; Radius; "&PI/"; Oblique Area; ")="; Dba; "DEG"
3040 PRINT h2,! "ARCCOS("; Radius; "&'; Radius; 'fPI/"; Oblique Area; ")='; Oba; "DEG"
3050 FOR I := 1 T0 5000 : NEXT I
3060 RETURN
3070 Total := 0 : Count := 0 : REH START THIRD CALCULAIIONS.
3090 Angle := INT{RND(45))
3090 0hlique Area := INT(RND(100) + 1500)
3100 CLS : HOME
3110 PRINT TAB (15) "EXAMPLE"
3120 PRINT h2, ! : TAB (15) "EXAMPLE"
3130 PRINT TAB {15) "====ะ=="
3140 PRINT R2, TAG (15) :======="
3150 PRINT ! TAB (4) "RADIUS=SQR(OBLIQUE AREAFCOS A/PI)"
3160 PRINT h2;! TAB (4) "RADIUS=SQR(0RLIQUE AREA*COS A/PI)"
3170 PRINT ! TAB (5) "IF THE OBLIGUE ANGLE="; Angle; "DEg"
3180 PRINT h2; ! TAB (5) "IF THE OBLIOUE ANGLE=*; Angle; "DEG"
3190 PRINT ! TAR (5) 'AND THE OBLIQUE AREA="; Oblique Area; "Hm2"
```

```
    3200 PRINT h2, ! TAB (5) "AND THE OBLIQUE AREA='; Oblique Area; "Mr2"
        PRINT ! tab (5) "then calcllate the radius"
        PGINT 1.2, ! TAE (5) 'THEN CalCulate the radius"
        PRINT !! TAB {10} 'INPUT YQUR AHSHER'; : INPMT Radius
        PRINT 12, !! TAB (10) "INPUT YOUR ANSHER"; : PRINT 42, Radiu5,
        RO:= SQRT(Oblique Area * COS(Angle * PI/ 180)/PI)
        If ABSiRO - Rodius) ( le-02 THEN SEI BRUSH 1 : PLOT "CORRECT", 80, 10 SIIE 3 ELSE 3300
        IF ABS(RO - Radius) < Je-02 THEN PRINT H2, "CORRECT'
        FOR I := 1 TO 2000: HEXI I
        IF ABS(RO - Radius) < le-02 THEN 3360
        PRINT TAB (5) 'NO!That is not right,try again'
        PRINT 42, TAB (5) "NO!That is not right,try again"
        Total := Total + 1
3330 IF Total < 3 THEN 3230
3340 60SU8 3390
3350 6010 3070
3360 Count := Count + 1
3370 IF Count < 4 THEN 3080
3380 6070 3470
3390 PRINT ! ! TAB (I) "THIS IS THE CORRECT HETHED OF SOLUTION"
3400 Primt h2,! ! tag (1) "this IS the correct method of solution*
3410 PRINT TAR (2) "RADIUS=SQR(OBLIQUE AREAECOS A/PI)"
3420 PRINT %2, TAB (2) "RADIUS=SORIORLIQUE AREA*COS A/PI)"
3430 PRINT "SQR("; Oblique Area; '&COS '; Angle; "/PI)="; &O
3440 FRINT h2, "SQR("; Oblique Area; '*COS '; Angle; '/PI)="; R0
3450 FOR I := { TO 5000 : NEXT ]
3460 RETURN
3470 REM MEASUREMENT OF EXT DOVETAIL
3480 REM DRAH DIAGRAM OF DOVE TAIL
3490 SET BIRDER 10: SET PAPER 10: CLS
```

```
            SET BRUSH 15 : AREA 5, 245; 314, 245; 334, 220; 5, 220
            SET BRUSH 2 : PlOT "MEASUREmENT OF EXIERHAL dOvETAIL", 30, 232
            PLOT "gY THE USE OF PRECISION ROLLERS.*; 30, 222
            AREA 50, 85; 50, 110; 130, 110; 90, 160; 210,160;170, 110; 250, 110; 250, 85; 50, 85
            SET BRUSH 8 ; FLOOD 140, }12
            SET BRUSH 7 : CIRCLE 20, 88, 130; 212,130
            SET BRUSH 0: LINE 68, 137; 68, 185 ; LINE 232,137; 232,185
            LINE 68, 180; 232,180
            AREA 68, 180; 74, 182; 74, 178: AREA 232, 180; 226, 182; 226,178
            PLOT "H", 147, 182; LINE 88, 130; 130, 110; 88, 110; 88, 130
            INE 212, 130;170, 110; 212, 110; 212, 130
            LINE 130, 107; 130,70
                    3620 LINE 170, 107; 170,70
                    3630 LINE 130,73; 170,73
                    3640 AREA 130, 73; {36,75; 136,71
                    3650 AREA 170,73; 164,75; 164,71
                    3660 PLOT "REF", 140,74
                    3670 PLOT nd dia', 20,130
                    3680 LINE 60,130;70,125
                    3690 LINE 88, 107; 88, 70;
                    3700 LINE 212, 107; 212,70
                    3710 LINE 88, 73; 212,73
                    3720 AREA 88,73; 94, 75; 94,71
                    3730 AREA 130,73; 124,75; 124,71
                    3740 AREA 170, 73; 176; 75; 176, 71
                    3750 AREA 212,73; 206, 75; 206,71
                    3760 PLOT 'X', 106, 74; 187,74
                    3770 PLOT '0', 105, 109; 190, 109
                    3780 SET BRUSH 15: AREA 5, 60; 314,60; 314, 20; 5, 20
```

```
        3790 SET BRUSH 0: PLOT "REF = = - 2(d/2+X)", 50,50
    PLBT 'tanA=d/2X : 2x=d/tanA: 2X=dAcotanA", 10, 35
    SET ERUSH 3 : PLOT "REF = A- d(1+\operatorname{cotanA)", 60, 20}00
    SET PEN 15 : SET CURPQS 2, 24 : PRINT" PRESS ARY KEY TO CONTIRUE"
    Ansmer! := 6E[5() : CLG
    CL6 : HOME
    Total := 0: Count := 0
    SET PEN 4 : SET PAPER 14 : CLS : PRINT TAB (15); "EXAMPLES"
        PRINT 1.2,! ! TAB {151; "EXAMPLES"
        PRINI TAB (I5); "=====ミ=="
        PRINT h2, TAB {15); '========'
        SET PEN 9:PRINT ! TAB (8); "REF = M-d(1+CotamA)"
        PRINT R2, ! TAG (8); "REF = = - d(1+CotanA)"
        M:={RND(50)} + 75
        D:= 25: A:= 30 : REH constant values of diameter and amgle
        Ref := M-25 # (2.732051)
        PRINT ! TAG (10); "IF THE READING M IS"; H; "me;"
        PRINT h2,! TAB (10); "If the reading H IS"; H; 'as;"
        PRINT! TAB (101; "THE DIAMETER,d=25 an"
        PRINT H2, ! TAR (10); "THE DIAMETER,d=25 ag"
        PRINT ! TAB {10); "AND THE ANGLE,A=30 deq"
4000 PRINT 122; ! TAB (10); "AND THE ANGLE,A=30 deg"
4010 Print ! tab (5); "then calculate the value of ref"
4020 PRINI f2, ! TAB (5); "THEN CaLCULATE THE value of ref"
4030 PRINT ! TAB (5) "INPUT YGUR ANSHER"; : INPUT RO
4040 PRINT H2, ! TAB (5) "INPUT YOUR ANSHER'; : PRINT h2, RO,
4050 JF ABS(Fgef - RO)< 0.1 THEN PLOT "CORRECT", 70, 10 SIZE 3 ELSE 4090
4060 IF ABS(Ref - RO) < 0.1 THEN PRINT h2; "CORRECT"
4070 FOR I := 1 T0 1000 : NEXI I
4080 6070 4150
```

```
    4090 PRINT TAB (3) "NO!That is NOT right,try again"
    4100 FRINT h2, TAB (3) "NO!That is NOT right,try again"
    4110 Total := Total + 1
    4120 IF Total < 3 IHEN 4030
    GOSUB 4180
    G0TO 3850
    4150 Count := Count + 1
    4160 IF Count < 4 THEN CLS : HOME : 60T0 3860
    4170 G0IO 4270
    4180 PRINT ! "THIS IS THE CORRECT METHOD OF SOLUTION"
    4190 PRINT 52, ! "THIS IS THE CORRECT HETHOD OF SOLUTION*
    4200 PRINT ! TAB (5); "REF = M-d(1+cotanA)*
    4210 PRINT A2,! TAB (5); "REF = W-d (1+cotanA)"
    4220 PRINT ! TAR (5); "; "-25(1)+cotan30)="; Ref; "ma"
    4230 PRINI H2;! TAB (5); N; "-25(1+cotan30)="; Ret; "ma"
    4240 FOR I := 1 TO 3000 : NEXT I
4250 CLG : HOME
4260 RETURN
4 2 7 0 ~ E N D P R O C ~
4280 PROCEDURE Graph
4290 GLOBAL Fredt
4300 PRINT h2, Freds
4310 PRINT f2, "Graphs"
4320 CLG : SET BRUSH 0 : AREA 35, 95; 25, 105; 25, 185; 35; 195; 295, 195; 305; 185; 305; 105; 295, 95
4330 SEI RRUSH 15; AREA 30, 100; 20, 110; 20; 190; 30, 200; 290, 200; 300,190; 300, 110; 290, 100
4340 SEI BRUSH 10: PLOT "GRAPH5",65, 140 SIIE 4
4350 PLOT 'F & N LEVEL", 30, 110 SIIE 3
4360 FOR I := | T0 2000: HEXT |
4370 CLS : HOME
```

```
    4380 AREA 0, 0; 0, 249; 319, 249; 319, 0 RRUSH 4 STVLE 3
    4390 AREA 2, 2; 2, 247; 317, 247; 317, 2 RRUSH 4 STYIE 3
    4400 SET BRUSH 14 : PLOT "GRAPHS", 140,225
    4410 PLOT "(1) STRAIGHT LINE GRAPHS: Y = AX+8 ", 10, 205
    4420 PLOT '(2) QUADRATIC GRAPHS: Y=AX+X+BX+C', 10, 185
    4430 PLOT 'CHOOSE A NuHBER AND PRESS ENIER KEY. ", 20, 125
    4440 PLOT "yOU hilL NEED a CALCULATOR." 45, 105
    4450 SET CURPOS 20, 20
    4460 Count:= 1
    4470 INPUT Chosse
    4480 ON Choose 60SU8 4500,5460
    4490 IF Choose > 2 THEN 4370
    4500 Axes
    4510 FOR Count := 1 TO 10 STEP 2
4520 A := RND(6)
4530 B := RND(10)
4540 X1:=-100:Y1:=A & X1+B\geq10
4550 X2:= 100: Y2:=A # X2+B*10
4560 SEI RRUSH Count
4570 LINE X1, Y1; X2, Y2
4590 SET HRIIING I TO 50, 20; 60, 22
4590 SET HRITING 1: SET PAPER 3
4600 CLS
4610 SET HRITJHG 1 : INPUT "A"; Al: IF ABS(AI - A) < 1 THEN PRINT " CORRECT" ELSE PRINT" tRY AGAIN"
    : 60504610
        Answer $:= 6ET$0
4 6 5 0
        SET BRUSH 0: PLOT "PRESS AMY KEY TO CONTINUE", 20, -90
```

4660
CLS

4670

4680 Âxes
4690 FOR Count :=1 TO 10 SIEP 2
$4700 \mathrm{~A}:=-\{\mathrm{RND}(6)): 8:=\operatorname{RND}\{10\}$
$4710 \quad X 1:=-100: Y 1:=A \pm X 1+E+10$
$4720 \quad X 2:=100: Y 2:=A \pm X 2+B \geq 10$
4730 SET BRUSH Count
4740 LIME $X_{1}, Y_{1} ; X_{2}, Y 2$

4830 CLS : MEXT Count
4840 Axe5
4850 FOR Count $:=1$ TO 10 STEP 2
$4860 \quad A:=\operatorname{RND}(6): B:=-($ RND $(10))$
NEXI Count SEI HRITINE 1 T0 50, 20; 60, 22 SET HRITING 1 : SET PAPER 3 CLS : 60704780

SET brush 3 : plot 'press any xey to contibue'; $20,-90$
Answer $:=$ GETt ($)$
SET BRUSH $0:$ PLOT "PRESS ANY KEY TO CONTINUE", $20,-90$
$X 1:=-100: Y 1:=A \pm X 1+B \pm 10$
$X 2:=100: Y 2:=A \pm X 2+B \geq 10$
SEI BRUSH Count
LIME X1, Y1; X2, Y2

CLS

INPUT "R"; BL: IF ABS(BI - B) (1 then PRINT "CORRECT" ELSE PRINT" TRY AGAIN": gOTD 4790

SET hRIING 1 T0 50, 20; 60, 22 : SET HRITING 1 : set paper 3


```
        : 6050 4930
4940
```


4950

 4 9 8 0 ~ C L S ~ : ~ N E X T ~ C o u n t ~
 4990 Axes
 5000 FOR Count :=1 TO 10 STEP 2
 5010 A:= - (RND(6)) : B:=-(RND{10))
 5020 X1:=-100: Y1:=A*X1+B*10
 5030 X2:= 100:Y2:=A # X2+E : 10
 5040 SET BRUSH Count
 5050 LINE X1, Y1; X2, Y2
 5060 SET HRITING ITO 50, 20; 60, 22
 5070 SET HRITING 1: SET PAPER 3
 5080 CLS
 5090
    ```

```

 : GOT0 5090
 5100 INPUT " B"; B1 : IF ABSIBI - B) < I THEN PRINT - CORRECT " ELSE PRINT - TRY AGAIN": 60TO 5100
5110 SET GRUSH 3 : PLOT "press any kEY TO CONTINUE", 20,-90
5120 An5mer$:= GEI$()
5130 SEI BRUSH 0 : PLOT "PRESS ANY KEY TO CONTINUE", 20, - 90
5140 CLS ; HEXT Count
5150 SET WRTTING O
5160 ENDPROC
5170 PROCEDURE Axes
5180 SET HODE 80, 200, 200
5190 SET ORIGIN 100, 100
5200 SET PEN 2

```
```

 5210 SEI BRUSH 3
 5220 LINE - 100, 0; 100,0
 5230 LINE 0, - 100; 0, 100
 5240 FOR I := 0 TO 200 STEP 5
 5250 LINE - 100 + I, 5;-100 + 1,0
5260 NEXT I
5270 FOR J := 0 IO 200 STEP 5
5280 LINE - 5, -100 + J; 0, - 100 + J
5290 NEXT J
5300 FOR In :=0 TO 200 STEP 10
5310 LINE - 100 + In;-5;-100+ In, 0
5320 NEXT In
5330 FOR VIN:=0 50 200 STEP 10
5340 LINE 3, -100 + Vin; 0, - 100 + Vin
5350 NEXT Vin
5360 SET RRUSH 2
5370 PLOT '-10", 3,-102;-100,-19
5380 PLOT '-5", 3, - 52; - 52, - 19
5390 PLOT "5', 5, 48; 50, - 19
5400 PLDT '10', 5, 95; 95, - 19
5410 PLOT 'Y = AX + B', - 90,90
5420 PLDT "Detersine the values"; - 90, 80
5430 PLOT 'of A and 8 from the graph.', - 90,70
5440 PLOT "A and B are integers.", - 90, 60
5450 ENDPROC
5460 FOR Count := 1 T0 10 STEP 2
5470 Axes2
5480 Text
5490 A := RND(3) : B := - (RND(5)) : C := - (RND(8))

```
```

5500 FOR x := - 10 T0 10 STEP 0.2
5510 Y:= A \# X X X + B + X + C
5520 SEI ERUSH 2
5530 POINTS X \& 5, Y STYLE 2
5540 NEXT X
5550 R1:= 1-B-SART(\#2-4*A*Cl)/{2*A)
5560 R2:={-B+SQRT(目2-4\#A\#C)}/(2*A)
5570 SEI CURP05 50, 3 : SET PEN 3: PRINT "Y = "; A; "X 2 ' ; B; "X "; C
5580 SET PEN 3 : SET CURPOS 50, 6: CLL 2
5590 JNPUT "INPUT LEFT ROOY' LeftI
5600 SET CURPOS 50,7 : IF ABS(RI - Left1) < 0.15 THEN PRINT "LEFT ROOT CORRECT" ELSE 5580
5610 SEI CURPOS 50, 8: PRINT 'TRUE VALUE ='; R1
5620 FOR I := 1 TO 1000 : NEXT 1 : SET CURPOS 50, 10: CLL 2
5630 INPUT 'INPUT RIGHT ROBT" RightI
5640 SET CURPGS 50, 11 : JF ABS(R2 - Right1) (0.15 THEN PRINT "RIGHT RODT CORRECT' ELSE 5620
5350 SET CURPOS 50, 12: PRINT "TRUE VALUE =2, R2
5660 FOR 1 := 1 TO 2000 : NEXT 1 : NEX] Count
5670 F0R Count := 1 T0 10 STEP 2
5680 Axe52
5690 Text1
5700 A := RND(3) : B := - (RND(5)) : C := - (RND{8))
5710 FOR X := - 10 TO 10 SIEP 0.2
5720 Y:= A \# Y 2+B\#X+C
5730 SET BRUSH 2
5740 POINTS X * 5, Y STYLE 2
5750 NEXT X
5760 R1:= (-B-SART(B2-4*A*Cl)/(2*A)
5770 R2:= (-B+S⿴RT(B2-4*A*C))/(2*A)
5780 SET CURPES 50, 3 : SET PEN 3 : PRINT 'Y = "; A; "X 2 "; \&; "X "; C

```
```

5790 ENDPROC
5B00 SET PEN 3 : SET CURPOS 50,6 : CLL 2
5810 IMPUT "ImPUT LEFT ROOT' Left!
5820 SET CURPOS 50, 7 : IF ABS(R1 - Left1) < 0.15 THEN PRINT "LEFT ROOT CORRECT" ELSE 5800
5830 SET CURPOS 50, 8 : PRINI 'TRUE VALUE ='; R1
5840 FOR I := 1 T0 1000 : HEXT I : SET CURPOS 50, 10: CLL 2
5850 INPUT 'INPUT RIGHT ROOT' RightI
5860 SET CURPOS 50, 11 : IF ABS(R2 - Right1) < 0.15 THEN PRINT "RIGHT ROOT CORRECT" ELSE 5840
5870 SET CURPOS 50, 12 : PRINI 'TRUE YALUE ="; R2
5880 FOR I := 1 T0 2000 : HEXT 1 : HEXT Count
5890 SET HODE 40:60TO 310
5 9 0 0 ~ P R O C E D U R E ~ R o u n d ~
5910 GL0BAL Freds
5920 PRINT H2, Fred\$
5930 PRINT H2, "Properties of a Circle"
5940 CLG : SET BRUSH 0 : AREA 35, 95; 25, 105; 25, 185; 35, 195; 295, 195; 305; 185; 305, 105; 295,95
5950 SET BRUSH 15 : AREA 30, 100; 20, 110; 20, 190; 30, 200; 290, 200; 300, 190; 300, 110; 290, 100
5960 SET BRUSH 4 : PLOT "TERMINOLOGY", 75, 170 SIIE 2
5970 PLOT "and properiIES OF', 27, 150 SILE 2
5980 PLOT "THE CIRCLE', 80, I30 SIIE 2
5990 SET BRUSH 9 : PLOT "F levEL"; 100, 100 SILE 2
6000 FOR I := 1 50 2000; NEXT I
6010 CLG : SET RRUSH 4 : PLOT "TERMJANLOGY \& PROPERTIES OF THE CIRCLE", 10, 235
6020 SET BRUSH 4 : CIRCLE 50, 160, 180 STYLE 3
6030 PLOT '0", 157, 173
6040 PLOT "A circle is a plane figure enclosed by a", 1, 115
6050 PLOt "curved line,every point on which is equi", 1, 105
6060 FLOT "distant from a point within called the"; 1, 95
6070 PLOT "CENTRE.0 is the centre of the circle.", 1, 85

```
```

 3080 FOR I := 1 T0 5000 : NEXT I
 SET BRUSH 2 : LINE 160, 180; 208, 190
 PLOT "A', 212;190
 PLOT "r', 180, 190
 PLOT "The distance from the centre to the ", 15,75
 PLOT "curve,0A,is called the RADIUS,r, of the", 1, s5
 PLOT "circle.", 1, 55
 FOR I := 1 IO 3000: NEXT I
 SET BRUSH 15 : LINE 160, 130; 160, 230
 PLOT "G*; 162, 218
 PLOT "C", 162,130
 PLOT "Any straight Jine passing through the", 15, 45
 PLOT *d*, 150, 180
 6210 PLOT "centre and touching the circuaference", 15, 35
6220 PLOT "at each End as BC does is called the", 15, 25
6230 PLOT "BIAREJER,d.The diameter is twice the", 15, 15
6240 PLOT "length of the radius.d=2r.", 15, 5: FOR I := 1 50 5000: NEXT I
6250 PLOT "PRESS SPACE-BAR", 5; 135
6260 PLOT "T0 COMIINJE", 5, 125
6270 Ansmer % := GEIS() : CLG
S280 CIRCLE 50, 160, 180 STYLE 3
6290 SET BRUSH 6 : LINE 160, 130; 160, 230
6300 PLOT 'd', 165, 185 : SET BRUSH 15
6310 SET BRUSH 6
6320 PLOT "The boundary of a circle, that is the", 15, 115
6330 PLOT "periaeter, is called the CIRCUMFERENCE,", 15, 105
6340 PLOT "c.c/d is equal to the constant P1.", 15; 95
6350 PLOT "PI=3.142 to three decioal places.", 15, 85
6360 SET DEG TRUE : SLICE 50, 0 50 115, 160, 180 STYLE 3

```
```

5370 SET BRUSH 1 : LINE 160, 180; 205, 159
6380 SET BRUSH 15 : PLOT '0', 157, 174
6390 SET BRUSH 6: POINTS 205, 159; 160,180
6400 FOR I := 1 TO 6000: NEXI I
6410 SET BRUSH 5 : LINE 97, 130; 119, 230: LINE 160, 180; 112, 191
6420 SET BRUSH 15 : PLOT "H", 100, 192 : 5ET RRUSH 5 : PLOT "F", 88, 125
6430 PLOT "G", 110, 230
6440 PLOT "A TANGENT to a circle is a straight", 15, 65
3450 PLOT 'line which seets the circle at one", 15, 55
6460 PLOT "point,4.FG is a Tangent to the circle.", 15,45
6470 PLOT "If radius OH is dramn then FHO is", 15, 35
6480 PLOT "a RIGHT-ANELE.", 15, 25: FOR I := 1 TO 7000 : NEXT \&
6490 SET ERUSH 3 : PLOT 'PRESS SPACE-BAR TO CONTINIE.*,50,5
6500 An5mer: := 6EI5():CLG
6510 SEI BRUSH 2 : SLICE 50, 60 T0 120, 160, 180
6520 SEI BRUSH 15: CIRCLE 50, 160, 180 STYLE 3
6530 SET BRUSH 15 : PLOT '0", 155, 177
6540 PLOT "X", 210, 150 : PLDT "Y", 210, 200
6550 PLOT 'The shaded portion 0Xy is called a', 5, 115
6560 PLBT "SECTOR.", 5, 105
6570 PlOI "If the sector is less than a seai-", 5,95
6580 PLOT "circle it is a MINOR SECTOR.If larger", 5, 85
6590 PLOT "tham a seai-circle it is a MAJOR SECTOR.', 5, 75
6600 FOR I := 1 T0 3000: NEXI I
6610 LINE 132,138;160,230
6620 PLDT "U", 122, 130
6630 PLOT "V", 160, 230
6640 PLOT "The line UV is a CHORD.', 5, 65
6650 FOR I := 1 T0 1000: NEXI I

```
```

6660 SET ERUSH S : FL00D 130, 180
6670 PLOT "The shaded portion UV is a SEGMENT.", 5, 55
6680 FLOT "The shortest distance betmeen U and V ', 5; 45
6690 PLBT 'along the circumference is called the', 5, 35
6700 PLBT "MINOR ARC.The reaaining part of the", 5; 25
6710 PLOT "circumference is the MAJOR ARC.", 5, 15
6720 FOR 1 := 1 T0 2000 : NEXT I
6730 SET BRUSH 4 : PLOT "PRESS THE SPACE bar t0 COnTINIE. " 30, 5
6740 Answer\$:= 6ET$0) : CL6
6750 CIRCLE 50, 160, 180 STYLE 3
6760 SET BRUSH 15 ; SLICE 50, 0 T0 57, 160, 180 STYLE 3
6770 PLOT '0", 165,190
6780 PLOT "r", 185, 185; 185, 230
6790 PLDT "An angle can be ocasured in DEGRESS or", 2, 115
6800 PLOT "RADIANS.A RADIAN is defined as the angle", 2, 105
6810 PLOT "formed at the centre of a circle by an", 2, 95
6820 PLOT "ARC equal in length to the RADIUS.", 2, 85
6830 FLOT "0 = 1 radian = 57.3 deg.", 30,65
6840 PLOT "2xPI radians = 360 degs.", 60, 45
6850 SET RRUSH 3 : PLDT "PRESS SPACE BAR TO CONTINUE", 50, 15
6880 Answert:= 6ET$():CL6
6870 SET RRUSH 2 : CIRCLE 50, 160, 180
6880 SEI BRUSH 15: PLBT "r", 185; 185
6890 LINE 160, 180; 210,180
\$900 PLOT '2', 235, 115; 180, 98
6910 PLOT "Area of a circle = PIxr", 50, 110
6920 PLOT "or PIxd", 125,90
6930 PLOT *--N", 150, 85
6940 PLOT "4", 160,80

```
```

6950 PLOT "Have a go at the follouing questions.", 10, 50
6960 PLOT "PRESS SPACE gAR TO CONTINUE',50, 30
6970 An54er %:= 6ET\$0
6 9 8 0 ~ R o u n d ~ I ~
690 Round2
7 0 0 0 ~ R o u n d 3
7010 Round4
7020 Round5
7030 EADPROC
7040 PROCEDURE Round
7050 CL6 : SET PAPER \& : SET BRUSH 8
7050 CIRCLE 40, 170, 200
7070 SET BRUSH 4: LINE 170, 200; 210, 200
7080 PLOT "r", 177, 200
7090 PLOT "AREA OF A CIRCLE PROBLEA', 1, 220
7100 Total := 0: Count := 0
7110 SET HRIIING I TO 1, 11; 40, 55
7120 SET HRITING 2 TO 1, 16; 40, 25
7130 LINE 0, 150; 319,150
7140 SET HAIHING 1 : SEI PAPER 15
7150 SEI HRITING 1 : CLS : SET WRIIING 2; CLS : SET PEN S
7160 R := RMD(50)
7170 PRINT I; "If the radius r ="; R; "ce then calculate"
7180 PRINT h2 !, "If the radius r ='; R; "Ca then calculate"
7190 PRINT 1; IAB (3); "the area of the circle shomn above."
7200 PRINT k2 !; TAB (3); "the area of the circle shomn above."
7210 SET CURPOS 0, 1: PRINT 2!"Input your answer for the area";
7220 SET HRIIING 2 : INPUT A1 : PRIHT A2 !; 'AREA = '; Al
7230 A := PI \# R \& R

```
```

7240 IF ABS(A - Al) < le-02 THEN SET BRUSH 1 ; PLOT "HELL DONE', 60, 10 SIIE 3 ELSE 7270
7250 IF ABS(A - Al) < Ie-02 THEN PRINT G2 !, "HELL DONE"
7250 FOR 1:= 1 50 2000: NEXI \ : CLS 2: IF ABS(A - Al) < le-02 THEN 7350
7270 PRINI 2, TAB (2) "No! You have gade a mistake,try again"
7280 PRINT H2 !, TAB (2) "No! You have made a gistake,try again"
7290 FOR I := 1 T0 1000 : NEXT I
7300 CLS 2
7310 Total := Total + 1
7320 If Total < 3 IHEN 7210
7330 605u8 7380
7340 60507050
7350 Count := Count + 1
7360 IF Count < 4 THEN 7150
7370 6070 7470
7380 SET CURPOS 0, % : PRINT 2 ! TAB (1) "THIS IS THE CORRECT METHOD OF SOLUTION."
7390 PRINI h2 !, tAB (1) "this IS THE CORRECT METHOD DF gOLUTION."
7400 PRINT 2 !, TAB (7) "AREA = PIxRADIUS*RADIU5"
7410 PRINI L2 :, TAB (7) "AREA = PIxRADIUSxRADIUS"
7420 PRINT 2, TAG (7) "AREA = "; PI \# R * R; "CH2"
7430 PRINT H2 !; TAB (7) "AREA = "; PI \& R \# R;"CN2"
7440 PRINT 2 !, TAQ (6); "PRESS SPACE-GAR TO CONTINUE"
7450 Answer\$:= 6ET\$0
7460 RETURN
7470 EMDPROC
7480 PROCEDURE ROund?
7490 CLG : SET PAPER ! : SET GRUSH 8
7500 CIRCLE 40, 170, 200
7510 SET BRUSH 4: LINE 130, 200; 210, 200
7520 PLOT "d', 168,200

```
```

7530 PLOT "AREA OF A CIRCLE PROBLEM", 1, 220
7540 Total := 0: Count :=0
7550 SET HRIIING \& T0 1, 11; 40, 15
7560 SET HRIIIHG 2 T0 1, 16;40; 25
7570 LINE 0, 150; 319; 150
7580 SET HRIIING 1: SET PAPER 15
7590 SET MRIIING ! : CLS : SET HRITING 2: CLS : SET PEA 6
7600 0:= RND(25)
7610 PRINT 1, "If the diameter d="; D; "co then calculate"
7620 PRINT t2 !, 'If the diameter d ="; D; "ca then calculate"
7630 PRINT 1; TAB (3); "the area of the circle shown above."
7540 PRINT f2 !; TAR (3); "the area of the circle shown above."
7650 SET CURPDS 0, 1: PRINT 2! TAB (2) "mput your an5uer for the area";
7650 SET KRIIING 2 : INPUT AI : PRINT H2; "AREA = "; AI
7670 A := PI * D \# | / 4
7680 IF ABS(A - AI) < le-02 THEN SEI BRUSH \& ; PLOT "HELL DONE", 60, 10 SIZE 3 ELSE 7710
7690 If ABS(A - Al) < le-02 THEN PRINT h2!,* *ELL DONE*
7700 FOR I := 1 T0 2000 : HEXT I : CLS 2 : IF ABS(A - Al) (Ie-02 THEN 7790
7710 PRINT 2, TAR (2) "No! You have oade a gistake,try again"
7720 PRINT \&2 !, TAB (2) "Na! You have made a mistake,try again"
7730 FOR I := 1 T0 1000: NEXI I
7740 CLS 2
7750 Total := Total + 1
7760 If Total < 3 THE\& 7650
7770 GOSUB 7820
7780 6070 7490
7790 Count := Count + 1
7800 IF Count < 4 THEN 7590
7810 6070 7910

```
```

7820 Set Curpos 0, 1: Print 2! Tab (1) 'this is the correct method of solution.'
7830 Print h2 !, tab (1) "this is the correct method of solumon."
7840 Primt 2!, TAB (7) "AREA = PIxdiAIdIA"
7850 PRINT H2 !, TAB (7) "AREA = PIxDIAxDIA"
7860 PRINI 2, TAR (7) "AREA = '; PI \# D \# D; "CM2'
7870 PRINT L2 !, TAB (7) "AREA = '; PI \& D \# 0; "CH2"
7880 PRINT 2 !, TAB (6); "PRESS SPACE-BAR tO CONTINUE"
7890 Answer!:= 6ET\$0
7900 RETURH
7910 ENDPROC
7920 Pracedufe RoundJ
7930 CLG: SET PAPER 15 : SET RRUSH \&
7940 CIRCLE 40, 170, 200 STYLE 3
7950 SET DEG FALSE
7960 SET RRUSH 4:SLICE 40, 1 T0 2, 170, 200
7970 SET RRUSH 15: PLOT '0', 180, 195
7980 SET RRUSH 8: PLOT 'A', 205, 220
7990 PLOT 'R", 205, 168
8000 PLOT "r", 185, 210
8010 PlOT "LENGTH OF ARC", 1, 235
8020 PLOT 'PROBLEM', 5, 225
8030 PLDT * ARC,AB = RADIUS * OIRAD)", 1, 148
8040 Total:=0:Count :=0
8050 SEI MRITING 1 T0 1, 12; 40, 15
8060 SET HRITING 2 T0 1, 16; 40, 25
8070 LINE 0, 148; 319, 148
8080 SET HRIIING 1:CLS: SET HRIING 2:CLS : SEI PEN 6
6090 SET DEG FALSE
8100 R:= RND(20) + 5: Angle := RND(1) * 2 \& PI

```
```

8110 PRINT 1, IAB (5); "If the radius ='; R; "Ca and the"
8120 PRINT L2 !, TAB {5); "If the radius ='; R; "ce and the"
gi30 PRINT 1, TAB (5) *angle = "Angle; * rads then"
8140 PRJNT A2 !, TAB (5) "angle = "Angle; * rads then"
8150 PRINT 1, TAB (5) "calculate the ARC length AB"
8160 PRINT %2 !, TAB (5) "calculate the ARC length AB'
9170 SET CURPQS 0, 1 : PRINT 2 ! ' Input your answer for the arc length ';
8180 SET HRITING 2 : INPUT Arcl : PRINT G2 !; "ARC = "; Arcl
8190 Arc := 8 * Angle
8200 IF ABS(Arc - Arci) < le-02 THEN SET BRUSH 1: PLOT "HELL DONE"; 60, 10 SIIE 3 ELSE g230
8210 IF ABS(Arc - Arcl) (le-02 THEN PRINT h2 !, "HELL DONE"
8220 FOR I := 1 T0 2000: NEXI 1 : CLS 2 : JF ABS(Arc - Arci) < 1e-02 THEN 8310
8230 PRINI 2, TAB {2) "No! You have made a nistake,try again"
8240 PRINT h2 !, TAR (2) "No! You have made a mistake,try again"
8250 FOR I := 1 TO 1000 : NEXT I
8260 CLS 2
8270 Total := Total + 1
8280 IF Total < 3 THEN 8170
8290 60SUB 8340
8300 G0T0 7930
8310 Count := Count + 1
8320 IF Count < 4 THEN B0BO
8330 60T0 8430
8340 SET CURPOS 0, 1 : PRINT 2 ! TAR (1) "THIS IS THE CORRECT METHOD OF SOLUTION.*
9350 PRINT I2 !, TAB (1) 'IHIS IS THE CORRECT METHOD OF SOLUTION.*
8360 PRINT 2 !, IAB (7) "ARC =RADIUS X ANGLE{RAD)"
8370 PRINT h2 !, YAB (7) "ARC =RADIUS X ANGLE(RAD)"
8380 PRINT 2; TAB {7) 'ARC = '; R \& Angle; 'CM'
8390 FRINI \&2!, IAB (7) *ARC = '; R * Angle; "CM*

```
```

 8400 PRINT 2!, TAB (6); "PRESS SPACE-RAR TO CONTINUE"
 8410 Ansmer $:= 6ET$0
 8420 RETURN
 8430 ENDPRBC
 8440 PROCEDURE ROURd4
 8450 CL6 : SET PAPER 15 : SET BRUSH 8
 9460 CIRCLE 40, 170, 200 STYLE 3
 8470 SET ERUSH 4: SLICE 40,1 TD 2,170, 200
 8480 SET BRUSH 15 : PLOT '0', 180, 195
 8490 SET BRUSH 8 : PLOT "A", 205, 220
 8500 PLOT *B", 205,168
 8510 PLOT 'r", 185, 250
 8520 PLOT "LENGTH OF ARC", 1, 235
 8530 PLOT "PRORLEF", 5, 225
8540 PLOI : ARC,AB = RADIUS XO(RAD)", 1, 148
B550 Total :=0: Count :=0
8560 SET HRITING 1 TO 1, 12; 40, 15
8570 SEI HRITING 2 T0 1, 16; 40, 25
9580 LINE 0, 148; 319,148
8590 SET HRITING 1 : CLS : SET HRITING 2: CLS : SET PEH 6
8600 SET DEG FALSE
8610 R := RND (20) + 5 : Arc := RND (40) + 10
8620 PRINT 1, TAB (5); "If the radius ='; R; "Cs and the"
8630 PRINT H2 !, TAE (5); 'If the radius =n; R; "ce and the"
8640 PRINT 1, TAB (5) "ARC = " Arc; " ce then"
8650 PRINT 62 !, TAB (5) "ARC = "Arc;' ce then"
8650 PRINI 1, TAB (5) "calculate the angle 0 in rads"
8670 PRINT H2 !, TAB (5) "calculate the angle 0 in rads"
8680 SET CURPOS 0, 1: PRINT 2 ! TAB (5) "Input your answer for the angle 0*

```
```

8690 SET HRITING 2 : INPUT Anglel : PRINT 42 !; "angle = "; Angle!
8700 Angle:= Arc / R
8710 3F ABS(Angle - AngleI) (le-02 THEN SET BRUSH 1: PLOT "THAT'S RIGHT", 20, 10 SIIE 3 ELSE 8740
8720 IF ABS{Angle - Anglel) (le-02 THEN PRINT h2 !, "THAT'S RIGHT"
8730 FOR I := 1 T0 2000 : NEXI 1 : CLS 2 : IF ABS{Angle - Anglel) < le-02 THEN 8820
8740 PRINI 2, TAB (2) "No! You have made a aistake,try again"
8750 PRINT G2 !, TAB {2} "No! You have sade a gistake,try again"
9760 FOR I := 1 T0 1000 : NEXI I
8770 CLS 2
8780 Total := Total + 1
8790 IF Total < 3 THEN 8680
8800 GOSUB 8850
8810 6070 8450
8820 Count := Count + 1
8830 IF Count < 4 THEN 8590
8840 6050 8940
8850 SET CURPOS 0, 1 : PRINT 2 : TAB (1) "THIS IS THE CORRECT MEIHOD OF SOLUTION."
8850 PRINT H2 !, {AB (1) 'THIS IS fHE CORRECT METHOD OF SOLUTION.*
8870 PRINT 2!, TAB (7) "ANGLE 0 =ARC/FADIUS"
8880 PRINT H2 !, TAB (7) "ANGLE 0 = ARC/RADIUS"
8990 PRINT 2, TAB (7) "ANGLE = "; Arc / R; "Rads"
8900 Print h2 !, fas (7) "ANGLE = '; Art / R; "Rads"
8910 PRINT 2 !, TAB (6); "PRESS SPACE-BAR TO CONTINUE"
8920 Ansmer : := 6ET\$()
8930 RETURN
8940 ENDPROC
8950 PROCEDURE Round5
8960 CLG : SET PAPER 15 : SET RRUSH 8
8970 CIRCLE 40, 170, 200 5TYLE 3

```
```

8980 PLOT "AREA OF SECTOR", 20, 235
8990 PLOT "PRORLEFS', 35, 225
9000 PLOT * AREA OF SECTOR = RADxRADxANGLE(rads)/2",0,148
9010 Total := 0 : Count := 0
9020 SEI HRITING I TO 1, 12;40, 15
9030 SET HRITINF 2 T0 1, 16; 40, 25
9040 LIME 0, 148; 319; 548
9050 SET HRITING 1: CLS: SET HRITING 2: CLS : SET PEN 6
9060 SET DEG FALSE
9070 R := RND(20) + 5: Angle := RND(1) : 2*P3 + 0.25
9080 SET RRUSH 4 : SLICE 40, 0 T0 Angle, 170, 200
9090 PRINT 1; TAB (5) "If the radius ="; R; "cm and the"
9100 PRINT h2!, IAB (5); "If the radius ='; R; "ce and the"
9110 PRINT 1, "angle = "Angle; "rads then calculate"
9120 PRINT 12 !, TAB (5) "angle = "Angle; " rads then"
9130 PRINI 1, the area of the SECTOR in co2"
9140 PRINT [2 !, TAB (5) "calculate the area of the SECTOR in ca2"
9150 SET CURPOS 0, 1: PRIN1 2! TAB (5) "Input your an5mer for the area"
9160 SET HRITING 2: IMPUT Areal : PRINT h2 !; "ared = '; Areal
9170 Sector Area := R \& R Angle / 2
9180 IF ABS(Sector Area - Areal) < le-02 THEN SET BRUSH I : PLOT "THAT'S RIGHT", 20, 10 SIIE 3 ELSE 9210
9190 IF ABS(Sector Area - Areal) < le-02 THEN PRINT h2 !, "THAT'S RIGHT"
9200 FOR I := 1 T0 2000 : NEXT I : CLS 2 : JF ABS{Sector Area - Areal) < le-02 {HEN 9290
9210 PRINT 2, TAS (2) "No! You have gade a sistake,try aqain"
9220 PRJNT h2 !; TAB (2) "No! You have gade a sistake,try again"
9230 FOR I := 1 T0 1000: NEXI I
9240 ELS 2
9250 Total := Total + 1
9260 IF Total < 3 THEN 9150

```
```

9270 GOSUB 9320
9280 6070 8960
9290 Count := Count + 1
9300 IF Count < 4 THEN 9050
9310 60T0 9410
9320 SET CURPOS 0, 1 : PRINI 2! TAB (1) "thIS IS THE CORRECT MEIHOD of SOLUTION."
9330 PRINT t2 :, TAB (1) 'THIS IS THE CORRECT HETHOD OF SOLUTIOK.*
9340 PRINT 2!, TAB (2) "AREA OF SECTOR = RAD }\times\mathrm{ RAD }\times\mathrm{ ANELE/2"
9350 PRINT H2 !, TAB (7) "AREA OF SECTOR = RAD % RAD }\times\mathrm{ ANGLE/2"
9360 PRINT 2, TAR (2) "AREA OF SECTOR = "; R * R \& Angle/ 2; "ca2"
9370 PRINT 42 !, TAB (7) "AREA OF SECTOR = "; R * R * Angle / 2; "ca2"
9380 PRINT 2 !, TAB (6); 'PRESS SPACE-BAR TO CONTINUE"
9390 Answer: := GEI\$()
9400 RETURN
9410 ENDPROC
9420 PROCEDURE Azes2
9430 SET MODE 80, 100, 120
9440 SET ORIGIN 50, 20
9450 SET PEN 2
9460 SEI BRUSH 3
9470 LINE - 50, 0; 50,0
9480 LINE 0, -20;0,100
9490 FOR I := 0 TO 110 SIEP 2.5
9500 LINE - 50 + I, 1; - 50 + I, O
9510 NEXT I
9520 FOR J := 0 TO 120 SIEP 5
9530 LIME - 0.5, - 20 + J; 0, - 20+J
9540 NEXT J
9550 FOR In := 0 TO 100 SIEP 1.25

```
```

9560 LINE - 50 + In, - 1; - 50 + In,0
9570 NEXT Im
9580 FOR Vin:= 0 10 120 STEP 2.5
9590 LINE 0.3,-20+Vin; 0, -20+Vin
9600 NEXT Vin
9610 SET BRUSH 2
9620 PLOT "-10", - 50, - 8
9630 PLOT "-5", - 27, - 8
9640 PLOT *5", 25;-8
9650 PLOT '10', 48;-8
9660 PLOT "-20', 2, - 21
9670 PLOT '20', 3, 18
9690 PLOT * 40", 3, 38
9690 PLOT "60",3,58
9700 PLBT *80", 3,78
9710 PLOT '100'; 3,96
9720 SET BRUSH 3
9730 ENDPROC
9740 PROCEDURE Text
9750 PLOT 'Y = AXXX + BX + C', - 45,90
9760 PLOT "Determine the values", - 45, 85
9770 PLOT "of the ROOTS of the', - 45, 30
9780 PLOT "equation from the graph."; - 45,75
9790 ENDPROC
9800 PRDCEDURE TextI
9810 PLOT "Calculate the R00TS of", - 45,85
9820 PLOT "the equation shomn", - 45, 80
9830 PLOT "by using the general foraula', - 45,75
9840 ENDPREC

```
```

 9850 PROCEDURE IrigI
 9860 EL0BAL Freds
 9870 PRINI h2, Fredt
 9880 PRINT H2, "Trigonoestry"
 9890 CL6 : SET PAPER 1 : SET BRUSH 0: AREA 35, 95; 25, 105; 25, 185;
 35, 195; 295, 195; 305, 185; 305, 105; 295, 95
 9900 SET BRUSH 15 : AREA 30, 100; 20; 110; 20, 190; 30, 200; 290, 200; 300, 190; 300, 110; 290, 100
 9910 SET BRUSH 8 : PLOT "TRIGOMOMETRY', 20, 150 SIIE 3
 9920 SET BRLSH 3 : PLOT 'F LEvEL", BO, 120 SIIE 3
 9930 FOR I := 1 T0 1000 : NEXI I
    ```

```

 9950 PLGT 'jhe right-angleg thianglea; 60, 220
 9960 SET bRUSH 15: AREA 10, 150; 100, 210; 100, 150 STYLE 3
 9970 LINE 90, 150;90, 150;100,160
 9980 PLOT 'A", 5, 140 : PLOT "B", 105, 140: PLOT "C", 105, 210
 9990 SET RRUSH 10: PLOT 'a"; 105, 175: PLOT "b", 45, 185: PLOT "c", 50, 140
 10000 PLOT "SINE A = a/b", 5, 120
 10010 PLOT "COSINE A = c/b*,5,110
10020 Plot "tangent A =a/c", 5, 100
10030 SET BRUSH 14 : PLOT "SINE C = c/b", 5,80
10040 PLDT "COSINE C = a/b", 5,70
10050 PLOT "TANGENT C = c/a', 5,60
10060 SET ERUSH 6 : PLOT 'Froa the above it', 5, 40
10070 PLOT "can be seen that", 5, 30
10080 PLOT "SIH A = COS C",5,20
10090 PLOT "COS A = SIN C", 5, 10
10100 PLOT "TAN A = 1/TAN C", 5,0
10110 SET BRUSH 15: LINE 160, 210; 160,0
10120 PLOT 'A = 90- C', 185,190

```
```

10130 PL01 "Worked exapple", 175,170
10140 PLOT "If a = 34.5 co and", 165,150
10150 PLOT *C = 23.6 ca,", 165,140
10160 PLOT 'solve the triangle.", 165, 130
10170 PLOT 'TAN A = a/c', 165,120
10180 PLOT 'TAN A = 34.5/23.6",165;110
10190 PLOT "TAN A = 1.462"; 185,100
10200 PLOT "ARCTAN 1.462 = A", 165,90
10210 SET RRUSH 2 : PLOT "A = 55.63 degs", 175,80
10220 SET BRUSH 15 : PLOT ' }\textrm{C}=90-55.6\mp@subsup{3}{}{\prime\prime},175,7
10230 SET BRUSH 2: PLOT 'C = 34.37 deg5', 175, 60
10240 SET BRUSH 15 : PLOT "SIN A = a/b", 175,50
10250 PLOT "b = a/SIN A", 175,40
10260 PLOT 'b = 34.5/0.825', 175,30
10270 SET BRUSH 2 : PLOT "b = 41.80 ca*, 175,20
10280 FOR 1 := 1 TO 200: NEXT I
10290 SET BRUSH 13: PLOT 'PRESS SPACE-EAR', 175; 10
10300 PLOT 'TO CONTINUE", 195,0
10310 Answer! := GET\$()
10320 Alpha
10330 Beta
10340 6agaz
10350 Alphal
10360 Epsilob
10370 Phi
10380 ENDPROC
10390 Pracedure alpha
10400 SET PAPER 1: Triangle
10410 Total :=0 : Count := 0

```
```

10420 SET HRIIING ITO 1, 11; 40, 55
10430 SET HRITING 2 T0 1, 16;40, 25
10440 LIME 0, 150; 319,150
10450 SET HRITINS 1 : SEI PAPER 15
10450 SET HRIIING 1 : CLS : SET HRITING 2: CLS : SEI PEN 6
10470 0
10480 Hyp := Opp + RHD(10) + 10
10490 PRINT 1 !, TAB {5}; "If a ="; Opp; "ca and b="; Hyp;" then"
10500 PRINT h2 !, TAB' (5); 'If a ="; Opp; "ca and b ="; Hyp; "cs then"
10510 PRINT 1; TAB {3}; "calculate angle A."
10520 PRINT h2, TAR (3); 'calculate angle A."
10530 SEI CURP05 0, 1 : PRINT 2 !, TAB (2); "Input your ansmer for angle A";
10540 PRINT t2 !, TAE (2); "Jnput your answer for angle A";
10550 SEI HRITING 2 : INPUT Angle
10560 PRINT h2; Angle
10570 SEI DEG TRUE
10580 X := Opp / Hyp
10590 Anglel := ATA{X / SGRT(-X * X + 1)
10600 IF ABS(Angle! - Angle) \& le-02 THEN SET BRUSH 1: PLOT "CORRECT", 80, 10 SLIE 3 ELSE 10630
10610 IF AES(Anglel - Angle) (le-02 THEN PRINT th2, "CORRECT"
10620 FOR 1 := 1 TO 2000 : NEXT J : CLS 2 : IF ABS{Anglel - Angle) < le-02 THEN 10710
10630 PRINT 2, TAB (2) "No! That is not right,try again"
10640 PRINT ti2, TAG (2) "No! That is not right,try again"
10650 FOR I := 150 1000: NEXT I
10S60 CLS 2
10670 Total := Total + 1
10SBO IF Total < 3 THEN 10530
10690 GESUB 10740
10700 60T0 10400

```
```

10710 Count := Count + 1
10720 IF Count < 4 THEH 10470
10730 60T0 10830
10740 SET CURPOS 0, 1: PRINT 2! TAB (1) 'THIS IS THE CORRECT METHOD OF SOLUTION'
10750 print h2 !, tab (1) 'Ihis is the correct hethod of solution'
10760 PRINI 2!, TAB (7) "ANGLE A =ArcSin(a/b)"
10770 PRINT H2 !, TAB (7) *ANGLE A =ArcSib(a/b)*
10780 PRINT 2, IAB (2) "ArcSin("; Opp; '/"; Hyp; ")="; Angle1; "degs"
10790 PRINT h2, TAG (2) 'ArcSin("; Opp; '/'; Hyp; *)="; Anglel; "degs"
10800 PRINT 2 !, IAB (6); "PRESS SPACE-bAR tO CONTINUE"
10810 An5mer : : GE[\$0
10820 RETURN
10830 ENDPROC
10840 PROCEDURE Beta
10850 Iriangle
10860 Total :=0: Count := 0
30870 SET HRIHING I TO 1, 11; 40, 15
10880 SET WRITING 2 T0 1, 16; 40, 25
10890 LINE 0, 150; 319, 150
10900 SET HRITING 1: SET PAPER 15
10910 SET HRITING 1 : CLS : SET HRITING 2: CLS : SET PEN 6
10920 OPP := RND(100) + 20
10930 Hyp := Opp + RND(10) + 10
10940 PRINT 1 !, TAB (5); "If a ="; Opp; "ce and b ="; Hyp; "ce then"
10950 PRINT H2 !, TAB (5); "If a ='; Opp; "ca and b ="; Hyp; "ce then'
10960 PRINT 1; TAB (3); 'calculate angle C."
10970 PRINT H2, TAQ (3); 'calculate angle C."
10980 SET CURPOS 0, 1: PRINT 2 !, TAB (2); "Input your an5mer for angle C";
10990 PRINT A2 !, IAB (2); 'Input your answer for angle C";

```
```

11000 SET HRITIHG 2 : INPUT Angle
11010 PRINT h2, Angle
11020 X:= Opp / Hyp
11030 Anglel := 90- (ATH(X / SQRTi-X*X + 1)O)
11040 If ABS(Anglel - Angle) (le-02 then SET BRUSH 1: PLGT "CORRECT', 80, 10 SIIE 3 ELSE {1070
11050 IF ABS{Angle\ - Angle) (se-02 THEN PRINT h2, "CORRECT"
11050 FOR I := 1 50 2000: NEXI I : CLS 2 : IF ABS(Angle! - Angle) < fe-02 THEN |H150
11070 PRINT 2, IAB (2) "No! That is not right,try again"
|1080 PRINT h2, TAB {2) "No! That is not right,try again"
11090 FOR I := 1 T0 1000: NEXT I
11100 CLS 2
11110 Total := Total + 1
11120 If Total < 3 THEN 10980
11130 GOSuR 11180
11140 60T0 10850
11150 Count := Count + 1
11160 IF Count < 4 THEN 10920
11170 6070 11270
11180 SET CURPOS 0, 1 : PRINT 2 ! TAB (1) "IHIS IS THE CORRECT METHOD OF SOLUTION"
H1190 PRINT t2 !, IAB (H) 'THIS IS THE CORRECT METHOD OF SOLUTIOR"
11200 PRINT 2!, TAB (7) "ANGLE C =ArcCos(a/b)"
11210 PRINT H2 !, TAB (7) "ANGLE C =ArcCos(a/b)"
11220 PRINT 2, TAB (2) "ArcCos{"; 价; "/"; Hyp; "}="; Anglel; "deg5"
11230 PRINT f2, IAB (2) "ArcCos("; Opp; '/*; Hyp; ")='; Anglel; 'degs"
11240 PRINT 2 !, TAB (6); "PRESS SPACE-BAR tO CONTINUE"
11250 Answer\$:= GET\()
11260 RETURN
11270 ENDPRRC
11280 PROCEDURE Gagma

```
```

11290 Triangle
11300 Total := 0: Count := 0
11310 SET HRITING 1 T0 1, 11; 40, 15
11320 SET GRITING 2 T0 1, 16; 40, 25
11330 LINE 0, 150; 319,150
11340 SET HRITING I : SEI PAPER 15
11350 SET HRIIHE 1 : CLS ; SET HRITING 2:CLS : SEI PEA 6
11360 Opp := RND(100) + 20
11370 Adj := RNO(100) + 10
\$1380 PRINT 1 !, TAE (5); 'If a ='; Opp; "ce and c ='; Ad;; "cs then"
11390 PRINT h2 !, TAB (5); "If a ='; Opp; "ca and c ="; Adj; "ca then"
11400 PRINT 1; TAB (3); "calculate angle A."
11410 PRINT hi, TAB (3); "calculate angle A."
11420 SET CURPOS 0, 1 : PRINT 2 !, TAB {21; "Input your answer for angle A";
11430 PRINT h2 !, TAG (2); 'Input your ansmer for angle A';
11440 SET HRITING 2 : INPUT Angle
11450 PRINT h2, Angle
11460 X := Opp/Adj
11470 Anglel := ATN(X)
11480 IF ABS(Angle1 - Angle) < le-02 THEN SEI GRUSH 1 : PLOT "CORRECI', B0, 10 SIIE 3 ELSE 11510
11490 IF AES(Anglel - Angle) < le-02 THEN PRINT k2, "CORRECT"
11500 FOR 1 := 1 T0 2000 : NEXT 1 : CLS 2 : IF ABS(Anglel - Angle) < le-02 THEN 11590
11510 PRINT 2, TAB (2) "No! That is not right,try again"
11520 PRINT A2, TAB (2) "No! That is not right,try again"
11530 FOR 1 := \& T0 1000 : NEXT |
11540 CLS 2
11550 Total := Total +1
11560 IF Total < 3 THEN 11420
11570 G0sun 11620

```
```

11580 60T0 11290
11590 Count := Count + 1
11600 IF Count < 4 THEN I1350
11610 60T0 11710
11620 SET CURPOS 0, 1 : PRINT 2 ! TAB (1) "THIS IS THE CORRECI HETHOD OF SOLUTION'
11630 PRINT h2 !, tab (1) "this Is the correct hethod of solution"
11640 PRINT 2!, TAB (7) "ANGLE A =ArcTan(a/c)"
11650 PRINT h2 !, TAB (7) "ANGLE A =Arctan(a/cj*
11660 PRINT 2, TAB (2) "ArcTan('; Opp; "/"; Adj; ")=="; Anglel; "degs"
[1670 PRINT h2, TAB (2) "ArcTan("; Opp; '/'; Adj; ')="; Anglel; "degs"
11680 PRINT 2 !, TAB (6); "PRESS SPACE-BAR TO CONTINUE"
11690 An5Her\$:= GET\$()
11700 RETURN
11710 ENDPROC
11720 PROCEDURE Alpha!
11730 Triangle
11740 Total := 0: Count := 0
I1750 SET MRITING I T0 1, 11; 40, 15
11760 SEI HRIIINE 2 50 1, 16; 40, 25
11770 LINE 0, 150; 319,150
11780 SET HRITING 1 : SET PAPER 15
11790 SEI HRITING 1 : CLS : SET WRIINNG 2:CLS : SET PEH 6
11800 Opp := RND(100) + 20
11810 Angle := [NT(RND(1) * 80) + 1
11820 PRINT 1 !, TAB {4); "If a ="; Opp; "ca and A="; Angle; "degrees then"
11830 PRINT h2 !; IAB (4); "If a ='; Opp; "ca and A='; Angle; 'degrees then"
11840 PRINT 1; TAB (3); "calculate side b."
11850 PRINT H2; TAR (3); 'calculate side b."
11860 SET CURPOS 0, 1: PRINT 2!, TAB (2); "Input your an5uer for side b";

```
```

 11870 PRINT t2 !, TAB (2); 'Input your answer for side b";
 11880 SET HRITING 2 : INPIT B
 11890 PRINT 12, B
 $1900 SEI DEG TRUE
 11910 Sideb := Opp / SIN(Angle)
 11920 IF ABS(Sideb - B) < le-02 THEN SET BRUSH 1 : PLOT "CORRECT", 80, 10 SIIE 3 ELSE 11950
 \$1930 IF ABS{Sideb - B) < le-02 THEN PRINT 42, "CORRECT'
11940 FOR I := 1 t0 2000: NEXT I : CLS 2 : IF ARS(Sideb - B) < Ie-02 THEN 12030
11950 PRINT 2, TAB (2) "No! That is not right,try again"
11960 PRINT \&2, TAB (2) "No! That is not right,try again"
11970 FOR I := | T0 1000: MEXI I
11980 CLS 2
11990 Total := Total + 1
12000 IF Total < 3 THEN 11860
12010 GOSUB 12050
12020 60T0 11730
12030 Count := Count + 1
12040 IF Count < 4 THEN 11800
12050 60T0 12150
12060 SET CURPOS 0, 1: PRINT 2 ! TAB (1) "IHIS IS THE CORRECT HETHOD OF SOLUTION"
12070 PRINT h2 !, TAB (1) "THIS IS THE CORRECT METHOD OF SOLUTION"
12080 PRINT 2!, TAB (7) "Side b = a/SinA"
12090 PRINT \&2 !, TAB (7) "Side b = a/SinA"
12100 PRINT 2, TAB (2) "b =*; Opp; " / Sin"; Angle; " = '; Sideb; "cs"
121!0 PRINT 62, TAB (2) "b ='; Opp; " / Sin'; Angle; " = '; Sideb
12120 PRINT 2!, TAB (6); "PRESS SPACE-BAR tO CONTINUE"
12130 Ansmer $:= GET$(1)
12140 RETURR
12150 EMDPROC

```

12160 PROCEDURE Epsilon
12170 Triangle
12180 Total \(:=0:\) Count \(:=0\)
12190 SET WRITING 1 TO 1,\(11 ; 40,15\)
12200 SET MRITING 2 TO 1,\(16 ; 40,25\)
12210 LINE 0,\(150 ; 319,150\)
12220 SET MRITIMG \(1:\) SET PAPER 15
12230 SEI HRIIHE 1 : CLS : SEI HRIIING 2 : CLS : SET PEN 6
12240 Adj : \(=\) RHD(100) +20
12250 Angle \(:=\operatorname{INT}(\operatorname{RND}(1) * 80)+1\)
12250 PRINT I !, TAB (4); "If \(c={ }^{*}\); Adj; "ca and \(A={ }^{*}\); Angle; "degrees then"
12270 PRINT H 2 !; TAB (4); "If \(\mathrm{c}=\) "; Adj; "ca and \(A={ }^{\mathrm{n}}\); Angle; "degrees then"
12280 PRINT 1; TAB (3); 'calculate side b.'
12290 PRINT \(\hbar 2\); TAB (3); "calculate side b."
12300 SET CURPOS 0, 1 : PRINT 2 !, TAR (2); "Input your ansmer for side \(b^{*}\);
12310 PRINT h2 !, TAB (2); "Input your answer for side b";
12320 SET MRITING 2 : IWPUT 8
12330 PRINT K2, B
12340 SET DEG TRUE
12350 Sidet :=Adj / COS(Angle)
12360 If ABS (Sideb - B) ( Ie-02 THEN SET BRUSH 1: PLOT "CORRECT": 80, 10 SIIE 3 ELSE 12390
12370 IF ABS (Sideb - B) ( Ie-02 THEN PRINT h2, "CORRECT"
12380 FOR I :=1 TO 2000 : NEXT I : CLS 2: IF ABSiSideb - B) ( Ie-02 THEN 12470
12390 PRINT 2, TAB \{2) "Mo! That is not right,try again"
12400 PRINT h2, TAB (2) "No! That is not right, try again"
12410 FOR I \(:=1\) TO 1000: NEXT I
12420 CLS 2
12430 Total \(:=\) Total +1
12440 IF Total < 3 THEN \(\$ 2300\)
```

12450 GOSUB 12500
12460 6070 12170
12470 Count := Count + 1
12480 IF Count < 4 THEN 12240
12490 G0TO 12590
12500 SET CURPOS 0, 1: PRINT 2! TAB (1) "THIS IS THE CORRECT METHOD OF SOLUTION"
12510 PriNT h2!, TAB (1) "this IS the CORRECI method OF SOLUTIOM"
12520 PRINT 2 !, TAB (7) "Side b = c/CosA"
12530 PRINT h2!, TAG (7) "Side b = c/CosA"
12540 PRINT 2, TAB (2) "b ="; Adj; "/ Cos'; Angle; " = "; Sideb; "ca"
{2550 PRINT h2, TAB (2) 'b ='; Adj; '/ Cos'; Angle; ' = '; Sideb
12560 PRINT 2 !, TAB (6); "PRESS SPACE-BAR TO CONTINIE"
12570 Ansmert:= GET\$()
12580 RETURN
12590 ENDPROC
12600 PROCEDURE Phi
12610 Triangle
12620 Total := 0 : Count := 0
12630 SET HRITING I TO 1, 11; 40, 15
12640 SET HRITING 2 TO 1, 16; 40, 25
12650 LINE 0, 150; 319,150
12660 SEI HRIIING 1: SET PAPER IS
12670 SET HRITING 1 : CLS : SET HRIIING 2 : QLS : SEI PEN 6
12680 0pp:= KND(100) + 20
12690 Angle := INT(RND(1) \# 80) + 1
12700 PRINT 1 !, TAB (4); "If c ="; Opp; 'ca and C="; Angle; "degrees then"
12710 PRINT h2 !; TAB (4); "If c ='; Opp; "ce and C="; Angle; 'degrees then"
12720 PRINT f; TAB (3); "calculate side a."
12730 PRINT H2; TAR (3); 'calculate side a."

```
```

 12740
 12750
 12760 SET HRITING 2: INPUT A
 12770 PRINT H2, A
 12780 SET DEG TRUE
 12790 Sidea := Opp / TAN(Angle)
 12800 IF ARS(Sidea - A) (le-02 THEN SET bRuSH 1 : PLOT "CORRECT", 80, 10 SIIE 3 ELSE 12830
 12810 IF ABS{Sidea - A) < le-02 THEN PRINT k2, "CORRECT"
 12820 FOR 1 := 1 T0 2000: NEXI 1 : CLS 2 : IF ARS(Sidea - A) (Ie-02 THEN 12910
 12830 PRINT 2, TAB (2) "No! That is not right,try again"
 12840 PRINT H2, TAB (2) "NB! That is not right,try again"
 12850 FOR I := 1 TO 1000: NEXI I
 12860 CLS 2
 12870 Total := Total + 1
12880 IF Total < 3 IHEN 12740
12890 GOSU8 12940
12900 6010 12610
12910 Count := Count + 1
12920 IF Count < 4 THEN 12680
12930 6070 13030
12940 SET CURPOS 0, 1 : PRINT 2 ! TAB (1) "THIS IS THE CORRECT METHOD OF SOLUTION"
12950 PRINT h2 !, tab {!) "THIS IS the cORRECT METHOD OF SOLUTION*
12960 PRJNT 2 !, TAB (7) "Side a = c/TanC"
12970 PRINT h2 !, TAB (7) "Side a = c/TanC"
12980 PRINT 2, TAB {2) "a ='; Opp; " / tan"; Angle;" = "; Sidea; "ca"
12990 PRINT 有2, TAB (2) "a ="; Opp; " / tan"; Angle; ' = '; Sidea
13000 PRINT 2 !, TAB (6); "PRESS SPACE-BAR TO CONTINUE"
13010 Amsmer\$:= GET\$()
13020 RETUR\#

```

13040 ENDPROC
13050 PROCEDURE triangle
13060 SEI PAPER I : SET RORDER 10: CLG
13070 SET BRUSH 15 : AREA 10,\(170 ; 100,230 ; 100,170\) STYLE 3
13080 LINE 90, 170; 90, 180; 100, 180

13100 SET ERUSH 10 : PLOT "a", 105, 195 ; PLDT "b", 45, 205 ; PLOT " c ", 50, 160
13110 PLOT "Solve the problea.", 155, 195
13120 ENDPROC

\section*{BIBLIOGRAPHY}
```

Teaching in Further Education. An outline of Principles and Practice.3rd Edition. by L.B.Curzon. Publisher Holt Education. 1985

```
```

Microcomputers in the classroom. by A Maddison. Publisher Hodder and Stoughton. 1984
Looking at computer based learning. by Mills and Allen Communications for the Manpower Services Commission. 1981

```

Core competences for Engineers. Further Education Unit. 1984

Guidelines for First Courses in Engineering.
Business and Technician Education Council. 1986

Guidelines for National Courses in Engineering.
Business and Technician Education Council. 1986

Implementing Open Learning.
Business and Technician Education Council. 1987

Course and Unit Design, Common Skills and Core Themes.
Teaching and Learning strategies, Assessment and Grading.
General guidelines. Business and Technician Education Council. 1986

\section*{APPENDIX}

\section*{ M. Sci. COMPUTRER ENuCATIDH: (C) R, E. MDETD}




\section*{Hello}








\section*{Dhet is gour nate}
(4)

\section*{MEPR}

\section*{EAGIEETRIMG MATHEMATICS}

```"
```













 Eataulate amgle

InPat your amswer for angle f?


If \(\mathrm{a}=1 \mathrm{G4} \mathrm{~m}\) and \(\mathrm{b}=123\) then quiculate angle m .

THIS IS THE CORRECT METHUD DF GOLUTION

Arcsinf \(184 / 123)=57.72861\) degs

 Enichiade angle M.



\(\vec{f}\)

\section*{}








```

Mhiss set ofit exerecisom i= to melly you

```






\section*{}


\section*{ HTVM10
}

\begin{tabular}{|c|}
\hline \multirow{6}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}



\section*{THE DELIMUR ATEA DF A PRH SM}



ORLIRHE AREA.
CRQSS-SECT AREA


> EMAMPLE
> \(======\)
\[
\begin{aligned}
& ================
\end{aligned}
\]





IPPHT Hin


\section*{
}






```

 THEMH CALLGUHATRE THR UALIPE TM FPEF
 TMPUT WOUR APASvMM?Z
    ```










\title{

}

\section*{PREES3 SPRICR-RAR
}


 chate lat







The luewnaxary of a cixtele, that its the
 c. chat is equal to the cometart pat. PI \(=3.1\) ata ts thmee decival ginces.







The shaded portion oxy is called a SWCTOR.
If the sector is less then a senicixcle it is a MimuR SECTOR, if large \(x\) that a semi-cirele it is a mavor sectur. The 1 ine uy is a CHOMD. The shaded portion uU \(i s\) a sechertr. The 5 hot test distance between \(y\) anct \(y\) along the circoumexence is called the Wimor artc. The remaining paxt of the circumfexence is the whulor arc.

\(\stackrel{\rightharpoonup}{w}\)

```

'The disc accompanying this
Thesis is held with the
archive copy in the cage on i.
Level 2. Please enquire in the
Information Office on Level 3
if you wish to borrow it.

```

FORD.R.E OO20802013
3A computer-aided learning package. for engineering.
students, B-TEC mathematics at
first__\&_national_laro```

