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i. 

ABSTRACT 

There continues to be much discussion as to why many children find 

mathematics difficult. Schools have attempted, over the past twenty 

years, to modify their mathematics curricula to make students feel 

that the subject is interesting and worthwhile. Changes have been 

made in content, teaching style and classroom organisation, but 

children continue to fail. 

The role of oral and written language used in the mathematics class

room would seem to be critical when considering children's performance 

in this subject, and this will be discussed in the following chapters. 

Assessing how difficult children will find a particular piece of 

mathematics text to read will also be discussed, as will the 

limitations of readability formulae to qualtify the degree of 

'difficul ty' . 

Finally, some suggestions will be made as to how the presentation of 

mathematics text can be changed, so that children find it easier to 

read and understand. 

It is hoped that the information provided in this study will enable 

teachers to think more about the importance of language in mathematics 

education and help improve the presentation and readability of written 

material used in the classroom. 
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It is not possible in a dissertation of this length to discuss all 

the language factors in the learning of mathematics, but the areas 

chosen are those that the author considers the most crucial for 

classroom teachers and for the writers of mathematical text to 

consider. 

There is no doubt that there is room for much more research on this 

whole area of concern, and in Britain especially, on the establishment 

of criteria for evaluating written material in mathematical text. 
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1. 

CHAPTER 1: THE ROLE OF LANGUAGE IN THE FORMATION OF MATHEMATICAL CONCEPTS 

Language is an aspect of learning mathematics which is all too often 

overlooked. Language should be seen as an important aspect of learning, 

which can be used for the construction of thought. 

One of the school's most important roles is to enhance the development 

of language, since language sophistication is very closely related to 

function in school. Language is the chief medium of instruction in 

schools, and its importance, therefore, must not be underestimated. 

It most be noted, however, that language is not synonymous with 

communication. Animals are able to convey messages such as fear, 

hunger or pleasure. They communicate, but do not have a language. 

To communicate through language is to make use of sounds, symbols 

or gestures in a purposeful way, to convey meaning. The use of, 

language also involves combining or changing sounds and gestures to 

produce a multitude of meanings. 

Language is a central feature of classroom life. One of the major 

functions of language is in its use for learning, for trying to put 

new ideas into words, and for trying out one's thinking on other people. 

This does suggest, therefore, that language has an active use, rather 

than a passive one. Education is basically about the meanings pupils 

take away with them. Discussion in the classroom is important, so that 

individuals can make sense of what is presented to them. Whatever 
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the teacher believes has been taught, we can be certain that individual 

children each take away something different. The importance of the 

pupils' own language in their learning process must be recognised. 

Paragraph 306 in "Mathematics Counts" (1982) says that "Language plays 

an essential part in the formulation and expression of mathematical 

ideas .... there is a need for more talking time ... ideas and findings 

are passed on through language, and developed through discussion, for 

it is this discussion after the activity that finally sees the point 

home." 

To what extent, then, is the development of mathematical concepts 

dependent on the language development· of the child? When teaching any 

mathematical topic the teacher has to take decisions about the optimum 

time for introducing relevant specialised vocabulary and symbolism, 

but these decisions have to be made against a background of 

psychological uncertainty about the role of language·in the acquisition 

of concepts. As teachers, how do we choose and use language in order 

to facilitate the acquisition of mathematical concepts? 

Questions have been raised as to whether the growth in linguistic 

ability follows the development of concrete operational thought, or 

whether the development of adequate terminology is a prerequisite for 

cognitive growth. Piaget (1954) maintains that growth in linguistic 

ability follows the development of concrete operational thought rather 

than preceding it. However, Bruner (1966) maintains that the develop

ment of adequate terminology is essential for cognitive growth. It 

seems likely, however, that the acquisition of language is both a 

cause and an effect of cognitive development. 
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Bruner's view seems to be tied in with the American behaviourist 

tradition, where thought was treated simply as 'unsocialised speech', 

and hence thought without language was inconceivable. We therefore 

have two extremes, one the behaviourist view, where thought is felt 

to be verbal in nature, and the other, Piaget's, where thought is 

considered, essentially, to be spatial. 

The spatial and verbal aspects of thought are basically complementary, 

but individuals may find one type of activity much more accessible 

than the other. There is psychological evidence to suggest that these 

two aspects of the learning of mathematics, spatial representation and 

language, may be linked to the activities of different halves of the 

brain; spatial processing generally being performed by the right hand side, 

while language functions are performed by the left. 

It has been suggested by Wheatley and Wheatley (1979) that individuals 

may not be equally proficient in both types of activity, and they 

point out that many "low attainers" find a spatial approach "more 

accessible and more congenial." 

Many children from deprived backgrounds enter school unable to 

articulate ideas because of language inadequacies, and this can restrict 

their learning of mathematics not only intially, but all the way 

through their school life. Choat (1974) suggests that a spatial 

approach may lead on to the introduction of appropriate language in 

a meaningful way, .' and may lead to a high degree of success where none 
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may have occurred before. Wheatley (1977) uses Einstein as an example: 

"Einstein reported that his great discoveries came as flashes of images, 

not in words or symbols. It was often weeks before he could put the 

ideas into words and symbols ... It should be noted that Einstein was 

unsuccessful in school: for example, he was not good at the left 

hemisphere tasks demanded in arithmetic." 

Although this 'hemisphere theory' is speculative, and although some 

learners may favour one or other of these strategies, many will vary 

their approach depending on the context of the problem. Wheatley does 

feel, however, that "for all children spatial ('right hemisphere') 

development ;, .. has been under-emphasized." 

Wheatley also felt that the two aspects of mathematics represented by 

language and symbols on the one hand, and by spatial representation 

on the other, are entirely complementary in nature, and should each 

receive a reasonable share of attention in any mathematics curriculum. 

Some children may show a preference for one or the other, and in these 

cases the best approach might be to introduce a topic in the style which 

""is most appropriate for the learner, but aim to use this to build up 

a capability in the less favoured aspect as well. 

Piaget (1926) distinguished between 'egocentric' and 'socialised' talk. 

In egocentric talk, children do not worry about who they are speaking 

to, or whether they are being listened to. Vygotsky (1962) sees ego

centric speech as the ability to think in verbal terms; he further 

felt that egocentric speech was a "transitional stage from vocal to 
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inner speech, which characterised individual thought." As he put it, 

"speech for oneself". Piaget suggested that 'egocentric' speech 

begins to disappear at about the age of seven, although "this does 

not mean that from the age of seven or eight children can immediately 

understand each other." 

The use of language is often very helpful to the mathematician. Austin 

and Howson (1979) noted the "sub-vocal movements of the tongue and 

lips" often observed when difficult material was being read. They 

also commented on the tendency of mathematicians to want to talk 

to a colleague in an apparently egocentric manner, in order to analyse 

a difficulty. As teachers, we often suppress children talking in 

the classroom, and by doing this we may be doing them a great 

disservice. 

Sapir (1963) wrote "the feeling entertained by many that they can 

think, or even reason, without language, is an illusion ... no sooner 

do we try to put an image into conscious relation with another than 

we find ourselves slipping into a silent flow of words." Although 

Sapir considered the use of language essential, there is much disagree

ment, and Skemp (1971) claimed to show the formation and use of low 

order concepts without the use of language, yet wrote that the 

emergence of higher order c~m,?ep_ts would seem to be inextricably 

linked with language. Vygotsky (1962) performed some simple experiments 

with children under five years old, where he showed that they 'explain' 

the names of things by their qualities or attributes. He concluded 

from this experimental study of concept formation that the formation 
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of concepts is dependent on linguistic ability. He wrote "the birth 

of a new concept is invariably foreshadowed by a more or less strained 

or extended use of old linguistic material; the concept does not 

attain to individual and independent life until it has found a 

distinctive linguistic embo<:liment." Piaget (1954) actually 

generalised his view of the relationship between thinking and language. 

He said, " .... language and thought are linked in a genetic circle, 

where each necessarily leans on the other in an independent formation 

and continuous reciprocal action. In the last analysis, both depend 

on intelligence itself, which antedates language and is independent 

of it." 

Piaget and Vygotsky agree, therefore, that language does seem to have 

an essential part to play in the development of higher order concepts. 

They both provide evidence that the development of linguistic structure 

sometimes precedes the appreciation of the corresponding logical 

relationship. Piaget, especially, felt this and suggested in his 

work that children use subordinate clauses with 'because' or 'unless', 

for example, some time before they grasp the corresponding logical 

relationship. The statement 'grammar precedes logic' appears in the 

work of both Vygotsky and Piaget. 

Choat (1974) noted the close interdependence of language and conceptual 

development. He said that: "Even if the learner interacts wi th the 

physical aspect of the learning situation, i.e., objects, the verbal 

element is necessary both as a means of communication and as an 

instrument of individual representation ..... in the acquisition 
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of mathematical knowledge, a new concept brings a new word. Devoid 

of the conception, children will not understand; without the word 

they cannot as easily assimilate and accommodate the concept". 11 

Many recognised tests of concept development", including those used 

by Piaget to test whether language precedes or succeeds concept 

development, unfortunately depend on children's understanding and 

use of language, and this is problematic. Piaget claimed that 

"thought precedes language", but he chose to use verbal interviews 

to judge whether concepts had been attained or not. Siegel (1978) 

pointed out this inconsistency in Piaget's position, and she attempted 

to evolve non-verbal tasks of concept development, some of which were 

related to Piagetian experiments. 

In one task, she tried to train 3/4-year olds to consistently choose 

the larger of two sets of dots simultaneously presented to them, as 

in the diagram below, by rewarding them with a sweet each time they 

made the correct choice: 

• • • • 11 • Cl 0" 

" 

Siegel also trained a second group of children to select the smaller 

of the collections of dots presented to them. 
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Each of the children were also asked to identify which of the two 

collections of dots was 'the big one' (or, for the second group of 

children, 'the little one'). The results were as follows: 

CONCEPT AND LANGUAGE PERFORMANCE ON COMPARISON TASKS 

GROUP Pass language Fail language Pass language Fail language TOTAL Pass concept Pass concept Fail concept Fail concept 
3-year 

15 20 2 8 45 olds 

4-year 
37 17 '1 2 57 olds 

These results do tend to suggest that children's ability to learn the 

concept of comparison between smaller or larger groups of objects in 

the non-verbal task precedes the acquisition of the related language 

of little and big. 

Siegel then repeated this experiment using the concept of equality (see 

diagram below): 

• • • • , 

••••• .. .. .. . .0 ... 

-

In this case the children were trained to select the group of dots 

equal to the top one. They were also asked verbally to choose the 

set which was 'the same' as the top one. The results were as follows: 
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CONCEPT AND LANGUAGE PERFORMANCE ON EQUALITY TASKS 

GROUP Pass language Fail language Pass language. Fail: Language 
TOTAL Pass concept Pass concept Fail concept Fail, concept 

3-year 7 4 0 34 45 olds 

4-year 
40 8 0 \ 9 57 olds 

In this case it should be noted that there is a much closer relation-

ship between language and concept success, and Dickson (1984) suggested 

that this was because both tasks rely on a 'matching' or 'counting' 

technique. 

Siegel also asked some of the children to justify their choices verbally. 

The next table shows the proportion of those able to make the correct 

choice, but who were unable to give an appropriate verbal explanation 

for each of the tasks set. 

CHILDREN PASSINg CONCEPT ATTAINMENT TASK 
BUT FAILING TO GIVE APPROPRIATE VERBAL JUSTIFICATION 

GROUP 
COMPARISON TASK EQUALITY TASK 

(YEARS OLD) 

3 69% 100% 

4 32% 79% 

This does suggest, for these experiments, that the children had the 

ability to attain the concept long before they could actually produce 

the associated language. We must bear in mind, though, that these 

results show little about whether the understanding of the language 

develops at the same time, or after, ,the attainment of the concept. 
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It is arguable, therefore, that language is a tool for the 

construction of thought. Language should be brought in to the 

mathematics lesson by the teacher, and active verbal involvement from 

children should be sought. Instead of making learners mimic someone 

else's rules, teachers should encourage discussion about the mathematical 

processes involved, and by doing this the learners would undoubtedly 

gain in understanding. Discussion in the classroom is an important 

aid to concept formation. 

Paragraph 307 in 'Mathematics Counts' (1982) states that "All children 

need, as a first stage in the learning of mathematics, to develop 

their understanding of words and expressions by means of activities 

and discussion in the classroom." We must also not forget that 

discussion can help develop an. understanding of the relationships 

which exist between the many different mathematical topics we look 

at in schools. 

By discussing mathematical processes in the classroom we can 

encourage learners to reflect upon the mental procedures they are 

using, thereby making them meaningful both to themselves and others. 

Discussion can, therefore, improve the long term storage and retrieval 

of mathematical knowledge. It might also seem reasonable to suppose 

that requiring learners to verbalise a principle after they appear to 

under.stand.cit,;".,might increase their degree of awareness of that 

particular abstraction and help fix it in their minds, but research 

findings are not consistent with this supposition. 
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It seems to be generally accepted that concept formation arises 

through verbal discussion. Stephens (1977) emphasised the need 

for a varied pattern of communication to be used in the classroom. 

Kysi1ka (1976) found that some mathematics teachers talked more 

than some social studies teachers; that they asked more convergent 

questions, made more directing and descriptive statements, and 

elicited and rejected fewer student responses. We must accept that 

awareness can only occur if children are allowed to participate in 

their learning, in a variety of contexts. The teacher should act 

as a guide. 

One of the aims of mathematical education must, therefore, be to 

encourage children to express their mathematical ideas verbally, 

with their peers, and their teacher. Work done in listening skills 

is also of importance. It was noted in the first APU secondary report 

on 15-year olds (1980b) that " .... nearly all the testers commented 

that the ability of many pupils to express themselves clearly was 

the main stumbling block." 

Hanley (1978) concluded that the best learning situations exist where 

lariguage can be used freely as the interactive medium, and the best 

resource for this is the teacher. He expected teachers to introduce 

ideas, using words in an inexact way, and these can then be 

progressively refined until precision of thought is developed. 

Children's understanding and use of language depends on how involved 

the children are in the situation in which the language is used, and 

how relevant this situation is to them. It is a dynamic process: 
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teachers must help children to express themselves more clearly 

and specifically. Larcombe (1985) felt that "It is easy to stifle 

the language and self-expression of learners by appearing to anticipate 

the language they should use rather than encouraging free expression 

and accepting whatever language they do use. Perhaps too much 

emphasis is- placed upon 'correct mathematical language', and not 

enough on 'pupils' mathematical language'." Larcombe's remarks are 

very convincing. Many children are put off mathematics by the 

pedantry and narrow, complicated vocabulary used by their mathematics 

teachers. We must learn to compromise. 

Nicholson (1980) believed that a 'negotiation of meaning' should 

take place. Children and their teachers should discuss various 

meanings of words, using less specialised terminology than that 

usually used in mathematics. An example he gave was: 

symmetry 

folding 

reflection 

Children will probably initially encounter a diagram like this when 

painting a shape and then folding it over. It would make sense at 

this stage, therefore, to call it a 'folding': this has meaning for 

them. Later on, when they meet the terms 'symmetry' and 'reflection', 

reference to the term 'folding' must be made when the meanings of 

these new words are being discussed. We must not underestimate the 
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value of the everyday language used by children. Nicholson fel t 

that "this will lead to the consolidation of the concept in relation 

to the word, and to the confirmation of the word as the name of the 

concept. " 

Annette Sweet (1972) stated that "as mathematics is a precise, 

unambiguous language, our first concern must be to teach the language, 

then the grammar will follow." She felt that there were specialised 

words that children should know, and that this should not prove 

difficult if "we remember how we learnt to speak." She went on that 

"no child's mother would attempt to give the verbal concept of 'chair' 

in one lesson: she would sit the child on one from a very early age, 

before the child had any idea of what it was. She will associate it 

in the child's mind wi th statements like "Get off that chair", or 

"Don't dirty the chair", ad infinitum. The child is repeatedly 

exposed to the idea, and it sinks in. The child is never sat on one 

and told I that is a chair'." She went on to express the view that 

the concept of chair is far more difficult than many of the words 

we wish to introduce, and that if children grow up using the correct 

language, its grammar must be easier to learn. 

There is no doubt that the learning of the mathematical language is 

time-consuming, and mathematics teachers are tempted to push children 

forward before they are ready, and they attain superficially high 

rates of progress. We must be more prepared to accept the children's 

language, or less precise words, while this process is going on. 

Merely teaching mathematics words to children will achieve little, 

and could well do harm if the children have little knowledge of the 
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concept described. It has been suggested that children could be 

introduced, at an early age, to some of the specialised linguistic 

patterns used in mathematics, so while increasing children's 

mathematical vocabulary one could structure their learning of the 

syntax of mathematics. There could be a gradual progression from 

natural language to the formal language of mathematics. 

It has often been pointed out, by Sweet and others, that mathematics 

itself is a formalised language, and it has even been suggested that 

it could be taught as such. Sweet (1972) said that "If we were to 

teach mathematics as we teach English, we would perhaps begin to have 

a few less negative attitudes to cope with. Children are not taught 

to read before they can speak, nor are they expected to write before 

they can read .... " However, Austin (1979) felt that "mathematics 

was not a language, but an activity, and a treasure house of knowledge 

acquired over many centuries. The activity can be engaged in, and the 

results codified, using a variety of languages ..• the-differences 

between the formalised language in which professionals present their 

mathematics and that in which they think, and talk about their work, 

would seem to be greater than those which normally exist between the 

written and spoken forms of a language." Mathematics should not be 

taught as a 'language'; it must develop through understanding, using 

a variety of styles, in the mathematics classroom. 

We must also remember that the language used to talk about a particular 

mathematical concept may well be very different from that used in 

other contexts, and children have to learn these differences. There 

is often a mismatch between children's understanding of words and the 
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teacher's. It can happen that a teacher tries to provide a_familiar 

example for children, but in doing so triggers off a different meaning 

from the one intended. 

Barnes (1969) drew attention to the consequences upon learning of a 

mismatch between the sort of language presented to the learner and the 

sort of language the pupil uses outside school. A danger here is that 

it is easy to aSSume that mathematical inactivity is due to conceptual 

problems in mathematics when in fact it is difficult for the pupil to 

gain access to the mathematics because of the language problem. 

It appears, therefore, that language, especially oral language, plays 

a major part in the process of developing mathematical concepts. As 

mathematics teachers perhaps we should study the patterns of everyday 

speech, and by learning from these we may facilitate children's 

learning of mathematics. 
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CHAPTER 2: THE ROLE OF LANGUAGE WHEN PROBLEM SOLVING. 

In most mathematics classrooms it is extremely difficult for teachers 

to listen to anyone child for any length of time. Junior school 

teachers go to great lengths to hear children read so that individual 

problems can be indentified and help given. It would be an unusual 

mathematics classroom where a teacher gave individual attention to 

children attempting a problem, for any length of time, so that 

difficulties with the process of solution could be identified and 

help given. It is far more usual for short written tests to be given, 

but it could be argued that these can be a very poor indicator not 

only of children's ability but also as to where difficulties in the 

problem solving process are occurring. We need to know more 

accurately why errors have been made, so that children can be helped 

more precisely. Verbal questioning of individual children is 

necessary if we are to succeed in this. 

Written responses to problems can only suggest the reasons why 

children make errors, but struc'tured interviews must be conducted 

before consistent patterns of errors can be determined with any 

degree of certainty. 

Watson (1980) noted that diagnostic interviews seem to have little 

place in most primary classrooms. He suggested several reasons 

for this: written tests are quick and easy to administer, teachers 

do not have the time to hold in-depth interviews in the classroom, 

and that interviews, in many cases, do not provide information that 

can be readily understood or used by the teacher. 
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Hollander (1978) believed that most studies she had reviewed only 

produced lists of broad, poorly defined error types, that did not 

indicate the causes of errors. It was suggested that teachers were 

unlikely to use a list of errors made by children if it did not 

readily suggest ways of helping them. 

The teachers of young readers have been provided with a framework 

by Goodman (1965,1969) so that the reasons for errors made in the 

reading process can be more easily seen. If reasons why errors are 

made are known, then teachers can adjust their teaching to overcome 

any weaknesses. 

Recent research from Australia has looked at the errors made by 

children during the problem~solving process, using a particular model 

for classifying errors made on verbal arithmetic problems. The 

classification of errors used was devised by Newman (1977). Its use 

is limited to problems involving only a single step to solution, but 

it is a useful guide for outlining the role of language in the 

problem solving process. The classification is useful for the 

teacher because it provides a clear framework for not only analysing 

errors made, but for questioning the pupils as well. The teacher 

can discover not only where, but why, a child made a mistake. 

The classification is based on a model of how children go about 

solving problems. Newman made the assumption that associated with 

any given word problem are a number of hurdles that must be overcome 

if a correct solution is to be obtained. Failing at anyone 
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particular hurdle prevents people from going on to the next hurdle, 

and therefore from obtaining the correct solution unless they arrive 

at the 'correct' answer by faulty reasoning. Newman therefore 

defined a hierarchy of error causes for one-step mathematical problems. 

The model comprises a sequence of steps: 

Reading 

1 
Comprehension 

1 
Transformation 

1 
Process skills 

1 
Encoding 

Failures at different stages are shown as different errors. 

Watson (1980) summarised the associated 'Criterion for Error Causes' 

as follows. The examples for each type of error are given by 

Clements (1980). It should also be noted that sub-categories under 

each main heading are also given. 
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CRITERION FOR ERROR CAUSES 

1: READING ABILITY. Can the learner read the question? 

Sub-categories: ( i) Word recognition 

(ii) Symbol recognition 

EXAMPLE: A 12-year old pupil gave the answer '96 hours' for the 

question "What does fifty-six minus forty equal?". His response when 

asked how he obtained his answer was 'It says what does fifty-six 

minutes forty equal?'. It did not tell me what I had to-do, so 

I added and got ninety-six. Now ninety-six is more than sixty, so 

the answer must be in hours." By misreading an important word in 

the question, he had been prevented from proceeding further. 

2: COMPREHENSION. Can the learner understand the problem? 

Sub-categories: (i} General understanding 

(ii) Understanding of specific terms and symbols. 

EXAMPLE: A 12-year old boy read the following question perfectly, 

but got an incorrect answer. "Sam goes to bed at 10 minutes to nine. 

John goes to bed 15 minutes later than Sam. What time does John go 

to bed?" 

He gave an answer of '15' and explained: "i t says John goes to bed 

fifteen minutes later, so the answer must be '15'. " He could read 

all the individual words in the question, but had not understood what 

was being asked of him. His progress towards a solution had been 

stopped because of comprehension problems. 

3: TRANSFORMATION. Can the learner select the mathematical processes 

required to obtain a solution? 

None given. 
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EXAMPLE: A twelve-year old boy was shown a picture of twelve 

different children, and the question read: "Here are some children. 

I have 24 lollies and I want each child to have the same number of 

lollies. How many lollies will I give each child?" The pupil gave 

an answer of 1144 I and explained, "there are twelve children and 

twenty-four lollies; 12 into 24 goes 2, so we have two twelves; you 

multiply these two twelves: 12 times 12 is 144." When questioned 

further, it was obvious that not only could the pupil read the question 

but he also understood what he was being asked to do. He could not, 

however, transform the written problem into an appropriate ordering 

of mathematical procedures. 

His progress towards a solution had been stopped because of a 

transformation problem. 

4: PROCESS SKILLS. 

Sub-categories: 

Can the learner perform the mathematical 

operations necessary for the task? 

( i) Random response 

(ii) Wrong operation 

(iii) Faulty algorithm 

(iv) Faulty computation 

(v) No response. 

(NOTE: These sub-categories are for arithmetical skills). 

EXAMPLE: When asked the ques tion "If you buy a bag of flour for 

£1.07 and pay the shopkeeper £2.00, how much change should you get?", 

a twelve-year old girl gave the answer £1.93. To get this answer she 

had used a faulty algorithm, and therefore the error made was due to 

a weakness in process skills. 
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5: ENCODING. Can the learner write the answer in an acceptable form? 

Sub-categories: None given. 

EXAMPLE: When asked the 'flour question' above, a twelve-year old boy 

wrote down the answer '93'. Although numerically he was correct, he 

was marked wrong, because he did not write his answer in the acceptable 

form of £0.93 or 93p. He had made an encoding error. 

Newman pointed out that there are other types of error not included 

in this sequence of steps. They were listed as follows: 

6: MOTIVATION. 

7: CARELESSNESS: 

Many children just cannot be bothered to answer 

a question, although they could easily have done 

so if they had made an effort. 

Children often made a careless error at some stage 

of the solution, and although they can do all the 

steps in the solution this gives them an incorrect 

answer. Careless errors are unlikely to be repeated. 

8: QUESTION FORM: The wording of a question causes children to make 

an error. The fault here lies with the writer of 

the question, not with the children who are 

attempting it. 

EXAMPLE: When asked the 'lolly' question, already mentioned, a boy 

gave the answer as 'one'. Although this is not the answer expected, 

it should be regarded as being correct as the boy's reasoning of 

"I would gi ve each one lolly and keep twelve for myself" is sound. 

~ His ~ans';;e~ arose because or the badly worded~question. 
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In diagram form we have: 

THE NEWMAN HIERARCHY FOR ONE-STEP VERBAL MATHEMATICAL PROBLEMS 

CHARAC'1'E R T STIes 
Of' THE 'QUESTION 

.. 

J!lTI-:RACTIorl BETWr.E:1J TIlE OUESTIOIl II:ID nlF. 
PPRSOIl 1\~: .... r-Tn:G I'!' 

CARELESSNESS 

MOTIVATIOl:l 

READING 

It should be noted that errors due to 'carelessness' and 'motivation' 

can occur at any of the first five stages, and this is reflected in 

the diagram. 

Newman's hierarchy for one-step problems encouraged Casey (1978) into 

producing a more general hierarchy for use with many-step verbal 

mathematics problems. Casey modified 'and extended Newman's Hierarchy 

so that an analysis of errors could be made on many-step problems. 

Casey stressed that anyone attempting to solve a many-step problem 

has to identify and solve, in the correct order, a set of associated 

sub-problems. It is a cyclical process of solution, because the 

: 
person often has to return to 10>Jer stages of the hierarchy when 

moving toward an overall solution. 

I 
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In diagram form we have: 

CASEY'S HIERARCHY FOR ~lANY-STEP VERBAL PROBLE~IS IN MATHEMATICS 

Ye' --l)>---~ AAS\\"ER 1 
PRESEt::-;,TION 

v , 

~ 

, 
V 

r' 
t 

.- ( 

t 

;. 

v 

~~ 
F 

It should be noted that, unlike Newman, Casey actually included 

'Question Form' in the hierarchy because, as Clements (1980) puts 

it, "this is the first point of interaction between the written task 

and the person attempting it." Newman's 'Transformation' category 

was changed to the two separate categories of 'Skills Selection' and 

'Strategy Selection' to take account of the more complicated many-step 

problems now being looked at. Casey's 'Known Block' and 'Unknown 

Block' are the error categories outside the actual hierarchy. The 

'Known Block' could include 'Motivation' and the 'Unknown Block', 

'Carelessness' . 
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Newman investigated the errors made by Grade 6 (12-year old) pupils on 

a 40-item mathematics test containing numerical, spatial and logical 

questions. She gave this written test to 917 children in 31 classes 

in 19 schools in Melbourne, Australia. Within two weeks, four of the 

five lowest performing children in each of the 31 classes were inter-

viewed:- 124 in all. The interviews were structured according to 

Newman's error classification list. 

The interviewer would ask children to attempt a question they had 

originally got wrong. Once they had completed the question, whether 

right or wrong, the following questions were asked: 

1: Please read the question to me. If you don't know a word, leave 
it out. 

2: Tell me what the question is asking you to do. 

3: Tell me how you are going to find the answer. 

4: Show me what to do to get the answer. Tell me what you are 
doing as you work. 

5: Now write down the answer to the question. 

Note that each of these questions corresponds to a level in the Newman 

hierarchy. 

The 124 low achievers interviewed had made 3002 errors on the original 

40-item test, and over seventy per cent of these errors were repeated 

during the interview sessions. The task of each interviewer was to 

determine at which level the children first broke down in their 

attempt at solving the problem. 

The results are shown in the following table. 
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NEWMAN'S CLASSIFICATION OF 3002 ERRORS MADE BY 124 SIXTH GRADE LOW 
ACHIEVERS (Melbourne, 1976). 

ERROR 
CATEGORY 

Reading 

Comprehension 

Transformation 

Process Skills 

Encoding 

Carelessness or 
Motivation 

TOTAL 

NUMBER OF ERRORS PERCENTAGE OF ERRORS 
IN THIS CATEGORY IN THIS CATEGORY 

390 13 

665 22 

361 12 

779. 26 

72 2 

735 25 

3002 100 

Note that very special care had been taken in compiling the questions, 

and so no errors were attributed to question form. 

From this table it can be seen that nearly 50% of the errors occurred 

before reaching the stage where process skills were needed. Only 16% 

of the 40 items on the test were considered the need the ability to 

transform, and 25% of the errors made on these 16 items first 

occurred at the transformation stage. (In other words, many questions 

624 
were already in mathematical form, like -312 . ) 

Clements also interviewed 184 l3-year old pupils, consisting of 92 

low achievers and 92 average achievers, from 36 Australian schools. 

In all, 1981 errors were classified according to the Newman classifi-

cation. The results are given in the following table. 



26 

CLASSIFICATIONS OF 1981 ERRORS MADE BY 92 LOW ACHIEVERS AND 
92 AVERAGE ACHIEVERS (GRADE 7), 1977-1979. 

LOW ACHIEVERS (n=92) AVERAGE ACHIEVERS (n=92) 

ERROR No. of % of No. of % of 
CATEGORY errors errors errors errors 

Reading 117 8 18 3 

Comprehension 225 16 32 6 

Transformation 401 28 150 28 

Process Skills 351 24 126 23 

Encoding 37 3 12 2 

Carelessness or 
306 21 206 38 Motivation 

TOTAL 1437 100 544 100 

The table is interesting, in that it is evident by looking at it 

that the low achievers are making nearly one quarter of their errors 

at the reading and comprehension levels, compared to 9% for the average 

achievers. So the data does seem to indicate that reading and 

comprehension difficulties play a significant role in children's low 

attainment in mathematics. It is also interesting to note that well 

over one third of the errors made by average achievers were due to 

carelessness or lack of motivation. Mathematics teachers should take 

note of this. 

Although Casey developed his own method of classifying errors, and 

used a test which contained many-step problems only, he found, when 

testing 120 Grade 7 pupils of all abilities, that 45% of errors were 

made at or below -the Newman 'Transformation' _level. 
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Watson (1980) also conducted diagnostic interviews with third year 

pupils at a Melbourne primary school to determine why they had made 

errors on sixteen arithmetical tasks. Watson modified the Newman method 

of analysing errors so that the children's errors could be sensibly 

classified in terms of the sequence of steps they used when attempting 

to solve the problems. Watson felt that by finding where children 

were making their errors, he was able to devise more appropriate 

teaching procedures. 

Watson used a 16-item test, given to thirty Grade 2 children, then 

fifteen children were interviewed, five of whom were gifted mathe

matically, and ten who had difficulty with mathematics. Watson found 

that with both groups, the large majority of initial errors were made 

at the stages of Reading and Comprehension. Watson makes the point 

that "The most interesting feature of the results, from the classroom 

teacher's point of view, is that it was possible, from the classifi

cation of errors for each of the children, to see precisely how they 

had approached the question, and to see where their strengths and 

weaknesses lay." Although Watson realised that class teachers did 

not have the time for diagnostic interviews for all children, he did 

suggest that for children experiencing persistent difficulties in 

mathematics this could be time well spent, so that difficulties could 

be identified and new lessons devised. Clements also felt that the 

Newman classification was a useful diagnostic strategy to follow by 

a teacher helping individuals. An individual's error pattern can 

illuminate why that individual makes mistakes on mathematical tasks. 
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In order to show how the error analysis procedure can provide useful 

information for teachers, we compare the results of two children 

taking exactly the same test, given by Clements: 

A fourteen-year old Grade 8 boy, John, made fourteen errors: 

two at the 'Reading' stage, four at the 'Comprehension' 

stage, three at the 'Process Skills' stage, and eight 

because of 'Carelessness'. 

Charles, the same age, also made fourteen errors: six at 

the 'Process Skills' stage and eight because of 'Carelessness'. 

The Newman technique has clearly shown that although these two boys 

scored the same mark on the test, they needed different kinds of 

remedial help. It should be noted, h9wever, that although the 

Newman technique is useful for gross diagnostic purposes, much 

deeper probing is necessary in order to discover more precisely how 

children think about a given area of mathematics. 

Clements points out two warnings about the use of the Newman classi-

fication. Firstly, he says, "it should not be imagined that if two 

or more children have been identified as being especially prone to 

'Transformation' errors, say, they need similar remedial treatment." 

As Marriott (1976) pointed out after asking 2826 pupils in Grades 5 

to 8 in schools in Victoria, Australia, the question: 

940 
- 586 

it resulted in 200 different answers being given. 
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Children with similar error profiles given by use of the Newman 

classification can make very different errors on the same problem. 

The second warning given by Clements was that "the Newman hierarchy 

does not imply that a verbal arithmetic problem is necessarily more 

difficult than the corresponding arithmetic problem involving the 

direct application of the relevant process skills." When Grade 6 

pupils were asked the questions: 

(1) : Write in the answer 1 - ~ 

and (2) : A cake is cut into four equal parts, and Bill 
takes one of the parts, what fraction of the 
cake is left? 

children seemed to find Question 2 easier than Question 1. 

Clements suggested two reasons for this: the first that the imagery 

evoked by the cake problem helped pupils, and the second that some 

pupils just cannot cope with fraction sums when presented in numerical 

form. 

The results of research contained in this chapter indicate that many 

of the errors made by children when solving mathematical problems are 

due to reading and comprehension difficulties. Because of this, 

children often choose a process at random in an attempt at finding a 

solution.. As Dickson (1984) points out, "reading and comprehension 

difficulties with words and symbols play a particularly crucial role 

in children's low attainment in mathematics." 
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CHAPTER 3: ORAL LANGUAGE IN THE MATHEMATICS CLASSROOM 

In Chapter 1, it was clear that discussion in the classroom, 

whether between teacher and pupils or between different pupils, 

had an important role to play in concept formation. Bell, Costello 

and Kuchemann (1983) point out that "there is clearly some kind of 

connection between the way a teacher talks in class and the 

relationship between teacher and pupils". It has been noted that a 

det8rioration:oin oral work can take place in mathematics classrooms 

when individualised schemes of work are used. Schoen (1976) states 

that " the educational quality of pupil-teacher interaction in the 

self-paced classroom is very poor, consisting mainly of procedural 

matters". There is no doubt that some teachers do let themselves 

become swamped with organisational matters in mixed ability 

situations but others manage to promote discussion, whether in 

groups or between individuals, far more easily than in the 

traditional classroom, where teacher led learning is the rule. 

As teachers we must be prepared to be flexible and as Stephens 

(1977) says, "provide a varied pattern of communication". Stephens 

also felt that the learning of mathematics requires the "negotiating 

of mathematical meaning for, and by, each student: the use of 

prepared progr-amme-s places the teacher in too inactive a role for 

him to exercise this negotiation, and tends to isolate children 

from one another". Stephens does pOint out a danger with 

individualised schemes here, but it could be argued that this is 
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caused by the teacher, not the scheme. 

Increasingly, as children get older, the oral side of the language 

of mathematics is neglected in the classroom and children are 

expected to obtain more of their information from texts or 

worksheets, thereby putting many children with reading difficulties 

at a disadvantage. Lovell (1971) felt there was a need for constant 

discussion between teacher and pupil and among pupils themselves in 

mathematics classrooms. Fey (1969) designed a procedure to analyse 

verbal interactions in the mathematics classroom. His results 

seemed to show a much greater verbal activity on the part of the 

teacher. He further found that 50% of the verbalisations made 

by teachers and pupils were statements or questions of fact, 25% 

were evaluations (made mainly by the teacher) and 25% were 

justifications and analytic processes. 

Kysilka (1970) compared mathematics teachers with social studies 

teachers. He found that mathematics teachers talked more often 

and their pupils talked less frequently than those in social studies 

classrooms. The mathematics teachers asked more convergent 

questions and made more directing and describing statements, but 

interestingly also rejected fewer student responses than did 

social studies teachers. 

Cooney (1970) paid attention to the way in which teachers' verbal 

behaviour helps students to learn and organise their knowledge. 
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He demonstrated how deduction, induction, classificat~on and 

analysis of knowledge by the student could be helped by teacher 

verbal behaviour. 

Practical evidence points, therefore, to the conclusion that in 

most mathematics classrooms the teacher does the majority of the 

talking and pupils respond as little as possible. It would seem 

safe to assume then that no matter what organisation is being used, 

a mixed ability individualized scheme, or a traditional teacher led 

approach, children do not use oral language as much as they could or 

should, to help facilitate a deeper understanding of mathematics. 

We need more group work and a willingness by the teacher to 'let 

go'. However, many teachers would be worried by this 'lack of 

discipline', as they would see it. Henry (1971) suggested that 

"there is a dialectic opposition between mobilising children's 

attitudes to a pitch of excitement and attempting to control them". 

Arnold (1973) pointed out that children in a teacher directed class 

will use the teacher's language, however uncomprehendingly, whereas 

in a child-centred class unorthodox language will be used and will 

present the teacher with new opportunities and challenges. How many. 

teachers would actually take advantage of these opportunities or 

rise to these challenges is difficult to say, tlllt there is no doubt 

that many teachers would find the 'lack of structure' difficult to 

cope with. 
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Oral language must be encouraged in the mathematics classroom. The 

organisation used in the classroom makes little difference; it is 

the attitude of the teacher that is important. Less direction and 

a willingness to listen and accept non-exact child language is 

important if firm conceptial foundations are to be laid and children 

made to feel a part of their own education. It is important for 

children to feel that they can voice their thoughts or worries about 

a problem, without fear of being derided. If children feel they 

can make mistakes during a discussion, without penalty, they will 

be more encouraged to join in and take an active part in the problem 

solving process. Children's understanding of mathematics can only 

be helped by this. 
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CHAPTER 4: DIFFICULTIES CHILDREN ENCOUNTER WHEN DEALING WITH 
INDIVIDUAL WORDS IN MATHEMAT.ICS 

Shuard and Rothery (1984) make the point that "Mathematical text is more 

complex than ordinary English text, partly because mathematics uses a 

technical vocabulary which overlaps with the vocabulary of ordinary 

English." They distinguished three broad categories of words: 

(i) Words which appear in mathematics and ordinary English texts, 

but have different meanings in these two contexts, 

(ii) Words specific to mathematics, not occurring in everyday 

language. 

and (iii) Words which appear in mathematics and ordinary English texts, 

which have the same or roughly the same meaning in both contexts. 

Words in each of these categories cause children problems and we look at 

each category in turn. 

There are some words which children are used to using in their everyday 

language that have a different meaning when used in mathematics. This 

causes children great difficulty because of the confusion which can 

arise when a word has a number of meanings and the meaning has to be 

inferred from the context. 

Matthews (1980) considered the word • difference' when investigating the 

problem of children's understanding of 'subtraction' words. She gave 

the following question to 81 six or seven year olds', from three':London 

schools. 
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"I've got 7 fir-cones and you've got 9. What is the difference between 

the number you've got and the number I've got?" 

Of the 81 children taking part, only 30 answered the question correctly. 

Of the remaining 51 children, 19 were considered to have got the question 

wrong because they misunderstood the meaning of the word 'difference'. 

When the children were asked to explain the word 'difference' many 

interesting replies were given, including "if I were 9 and your were 7 

then I would be older than you" and "if I had 9 sweets and you had 7 it 

wouldn I t be fair". When another child was asked the question "what is 

the difference between 7 and 10", the answer given was !lone is odd and 

the other is even". All of these examples demonstrate the confusion 

children have over understanding this particular word. 

There are basically two types of words having different mathematical 

and ordinary English meanings. There are some words which have a 

mathematical meaning unrelated to their everyday usage, for example 

'product' or 'difference'. There are other words where the mathematical 

meaning is similar to the meaning in ordinary English, but the math

ematical word has a more specialised meaning. Examples include 'divide', 

'average', 'remainder', 'reflection', 'gradient' and 'similar'. Looking 

at the word 'similar' in detail, we see that the two shapes below are 

similar if we use the everyday meaning of the word, 

because their shapes could be considered to be nearly the same as one 

another - they are both right angled triangles. However, mathematically 

they are not similar, because corresponding angles are not equal. It is 

fairly easy to see how a pupil could become confused when reading the 
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word 'similar' in a mathematics text book. 

Austin and Houson (1979) felt that "a very precise geometric definition 

is required if we are to distinguish between two shapes to say whether 

or not they are mathematically similar". They felt that we must consider 

how students first meet words and form concepts to the point at which a 

technical term is introduced. Skemp (1971) felt that children learn to 

use a word through its verbal context rather than through a formal 

definition - children construct their own definition based on colloquial 

usage. But, many mathematical terms are common words used by mathe

maticians_ in a specialised way. Austin and Houson felt that there was 

a danger that children arriving at their own definition would arrive at 

the wrong one. Moreover "if their usage, say of the word 'similar' , 

embraces that of the more limited mathematical one, then no apparent 

contradiction will occur when they receive information. It is only 

when they transmit it that inconsistencies may become apparent. Too 

frequently this inconsistency may pass unnoticed". 

We therefore have the situation where children may understand some 

mathematics through using the English meaning without fully grasping 

the more specialised full mathematical meaning. Hence, their mathematical 

education will be limited, as the children may feel that they have grasped 

the content of the lesson, because they are only thinking in terms of the 

colloquial meaning. 

Time should be spent in mathematics lessons, discussing the meahing-of~ 

particular words children find confusing. Children should be encouraged 

to write down sentences giving different meanings of the same word - it 

is by bringing out different mathematical and ordinary English meanings 
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that mathematical understanding may develop. Krulik (1980) gave some 

examples for the word 'prime': 

A prime number is a number only divisible by itself and one. 

Popular TV programmes are given prime time to attract large 
audiences. 

To make a water pump work, you have to prime it. 

Children's understanding of a mathematical term may be influenced by 

which meaning they meet first, the mathematical or the English meaning. 

'Parallel', for example, is far more likely to be met in its mathematical 

sense before being used in everyday English usage. Other words, like 

reflection, will most probably be encountered in ordinary English usage 

first and then the children will have to refine the meaning to deal 

with it in the mathematical sense. 

It must also be remembered that there are different degrees of 

relatedness between words in their ordinary English and mathematical 

contexts. The more similarity in meaning that exists, the better able 

children will be to understand the mathematical meaning. Also, some 

mathematical words can have multiple mathematical meanings, for 

example, the word 'base'. We have a number base, the base of a 

triangle, bases in vector spaces and bases of logarithms. It was 

further pointed out by Shuard and Rothery (1984) that "several dual 

meaning words carry a derogatory connotation, and pupils may detect 

this nuance without realising that It is prejudicing them against the 

ideas. Fractions may be vulgar or improper, a mean is a rather 

'underhand' average, a negative number feels less good than a positive 

number, and when numbers become irrational· or imaginary, mathematics 

has apparently entered the realms of nonsense." 
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There are some words that are specific to mathematics and only have a 

mathematical meaning and examples of these are 'parallelogram', 

'rhombus', 'hypotenuse' and 'coefficient'. These words are extremely 

unlikely to be used by children in their everyday speech or be used in 

the home. Their meanings must therefore be learnt either from the 

mathematics teacher or from mathematics texts, but they cause reading 

and understanding problems because they are so infrequently met. For 

example, they may be defined by the teacher and then not met again for 

six months. It is no wonder children cannot remember their meaning. 

If children cannot remember the meaning of a word used in everyday 

language, they are encouraged to look up the word in a dictionary. 

However:," when dealing with words only having a mathematical meaning this 

can be difficult as dictionary definitions leave a lot (mathematically) 

to be desired and very few school mathematics textbooks have an index. 

Even if a textbook gives the definition of a word, it will rarely be 

repeated, and as every teacher realises, constant repetition is often 

needed to reinforce the meaning of a word in children's minds. Once 

children forget the meaning of a mathematical" word, it can be very 

difficult for them to find out what it means. 

Wilmon (1971) found that about 500 mathematical words were introduced in 

texts designed for young learners. At this stage in their development, 

these children could only be expected to have a total reading vocabulary 

of about 4000 words. Once again it is not surprising that children find 

remembering not only the words, but also their mathematical definitions, 

difficul t to manage". 
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It was recognised by Austin and Howson (1979) that in talking in the 

classroom, both teachers and pupils use informal language for a great 

deal of the time. Text books present things in a very formal way and it 

could be that children do not have the language experience to enable them 

to read the text accurately. They felt that a more explicit approach to 

mathematical vocabulary may well be needed in the classroom. Teacher's 

need to repeat definitions often and maybe even get pupils to make up 

their own dictionary of mathematical words, using definitions they can 

understand. However, as Ginsberg (1977) commented, "The artificial 

language of mathematics can present the child with considerable 

difficul ties. 'Plus', 'congruent', 'minus' and the like are unfamiliar 

words that children frequently misunderstand. Defining the artificial 

word does not guarantee comprehension". 

Another problem with mathematical words is that they often have Greek or 

Latin origins and most children nowadays do not have a knowledge of 

ancient languages, hence the roots of many words will be unknown. They 

will therefore be unable to associate them with words in their own 

vocabulary. Because of the Greek or Latin origins, many. mathematical 

words have unfamiliar spelling patterns as well, which makes initial 

recognition a problem for pupils. 

Comprehension of a whole passage in a mathematical text may depend 

entirely on the understanding of one or more key mathematical words. 

To overcome this problem many teachers and authors of textbooks have 

avoided the use of words like numerator and denominator and replaced 

them with short, more easily understood, descriptive phrases. It 
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could be argued that for many children, especially those who will not 

take mathematics as a subject after leaving school, this is the correct 

approach. However, with pupils who may wish to take mathematics further 

in the future, many would agree with Shuard and Rothery (1984) that 

"omitting all technical words is a short term policy which makes text 

easier to read but it may bring long term disadvantages to the pupil". 

They go on to say that "Many technical terms have an essential place in 

mathematics, children cannot proceed without knowing them. Pupils will 

have even greater difficulty in learning words if they never meet them 

in their reading. So a practice which may seem to be a kindness, may in 

fact lessen pupils' experience of essential vocabulary, and so may work 

against the pupils' future comprehension of mathematics". In all textbooks 

and in the classroom, it is better to avoid the use of unimportant and 

unnecessary technical words like 'minuend' or 'subtrahend', for example. 

Where technical words have to be used, it must be remembered that children 

need help with understanding them. 

There are also words that have the same meaning in ordinary English usage 

as they do in mathematics. Examples given by Shuard and Rothery (1984) 

are Ilcat, dog, because, it, taxi, shelves and climb". These are examples 

of ordinary English words which are used in mathematics textbooks. These 

words are frequently used by children and are the words more easily 

understood, between the technical words used in the text. In an investigation 

by Earp and Tanner (1980), where they looked at an American sixth grade 

textbook, they found when interviewing fifty pupils that common 

non- mathematical words were understood by 98% of the pupils, while 

only 50% understood the mathematical words. 
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One of the problems children have with words which have the same 

meaning in both mathematical and ordinary English contexts, is actually 

knowing that they do mean the same. Children sometimes don't under

stand the ordinary English meaning of a word in the first place and, 

even if they do, many feel that ordinary words take on a very special 

meaning when used in a mathematics text. We should realise that 

children should be given the opportunity to· discuss even ordinary 

English vocabulary when it appears in mathematics text books. 

The difficulty of an individual word can be changed using context 

clues. The word may be made easier to understand by putting clues 

to its meaning in the surrounding sentence or chapter. Earp (1971) 

found that mathematics texts often use simple words in such a way that 

they become more difficult to understand. Earp suggested that mathe

matical text offered less context clues than did an ordinary English 

passage, so that a word appearing in a mathematical text may be more 

difficul t to read and u(jderstand than the same word appearing in an 

ordinary English passage. In mathematics, exact comprehension is 

necessary for successful completion of work, and often the lack of 

context clues makes exact comprehension impossible. Otterburn and 

Nicholson (1976) studied children's understanding of words commonly 

used in CSE mathematics courses. They took a sample of 300 pupils 

from about the middle 50% of the ability range. Each of the children 

was given a list of thirty-six such words and were asked to answer 

four questions on each word: 
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(1) Do you understand it? Yes/No 

(2) What is its symbol? 

(3) Draw a diagram to show its use. 

(4) Describe it in words. 

For the word 'minus', say, a child may have answered question 3 with 

= 

and question 4 with" Take away, subtract. 7 Minus 4 equals 3". 

The way children responded was classified in one of three ways: 

(i) Correct - showing they knew what the word meant. 

(ii) Blank - if they hadn't clearly demonstrated understanding 

(even if they had written 'yes' in answer to 

question 1.) 

and (iii) Confused - if their answer appeared muddled. 

Some of the results, expressed as percentages, mostly to the nearest 

whole number, are shown in the following table: 

Word Correct Blank Confused 
Multiply 99.7 0.3 0 
Remainder 92 8 1 
Rectangle 88 4 8 
Parallel 77 19 3 
Reflection 45 51 4 
Square Root 40 44 16 
Rotation 37 60 3 
Parallelogram 37 41 22 
Factor 32 62 6 
Square Number 65 24 10 
Prime Number 52 34 13 
Union 26 65 9 
Mapping 16 81 3 
Rhombus 31 47 22 
Product 21 59 20 
Multiple 20 45 34 
Integer 15 76 9 
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It seems clear from this piece of research that a problem exists 

here. There is a mismatch between mathematical words teachers and 

examiners expect children to understand and those that they do 

understand. (It should be noted that the word 'similar' that has 

already·been looked at in this chapter, was understood by only 19% 

of the children). 

Nicholson (1977) followed up this particular piece of research with 

two further investigations. In the first of these the words were 

given in a sentence,i.e. they were set in a particular context, 

rather than being given as an individual word. For example "Give 

one example of a multiple of 8". 

The results, for the same words already listed, are given as 

percentages in the table below. It should be noted that the children 

tested were a totally different group than those used in the first 

. investigation. 

Word Correct Blank Confused 
Multiply 99.5 0 0.5 
Remainder 98 0 2 
Rectangle 64.5 4.5 31.5 
Parallel 86 5 9 
Reflection 86.5 0.5 13 
Square Root 81.5 3 15 
Rotation 34.5 6 59.5 
Parallelogram 65.5 5.5 29 
Factor 91 5 4 
Square Number 75 4 21 
Prime Number 68.5 9.5 21. 5 
Union 55 5 40 
Mapping 41 32.5 26.5 
Rhombus 32.5 24 44 
Product 20.5 4.5 75 
Multiple 11.5 2 86.5 
Integer 9.5 18.5 72 
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In the second of the follow up investigations, Nicholson asked 

children to fill in a missing word. For example, the numbers 2,3,5, 

7,11,13,17,19 are all examples of numbers. 

Children's responses were noted using a similar classification as 

before. The results as percentages, are shown in the table below, 

using two columns of results - 'Acceptable' and 'Confused'. There 

were 46 children tested in all. 

Word Acceptable Confused 
Multiply 98 2 
Remainder 74 26 
Rectangle 93 7 
Parallel 91 9 
Square Root 54 46 
Parallelogram 48 52 
Factor 50 50 
Square Number 30 70 
Prime Number 39 61 
Rhombus 37 63 
Product 17 83 
Multiple 28 72 

Although these three investigations are not comparable, it can be 

seen that many children have difficulties with these commonly used 

mathematical words. As Nicho1son commented "Pupils who enter for 

CSE Mathematics have significant difficulties in under~tanding 

some of the mathematical terms in common use. It is important that 

teachers should recognise the extent of their difficulties and 

work continuously for better understanding". 

It should be noted that children improved on some words on the 

second investigation. The words 'Remainder', 'Reflection', and 

'Square Root' are examples of this. It could be that context clues 

actually helped chi~dren bEtter understand these words. There is 

no doubt that some words (such as 'reflection') are made much 
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easier to understand using context clues. We must remember, 

however, that different scores on words could easily have occurred due' 

to differences in mathematical and general background of the 

different groups of children interviewed. 

Nicholson does suggest then, that, broadly speaking, the middle 50% 

of the whole ability range are seriously held back by lack of 

vocabulary, although many could most probably understand the 

mathematical principles involved. These are the children who will be 

involved in taking CSE's. Earp and Tanner (1980) did find that by 

using context clues, they could significantly improve children's 

ability to define individual words. 

Very few mathematics teachers have been concerned with actually 

teaching children to read mathematical English. We could borrow 

some of the techniques used by the teachers of young readers and 

apply them to teaching children how to read mathematics text. 

Certainly primary teachers, who already use flashcards, personal 

dictionaries and comprehension exercises in teaching children how 

to read ordinary English, are well placed to transfer these methods 

to the teaching of mathematical English. 

There are certain ~activities that we-could use~to further Teinforce 

the mathematical meaning of words in children's minds, and some 

are given as examples below: 
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1. Matching words and descriptions of words: 

Match each word with its description. 

Polygon A six sided shape. 
Pentagon A many sided shape. 
Hexagon A five sided shape. 
Quadrilateral A four sided shape.· 

2. Unscrambling words that are already defined. 

3 sided shape; LGNRTIAE. 
Cut into two equal pieces; ISCBET 
Put in table form; ETAATLUB 

3. Selecting the correct definition. 

A four sided shape. A square is (a) 
(b) 
(c) 
(d) 

A shape with four right angles. 
A quadrilateral with equal sides. 
A quadrilateral with all sides and all angles 
equal in size. 

4. Butting ordinary English words together to give phrases which 
have a mathematical meaning. 

Children are asked to define, in ordinary English terms words like 

pie, root, ~quare, chart, prime, number etc. They are then asked 

to write down the definition of phrases like 

pie chart 

prime number 

square root etc. 

which all have specific mathematical meanings. In this way, teachers 

can teach children in the mathemoatic~. ~classroom, t" ,:~d . 

mathematics more fluently and with greater comprehension. 

Of course, the difficulty children experience with individual words 

is only one part of the problem associated with mathematical text. 
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Many problems arise,for example, from the linguistic structure used 

and the way diagrams and text are presented together on a page. How 

readable children find any mathematical text will be dealt with in 

Chapter 6. 
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DIFFICULTIES CHILDREN ENCOUNTER WHEN DEALING WITH 
MATHEMATICAL SYMBOLS 

When children learn to read they learn to recognise individual letters 

and to know the sounds they, or a combination of them, make. There is 

a definite relationship between letters and sounds and therefore 

children can attempt to read and vocalise unfamiliar words they meet 

in a text. Unfortunately, when faced with mathematical symbols there 

is no relationship between symbols and sounds for children to rely on. 

Many mathematical symbols, especially those for young children, are 

pictorial, and children are expected to grasp the reasoning behind the 

symbols used, so that they can interpret the text .. 

Shuard and Rothery (1984) point out that the code used in writing 

mathematical symbols is almost entirely conventional. There is no 

reason to do with the operation of multiplication or the sound of the 

word 'multiply' that makes the symbol x better to represent 

multiplication than, say, the symbol T. Also much of the symbolism 

used in mathematics has meaning which varies with the way the symbols 

are spatially presented to the reader. For example: 

(4,2) 

42 

42 

4 
2 

coordinates or ordered pairs of numbers 

forty-two, or 4 10's and 2U's 

four squared 

four divided by two, and so on. 

Because the symbolism of mathematics is not based on a code of sounds, 

children have to learn the meaning of each symbol or groups of symbols 

as they meet them, and as ih the' problem ioti th words <'having .. only a 

mathematical meaning, if they don't meet them often enough for 
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reinforcement to occur, then they will not remember their meaning. When 

children are actually in the process of learning a new symbol they' have 

to link together the symbol, the concept it represents and a definition 

that they understand to explain the symbol. This is a difficult exercise 

for many children and explains partly the reason why children have problems 

with mathematical symbolism. We must remember that many mathematical 

symbols can be read in different ways and this adds a further area of 

confusion for many children. 

4 x 8, for example,can be read as times, multiply,4 lots of 8, 

four eights and so on. 

8 2 can be read as 'how many 2'8 in 8' and 'divide' 

8 into 2 equal parts. The first of these is a grouping exercise and the 

second a sharing one. To fully grasp the concept of division, a child 

must link these two ideas together - how many children see two entirely 

different operations occurring here that, bY'comcidence, happen to give 

exactly the same answer? There are also a number of different symbols 

8 
attached to the concept of division, 8 + 2, 2' 8/2 and 2f8'all meaning 

the same thing, ahd children need to appreciate this. In fact they have 

to appreciate that each of the symbols used for +, xand+ have a 

number of meanings, depending on the context. 

Preston (1978) analysed the mathematical terminology used in primary 

texts and workcards. In eight different schemes, he identified 18 ways 

in which the operation of addition is presented, inclu'ding: 

The sum of 6 + 4 is 

Add 6.and 4 

6 add 4 

The total of 6 and 4 is 

4 greater than 6 



6 plus 4 

6 + 4 
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6 and 4 equal, and so on. 

Each scheme he looked at, on average, used seven of the alternative 

forms,and one text, supposedly for the less able, used fourteen of 

these alternative forms in the space of two pages. SurelY,when language 

development is going on, so many different forms presented in a short 

time to children can only further increase confusion. 

There are symbols that are not specific to the technical vocabulary of 

mathematics, and children may confuse their mathematics meaning with 

their ordinary English meaning. 
I I 

Trivett (1978) points out that x may 

mean 'multiply' or a kiss, or an incorrect answer and that some 

punctuation marks such as '1 I or '_I or , take on very specific 

mathematical meanings. 

Another problem that children have to contend with is that mathematcal 

symbols are often combined "with others, and different positioning of 

symbols conveys different meanings. These different meanings attached 

to different positionings of symbols are normally determined by 

convention, and once again children have to learn this as they go along. 

For example, 71 and 17 are different numbers although they use the same 

mathematical symbols, albeit in a different order. The symbols '71' 

match the order of speech 'seventy one' but the§yrnbols '17' do not 

match the order of the spoken word 'seventeen', thus introducing scope 

for further confusion. 

We therefore have many irregularities that children meet and have to 

deal with. A further example could be children measuring a room with 
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a metre rule. When doing so they will write down a measurement of 

4 metres as 4m. When they come on to deal with fractions, at a later 

stage, they can be forgiven for thinking that four thirds are written 

4 
as 4Y, and not as 3' they are confusing the principles involved here. 

When meeting algebraic multiplication for the first time they have 

to learn that, if x ; 7, then 5x does not mean the same as 57. The 

system of coding used in each case is very different - we have tens 

and units as opposed to multiplication. 

Booth (1982) gives an example of an interview with an above average 

4th year pupil in a secondary school. The pupil was asked to explain 

the meaning of the y in '5y'. 

11 Pupil: 

Interviewer: 

Pupil : 

Interviewer: 

Pupil : 

Y could be a number, it could be a 4, making 54. Or 
could be 5 to the power of 4, making 20. 

Do you think it could be either? 

It could be either - you can't really say. 

So Y could be any number? (pupil nods). Suppose I made 
it 23. What would you write down then? 

Five hundred and twenty three? But I dunno - it doesn't 
seem very promising. Wait it could be,28, 5 plus 23". 
yes ••.. There again. it could be 5 to the power 23, 
(Writes 5 + 23. 5"'), 

Not surprisingly, Booth recommends that the multiplication sign in 

5 xy be left in until such time that a pupil recognises. consistently, 

that 5y is the product of 5 and y. 

Many pupils fail to understand the symbolism used in algebraic 

manipulation, and unfortunately, mathematical development is very much 
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dependent on being able to cope easily with this. Much testing of 

algebraic competence has been done by the APU (1981) in its Secondary 

Survey Report and by the CSMS team. 

One group of items on" the APU survey gave children a letter representing 

a number and they were asked to write down numbers that were 'one 

bigger than' or 'three less than' or 'twice that number' represented 

by the letter. There was a facility level of only 45% when 14/15 year 

olds attempted this group, and over 20% of children made the mistake 

of representing 'twice Xl as x 2 

3 When asked to simplify a + a + a, 17% gave the answer a and for 

a x a x b, 11% gave the answer 2ab. In answer to the question, if 

y = d3 , find y if d = 3, there was only a facility level of 38% and 

19% of pupils gave the answer to be 9. There is obviously a great 

d6al of confusion in children's minds as to what the index notation 

means, many thinking it stands for the multiplication of the letter 

by the index. There seems no doubt at all that many pupils, even the 

most able, have not understood fully the symbolism in algebra. 

In what order mathematical symbols should be read is another source 

of confusion for children. Reading ordinary English, we read each line 

from left to right and each page from top to bottom. Once again, this 

convention does not always transfer to the reading of mathematical 

text. If we look at the addition of fractions, Krulik (1980) gives 

the example: 
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which has to be read in the order given by these arrows: 

J,~ .. ,.t~U~ ~1 
Krulik suggests that children should be encouraged to do such arrow 

diagrams as a part of the process of learning to read symbolic 

expressions, and we should note this. 

Many children become very confused when faced with symbolism that looks 

different, but actually means the same for example, 8 + 4 and 

4:18 both ask you to divide 4 into 8", but the symbols are reversed 

in order. Many children just divide the smaller number into the 

larger on all occasions', to get over this apparent contradiction 

in meaning. 

Kieran (1979) investigated arithmetical methods used by a small 

number of American 12 to 14 year olds. All the children evaluated 

the expressions given. by working, in prose convention, from left to 

right, completely disregarding the symbolic conventions for 'order of 

operations' that they had been taught in their mathematics lessons. 

For example, 8 + 3 x 2 was evaluated as 22. This question was 

followed up with a request from the interviewer for the children 

to insert brackets at an appropriate place and two of the children 

placed them around the first two numbers (5 + 2) x 3, to further 

reinforce their belief that the left to right order was the correct 

way to work out the answer. 
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In the APU Secondary survey (1981), when asked the question 'Which of the 

following is NOT equal to any of the other three 

A a-b+c 

B (a-b)+c 

C a - (b + c) 

D a + (c - b) 

There was a facility level amongst 15 to 16 year olds of only 30%, and 

interestingly 47% of pupils chose the expression where the order of the 

letters was different, thereby ignoring the brackets altogether. 

Many children will derive their own conventions to avoid the use of 

brackets altogethe~ as they find the use of brackets to be an unnecessary 

complication. Booth (1982) asked the question: 

Which of the following can you write for the area of this rectangle? Tick 

everyone you think is correct. 

5 x e + 2 

5 x (e + 2) 

5 lOe 

• 5 x e2 
e 1 L 

5 (e + 2) 

e + 2 x 5 

None correct. 

This item was given to 991 pupils aged from 13 to 16, from the full ability 

range. The results for this item are given in the table below. 

YEAR GROUP 

13 14 15 16 

Correct answer 8% 10% 20% 34% 

5 x e2 included 37% 31% 19% 16% 

Brackets and non-brackets 
32% 37% 46% 38% equivalent 

Brackets excluded 25% 27% 16% 15% 

From this table it can be seen that a significant number of children in 
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each year group considered expressions with and without brackets to be 

equivalent, indicating that they have regarded brackets to be irrelevant. 

A high percentage also excluded all answers with brackets from their 

answers. Children from the average and above average ability groups were 

. further questioned and it appeared that although they were familiar with 

the bracket notation they considered the use of brackets to be largely 

optional, because of three main misconceptions, which were: 

(i) Operations are performed from left to right, in the order 
written. 

(ii) The context (if one is given) determines the order in which 
the operations are to be performed. 

(iii) The same answer will be obtained no matter what order is 
used. 

As teachers, we obviously need to be aware of these and must amend our 

teaching methods to show how wrong they are. 

Austin and Howson (1979) made the point that "when one moves on to 

algebra, then complex situations arise. In other words, that apart from 

the normal level of abstraction involved with mathematical symbolism, 

algebra takes this abstraction a stage further in difficulty. The 

structuring of brackets is but the first of several complications not 

present in ordinary language". They further pointed out that the algebraic 

language "can be handled autonomously, independently of the meaning of 

content" and they quoted Thom (1973) who asserted that "algebra is rich 

in syntax but weak in meaning". The strength of algebra, they feel, is 

that it "extends the number of important operations we can perform without 

thinking about them". 

Many children also experience great difficulty in understanding number 

symbolisation and this obviously leads to difficulty with reading numbers. 
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The difficulty children find in translating numbers to words and vice

versa may occur due to the different rules, already noted, for the 

verbalisation of numbers and their symbolisation. The number 45321, 

for example, is read as 45 thousand, three hundred and 21, and read 

from left to right, whereas symbolically it is worked out from right to 

left as 1 unit, 2 tens, 3 hundreds, 5 thousands and 4 ten thousands. 

Brown (1981), as a part of the CSMS Project, found that children are 

generally able to recognise on sight numbers under a thousand. With 

numbers above that size at least 20% do not recognise them and have no 

systematic method of pronouncing the numbers. However·, the proportion 

who cannot apply the symbolic, as opposed to the verbal, system of 

place value to writing and evaluating numbers seems likely to be 

considerably greater than this, and it probably reaches 50% or more 

of the secondary population. Brown also found that many children 

become confused with decimal fractions. Many do not realise the 

significance of the decimal point (40% at 11 years old to 25% at 15 years 

old). Typical mistakes are to consider 0.63 to be bigger than 0.7, 

as 63 is bigger than 7, and 3.02 to be bigger than 3.3 as 302 is bigger 

than 33. 

When children first meet mathematical symbolism they are often working 

in the concrete mode, using say blocks or counters, and are dealing 

with the operation of addition. With addition the order of the symbols 

used may not seem to matter, for if four counters and five counters are 

put together to make nine counters in all, the position of the counter 

may not be important and the child writes down 4 + 5 = 9 or 5 + 4 = 9. 

When they move on to subtraction and say 5 blocks are taken away from 

7 blocks, children may feel that 5 - 7 = 2 is just as acceptable as 

7 - 5 = 2. As Rothery (1984) points out, "the reason that they are not 
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allowed to write 5 - 7 when they are allowed to write 

5 + 7 and 7 + 5 is beyond their experience at the time". 

Brown (1981) further points out the serious consequences for the future, 

that the limited interpretation of arithmetical operations caused by the 

concrete setting children get initially can have. In response to the 

question 'Divide by 20 the number 16', many children considered that there 

was no answer, since 16 things cannot be shared between 20 people. The 

following table gives the percentage of children who considered there was 

no answer to 16 + 20. 

Age (Years) 

% considering 
no answer 

12 

51 

13 14 15 

47 43 23 

Further to this, many children faced with problems like 4 + c==J ; 7 

or r==J + 4 ; 7, put 11 into the box, to complete the number sentence. 

Work done by Kieran (1981) may point to the reasons why children do this. 

Because children often start their work on addition practically, they 

initially regard the; sign as an actual physical signal to carry out a 

combination of two sets of counters or blocks. This means that a sentence 

like r===J + 4 ; 7 does not make sense to them, so they rewrite it as 

4 + 7 ; D ' to make 11 the correct answer to put in the box. 

Austin and Howson (1979) point out the conflict between mathematical 

symbolism and natural language when dealing with the; sign. "In the 

teaching of primary school mathematics the introduction of such symbolism 

as 8 - 2 6 can cause major difficulties. Why write '2 from 8' in that 

particular way, and why does the (;) sign which in 6 + 2 ; 8 meant 'makes' 

now mean 'leaves'?" ··The conflict they rIOte will frequently occur. It is 

obvious then, that teachers need to do oral work with children to explain 
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the meaning of equivalence attached to the ';' sign. Through discussion, 

children can be helped to move away from the concrete mode, towards the 

abstract mode. 

It would seem then that many children do not fully understand the abstract 

symbolism used in mathematics, especially that used in algebra. The 

teacher has a vital role to play in ensuring that children understand the 

symbolism used and how symbols are combined, so that mathematical text 

can be .correctly interpreted. 

There are a number of skills that children need if they are to decode 

symbols easily. They need to decode symbols which straightforwardly 

replace a word or phrase, for example 

12< 14 or 7 3 ; 4. 

They need to be able to decode symbols which have no obvious verbal 

equivalent, for example, 

(5 + 7) x 4 ; 48. 

They need to be able to decode different spatial arrangements of symbols, 

for example; 

~, 
5 

~, 
4 

4 
x 
5 

5x. 

They also need to be able to decode symbols which do not conform to the 

English prose.convention of reading from 'left to right', for example 

3 ( 2 + ~ )' 8 . 

We can use a number of strategies to help children become more proficient 

at reading the symbolism prevalent in mathematics texts. 

We can use a 'matching' technique, and one suggested by Earle (1976), 

provides an example of this. We have three sets of cards, one set has 
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the mathematical symbol on, the next its equivalent in words, and the 

third an example of mathematical expressions which might contain the 

symbols, and we ask the children to match these up. For example: 

SET 1 

< 

x 

SET 2 

equal 

is less than 

is not 
equal to 

is bigger than 
or equal to 

mul tiplied by 

is less than 
or equal to 

SET 3 

5/five 

7/9 

3x2/3+2 

5 / 3 

~?3 = 12 

14/16 

We could also ask children, during oral work, to translate symbols 

into words and words into symbols, and once again the teacher's role 

is extremely important here. Through group work and discussion in 

the classroom, children's understanding of the intricacies of 

mathematical symbolism can be improved. 
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CHAPTER 6: THE READABILITY OF MATHEMATICS TEXT 

In chapter four we noted the difficulty children have with 

individual words when reading mathematical text. This is not the 

only concern, however, when deciding how difficult children will find 

a particular piece of text. We are interested in 'readability' 

some passages are easier for pupils to read and understand than 

others. 

We have already discussed how the difficulty of a particular word 

may be softened by its context. The surrounding sentence, or whole 

passage, may give valuable clues to the meaning of a word or words. 

A number of 'readability' formulae were developed in Britain and in 

other areas of the world, following on from a definition of readability 

given by Dale and Chall (1948), who said that "In the broadest sense, 

readability is the sum total of all the elements within a given piece 

of printed material that affects the success which a group of readers 

have with it. The success is the extent to which they understand it, 

read it at optimum speed and find it interesting". 

The readability formulae produced, typically involved taking a 

number of sample pages from a text and counting the average word 

length and the average sentence length and this information was then 

used to estimate the age of the children for whom the text was 

suitable. This is all very well for extensive passages of prose, 

but mathematics text books are far more complicated because of the 

many special features included, such as symbols, formulae, diagrams, 

--
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tables and graphs. In the light of this, readability formulae may 

seem to be rather unsuitable at gauging the age group for which a 

particular mathematical text is suitable. 

Kane (1970) pointed out that he felt it was impossible to apply 

standard readability formulae to mathematics texts. Kane (1967) 

also introduced the terms Ordinary English (OE) and Mathematical 

English (ME) to stress the different nature of written mathematics. 

He said that "ME is a hybrid language. It is composed of OE 

co~mingled with various brands of highly stylised formal symbol 

systems. The mix of these two kinds of language varies greatly 

from elementary school texts to books written for graduate students". 

Kane also felt that ME and OE were so dissimilar that they require 

different skills and knowledge on the part of readers to achieve 

appropriate levels of reading comprehension. Kane also gave 

detailed reasons why readability formulae for Ordinary English Prose 

were inappropriate for use with mathematics texts. He felt that 

ME is essentially different from OE for four main reasons: 

( i) 
(ii ) 

(iii) 
and(iv) 

letter, word and syntactical redundancies differ 
in contrast to OE, in ME the names of mathematical objects 
usually have a single denotation. 
adjectives are far more important in OE than in ME 
the grammar and syntax of ME are less flexible than in OE. 

Unlike texts written for most other subjects, mathematical texts 

differ in that even on a single page there exist a variety of types 

of writing and a variety of purposes of writing. Shuard and 

Rothery (1984) gave a broad classification of the purposes of 

current mathematics textbooks, although they themselves admit that 

they have ignored some minor items. 
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They summarise the mathematical goals for which most texts aim, 

as the "acquisition of 

concepts 
principles 
skills 
and problem solving strategies." 

Within these goals they felt that a particular passage may be intended 

to: 

"1: teach concepts, principles, skills and problem solving strategies; 

2: give practice in the use of concepts, principles, skills and 
problem solving strategies; 

3: provide revision of 1 and 2 above; 

4: test the acquisition of concepts, principles, skills and 
problem solving strategies." 

In addition to these, they felt that texts should also attempt to: 

5: develop mathematical language, to broaden children's mathematical 
vocabulary and their skill in the presentation of mathematics 
in a written form." 

They felt that by providing these lists, authors and teachers would 

find them useful in helping them define the intended purpose of a 

particular passage of text. 

Rothery and Shuard also give a classification of categories of writing 

found in mathematical text books, because "mathematical authors use 

several different types of text in order to carry out their intended 

purpose, and each type has its own characteristics." They are as 

follows: 
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EXPOSITION of concepts and methods, including explanations of 
vocabulary, notation and rules. Summaries are included here. 

INSTRUCTIONS to the reader to write, or draw, or do. 

EXAMPLES AND EXERCISES for the reader to work on; usually 
they are routine problems that have to be solved. 

PERIPHERAL WRITING: introductory remarks, writing about the 
exposition, giving clues, etc. 

SIGNALS: headings, letters, boxes and logos, for example. 

Shuard and Rothery felt that these five categories provide us with a 

crude system that we can use to analyse a particular piece of text. 

A reader will respond in a different way when faced with a particular 

category of writing. 

The exposition does not have to be acted on immediately by the 

reader; it is often for later use. It is to be read, and, hopefully, 

retained. It may be felt that the reading of mathematical exposition 

is a passive activity, like the reading of a piece of English prose. 

When reading a piece of mathematical exposition, however, children 

often need to work out the steps in an argument for themselves, and 

it is therefore essential for them to use pencil and paper as the 

reading continues. Exposition can, therefore, be presented as 

exercises to force children into actively involving themselves in 

the reading. 

Instructions ask the reader to carry out any tasks that are described. 

Interestingly, because authors have not really thought about the 

instructions they have given, some instructions cannot be carried 

out, although they look like real instructions. Pupils have to 

learn quickly to recognise which instructions they should take 



64 

literally, and those that cannot feasibly be carried out. An example 

is: "Draw a rod 28cm long and cut it into: 

( a) 4 equal pieces 

(b) 7 equal pieces 

(c) 2 equal pieces 

Record the length of the pieces in each case." 

In no way is the author asking children to actually physically cut 

anything up. 

Examples and exercises involve learners in the solution of problems: 

learners must be able to carry out a number of steps, starting with 

finding out what it is the problem is asking them to do, then finding 

out how to do it. The final stage is actually finding a solution 

and then, hopefully, checking its validity. 

Peripheral writing is not intended to be read in such an intense way 

as an exposition. It is designed to help the reader, but does not 

contain information of vital importance. It can be scanned and its 

contents noted for immediate use, but not necessarily remembered. 

Examples of peripheral writing are introductory passages which 

provide links with ideas already met, or to give advance warning of 

what is to come in the particular section, so that children can fit 

what follows into some form of framework. 

Signals are used in such a way as to help guide readers through the 

text, or to identify, highlight or make clear different passages. 

They are an extremely important part of a mathematics text, because 

mathematical writing is often complex and page layouts not straightforward. 

Bold type, italics or underlining can be used to provide signals. ~ 
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Children are also expected to be able to distinguish between two 

particular types of question. Some questions are simply set as 

exercises, and the expected response is for children to write down 

an answer. For example, "What is the sum of 3 and 14?1I Other 

questions can be used as signals to give an idea of the direction 

the text is moving in. These are rhetorical questions, and an 

example is "Can you think of the names of some two-dimensional shapes?" 

The author does not expect a long list of names of polygons. 

Although the use of these categories to analyse a particular piece 

of text is rather crude, it does have the advantage of concentrating 

attention on the purpose of the separate parts of the text, and may 

well lead authors to think of ways of improving their presentation 

and hence the readability of the text. 

The following example is of two separate pages from a CSE text book, 

that I have analysed using Shuard and Rothery's classification system. 

It is interesting to note that although the sentences used could be 

read by most 14/15-year old children, many would not understand the 

pages without teacher guidance, mainly because of the way in which 

the work is presented. 
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Significant figures 
HOW foMNY 

ReCoRps HAVE 
TH~ CoPi"ERS 

SOLO! 

- \i 

t. 

Each of Jackie's friends 'rounded off' the number. 
But their answers were all the right size. 

.-------Paul looked at the ~ 38451 '2nd figure', 
Rounding off 

OPooo 
He corrected 38 451 to 
1 significant figure. If the number you 

look at is: 
.. '--------Tina looked at the less than 5 - forget it 

5 or more - add 1 to 38451 '3rd figure'. 

~ooo 

s.f. means 
siynificant figures 

S he corrected 38 451 to 
2 significant figures. 

the figure in 
front of it 

~ 1. How many significant figures did Steve and Sharon 
correct the number to? 
Which figures did they look at? 

2. Correct the other record sales figures to: 
(a) 1 s.!. (b) 2 s.!. (c) 3 S.t. (cl) 4 s.t. 
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S iC"NI\ \. 

I Significant figures ~ 
How MANY 

RECoRpS HAVE 
THECO~S 

SOLP?' 

Su..£ Fturf) 31 5'2.'1 

AODP\ 

Each of Jackie's friends 'rounded off the number.'=:" INR ;~~~L 
But their answers were all the right size. 

.L--I>l-C-~-\<"-EP--- Pau I looked at the 
38 451 ~XKM('\..E' '2nd figure'. 
~ He corrected 38451 to 

[JP 000 S G 1 significant figure. 
F- _ \ N\L-" 

.. '------Tina looked at the 
38451 lNo!l..\<.E:() 

r""--"" £:xkM ?\...€: 
'3rdfig ure'. 
She corrected 38451 to 

\38\000 2 significant figure·s. 
f'-- S\G,N!\L..A 

/1fA7'1 0 ~ ~S'GNf\L 
Rounding off - I \. 

If the number you ~ 
look at is: 
less than 5 - forget it 

5 or more - add 1 to 
the figure in 
front of it I~ 

Ex \'o~ i\10N~ 

P£RW\\~l 
'NR"INC, 

I21SI 1 How many significant figures did Steve and Sharon 
~ .• ~~ .. correct the number to? ) ~ . 

.£ 
s.L means 
significant figures 

SiGNt\L Which figures did they look at 'EX£:i(C\'SES 

2. Correct the other record sales figures to: /' 
(a) 1 s.1. (b) 2 s.1. (cl 3 s.1. (d) 4 sI. 
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2 - 7 = -5 

rewritrng division 

rewriting numbers 
and cancelling 

using powers 
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Negative powers 

You should have done: More directed numbers 
(pages 17-19). 

I n arithmetic 
3 x 3 x 3 x 3 

is 3 4 

We say '3 to the power 4'. 

Write these out in full: 
1. 3 5 2. 23 3. 7 6 

~power 

34 

--base 

5. 44 

To divide numbers with the same base we subtract 
the powers: 

4 6 -;.-4 3 =4 6 - 3 =4 2 

Use this short method to do these: 
4. 10' -;.- 10 7 

Your answer to iIDl4 should have been: 

102 -;.- 10 7 = 10 2 - 7 = loS-negative power 

But what is 1 0-5? We can work it out. 

102 

10 2 -'-10 7 =--
10 7 

..w-1 x..w-1 

= W, x W-=-l-x--:l:-":O"-X 1 0 x 1 0 x 1 0 x 1 0 

1 =- ---
10xl0xl0xl0xl0 

1 
= 

105 

Since both answers must be the same: 
1 

10- 5 = ---
10" 
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S\GNf\L 

Negative powers / 
PER i P~I\L W ~ \lINe. 

You should have done: More directed numbers~ 
(pages 17-19). 

. / E>,-~oSn'ON 

/ .-powe, 
34 

I n arithmetic 
3 x 3 x 3 x 3 

is 3 4 

We say '3 to the power 4'. --base 

Write these out in full: ~'X.E:RC:\b\;'.S. 

1. 3" 2. 2 3 3. 76 4. 8 2 

To divide numbers with the same base we subtract 

S\<ONI\L .--7 
the powers: EX~as. \1\ ON 

4" -;- 4 3 = 4"-3 = 42 

~[ ,} .... i,1 LU-s-e-t-h-iS-s-h-o-rt-r-n-e-th-o-d-t-o-d-o-th-e-s-e-:-8<--e;:R--c..-\-<;;,-€-s.-----' 

~ 1.26 -'- 2' 2.7 9 -'-7" 3. 53 -;- 53 4.102 
-'- 10' 

Pt=:R i\'\-\E:RAL wRli\N(, 

2-7=-5J 

~ 
Your answer to ~! 4 should have been: \NCl~l<m 

1--_1_0_
2 _-'-_1_0_7_=_1_0_2_-_'_=_1_(j_P_~7_'+-__ n_eg_a_ti_ve_p_ow_e-f' ~..5.x1\f.\ PLE 

R\\E:ThR\c.ALQU~~-76ut what is 10- 5 7 We can work it out. 

rewriHng division 0 
rewriting numbers 
and cancelling )' 

PER\P\\~/'..L 
\NR.I-nNG ) 

uSing powers / 

10' 
102 -'- 107 = --. 10 7 

1 1 ",1 ;ur X-Ki 
= -:-::---:-

W
1 

x W
1 

x 1 0 x 10 x 1 0 x 1 0 x 1 0 

1 
=-----

10x 10x 10x10 x10 

1 
= 

10' 

Since both answers must be the same: 
10-

5 
= _2__ , _____ EXPv'S;\\()N 

10 5 ~ 
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As already discussed, word length is considered as a factor in some 

readability formulae, where long words are considered to be difficult 

and short words regarded as easy. This can be explained by the fact 

that short words will most probably be more familiar to children and, 

also, longer words are more difficult to say and are therefore less 

easily recognised. Word length is a crude method of assessing the 

difficulty of vocabulary, for there are lots of examples of unusual 

short words, and there exist some familiar long ones. 

It has been suggested, therefore, that a better measure of the 

difficulty of words is their familiarity, with reference to the 

vocabulary children are used to using in the classroom. Lists of 

familiar words have been made, and some readability formulae make use 

of these, but these formulae do have their limitations. One limitation 

is the time factor: as time goes on, the vocabulary in use changes, 

and so the lists of familiar words have to be changed. Also lists of 

familiar words are influenced by the nature of a particular nation's 

vocabulary and word use. As most lists are American in origin, this 

is problematic when using them with British texts, as the two language 

forms are far from identical. 

There are, therefore, a number of ways of assessing the difficulty of 

the words used in a text. Four of these are suggested by Shuard and 

Rothery: 

i) 

ii) 

iii) 

and iv) 

whether the word is familiar to the reader; 

whether the reader has met the ME word before, and 
whether it is confused wi th any other DE word; 

whether the word is on its own, or in context; 

whether the text helps the reader to understand the word, 
i.e., does the book contain a glossary, for example. 
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To fully grasp the meaning of a particular piece of text, it is not 

enough to just understand individual words; the difficulty of the 

syntax used must also be taken into account. As well as taking word 

length into account, readability formulae often take sentence length 

into account. In other words, the longer the sentence the harder it 

is to read. Once again we find that this measure may not be very 

reliable. It has been found that sentences of the same length vary 

greatly in difficulty, and that some long ones are easier to under-

stand than some shorter ones. Children would find sentences like 

the ones they themsel ves would wri te much eas'ier to read and under

stand than those often found in text books. Familiarisation is an 

important aspect here. 

A useful guide for assessing the complexi ty of a particular piece of 

text has been provided by Botel, Hawkins and Granowsky (1973). They 

listed types of sentence which cause syntactical difficulties, and 

gave a numerical score for each one, to give an idea of its level of 

complexity. The scores for each sentence were summed to produce a 

score for the overall complexity of a particular passage. Although 

the use of this sort of measure presents enormous practical problems, 

it can provide authors and teachers with an assessment of how complex 

a particular text is. 

We must remember that both the vocabulary used and the syntax are 

highly significant factors in deciding how difficult children will 

find a particular text. Linville (1976) found this to be the case 

when investigating children doing word problems. Sentences containing 

complex syntax caused children as many reading difficulties as those 



72 

containing easy syntax and difficult words. Linville developed four 

arithmetic word-problem tests, each conSisting of the same problems 

but varying in difficulty of syntax and vocabulary. These were: 

i) 

ii) 

iii) 

iv) 

easy syntax and easy vocabulary; 

easy syntax, difficult vocabulary; 

difficult syntax, easy vocabulary; 

difficult synatax, difficult vocabulary. 

These four tests were given to 408 fourth grade pupils in twelve 

American schools. The conclusions drawn from the results were that 

both syntactic structure and vocabulary level, with the latter more 

crUCial, are important variables in solving verbal arithmetic problems. 

Another finding of this study was that pupils of higher general 

ability and/or higher reading ability gained significantly higher 

scores on the arithmetic problems than pupils of lower ability. 

In other words, we cannot accurately measure how complex a passage 

of mathematical text is by looking at the length of words or sentences 

in that text. We do, however, have to note the importance of syntax 

and vocabulary when making an assessment of the complexity, and 

hence the readability, of a text. 

We have used the idea of readability so far to mean 'how easy it is 

for children to understand what they are reading.' Unfortunately, 

most readability formulae have been produced to assess the-difficulty 

of ordinary English prose. We must therefore remember that most 

mathematics texts contain little continuous prose. Although looking 

at particular readability formulae is outside the scope of this 
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dissertation, looking at the criticisms of them for use on 

mathematics texts is an area worthy of investigation. 

Readability formulae necessarily only use variables that can be easily 

quantified. As we have just seen, the syntax of a sentence greatly 

influences its readability, but the only measure used in any of the 

formulae reflecting syntax is that of sentence length. As we have 

already seen, this is not a reliable indicator. The formulae also 

fail to take into account the legibility of the text. Factors such 

as line length, page layout and typeface(s) used can have a great 

influence on the readability of a text. As mathematics texts have 

graphs, tables, diagrams, etc., this idea of layout is of great 

importance to the overall level of readability. 

Different readability formulae may also give very different estimates 

of the readability of a particular passage and, more worryingly, the 

results do not differ consistently, and of course different parts or 

chapters of a book may give very different results, changing, say, 

with the content covered. On top of all this, readability formulae 

also ignore 'reader enjoyment'. Many children manage to read, under-

stand and enjoy stories in books with readability well above their 

supposed capabilities. We need to be aware that few mathematics 

texts stimulate children enough for them to want to read them. 

Taylor (1953) pointed out that readability formulae fail to reflect 

the effect the book has upon the children reading it. Children's 

initial reaction to a book will almost certainly not concern its 

mathematical features; it will concern things like attractiveness 
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of design, quality of illustrations, the clarity of the type face used, 

and so on. This initial reaction will very much affect the way in 

which the reader will feel about dealing with the rest of the book 

We must remember, also, the defensiveness of those children who feel 

that they always fail with mathematics. Low ability 14- to l6-year 

olds can object to nicely presented, fragmented materials because they 

too closely resemble books for young children. 

We can see, then, that readability tests designed for use on OE texts 

have little application to texts using ME. Readability formulae 

developed for use with school mathematics text books are almost unknown 

in Britain, but two such formulae have been developed in the USA. 

Hater (1969) made a distinction between 'word tokens' and 'mathematics 

tokens.' A mathematics token was taken to be a basic piece of 

mathematical symbolism. For example, 4 x 3 has three mathematical 

tokens: 4, x and 3; 
3 3 x has two: x and . Word tokens are ordinary 

words. Hater modified the Cloze procedure, where words of a text are 

replaced by blanks and readers are asked to supply the missing words, 

so that it could be used with mathematical text. The Claze procedure 

therefore measures the reader's reaction to the text. The easier 

readers find the passage to understand, the more missing words they 

will be able to fill in, and vice-versa. 

The procedure Hater adopted was to replace every fifth token with a 

blank. So that readers could distinguish between different types of 

token, mathematics tokens were replaced by short lines and word tokens 

by long lines. Hater found that this procedure measured the difficulty 

children have with passages of mathematical English in a way which 

correlated well with measurements obtained using comprehension tests. 
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Kan~, Byre and Hater {1974} correlated a large number of the features 

of mathematics text books with the reading ease of these texts, and 

developed two readability formulae. To use these formulae lengthy 

lists of mathematical words and symbols are necessary, and these are 

given by Kane et al {1974}. The formula regarded as the most useful 

is given here: 

Predicted Readability ~ -0.15A + 0.10B - 0.42C - 0.17D + 35.52 
where A, B, C and D are variables. 

To use this formula to assess the readability of a book, samples of a 

text are taken containing 400 tokens, and their mean readability score 

found. At least ten of these individual scores are needed to assess 

the overall readability of the book. 

The values of the variables are found as follows: 

A - the number of words not on the Dale list of common 
non-mathematical words and also not on the list 
'Mathematics Words known to 80% of children'. 

B - the number of changes of word to mathematical token 
and vice-versa, in the passage chosen. 

C - the number of terms not on the list 'Mathematical words 
known to 80% of children' and the number of different 
symbols not on the list 'Symbols known to 90% of children' . 

D - the number of qu.es tion marks in the passage chosen. 

This formula does not give a 'reading age', but it does allow us to 

rank text books in order of readability difficulty' - the larger the 

score, the easier_ the text is to read. 

Because the value of the variables is obtained from lists prepared from 

American textbooks, we would not be able to use this test without 

changing the lists to take account of differences of language and 
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mathematical content found in Britain. The test is also, it must be 

said~ far too tedious for the classroom teacher to administer. However, 

we must not lose sight of the fact that a readability test has been 

developed that takes account of some of the features peculiar to 

mathematics texts. 

It must be stressed at the end of this chapter that readability 

formulae all have their limitations, and can only give some idea as 

to the degree of difficulty children will have understanding a 

particular text. The results from readability tests should be seen 

only as one of the criteria used to judge the difficulty of a text, 

along with the personal judgement and experience of teachers and other 

specialists involved in using the text. However, they do have a 

place, and those involved in mathematics education in Britain should 

take more account of their usefulness and help initiate further 

research into their development. It is only by establishing 

criteria for evaluating mathematical writing that we can begin to 

make some form of quantitative judgement about the level of difficulty 

of individual texts. 
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CHAPTER 7: IMPROVING THE READABILITY OF MATHEMATICS TEXT 

In the preceding chapters we have identified and discussed some aspects 

of the language difficulties children experience when reading 

mathematical text. There is no doubt that there is room for 

substantial improvrnent in the way mathematical text is presented. and 

hence, in its effectiveness. In this chapter we will look at ways 

mathematical authors and teachers can improve the presentation and 

readability of their work. 

Before identifying areas where improvements can be made, it is worth 

remembering that the reading of mathematical text cannot be divorced 

from the teaching methods used in the classroom. Teachers, by 

interacting with the children in the right way, and at the right time, 

can bring out the best in any piece of mathematical writing. We must 

not lose sight of this - the teacher, many would feel, must be 

viewed as the most important resource in the classroom. 

Austin & Howson (1979) point out that children's initial reactions 

to a text are extrememly important, as this will affect the way they 

deal with it in the future. These initial reactions will most 

probably have nothing to do with its mathematical features but 

with the layout and attractiveness of individual pages. This must 

be noted, but it must also be remembered that improving layout by, 

say, leaving more spaces or adding extra colour can add significantly 

to the price. It is no good having an extremely readable text that 

schools cannot afford to buy! A compromise must be reached between 

readability and cost. 
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How then do we make texts more readable? The following 

suggestions arise from work already covered in this dissertation. 

When new technical words are introduced, we must be aware that 

many children will not only have initial understanding difficulties, 

but they will also forget definitions they have actually understood 

and learnt. Clear, simply-worded definitions of all new words and 

symbols must be given to aid initial understanding, and a list 

of all technical words and symbols used in that text, along with 

their definitions, must be compiled in a glossary. Children 

can therefore more easily look up the meanings of terms they 

forget. 

Any new words or symbols introduced should be used as often as 

possible in the text and in as many different contexts as possible, to 

reinfor.cf!'.I meaning. At the end of each chapter, reviews or 

tests on these meanings should be included. Peripheral remarks, 

redefining important words at regular intervals, could also be 

used. It must be remembered that many of the technical terms 

used in mathematics are not met elsewhere, and reinforcement can 

therefore only occur in the text or in the lesson. 

Having'indicated that simple definitions are important, it must be 

'realised that problems do exist with this. It is possible, when 

actually trying to simplify language, to become long-winded, 

boring and ambiguous. We can actually end up with prose having 

a higher reading age than the original, more precise, definition. 

Care is needed here. 
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When introducing new technical words, we must ask ourselves 

whether that word is actually needed by the children. If a more 

familiar one can be used, with no loss of meaning, then it should be. 

Too many ne',o,' words or symbols should also not be introduced in too 

short a space of time. Children cannot cope with too much new 

vocabulary all at once. As an example of this, a page from an 

'0' level text book is reproduced below. The amount of new 

vocabulary introduced in one page is astonishing, and would be 

extremely difficult for the learner to cope with. No concrete 

examples are given in the text, and this further comp~unds the 

problem. 

Binary operations 

Many sets which are met in r...athef]lalics have r'uIes laid down in order to 
c?~~ine the elements in a set. Addition, subtraction, multiplication and 
diVISion are four rules used fer combining elements from sets of numbers 
like the pos~ti,v~ integers, the rarional numbers and the real numbers. except, 
of cou,rse, dlvls~on by zero is nel allowed. In sets we have met the operations 
of unl~n and Intersection. S::.:h rules of combination are called binary 
operatIOns" Let us suppose If...lt we have a set A and a rule for combining 
ordered pairs of the elements of the set A. If the rule of combination 
produces for each pair an ele:::<nt which also belongs to A. then the rule is 
called a binary operation OD :he set A. 

The assodati.,e proputy 

Definition A binary operatjeo • on the set A is associative if and onIy if, 
for all elements a, b, c . ... E A. 

ao/boc) = (aobloc. 

Tlte commutati.,t proputy 

Definition t\ binary operaticn 11 on the set A is commutative if Jnd only 
If. ror all elements a, b . . , , EA. 

a • b ~~ h • a, 
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Tlu diJlrihutb'e propuly 

Th~ hin~lrY operation V is di~:'=-lbutive over the binary operJlion • ifand 
llnly if, for all elemt"nls 0 .. b, e, ... E A. -

aY Ib ... 1 = (aVbl.laVel. 

Under addition any real nur..:":r remains unchangc:d when lero is Jddt.'d 
:lnJ under multiplication a~.:. real numt-<f re~ains undungeJ when 
nluhiplied by I. 

Identity element 

Definition An element t' of a set A is called an identity element for the 
binary operation • if and only if 

a .. e = e. a = a, 

for every element a ... E A. 

Inverse elements 

If a. a' E A. whose identity element under the binary operation .. is e. 

and a. Q' = a' .. a = e, then a' is'called the inverse of a under .. for the 
set A. 

Symbols, too, should only be used when absolutely necessary. When 

introducing a new symbol we have to be sure that children understand 

the concept behind it, using remedial work if necessary. The symbol 

must not be used in too wide a sense too soon - initial practice 

with simple, straightforward examples, is essential. 

Careful attention has to be P'Oid ~ words that have different 

Mathematical English and Ordinary English meanings. The specialised 

mathematical meaning of a commonly used OE word, like 'similar ' say, 

needs extra special emphasis, and frequent revision. 
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The text produced must be as succinct as possible. All OE words 

that are not necessary for complete understanding should be omitted. 

It is a good practice to put new pieces of information on new lines 

and to make the question being asked absolutely clear. 

For example, the question " A man is told that he has won £3000 

on the football pools and decides to split the money equally between 

his five children. How much money does each of his children get?" 

Is better written as: A man wins £3000. 
He divides it equally between his 5 children. 
How much does each get? 

The information given in the second draft of the question is much more 

clearly presented, and the question being asked is obvious. 

In general, it is wise to avoid the use of rhetorical questions like 

I Do you remember wherewe met this before? I These can cause great 

confusion. Children often do not know what to answer or, indeed, 

whether they should give an answer at all! 

When setting problems, it is as well to avoid the use of sentences 

containing information presented initially. For example, the 

question: 

" for x = 3.71, find the value of 3x2 
I' , 

is better written as, 

"find the value of 3x2
, if x = 3.71". 
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In mathematics, many different types of graphs, tables, diagrams, 

plans or other types of illustration are used to amplify or complement 

written text. Children need as much help in interpreting these as 

they do with words and symbols. 

Shuard and Rothery (1984) identified three levels of importance of 

illustration in children's mathematical text: 

1: Decoration 

2: Related, but non-essential 

and 3: Essential. 

Decorative illustrations contain no exposition. They have aesthetic 

appeal and are used to fill in spaces in the text, to create interest 

or to generally set the scene. 

Related, but non-essential illustrations are used to emphasise the text 

and can be used to reinforce work that has already been met. It can 

help children visualise concepts, as an aid in developing language 

skills. 

Essential illustrations cannot easily be produced in written form -

they convey information that, at best, would be unwieldy and difficult 

to understand, written in words. It is necessary for learning, and is 

an essential part of the text. Without it, full understanding would 

not take place. 

In many texts children find it extremely difficult to distinguish 

between the relative importance of different illustrations. They cannot 

decide what is essential for them to read and what they can just glance 

at. Children can therefore easily overlook essential illustrations and 
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hence not make sense of the work. If it is essential for a diagram to 

be read for children to completely understand a piece of text, then 

this must be made apparent in some way, maybe by using the written part 

of the text, or by the use of signals. Likewise, it must be made 

apparent to children which of the illustrations can just be glanced 

at or enjoyed, without worrying too much about any meaning that may be 

attached to them. 

If the text uses colour, then maybe different coloured boxes could be 

drawn around each diagram. Each colour used would relate to a different 

level of importance, in a consistent way. A simpler method would be to 

have a small number of symbols, each denoting a different level of 

importance, one of which would be placed on each diagram used. 

When positioning diagrams on the page, the way children normally read 

text, from left to right and from the top of the page to the bottom, 

should be remembered. Diagrams should be placed on a page in such a 

way that they do not disturb the regular eye-movement. They must be 

positioned so that it is obvious which part of the text they relate to, 

instead of, as so often happens, being placed to make the maximum use 

of available space. Drawing arrow diagrams showing how the children's 

eyes have to move to read a particular page is a very illuminating 

exercise. The path that often has to be followed can be very 

complicated, thus indicating that the text itself can be confusing 

to read. The use of arrow diagrams can make authors an-d publishers 

think more about the way they present work - page layout can, there 

is no doubt, aid understanding. As an example, a page of text 

analysed using arrow diagrams, is included below. It is reproduced 

from Shuard and Rothery (1984). It should be noted that the text 

__ :-equir"d s~me_compli_caJ:ed_ eye mov_e'!'erlts_for it to be read. 
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Having commented on the importance of page layout, it is interesting 

to note that Smith and Watkins (1972), reporting on research carried 

out by the Typography Unit at Reading University, said that changing 

the relative positions of text and illustrations made very little 

difference to the comprehension of a passage, but that the presence 

of the illustrations themselves caused a significant increase in 

learning. This is all very well, but they miss the point that badly 

laid out, and difficult to follow pages, can quickly turn children off 

attempting any further work. 

important consideration here. 

The motivational quality of text is an 

Apart from the relative positioning of text and illustrations, the 

illustrations themselves need some attention. They should be as 

uncluttered and as easy to read as possible. Graphs should have linear 

scales that are easily used by children. For example, if the scale of 

a graph drawn on metric graph paper goes up in jumps of 15, it would 

not be easy for many children to accurately place a number like 7 or 

27. 

In anyone text, the presentation of any illustrative material must be 

consistent. For example, if shading or colour is used then it should, 

where possible, represent similar ideas throughout the text, otherwise 

children may miSinterpret its meaning. Using shading or colour 

consistently also means that children will learn to recognise what it 

represents in that text. 

When discussing the readability of mathematics text, Austin and Howson 

(1979) said that "It's not only the choice of words, sentence lengths, 

etc., that will be significant factors, but also other features such as 
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content, style, format, organisation, illustrations, humour ... " Many 

would agree with this, and therefore argue that how pleasing a page is 

to look at is an important factor in determining how motivated children 

will be when reading the text. Many mathematics texts have cluttered 

pages and, although the content covered may be straightforward, children 

may well immediately, just by glancing at the page, be put off. 

The use of colour and different type faces should also be considered. 

Text in lower case is more legible and therefore easier to read than 

text in upper case. Also, text in bolder type is more easily read than 

that in italics. Appropriate use of colour can help children read the 

page more easily, and also make the text more attractive. It has been 

found that the positive effect of colour is more pronounced with younger 

children or children of lower ability. Smith and Watkins (1972) gave 

evidence to suggest that the addition of colour to illustrations 

sometimes led to a better understanding of the mathematics involved. 

Many feel that for a text to be successful it must involve learners 

in an interactive way. Learning should not be a passive activity, and 

the more involved learners are, the more they will get from the text. 

Open University mathematics course units are an example of this. The 

text needs to draw the learner in, to encourage the use of pen and 

paper to work through problems, and to encourage the learner to ask 

questions without feeling under any sort of threat. We must note, 

though, that texts which set out to involve the learner in discovery 

must contain in-built checks, so that the learners or their teachers 

can discover whether understanding of the work covered has actually 

taken place. 
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There are many suggestions made in this chapter about the ways in 

which mathematics text can be changed so that readability and under

standing are improved. It would obviously be very difficult for 

authors and their publishers to follow all the guidelines laid down, 

but they do provide a useful focus when writing material to be used 

in the mathematics classroom. It must be remembered, however, that no 

matter how careful we are when writing mathematical text, children will 

always have problems with understanding the written word. This was 

pointed out in paragraph 312 of 'Mathematics Counts' (1982), which 

said, "Even although children may, without difficulty, be able to read 

what is written in a mathematics textbook, they may well find great 

difficulty in learning an unfamiliar piece of mathematics from the 

written word. This is likely to be the case, however careful has been 

the choice of the language which is used." 

It is up to the teacher to help children deal with the text as much as 

possible. Teachers need to regularly discuss text with children, to 

reinforce new words and symbols and to revise those previously met. 

They need to directly question children to ensure that they are getting 

the correct meaning from the text, and teachers need to identify areas 

of weakness in the text and reinforce them. Discussion of formats 

used and strategies to get 'unstuck' is also needed. We must remember 

that it is a responsibility of the teacher of mathematics, as it is of 

any teacher, to improve the reading ability of the learner. As 

paragraph 311 of 'Mathematics Counts' puts it, "Reading skills in 

mathematics should be built up alongside other reading skills, so that 

children can understand the explanations and instructions which occur 

in the mathematics books they use. If the skills of reading mathematics 
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are not developed, many children will evolve their own strategies 

for avoiding such reading. 

The power of the teacher in aiding children to understand, interpret 

and use the mathematical text they read must not be under-estimated 

or under-used. 
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