This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

## Computer software for use in the teaching of secondary school mathematics

## PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

Loughborough University of Technology

LICENCE

CC BY-NC 4.0

REPOSITORY RECORD
R. Johnson, Keith. 2021. "Computer Software for Use in the Teaching of Secondary School Mathematics". Loughborough University. https://doi.org/10.26174/thesis.lboro.14716947.v1.

# COMPUTER SOFTWARE FOR USE IN THE TEACHING OF SECONDARY SCHOOL MATHEMATICS 

by<br>KEITH RICHARD JOHNSON, B.Sc.<br>A project submitted in partial fulfilment of the requirements for the award of the degree of M.Sc. in Mathematical Education of the Loughborough University of Technology, January 1984.<br>Supervisor: R. P. KNOIT, M.Sc., Ph.D.<br>(c) by KEITH RICHARD JOHNSON 1984


#### Abstract

The project is concerned with software for the Sinclair Spectrum computer which I have written for use in teaching mathematics. It commences with a short introduction outlining the reason I undertook the study.

Chapter 1 considers a program on transformation geometry, which illustrates rotations, reflections, translations, enlargements, shears and stretches applied to any shape formed by joining points with a set of continuous straight lines. The coordinates of the points are input by the user, or the preset object (a triangle) may be chosen. Any combination of the transformations is allowed, and the transformation may be applied to the current image, the previous image or to the original object.

Chapter 2 contains three programs. The first illustrates relations between patterns of dots arranged as squares and triangles. The program on the Fibonacci Sequence illustrates how the sequence is generated, using the breeding patterms of rabbits. It also shows that the ratio of consecutive pairs of terms in the sequence approaches the golden ratio. The third program is concerned with prime numbers and will print the sieve of Eratosthenes, list the primes, test a number to see if it is prime, or output the $\mathbb{N}^{\text {th }}$ prime, when $N$ is input.

The program in chapter 3 shows the locus of a point, $P$, under given conditions. The conditions, which are chosen by the user, are illustrated graphically and the locus is plotted.

All the programs in the chapters are described in two ways. Firstly, how they are controlled and what they do when executed, secondly, ways in which I have used the programs with various groups of pupils.

The listings for the programs, together with accompanying notes, are given in the appendices at the end of the project.


## Acknowledgements

I should like to acknowledge those people who have assisted, directly and indirectly, in the production of this project.

Firstly, to my supervisor, Dr Knott, for his helpful suggestions concerning the presentation of the project and for the interest which he has shown in it.

Secondly, to my wife, without whose patience, understanding and encouragement the project would not have been completed.

To the pupils of Queen Elizabeth's Mercian School, Tamworth who have been 'guinea-pigs' for the software.

Finally, to Mr T. Jones of Queen Elizabeth's Mercian School who lent me his Sinclair printer when mine broke down.

## Declaration

This project presents the results of my use of the computer in the classroom, and is entirely my own work. The software produced has been developed by me from my ideas on how to present the particular topics to pupils.

## Contents

Abstract ..... i
Acknowledgements ..... ii
Declaration ..... iii
Introduction ..... 1
Chapter 1 - Transformation Geometry ..... 3
Rotation ..... 9
Reflection ..... 10
Translation ..... 13
Enlargement ..... 14
Shear ..... 15
Stretch ..... 19
Using the program in the class ..... 22
Investigating translations ..... 22
The combinations of rotations and reflections ..... 29
Combinations of transformations ..... 33
Rotations ..... 34
Reflections ..... 41
Enlargements ..... 46
Stretches ..... 57
Shears ..... 58
Chapter 2 - Number ..... 64
Number Patterns ..... 64
Triangle numbers ..... 66
Square numbers ..... 75
Relation between square and triangle numbers ..... 82
Using the program 'num-pat' ..... 86
The Fibonacci Sequence ..... 89
Using the program 'fibonacci' ..... 94
Prime numbers ..... 96
Chapter 3 - Loci ..... 101
The locus of $P$ where $P$ lies on $A B$ : $A$ and $B$ are fixed points ..... 102
$A$ and $B$ lie on two perpendicular
lines ..... 111
A lies on a circle, $B$ is fixed ..... 118
The conic sections ..... 124
The locus of the point of intersection of two rotating lines ..... 128
Bibliography ..... 142
Appendices - Program listings :
A: 'transforms' ..... 143
B: 'num-pat' ..... 190
C: 'fibonacci' ..... 203
D: 'prime' ..... 209
E: 'loci' ..... 215

## Introduction

During recent years the price of microcomputers has dropped so markedly that they are now commonplace in homes and schools. The potential use of the microcomputer in schools is enormous, but any use should be an improvement on traditional methods if it is to be of value. Many of the early attempts at computer assisted learning failed, in my opinion, in this respect. For example, programs which were meant to test a child's ability in a particular topic gave a score but failed to diagnose where the child needed help.

The programs which I have written in this project have exploited the graphics capability of the computer to create interest and to improve understanding in various aspects of mathematics. The topics chosen are some which I consider need to be demonstrated dynamically or which pupils find difficult using traditional methods. The demonstrations are intended to be teacher controlled but, as more computers become available for use by the children, the programs could be modified to make them pupil controlled, so that each child may progress at his own pace.

I decided to produce my own software on a Sinclair Spectrum for the following reasons. Firstly, the only computer available in the school where I work is a Research Machines RML 380Z, which can be used in few rooms because of transportation problems. The computer also needs to be booked at least a week in advance, which eliminates any spontaneous use. Even when more computers are available in the school, they will be housed in a computer room and priority will be given to Computer Studies classes. There will be little opportunity to use them regularly in mathematics lessons. I required a computer that was easily moved from room to room if necessary, which would be available for use at any time during mathematics lessons. I chose the Sinclair Spectrum because it was small, inexpensive and capable of high resolution graphics.

The reason for producing my own software was that I have found no secondary school mathematics software for the Spectrum. Software is available for other computers, including the 3802, but none of those covering the topics of this project was considered satisfactory. All the programs on transformation geometry, for
example, plotted the image without showing the transformation dynamically. One program for the BBC computer showing the locus of a point on a ladder which is slipping down a wall considered only the midpoint, and did not allow generalisation.

Since buying the Spectrum, I have used it in the classroom mainly for demonstration purposes, that is as an 'electronic blackboard'. The programs which I have produced fall into two categories; short programs which are mostly used as an introduction to a topic or for clarification and longer programs used for teaching a topic. The short programs were usually written in an evening for use in the next day's lesson, examples of which are Pythagoras' Theorem, the sine curve and coordinates. The programs contained in this project are the longer ones which have been developed over a period of time and are intended for use throughout the particular topic.

The listings of the programs and the diagrams in chapters one and three have been produced using a Sinclair printer, which were then copied on a photocopier. By this method, diagrams may be produced to issue to the pupils, if required.

In this study mention is also made of short programs, sometimes consisting of only a few lines, written during the lesson to help teach a particular concept. Little work has been done on using computer programming to teach mathematical concepts in this way, but with more pupils entering secondary school being able to write computer programs, this could be another worthwhile use of the computer, especially in introducing basic ideas of algebra.

## Chapter One

One of the main criteria for using the computer in the teaching of mathematics is that the computer has an advantage over other methods of presentation.

Transformation Geometry, the subject of this chapter, is certainly a topic about which this is true. Diagrams can be produced mach more accurately and quickly than on a blackboard. Of course the size of the display screen is limiting, but the ability to produce dynamic demonstrations of the transformations, together with the facility for repeating them, far outweighs this restriction.

The chapter is in two parts:

1. Explanation of the program's execution.
2. Examples of ways in which I have used the program, and how it might be used.

The program listing, with explanation, is given in appendix A. The title of the program is 'transforms'.
The flow diagram on the following page shows how the program is executed and controlled using the various keys.

FLOW DIAGRAM TO SHOW THE EXECUTION OF 'transforms' PROGRAM
Messages which appear at the bottom of the screen are printed in quotes (').


The program is executed by pressing 'RON' followed by 'ENTER', which will result in the screen being cleared.

All the messages are written on the bottom two lines of the screen and, as are the graphic displays, written white on a black background. I have found by experiment that this combination gives greater clarity and viewing distance. The use of different colours for objects and images was tried, but the Spectrum computer is unable to display more than two colours in any character square ( 8 pixels $x$ 8 pixels). The tests resulted in parts of figures which overlapped others being changed in colour; this caused confusion. It was decided therefore to use just two colours.

Control of the program is achieved by a single press of a key usually any key, but some instructions require specific keys to be pressed. When input is required, the data is typed and followed by pressing the 'ENTER' key.

Message - 'Demonstration? $y / n '$.
After certain of the transformations have been executed, there is a section of the subroutine which demonstrates the properties of that particular transformation. Pressing the ' $y$ ' key will result in the demonstration being given, pressing the ' $n$ ' key will result in the by-passing of that section of the subroutine. (No other key will produce a response.)
Message - 'Choose range? y/n'.
Throughout the program the scale of the axes will be increased if necessary to accommodate any image for which the existing axes are too small (this will result in the screen being cleared and then redrawn). The scale is calculated so as to fill as much of the screen as possible. The user has the option of setting a range of values on the $x$ and $y$ scales.

Pressing the ' $n$ ' key will result in the initial ranges of -1 to $l$ on both the $x$ and $y$ scales; the axes are then displayed.

Pressing the 'y' key will produce messages asking for the minimum and maximum values of the ranges of $x$ and $y$ to be input. The automatic adjustment will still operate if these ranges are too small.

It was decided not to number the scales for two reasons. Firstly, I felt that it would not add to the clarity of the diagram and, secondly, because each number character is printed in an 8 pixel $x$ 8 pixel square, multiples of eight pixels would have to be used for the scales to ensure that the numbers were printed next to the marks on the axes. This would result in smaller diagrams.

Because of the decision not to number the axes, it is necessary to ensure that the axes always contain zero. To achieve this, if the minimum and maximum of the range are both positive, the minimum is set to 0 . If the minimum and maximum of the range are both negative, then the maximum is set to 0 .

Message - 'Preset object? $\mathrm{y} / \mathrm{n}$ '.
The preset object is written into the program as a DATA statement. Pressing the ' $y$ ' key will result in the initial object being set to this (see the display on the flow diagram on page 4).

Pressing the ' $n$ ' key enables the object data to be input
as follows:
Message - 'Closed curve - $y / n$ '.
Pressing the ' $y$ ' key results in the last point of the object being joined to the first, forming a closed shape.

Pressing the ' $n$ ' key results in the first and last points remaining unjoined.
Message - 'How many points?'.
Input the number of vertices of the object. Message - 'x coord?' 'y coord?'.

Input the vertices as coordinates, in the order which they are to be joined ( $\nabla_{1}, \nabla_{2}, \nabla_{3}, \ldots \ldots . \nabla_{n}$ ).

The object is drawn as follows:
plot $V_{1}$, draw $V_{1} V_{2}$, draw $V_{2} V_{3}, \ldots \ldots .$. draw $V_{n-1} V_{n}$.
If the response to 'closed curve' was ' $y$ ' then draw $V_{n} V_{1}$. Two examples of objects, together with the appropriate responses, are shown on the following page.


Fig. 1.1
The object resulting from inputting the data below.
'Closed curve - $y / n$ ' $y$
'How many points?' 4
'x coord?' 2 'y coord?' 1
'x coord?' 2 'y coord?' 3 'x coord?' 3 'y coord?' 2


Fig. 1.2
The object resulting from inputting the data below.

| 'Closed curve $-\mathrm{y} / \mathrm{n}$ ' | n |
| :--- | :--- |
| 'How many points?' |  |
| 'x coord?' 1 'y coord?' 1 | 'x coord?' 1 'y coord?' 3 |
| 'x coord?' 2 'y coord?' 2 | ' $x$ coord?' 1 'y coord?' 2 |

Message - 'Rot, reF, Trans, Enl, sHear, Stretch'.
The capitals are written in inverse video (black on a white square) to make them stand out as the key letters. Pressing the appropriate letter executes the transformation:
'r' - rotation
'f' - reflection
't' - translation
'e' - enlargement
'h' - shear
's' - stretch.
After execution of the transformation, the bottom of the screen remains blank until a key is pressed. This is so that the next instruction message does not distract from the diagram.

Message - 'Rep, Sup, sTart, New, Fol, Axes, Previous image' (capitals as above).
Pressing 'r' (repeat) results in the repetition of the transformation previously performed.

Pressing ' $n$ ' (new) results in the program being executed from the beginning.

Pressing 't' (start) results in the screen being cleared, the original object being set as the object for the transformation to follow and the screen display as, for example, figure 1.1 or figure 1.2.

Pressing 's' (superimpose), 'f' (follow) or ' p ' (previous image) leaves the display unaltered. For the transformation next performed, the object will be:
's' - the original object,
'f' - the image of the transformation executed previously,
' p ' - the object of the transformation executed previously.
Pressing ' $a$ ' (axes) enables the ranges of the axes to be changed as before. The transformation previously executed is then repeated with these new scales.

## The Transformations

## General

Any key except ' $f$ ' may be used to initiate the next part of the display. The ' $f$ ' key is used when any construction line or demonstration line is required to flash (i.e. drawn repeatedly using the 'exclusive or' command, OVER 1). The line flashes when the ' $f$ ' key is held dow. Depressing and releasing any other key will continue the construction or demonstration.

## Rotation

Message - 'Angle of rot, in degrees? 化.
Any angle, positive or negative, may be input.
Message - 'x coord of centre of rot? [L] (input required)

- 'y coord of centre of rot? $\mathrm{Q}^{\prime}$ (input required).

The centre of rotation is plotted, and intermediate images are drawn every $5^{\circ}$ to show the rotation. (If the angle of rotation is not a multiple of 5 , then the first image is drawn so that each subsequent image is found by rotating $5^{\circ}$.) Each image is erased before the next is drawn, until the final image is displayed.

Demonstration (if desired - see page 5)
Taking each vertex in turn:

1. Lines are drawn from the object to the centre of rotation and then to the image. This demonstrates that the distance from the centre of rotation remains constant and also that the angle between the lines equals the angle of rotation.
2. An arc is drawn from the object to the image to indicate that each point moves in a circular path.
3. The lines and arc are then erased.

The diagram on the next page shows the final image of the object in figure 1.1 when the input responses are 60,1 , 1 . The demonstration lines have been drawn in red for clarity.


Fig. 1.3
Rotation of $60^{\circ}$ about (1,1).

## Reflection

Since I have used the properties of a reflection, i.e. the mirror line is the mediator of the line segment joining an object point to its image, to construct the final image, there is no separate demonstration of these properties.

Message - 'Invariant line $y=m x+c, y / n$
It was felt that most pupils below the 6th form (i.e. those for whom the program is intended) would have met equations of straight lines in the form of either $y=m x+c$ or $x=c$, rather than $a x+b y+c=0$. This subroutine has therefore been written in two parts.

Pressing the 'y' key produces the response 'm? L] 'c? 国', each requiring input.

Pressing the ' $n$ ' key produces the response:
'Invariant line $x=c$. $c$ ? $\square$ '.
The invariant line is drawn when $c$ has been input.
The image of each point is produced as follows:

1. A line is drawn from the object point perpendicular to the mirror line so that the mirror line bisects it.
2. The line is erased, leaving the end point (the image) plotted.
When all the image points are plotted, they are foined to form the image.

Figures 1.4 and 1.5 show reflections with the inputs -1 (following an ' $n$ ' response) and 1,4 (following a ' $y$ ' response)? respectively.


Fis. 1.4
Reflection in
$x=-1$.


Fig. 1.5
Reflection in
$\mathrm{y}=\mathrm{x}+4$.

The two diagrams below show the initial stages of the reflection in the line $y=x+4$. The mirror line is drawn first (figure 1.6a). Figure 1.6b shows the first stage of constructing the image of $A$. It can be seen that, because of the OVER I command, part of the object has been erased. If OVER 0 were used, in which case the line $A B$ would not be erased, it would be unclear which of the two images, that of $A$ or that of $B$, was being constructed. In this case particularly, holding down the ' $f$ ' key to cause the line to flash on and off improves the clarity of the construction.

A further depression of a key results in a display as in figure $1.6 a$, but with the image of A plotted.


Fig. 1.6a
The letters have been added to clarify the explanation.


Fig 1.6b

## Translation

Message - 'Vector. $X$ comp? LI' - requires the input of the $x$ component of the translation vector.
'Vector. X comp? 4 Y comp? (⿴囗 - requires the input of the $y$ component of the translation vector.
On depressing any key the object is translated onto the image in ten stages. The intermediate stages are drawn and then erased after a slight pause.

## Demonstration

Using each point of the object in turn:

1. A line is drawn from the object to the image.
2. The line is erased.

The final stage:

1. Draws all the lines indicated above to show that they are all parallel and equal in length.
2. Erases all the lines.

The diagram below shows the object and the final image for the vector $\binom{4}{3}$. (The demonstration lines have been drawn in red for clarity.)


Fig. 1.7
Translation, vector $\binom{4}{3}$.

## Enlargement

Message - 'C of Enl. x coord? $L$ ' - requires input of the $x$ coordinate of the centre of enlargement.

- 'C of Enl. x coord? ly coord? L ' - requires input of the $y$ coordinate of the centre of enlargement.
Message - 'Scale factor? [ ${ }^{L}$ ' - input may be any real number.
The centre of enlargement is plotted.
The image of each point in turn is constructed as follows:

1. A line is drawn from the centre of enlargement to the object.
2. If the scale factor is positive then the line is erased.
3. The first line, enlarged by the scale factor is drawn from the centre of enlargement.
4. The line (lines, if s.f. is negative) is erased, and the image (the endpoint of the second line) is plotted.
When all the image points have been plotted, they are joined to form the image.

The diagram below shows an enlargement of scale factor 2, centre of enlargement ( 1,3 ).


Fig. 1.8
Enlargement scale factor 2, centre (1, 3).

## Shear

The data for the invariant line is input as for Reflection, page 10.

This is followed by the messages:
'Object $x$ coord? [ L
'Object $x$ coord? 1 y coord? I'
'Image $x$ coord? [L]'
'Image $x$ coord? 2 y coord? 回'.
These require an object point and its image under the shear to be input. If either the object point ( $x, y$ ) or the image point ( $x x, y y$ ) lies on the invariant line, or the line joining them is not parallel to the invariant line, the message 'Incorrect information - press any key' is printed. Pressing any key results in the input messages above, requiring the object point and its image to be input again.

The invariant line is drawn and the object shape is then transformed in ten stages. Each intermediate stage is drawn and then erased.

The following two diagrams show an intermediate stage (figure 1.9) and the final image (figure 1.10) for the shear with invariant line $y=x+4$ and $(1,3) \rightarrow(2,4)$.


Fig. 1.9


Fig. 1.10

Figure 1.9 shows that some parts of the image coincide with the object. If OVER 1 was used for the whole image, these parts would be erased, and so OVER 0 is used where this happens, OVER 1 for the rest of the image.

Figure 1.10 is an example of where the transformation may be required to be repeated with extended axes, to show more of the invariant line.

## Demonstration

Each point is demonstrated as follows:
a) If the object point is the same distance from the invariant line as ( $x, y$ ) and on the same side of the invariant line, then

1. A line is drawn joining ( $x, y$ ) to ( $x x, y y$ )
2. A line is drawn from the object point to its image.
This demonstrates that both points shear the same distance in the same direction.
3. Both lines are erased.
b) If the object point is not the same distance from the invariant line as ( $x, y$ ) or if they are on opposite sides then:
4. A line is drawn through the object point and through ( $x, y$ ) to meet the invariant line. (The scales will have been adjusted, if necessary,
so that this point on the invariant line is included in the diagram.)
5. A line is drawn from ( $x, y$ ) to ( $x x, y y$ ).
6. A line is drawn through where the first line meets the invariant line and through ( $x x, y y$ ).
7. A line is drawn from the object, parallel to the invariant line, to meet the third line (at the image).

This demonstrates the method of finding the imase of a point, given the invariant line, another point together with its image. It also shows that points are sheared in proportion to their distances from the invariant line, and that points on opposite sides of the invariant line shear in opposite directions.
5. All the four lines are erased.

Figure 1.11 shows the shear after the first three stages of the demonstration. Stage 1 is shown in red, stage 2 in green, stage 3 in black, for clarity.


Fig. 1.11

Figure 1.12 (see the next page) shows the addition of the fourth line of the demonstration indicating the effect of the 'exclusive or' command. Holding down the ' $f$ ' key will cause the alternate displays of figures 1.11 and 1.12 (see previous comments in Reflection, page 12).


Fig. 1.12

Figure 1.13 shows a shear with $x=-1$ invariant and $(1,2) \rightarrow(1,3)$. (The demonstration lines have been drawn in red, for clarity.)


Fig. 1.13

## Stretch

The data for the invariant line is input as for Reflection, pase 10.

This is followed by the message - 'scale factor? $\mathrm{L}^{\prime}$ '.
Any value may be input for the scale factor. Input of 0 results in the shape being transformed onto the invariant line. A negative scale factor is equivalent to a reflection in the invariant line, followed by a stretch taking the modulus of the scale factor.

The invariant line is drawn and the object shape is then transformed onto its image in 10 stages. Each intermediate stage is drawn and then erased after a slight pause.

Figure 1.14 shows the object of figure 1.1 and its image after a stretch from the line $x=-1$, scale factor 0.5 .


Fig. 1.14

Figure 1.15 (see next page) shows the image after a stretch from the line $y=2 x+2$, scale factor 2 .

In the situation where part of an image coincides with part of the object (e.g. an edge of the object is perpendicular to the invariant line) it is drawn as explained on page 16 for the shear.


Fig. 1.15

## Demonstration

Each point is treated in turn as follows:

1. A line is drawn from the object, perpendicular to the invariant line, to meet the invariant line. (Where necessary, the axes will have been adjusted to accommodate this point on the diagram.)
2. The line is then erased.
3. A line is drawn from this point on the invariant line, perpendicular to the invariant line, whose length is that of the first line multiplied by the scale factor.
4. This line is then erased.

The demonstration shows that each point is transformed perpendicular to the invariant line. The distance of the image from the invariant line equals the distance of the object from the invariant line multiplied by the scale factor. Points on the invariant line are invariant.

Figures 1.16 and 1.17 show stages 1 and 3 of the demonstration, applied to the stretch of figure 1.14.


Fig. 1.16

Fig. 1.17

## Using the program in the classroom

It is not intended that the computer simulation should be the only means of illustrating transformations - much of the preliminary work on reflections and rotations, for example, will involve the use of mirrors and tracing paper.

I shall explain some of the ways in which I have used the program with groups of children, and suggest further uses.

1. Investigating Translations - 4th year group in the $50-75 \%$ ability range.

This series of lessons followed work on displacement vectors, and so the children were familiar with representing displacements by a column matrix.

Before the beginning of the lesson, the translation vector $\binom{10}{6}$ had been input. The initial display was as in figure 1.18, although I would suggest turning down the brilliance control to black out the screen until required. This is a useful teaching point, whenever the children's attention is required to be directed away from the screen.


Fig 1.18

It was explained that a new transformation was to be investigated, the translation was then demonstrated. Questioning the pupils brought out the property that all the points move the same distance and in the same direction (see figure 1.19); the transformation was described by the children as 'a straight move, without turning'.


Fig. 1.19

It was agreed that this description was insufficient to describe the transformation precisely. Since the idea of a displacement vector was recently acquired, it was soon suggested that a column vector could be used to describe the translation. $\binom{10}{6}$ was found for the example given.

The children were then told to choose a vector of their own, and to illustrate its translation. One pupil asked whether they had to start with a triangle. Subsequently the shape shown in figure 1.20 was chosen by the class as the object.


Fig. 1.20

I found that a small number of pupils had transposed the vector components in carrying out the translation and so, in the next lesson these and other pupils were invited to show their translations, using the computer. I believe that to discover their error themselves in this way was more effective in rectifying it than if I had told them why they were wrong. This led on to some guided discussion to try to give the pupils a better 'feel' for how changing a vector will affect the translation. Jsing the computer to superimpose the different images, I asked for a vector which would cause the object to move the same amount up as to the right, vectors which would translate the object higher, more to the right than up, vertically, horizontally, how would the object move under a specified translation, and so on. At the end of the session it was clear to all the pupils that the top ( $x$ ) component controlled the horizontal displacement and the bottom (y) component controlled the vertical displacement.

A similar approach was adopted with translations whose vectors had negative components.

This work was consolidated with an exercise which contained two types of questions, those which required the pupils to draw objects with given coordinates and to translate them with given vectors, and those requiring the pupils to draw objects and images with given coordinates and then to give the vector to describe the translation from one to the other.

The idea of an inverse translation was introduced by illustrating the translation $\binom{10}{6}$ and then asking what translation would transform this image back onto the original. The immediate response was " $\binom{6}{10}$, which I illustrated using the computer. 'Oh! No, $\binom{-6}{-10}$ ' was the next response, which was also shown on the computer. The correct answer was then suggested. Each suggestion had been written on the blackboard, beside $\binom{10}{6}$, and then eliminated when found to be incorrect.

In the subsequent work on inverses, I asked more guided questions before asking for the inverse to be stated. For the translation $\binom{-4}{5}$, I asked in what general direction the object had been translated, how far left and how far up, and similar questions to lead to the inverse. Nearly all the pupils were then able to write down $\binom{4}{-5}$ as the the required vector. Using the computer to test the answers and the blackboard to record the results, the simple rule was established for
finding the inverse of a translation, when given its vector.

Graham Ruddock, in 'Children's Understanding of Mathematics: 11-16' (1981), concludes from his research that double translations were found to be particularly difficult. Elsewhere in the book, however, it is suggested that combinations of translation vectors provide a concrete use of directed numbers and gives meaning to the addition of directed numbers, especially negative.

I concluded the topic by considering the combination of translations and found that the pupils were able to add directed numbers more efficiently than when presented in a more abstract way. Using the computer display, the pupils had little difficulty in understanding how translations combine to sive the equivalent of a single translation. Initially pairs of translations were illustrated on the screen and the children were asked what transformation would map the original object onto the second image. Nearly all the pupils responded with a translation. The pairs of translations were written on the blackboard and it was soon realised that the vectors needed to be added to obtain the single translation, which was then demonstrated by using the computer (see figures 1.21, 1.22 and 1.23).


Fig. 1.21
Translation $\binom{5}{5}$.
(The line shown in red is eliminated on the screen because of OVER 1 command.)


Fig. 1.22
Translation $\binom{7}{3}$.

Fig. 1.23
Translation from the original
object of $\binom{12}{8}$.

I then posed the problem of finding the second of a pair of translation vectors which combine to give a stated translation vector. It was my intention only to consider pairs of translations, but a mistake by one boy led to the consideration of more than two. He was asked which translation combines with $\binom{-5}{4}$ to give the equivalent of $\binom{-13}{6}$. His answer of $\binom{-7}{2}$ was shown on the display (see figures 1.24 1.25 and 1.26) after which he stated that he should have said $\binom{-8}{2}$. This correction was then illustrated by pressing 'Previous image' option and inputting $\binom{-8}{2}$ (see figure 1.27).


Fig. 1.24
Translation
$\binom{-13}{6}$.


Fig. 1.25
Translation
$\binom{-5}{4}$.


Fig. 1.26


Fig. 1.27
Translation $\binom{-8}{2}$.

I returned to the pupil's first image and asked him what translation was needed to transform this image onto the final position, to which he replied correctiy. The class was then able to generalise a rule for the combination of any number of vectors.

## Conclusions

(i) The children were interested in the lessons, and no-one asked what the purpose was of learning about translations (a response which I have encountered when using more formal methods of instruction). This was probably partly due to the novelty of using the computer but also, I believe, because the translations were being demonstrated dynamically.
(ii) The children were able to give meaning to negative numbers and combine them with meaning, although it is doubtful if many could abstract this to addition of directed numbers.
(iii) The stimulus of the computer display enabled the subject to extend beyond the level normally expected of a pupil in this ability range.
2. The Combinations of Rotations and Reflections - 4th year group in the $25-50 \%$ ability range.

During the lessons before the computer was used, the pupils had been investigating the effect of the transformation matrices $P\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right), Q\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right), R\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), S\left(\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right), X\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), Y\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$, $z\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), I\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, on the figure with coordinates $0(0,0)$, $A(1,1), B(2,1), C(2,0)$. The resulting figure is shown below.


Fig. 1.28

After discussion with the pupils, it was agreed that all the transformations represented by the matrices were rotations or reflections; the pupils used tracing paper to find the transformations. The results were then tested using the computer. The opportunity arose to remind the pupils that to describe a rotation precisely needs the centre of rotation in addition to the angle, and also that a convention for the direction of rotation was necessary to avoid ambiguity. It was also shown that a rotation of $270^{\circ}$ was equivalent to a rotation of $-90^{\circ}$ about the same centre.
The following list was produced:

Reflection in the x-axis - P
in the $y$-axis - $Q$
in $y=x \quad-R$
in $y=-x \quad-S \quad$ The identity transformation - I

In considering the combinations of reflections and rotations, I followed a similar approach of pupil investigation using tracing paper, together with illustrations of the transformations using the computer. A combination table as shown below was produced on a worksheet and pupils were asked to find what single transformation is equivalent to 'P followed by $Q$ '.


Fig. 1.29

All the pupils produced the answer ' $Y$ ', which was demonstrated as in figures 1.30, 1.31 and 1.32, and then recorded on the table.


Fig. 1.30
A reflection
in the x-axis.


Fig. 1.31
'P followed by $Q^{\prime}$.


Fig. 1.32
Part of the
demonstration to show that 'P followed by $Q^{\prime}$ is equivalent to a $180^{\circ}$ rotation about 0 .

I then asked the pupils to complete the row of the table where $P$ was the first transformation. This showed later to be a poor choice of rows because, although most pupils had the correct transformation, the reasoning was incorrect in some cases. This became apparent when ' P followed by X is equivalent to R ' was demonstrated on the computer (see figures 1.33, 1.34 and 1.35).


Fig. 1.33
Transformation
P.

Fig. 1.34
'P followed by $X^{\prime}$.


Fig 1.35
' P followed by
$X$ is equivalent
to $\mathrm{R}^{\prime}$.
(The series of construction
lines are
shown in red.)

One sirl remarked that she had found transformation $R$ by considering which transformation mapped the shape labelled $P$ onto the shape labelled $X$ in figure 1.28. The whole row could be completed with the correct answers using this reasoning, and so it was necessary to ensure that ' $P$ followed by $X$ ' was correctly interpreted. I believe that the computer demonstration helped greatiy in this respect but the teacher needs to be aware of this error in thinking, where the pupil interprets the single transformations as different positions of the original object. I think that for demonstrating transformation A followed by transformation $B$ it would have been better to have chosen $A$ and $B$ such that $B A=C$, but $C A \neq B$ to ensure that the correct answer cannot be achieved from this incorrect reasoning.

The remainder of the table was completed with few mistakes. Subsequent lessons used the results of this table to investigate how transformation matrices combine to give the matrix which represents the combined transformation.
3. Combinations of Transformations - 5th year group in the top $20 \%$ ability range.

General combinations of transformations are unlikely to be within the understanding of the majority of pupils, but I think that more able pupils can benefit by the study of the subject. I have taught this topic in the past using the S.M.P. textbooks, but found that the time taken by the pupils to produce diagrams and the inaccuracy of the resulting diagrams usually led to a lack of interest after a short while. The use of the computer helped remove these restrictions.

The first of a series of lessons was spontaneous in that, when the class arrived in the room, the computer was set up from a previous lesson, for demonstrating the combination of translations as already outlined. I was asked about the computer program and showed the pupils how I had used it with the 4th year class. This led to the question 'What else can it do?' and onto the discussion of combining transformations in general. The class was eager to suggest combinations to investigate. With my guidance, the task was approached in a more systematic way, starting with simple examples of one type of transformation, leading to general examples.

## Rotation

The first reaction of the pupils was to state that a rotation followed by a rotation was equivalent to a single rotation. Investigation revealed that a translation may also result. The 'discoveries' are shown below.
(a) A rotation of $a^{0}$ followed by a rotation of $-a^{\circ}$ or $360-a^{0}$ about the same centre is equivalent to the identity (see figures 1.36, 1.37 and 1.38).


Fig. 1.36
The initial
(preset) object.


Fig. 1.37
A rotation of $80^{\circ}$ about $(2,1)$.


Fig. 1.38
The second rotation of $280^{\circ}$
about ( 2,1 ).
(b) A rotation of $a^{0}$ followed by a rotation of $b^{0}$ is equivalent to a rotation of $(a+b)^{\circ}$.
Discussion led to the conclusion that there is no relation between the three centres of rotation (unless all the rotations have the same centre) since the centre for the $(a+b)^{0}$ rotation varied with a and b. Figures 1.39, 1.40 and 1.41 illustrate this. The centre for the $(a+b)^{\circ}$ rotation (shown in red) has been found by construction.


Fig. 1.39
A rotation
of $40^{\circ}$
about $(3,3)$.


Fig. 1.40
A second
rotation
of $30^{\circ}$
about ( 5,4 ).


Fig. 1.41
A second
rotation
of $100^{\circ}$
about (5,4)
(c) A rotation of $a^{\circ}$ followed by a rotation of $-a^{\circ}$ about a different centre is equivalent to a translation. Figures 1.42 and 1.43 show a rotation of $40^{\circ}$ about $(3,3)$, followed by a rotation of $-40^{\circ}$ about ( 10,3 ). The final image may also be obtained by translating the original triangle.


Fig. 1.42


Fig. 1.43

Figures 1.44 and 1.45 show that by varying the angle $a, 60^{\circ}$ in this example, a different translation results, and so no relation between the vector joining the two centres and the translation could be found.


Fig. 1.44
A rotation of $60^{\circ}$ about $(3,3)$.


Fig. 1.45
A second rotation
of $-60^{\circ}$
about ( 10,3 ).

When $a=180$, however, we obtain the following result -
(d) A half turn about $X$ followed by a half turn about $Y$ is equivalent to a translation $2 \overrightarrow{X Y}$ (see figures 1.46, 1.47 and 1.48).

Reversing the order of the rotations gives translation $2 \overrightarrow{Y X}$ (see figures 1.49, 1.50 and 1.51).


Fig. 1.46
A rotation
of $180^{\circ}$
about $(2,1)$.


Fig. 1.47
A second
rotation
of $180^{\circ}$
about (4,2).

Fig. 1.48
The two
rotations are
equivalent to
a single
translation
$\binom{4}{2}$.


Fig. 1.49
A rotation
of $180^{\circ}$
about (4,2).

Fig. 1.50
A second
rotation
of $180^{\circ}$
about (2,1).

Fig. 1.51
The two
rotations are
equivalent to
a single
translation
$\binom{-4}{-2}$.

## Reflection

More thought went into answering the question 'What single transformation is equivalent to a reflection followed by another reflection?', and it was agreed that a rotation or a translation was possible. The conclusions were as follows -
(a) A reflection followed by a reflection in the same mirror line is equivalent to the identity transformation.
(b) A reflection in two parallel lines, $m_{1}$ and $m_{2}$, is equivalent to a translation. The translation is perpendicular to the mirror lines and equal to twice the displacement from $m_{1}$ to $m_{2}$. Figures $1.52,1.53$ and 1.54 illustrate this. The axes are adjusted where necessary to accommodate the images.


Fig. 1.52
A reflection
in the line
$x=1$.


Fig. 1.53
A second reflection in the line $x=-5$.


Fig. 1.54
The two reflections combine to give a translation $\binom{-12}{0}$.

Reversing the order of the reflections reverses the translation. Figures $1.55,1.56$ and 1.57 show that a reflection in the line $x=-5$, followed by a reflection in the line $x=1$, is equivalent to a translation $\binom{12}{0}$.


Fig. 1.55
A reflection
in the line
$x=-5$.


Fig. 1.56
A second reflection in the line $x=1$.

Fig. 1.57
The two reflections combine to give a translation $\binom{12}{0}$.
(c) A reflection in line $m_{1}$ followed by a reflection in line $m_{2}$, where $m_{1}$ and $m_{2}$ intersect, is equivalent to a rotation. The centre of the rotation is the point where $m_{1}$ and $m_{2}$ intersect. The angle of rotation is twice the angle between $m_{1}$ and $m_{2}$, in the sense of the rotation from $m_{1}$ to $m_{2}$. Figures 1.58 to 1.60 show an example. Figures 1.61 to 1.63 use the same reflections but in the reverse order, which gives a rotation in the opposite direction.


Fig. 1.58
A reflection
in the line
$y=2$ 。

Fig. 1.59
A second
reflection
in the line
$y=x+3$.

Fig. 1.60
The two
reflections
are equivalent
to a rotation
of $90^{\circ}$
about (-1,2).


Fig. 1.61
A reflection
in the line
$\mathrm{y}=\mathrm{x}+3$.

Fig. 1.62
A second reflection in the line $\mathrm{y}=2$.

Fig. 1.63
The two
reflections
are equivalent
to a rotation
of $-90^{\circ}$
about $(-1,2)$.
(a) I began the discussion on enlargements by considering the inverse of an enlargement with scale factor 2 , centre ( 1,1 ).


Fig. 1.64
An enlargement scale factor 2, centre ( 1,1 ).

It was agreed that the inverse would be an enlargement with centre ( 1,1 ). The suggestion of a scale factor of -2 for the inverse was demonstrated using the computer (see figure 1.65). I found that the ease with which a suggested answer could be tested and, if necessary, rejected encouraged the pupils to respond more readily. The investigational approach lessened the feeling of inadequacy at giving the wrong answer. Further discussion led to the method of finding the scale factor for the inverse.


Fig. 1.65
A second enlargement scale factor -2 , centre ( 1,1 ) does not map the image onto the original object.
(b) An enlargement of scale factor 2, for example, followed by an enlargement of scale factor 3, with the same centre of enlargement, is equivalent to a single enlargement with the same centre. Figures 1.66 and 1.67 show the triangle with vertices $(3,6),(4,8)$ and $(6,6)$ after an enlargement scale factor 2 , centre $(1,6)$ followed by an enlargement scale factor 3, centre ( 1,6 ). (The scale has been altered in figure 1.67 to accommodate the second enlargement.)


Fig. 1.66


Fig. 1.67

The first suggestion was that the scale factor of the single enlargement was 5 (shown in figure 1.68) but it was soon realised that the product of 2 and 3 was required, not the sum.


Fig. 1.68
The original
triangle
enlarged with
scale factor 5 , centre ( 1,6 ).
(c) Further investigation with different centres of enlargement suggested that when two enlargements combine to give a single enlargement, the three centres are collinear. The following series of diagrams shows the development.


Fig. 1.69
An enlargement
scale factor 2 , centre ( 1,6 ).


Fig. 1.70
A second enlargement scale factor 3 , centre $(4,3)$.

The figure above suggested that the two enlargements were equivalent to a single enlargement, scale factor 6 , whose centre lies on the line $x+y=7$. The point $(2,5)$ was tried as the centre of enlargement (see figure 1.71).


Fig. 1.71
The original
triangle
enlarged with scale factor 6 , centre $(2,5)$.

The original triangle was then enlarged with scale factor 6 , using (2.1,4.9) as the centre of enlargement - this is show in figure 1.72. $(2.2,4.8)$ was found to be the required centre.


Fig. 1.72
A further
enlargement of the original
triangle using $(2.1,4.9)$ as the centre.

The pupils then tried examples of their own on graph paper to confirm that the three centres were collinear. Figure 1.73 shows an enlargement scale factor 2 with centre ( 1,6 ), followed by an enlargement scale factor -3 with centre ( 4,3 ). The centre for the single enlargement which is equivalent to their combination has been found by construction (in red).


Fig. 1.73

No pupil noticed that ( $2.2,4,8$ ) divides the line joining $(1,6)$ and $(4,3)$ in the ratio $2: 3$. A sixth form group would be capable of investigating this, using vector methods, to obtain the general rule: An enlargement scale factor $m$, centre A, followed by an enlargement
scale factor $n$, centre $B$, is equivalent to an enlargement scale factor $m$, centre $X$, where $\overrightarrow{A X}=\frac{n-1}{m-1} \overrightarrow{A B}, m n \neq 1$.
(d) I asked the class if there was an exception to the rule that the combination of two enlargements was equivalent to a single enlargement whose scale factor is the product of the two single scale factors. The identity transformation was suggested, and, after some prompting, a translation (i.e. when $m=1$ in the rule above). This was then investigated.

Figures 1.74 to 1.76 show that an enlargement centre $C_{1}(1,7)$ scale factor 2 , followed by an enlargement centre $C_{2}(13,1)$ scale factor $\frac{1}{2}$, is equivalent to a translation $\frac{1}{2} \vec{C}_{1}{ }_{2}$, i.e. $\binom{6}{-3}$.


Fig. 1.74 An enlargement scale factor 2, centre ( 1,7 ), applied to the triangle with vertices $(4,6)$, $(5,8)$ and $(7,6)$.

Fig. 1.75
A second enlargement scale factor $\frac{1}{2}$, centre ( 13,1 ).


Fig 1.76
The two
enlargements
combine to give
a single
translation
$\binom{6}{-3}$ 。

When asked what the effect of reversing the two scale factors would be, a translation of $\binom{-6}{3}$ was suggested, but it was found to be $\binom{-12}{6}$, as shown in figures 1.77 to 1.79. (The scale of the axes is changed in figure 1.78 to accommodate the second image.)


Fig. 1.77
An enlargement scale factor $\frac{1}{2}$, centre $(1,7)$.


Fig. 1.78
A second
enlargement,
scale factor 2, centre (13,1).


Fig. 1.79
The two
enlargements combine to give a single translation $\binom{-12}{6}$.

The series of diagrams in figures 1.80 to 1.82 shows a similar result after an enlargement with scale factor $\frac{1}{3}$ followed by an enlargement with scale factor 3 . Figures 1.83 to 1.85 show an enlargement with scale factor 3 followed by an enlargement with scale factor $\frac{1}{3}$.


Fig. 1.80
An enlargement
scale factor 3 , centre $(1,7)$.

Fig. 1.81
A second
enlargement scale factor $\frac{1}{3}$, centre ( 13,1 ).

Fig 1.82
The two
enlargements
combine to give
a single
translation
$\binom{8}{-4}$.


Fig. 1.83
An enlargement
scale factor $\frac{1}{3}$, centre ( 1,7 ).


Fig. 1.84
A second
enlargement
scale factor 3 , centre ( 13,1 ).


Fig. 1.85
The two
enlargements
combine to give
a single
translation
$\binom{-24}{12}$.

Although we did not investigate negative scale factors, it was found that, for $n>0$, an enlargement scale factor $n$ with centre $C_{1}$ followed by an enlargement scale factor $\frac{1}{n}$ with centre $C_{2}$ was equivalent to a translation described by the vector ( $1-\frac{1}{n}$ ) $\overrightarrow{\mathrm{C}}_{1} \mathrm{C}_{2}$.

At this stage, I felt that a number of pupils in the group were beginning to find the work too difficult, but I think that further investigation by 6 th form pupils would be valuable. The proof of the theorem stated above would appear ideally suited to vector methods; the discovery in the previous section $c$ could be investigated using the ratio theorem.

If we consider the three triangles in figure 1.75 (shown again in figure 1.86, labelled $A, B$ and $C$ for clarity) it is possible to obtain similar results to those above by considering:
(i) the enlargement which is equivalent to the translation from $A$ to $C$, followed by an enlargement which maps $C$ onto $B$,
(ii) the enlargement which is equivalent to an enlargement which maps $B$ onto $C$, followed by a translation from $C$ onto $A$,
(iii) the translation which maps $A$ onto $C$, where $A$ and $C$ are the images of $B$ under enlargements with the same scale factor but with different centres of enlargement.


Fig. 1.86

## Stretch

I have included this transformation in the program because it appears in some G.C.E. ' 0 ' level texts, but I have not used it with pupils. It is possible to use the program to demonstrate the properties of a stretch, i.e. that points are transformed perpendicular to the invariant line in proportion to their distances from it, the constant of proportionality being the scale factor. Two-way stretches may be shown as the combination of two one-way stretches (see figures 1.87 and 1.88).


Fig. 1.87
A stretch from the $y$-axis with scale factor 3, applied to a square with vertices (1,1), $(2,1),(2,2)$ and $(1,2)$.


Fig. 1.88
The result of a second stretch from the $x$-axis with scale factor 2.

The combination of two stretches with the same scale factor and perpendicular invariant lines is equivalent to an enlargement with the same scale factor, and centre where the invariant lines cross. Figure 1.89 shows a stretch from the $y$-axis with scale factor 3 , followed by a stretch from the x-axis with scale factor 3. The red lines have been drawn to show that the combination is equivalent to an enlargement, centre ( 0,0 ), scale factor 3 .


Fig. 1.89

## Shear

This is undoubtedly the most difficult of the transformations for the children to understand, and it is becoming less common for ' 0 ' level syllabuses to include the shear. I think that the main problem is that children are unable to easily represent the transformation in a concrete way, and so the concept of a shear becomes an abstract one. The S.M.P. text introduces the shear as the transformation of a pile of thin exercise books, as shown in figure 1.90.


Fig. 1.90

This idea can easily be transferred to a shear where the invariant line is part of the object, as in figure 1.91, but understanding becomes noticeably more difficult when the invariant line lies outside the object, as in figure 1.92, or passes through the object, as in figure 1.93. I found that using the computer to illustrate various shears helped the pupils to understand the transformation better. It helped to reinforce the properties that only points on the invariant line remain unchanged, points shear in proportion to their distances from the invariant line, and points on opposite sides of the invariant line shear in opposite directions.

The object for all the shears in this section is the rectangle whose coordinates are $(2,6),(2,8),(5,8)$ and $(5,6)$.


Fig. 1.91
A shear with invariant line
$y=6$ and
$(2,7) \rightarrow(4,7)$.


Fig. 1.92
A shear with invariant line
$y=3$ and $(1,4) \rightarrow(3,4)$.

## Fig. 1.93

A shear with invariant line $y=6 \frac{1}{2}$ and $(2,7) \rightarrow(4,7)$.

Another difficulty which I have encountered with pupils is in constructing an image for a given object and shear. The computer program will demonstrate this construction (which can be justified using similar triangles) and may also be used to demonstrate the combination of shears, but I consider that such a study is not suitable for pupils below sixth form level.

I conclude this section by illustrating some possible results which may be found when investigating the combination of shears.
(a) Two shears with the same invariant line are equivalent to
the identity or to a single shear with the same invariant line.
Figures 1.94 and 1.95 illustrate this, and also show a further difficulty of having an invariant line which is not horizontal; this requires a level of understanding far greater than the exercise books analogy of figure 1.90.


Fig. 1.94
A shear with invariant line $x=8$, and $(5,6) \rightarrow(5,3)$.

Fig. 1.95
A second shear with invariant line $x=8$, and $(5,3) \rightarrow(5,8)$.
(b) Two shears with parallel invariant lines are equivalent to either a translation parallel to the invariant lines, or a single shear whose invariant line is parallel to the others.


Fig. 2.96
A shear with
invariant line
$y=2$ and
$(2,3) \rightarrow(3,3)$.

Fig. 1.97
A second shear with invariant line $y=4$ and $(6,6) \rightarrow(4,6)$ combines with the first to give a translation $\binom{2}{0}$.

Fig. 1.98
A second shear
with invariant
line $y=4$ and $(6,6) \rightarrow(3,6)$ combines with the first to give a shear with invariant line $y=8$ and $(2,6) \rightarrow(3,6)$.
(c) Two shears with intersecting invariant lines are not equivalent to a single shear.
(The vertices have been labelled in figure 1.100 to show that the transformation $A B C D$ onto $A^{\prime \prime} B^{\prime \prime} C D^{\prime \prime} D^{\prime \prime}$ is not a shear since $A A^{\prime \prime}, B B^{\prime \prime}$, CC" and $D D^{\prime \prime}$ are not parallel.)


Fig. 1.99
A shear with
invariant line $y=3$ and $(1,4) \rightarrow(3,4)$.


Fig. 1.100
A second shear with invariant line $x=6$ and $(7,6) \rightarrow(7,5)$.

In teaching the shearing transformation, I have found that the pupils are often left with a feeling of incompleteness because the set of shears is not closed under combination, and also because they are unable to find another single transformation which is equivalent to one shear followed by another.

## Chapter Two

In the previous chapter the dynamic capabilities of the computer were the main features. This chapter contains three programs, each concerned with an aspect of the study of number, which illustrate different reasons for using the computer in teaching the various topics. The program listings are given in appendices $B, C$ and $D$.

I shall describe the programs as before, the execution and the use of the program in the classroom.

1. Number patterns. Program name 'num-pat'.

The program shows three basic patterns involving square numbers, three involving triangle numbers, and a relation between square numbers and triangle numbers. The flow diagram on the next page shows how the program is controlled using various keys. In general, during any particular demonstration, pressing and releasing a key will advance that demonstration a step.

The ' $x$ ' key is used to exit from the demonstration (usually at the end of a stage).

The ' $z$ ' key is used for a specific purpose during one of the demonstrations (see the flow diagram).

Following the RUN command, the screen is blank until a key is pressed, after which the initial options are displayed.

(a) $t_{n}+(n+1)=t_{n+1}$ ( $t_{n}$ is the $n^{\text {th }}$ triangle number.)

The demonstration begins with one dot to represent $t_{1}$.
Each stage of the demonstration shows that by adding one more dot than was added in the previous stage a triangular arrangement is generated, giving the sequence $1,3,6,10, \ldots$.

The following series of figures shows one stage. (Each step is advanced by pressing and releasing any key except ' $x$ '.)


Fig. 2.1

Step 1. A row of green dots is added to the previous triangle. Releasing the key while the green dots are being printed results in figure 2.1, releasing after they are printed results in figure 2.2. The question mark flashes to allow time for the pupils to respond with the number of green dots.


Fig. 2.2


Fig. 2.3

Step 2. The number of the green dots is printed. The question mark flashes to allow time for the pupils to respond with the total number of dots.


Fig. 2.4

Step 3. The green dots are changed to magenta and the total number of dots is printed.

Pressing the ' $x$ ' key at this stage results in the sequence being generated without the pattern of dots (see figure 2.5). This will also happen when any key is pressed after the stage which shows $190+20=210$ ( 210 is the largest triangle of dots which can be accommodated on the screen).


The sequence continued without the pattern of dots.

The sequence is continued by pressing and releasing a key, the previous results being scrolled up. Holding down the key will halt the scrolling until the key is released. Pressing the ' $x$ ' key at this stage returns to the initial option display.
(b) $t_{n}=\sum_{k=1}^{n} k$. (The sum of the first $n$ natural numbers is the $\mathrm{n}^{\text {th }}$ triangle number.)
This demonstration displays each triangle in turn. The following sequence of steps is then generated by pressing and releasing a key (to execute each step).


Fig. 2.6

Step 1 prints a triangular arrangement of dots.


Fig. 2.7

Step 2 divides the triangle into rows of dots, by drawing horizontal lines.


Fig. 2.8

Step 3 prints, at the side of the triangle, the number of dots in each row. (These are consecutive natural numbers.)


Fig. 2.9

Step 4 prints these numbers as an addition sum. The '?' flashes to allow time for the pupils to respond with the total.


Fig. 2.10

Step 5 prints the total number in place of the question mark.

A return to the initial option display is achieved by pressing the ' $x$ ' key at this stage, or by pressing any key after the 19th triangle number (which is the largest that can be accommodated on the screen) has been shown.
(c) $n(n+1) / 2=t_{n}$.

Using, in turn, a rectangular arrangement of dots $1 \times 2,2 \times 3$, $3 \times 4,4 \times 5$, etc. the following series of steps (shown for $8 \times 9$ ) is executed by pressing and releasing a key for each step.


Fig. 2.11

Step 1 prints the rectangle of dots together with its dimensions. The '?' flashes to allow time for the pupils to respond with the total number of dots.


Fig. 2.12

Step 2 prints the total number of dots, in place of the flashing question mark.


Fig. 2.13

Step 3 divides the rectangular arrangement of dots into two equal numbers by drawing a diagonal line and changing half of the dots to green. The question mark flashes until the next step is initiated.


Fig. 2.14

Step 4 prints the number of dots in each half, in place of the question mark.


Fig. 2.15

Step 5 erases the upper half of the rectangle and transforms the remaining right angled triangle into an isosceles triangle, row by row.

Repeatedly pressing the ' $z$ ' key at this stage generates the stages of demonstration (b) above, for the triangle which is on the screen. Figure 2.16 shows the completed demonstration.


Fig. 2.16

An optional step to demonstrate that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, shown for $n=8$.

The sequence is printed without the demonstration of dots when $17 \times 18 \div 2=153$ has been demonstrated, or by pressing the ' $x$ ' key at one of the stages shown in figures 2.15 and 2.16 . This is shown in figures 2.17 and 2.18.


Fig. 2.17

The result of pressing the ' $x$ ' key after the stage shown in figure 2.15.


Fig. 2.18

The result of pressing the ' $x$ ' key after the stage shown in figure 2.16.

Pressing the ' $x$ ' key at this stage returns to the initial option display. Pressing any other key continues the sequence.
(a) $S_{n}=S_{n-1}+(2 n-1)$.

The demonstration begins with one dot to represent $S_{1}$, the first square number. Each stage demonstrates that by adding the $n^{\text {th }}$ odd number to the $(n-1)^{\text {th }}$ square number gives the $n^{\text {th }}$ square number. The sequence of figures 2.19-2.21 shows one stage, each step being advanced by pressing and releasing a key.


Fig. 2.19

Step 1 adds the red dots to the previous square, prints the number of green dots in the previous square and the flashing '?' to allow time for the pupils to respond with the number of additional dots.


Fig. 2.20

Step 2 overprints the '?' with the additional number of dots and prints a second '?' which also flashes until the next step is initiated.


Fig. 2.21

Step 3 changes the red dots to green and overprints '?' with the total number of dots (the next square number).

Pressing the ' $x$ ' key at this stage, or any key when $361+39=400$ has been demonstrated, results in the sequence being printed as in figure 2.22 .


Fig. 2.22

The sequence continues without the dot demonstration.

Pressing the ' $x$ ' key returns to the initial option display. Pressing any other key will halt the printing and scrolling until it is released, when the process continues.
(b) $\sum_{k=1}^{n}(2 k-1)=S_{n}=n^{2}$.

Each stage of this demonstration consists of displaying a square arrangement of dots (starting with 1) and then dividing the dots to show that the square is equivalent to the sum of the first n odd numbers. One stage (for $\mathrm{n}=9$ ) is shown in figures 2.23-2.27.


Fig. 2.23

Step 1 prints a square arrangement of dots.


Fig. 2.24

Step 2 divides the dots into gnomons by drawing L-shaped lines.


Fig. 2.25

Step 3 prints the number of dots in each gnomon (consecutive odd numbers).


Fig. 2.26

Step 4 prints these numbers as an addition sum.


Fig. 2.27

Step 5 prints the total number of dots.

The initial option display returns if the ' $x$ ' key is pressed at the end of the stage, or if any key is pressed after $1+3+5+\ldots \ldots+37=361$ has been demonstrated.
(c) $1+2+3+\ldots+n+\ldots+3+2+1=S_{n}=n^{2}$.

This section is similar to (b) above except that the square arrangement of dots is divided as in the following sequence of diagrams.


Fig. 2.28

Step 1 prints a square arrangement of dots.


Fig. 2.29

Step 2 divides the square into diagonal rows of dots.


Fig. 2. 30

Step 3 prints the number of dots in each diagonal row.


Fig. 2.31

Step 4 prints the sum of these numbers below the square, as shown. The question mark flashes to allow time for the pupils to respond with the total number of dots.


Fig. 2.32

Step 5 prints the total number of dots in the square.

Pressing the ' $x$ ' key at this stage results in the initial option display. Pressing any key at the stage shown in figure 2.33 will also return to the initial option display.


Fig. 2.33

The largest square demonstrated for option c.

The relation between triangle and square numbers $-t_{n}+t_{n-1}=S_{n}$.
Taking successive pairs of consecutive triangle numbers, the computer demonstrates that the sum of two consecutive triangle numbers is a square number. The following sequence of diagrams shows the steps of one stage, for the numbers 66 and 78.


Fig. 2.34

Step 1 prints two triangular arrangements of dots.


Fig. 2.35

Step 2 prints the number of dots in each of the triangles (two consecutive triangle numbers).


Fig. 2.36

Step 3 prints ' + ' between the two numbers and a flashing question mark to allow time for the pupils to respond with the sum of the two numbers.

The next step is executed in three parts, with about two seconds between each part, after a single press of a key. (So that each part could be photographed, it was necessary to press the BREAK key - the CONT key continues the demonstration.)


Step $4 a$. The left triangle is transformed row by row into a right angled triangle.


Fig. 2.38

Step 4 b . The right triangle is transformed row by row into a right angled triangle.


Fig. 2. 39

Step 4c. The right triangle is moved to the left so that the two triangles together form a square.


Fig. 2.40

Step 5 changes the colour of all the dots to cyan, and prints the total in place of '?'.

Pressing the ' $x$ ' key at this stage results in figure 2.41. A similar list is printed after the stage which shows $190+210=400$ (the largest square which can be accommodated on the screen).


Fig. 2.41

The sequence has been generated without the demonstration of dots. (One line of dots of the square has scrolled off the top of the screen.)

Pressing the ' $x$ ' key at this stage returns to the initial option display. Pressing any other key continues the sequence.

## Using the program

The program was originally written for the Sinclair ZX 81 computer and was later transferred to the Sinclair Spectrum. The initial purpose of using the computer to teach this topic was to stimulate interest from low ability second year pupils, last lesson on Fridays. I felt that, in addition to providing some practice in arithmetic, the study of number patterns could be enjoyable for these pupils, but most text books which include the topic involve too much reading for the least able pupils. Using the computer, however, produced an enthusiasm which was not always present with this group of pupils.

Each section of the program constituted a lesson's work (thirty minutes). The order in which I introduced each demonstration is evident from the order in which they appear in the program, each being added as it was written. When I first used the program, one relation was introduced each week, but to sustain the interest more
effectively, I will, in future, spread the lessons throughout the year.

Each lesson took the form of demonstrating a few stages of the relation or pattern, with the pupils recording the results in their exercise books. After the relation had been 'discovered', the pupils were encouraged to complete the next stage before the computer demonstration. Allowing some of the children to advance the demonstration contributed to their enthusiasm.

Since the program has been completed, I have used it with a more able 4th year group to introduce sequences. The pupils were already familiar with the patterns of square and triangle numbers and so the computer program was being used as a reminder and also to promote discussion of how the sequences of triangle and square numbers may be defined. I introduced the notation $t_{n}$ for the $n^{\text {th }}$ term in the sequence of triangle numbers and $s_{n}$ for the square numbers. With this notation, the relations $t_{n}+(n+1)=t_{n+1}, t_{n}=\frac{n(n+1)}{2}, s_{n}+(2 n+1)=s_{n+1}$ and $s_{n}=n^{2}$ were established.

Previous work with this group had included flow diagrams, and so flow diagrams were produced to generate the sequences of triangle and square numbers. Using these flow diagrams, computer programs to list the sequences were written (as a class) and subsequently run on the computer.

The third group of pupils with whom I have used the number patterns program was in the first year of the Advanced level mathematics course, for introducing basic ideas on induction, and iteration. The pupils were shown each demonstration in turn and asked to generalise the results. It was agreed that the relations, although being demonstrated for specific values of $n$, had not been proved, and so the class set about this task. Taking $s_{n}=n^{2}$ as a definition, $s_{n+1}=s_{n}+(2 n+1)$ was proved using elementary algebra.

Considering $t_{n}=1+2+3+\ldots+n$ gave the opportunity to introduce the $\Sigma$ notation. With this definition of $t_{n}$, the relation $t_{n+1}=t_{n}+(n+1)$ was proved, since $\sum_{i=1}^{n} i+(n+1)=\sum_{i=1}^{n+1} i$.

Proof by induction was developed more formally when the identity $\sum_{i=1}^{n} i=n(n+1) / 2$ was considered (see figure 2.16 for the demonstration). Demonstrations $b$ and $c$ for the square numbers gave
$\sum_{i=1}^{n}(2 i-1)=n^{2}$ and $\sum_{i=1}^{n-1} i+\sum_{i=1}^{n} i=n^{2}$, which were shown to be identical, and so the first was chosen for proof by induction.

Returning to the sequences for $t_{n}$ and $s_{n}$, ways of defining these and sequences in general were considered, firstly by giving the general term, $t_{n}=\frac{n(n+1)}{2}, s_{n}=n^{2}$, secondly using an iterative definition. For the triangle and square numbers this involved eliminating $n$ from $t_{n+1}=t_{n}+(n+1)$ and $t_{n}=\frac{n(n+1)}{2}$ to give $t_{n+1}=\frac{1}{2}\left(2 t_{n}+1+\sqrt{8 t_{n}+1}\right)$, and eliminating $n$ from $s_{n}=n^{2}$ and $s_{n+1}=s_{n}+(2 n+1)$ to give $s_{n+1}=s_{n}+2 \sqrt{s_{n}}+1$.

As all the pupils in the group were familiar with BASIC, a short program was produced which generated the sequence iteratively:

$$
\begin{aligned}
& 10 \operatorname{LET} u=1 \\
& 20 \operatorname{PRINT} u \\
& 30 \operatorname{LET} u=(2 * u+1+\operatorname{SQR}(8 * u+1)) / 2 \\
& 40 \operatorname{GOTO}_{20} 0
\end{aligned}
$$

This generates the triangle numbers. Replacing line 30 with LET $u=u+2 * S Q R u+1$ generates the square numbers.

To enforce the idea of iteration, a standard exercise was taken from an ' $A$ ' level textbook which involved generating a sequence from an iterative definition and then proving the given expression for the $\mathrm{n}^{\text {th }}$ term. Two programs were used, one for generating the sequence from the iterative definition, the other from the $n^{\text {th }}$ term. An example is given in figure 2.42. Subsequent questions needed only to change lines 10 and 30.

| Sequence $u_{1}=1, u_{k+1}=2 u_{k}+1$ | General term $u_{n}=2^{n}-1$ |
| :---: | :---: |
| Program (a) | Sequence generated |
| 10 LEF $\mathrm{u}=1$ |  |
| 20 PRINT u | 3 |
| 30 LET $u=2 * u+1$ | 7 |
| 40 GOTO 20 | 1531 |
|  |  |
| Program (b) | 63 |
| 10 LET $\mathrm{n}=0$ | $\begin{aligned} & 255 \\ & 511 \end{aligned}$ |
| 20 LES $n=n+1$ |  |
| 30 PRINT $2 \uparrow n-1$ | 1023 |
| 40 GOTO 20 | $\begin{aligned} & 2047 \\ & 4095 \end{aligned} \text { etc. }$ |

Fig. 2.42

In discussion with the pupils, most considered that writing these programs helped them to understand better the idea of a sequence, especially those defined iteratively.

## Conclusion

Although other means could have been used to teach the topics which I have outlined, using the computer in this way provides a welcome change from the more traditional methods. The children were motivated, and some valuable ideas were learned. Producing simple computer programs as described helped to reinforce the understanding of these ideas.

The next program was written initially for similar reasons to that on number patterns, namely to promote an interest in mathematics with the least able pupils who are so often denied the chance to investigate mathematics because of the language used in textbooks. It resulted, however, in being of use to other groups of pupils.
2. The Fibonacci Sequence. Program name 'fibonacci'.

The program was saved using SAVE LINE 1, which results in the program running immediately following the LOAD command. Initially the screen is blank until a key is pressed, which begins the demonstration of the Fibonacci Sequence by illustrating rabbits. Fibonacci is said to have generated the sequence by considering a pair of rabbits (represented by a single rabbit on the screen). Rabbits can only breed when one month old. (Breeding rabbits are represented in yellow, young rabbits in white.) Each stage (one month) of the demonstration is advanced by pressing and releasing a key, and consists of the following steps (shown here for the 7th month).


Fig. 2.43

Step 1 draws a green horizontal line (to represent grass).


Fig. 2.44

Step 2 draws the rabbits which were old enough to breed the previous month (yellow).


Fig. 2.45

Step 3 draws their offspring for the current month (white).


$$
\text { Fig. } 2.46
$$

Step 4 draws their offspring from the previous month, now old enough to breed (yellow).


Fig. 2.47

Step 5 prints the sum of white and yellow rabbits for the month.

Following the demonstration for the 8th month, pressing and releasing a key results in the option message as shown in figure 2.48


Fig. 2.48

The results of pressing the appropriate keys are as follows: ' $r$ ' repeats the rabbit sequence, from the first month.


Fig. 2.49
' $c$ ' continues the sequence.


Fig. 2.50
' p ' prints the sequence from the first term.


Fig. 2.51
' $g$ ' prints the ratio of successive pairs of terms of the Fibonacci Sequence.

Pressing any key will continue the sequences of figures 2.49, 2.50 and 2.51. Pressing the ' $x$ ' key will clear the screen and then display the options shown in figure 2.48.

## Using the program

I have used this program in similar ways to that on number patterns, as a light-hearted way of introducing the Fibonacci sequence. With the least able groups, I was only concerned with the sequence of numbers and how they could be generated. The more able fourth year group again followed up the demonstration by producing. and running a simple computer program to generate the sequence. The pupils were particularly interested in the rate at which the terms increased (almost exponentially) and so the sequence was printed until the numbers were expressed in standard form. I took this opportunity to do some revision work with the class on standard form and rounding off.

The display shown in figure 2.51 was added to use with an able fifth year class who had just completed some work on quadratic equations. As a final problem I had asked them to find the length of a rectangle whose width was one unit, such that taking away a unit square would leave a similar rectangle. The solution gives the
golden ratio which was shown, using the program, to be the limit of the ratio of successive terms of the Fibonacci Sequence.

The program provided another example for the sixth form of defining a sequence iteratively, where each term is generated from the two previous terms.

Proof of the identity $u_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$ where $u_{1}=1, u_{2}=1$ and $u_{k+1}=u_{k}+u_{k-1}$ gave an example of complete induction since the proof involves the assumption that the identity is true for $n \leqslant k$.

The printout for option ' $g$ ' demonstrates that $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n-1}}=\varnothing$ (the golden ratio) and may be used to illustrate the concept of a limit.

The final program in this chapter is concerned with the prime numbers. It was written as a result of work on prime numbers being undertaken with a very able third year class. The pupils had produced the sieve of Eratosthenes for numbers up to 200, and such questions as 'Is 983 a prime number?' and 'What is the 1000th prime number?' arose. To answer these questions we set about producing a computer program to find the prime numbers. Some of the pupils had a good knowledge of BASIC and the following program was produced.

```
1 0 \text { DIM p(1000)}
20 LET m = 1
30 LET p(1) =2
40 LET k = 3
50 PRINT p(m)
60 FOR j = 1 TO m
70 IF INT (k/p(j))*p(j) = k THEN LET k = k + l: GONO 60
80 NEXT j
90 LET m = m + l
100 LET p(m) = k
110 LET k = k + 1
120 GOTO 50
```

This prints out the prime numbers in a list.
I had to translate the flow diagram decision box 'Is k divisible by the previous prime numbers?' into BASIC (line 70), but the remainder of the program was mostly pupils' work.

It had been noted by one pupil that, in completing the sieve, no other numbers were deleted after 13. From this, discussion led to the conclusion that if a number, $k$, had no prime factor which was less
than $\sqrt{k}$, it would have no factor greater than $\sqrt{k}$. This led to line 65 IF $p(j)>$ SQRk THEN GOTO 90 being inserted, which decreased the number of steps to find each successive prime.

On the Sinclair Spectrum, the program was slow to execute, and so I produced the program 'prime'. It is similar to that above, but I have speeded up the execution by using the fact that any prime number over 3 is of the form $6 n \pm 1$ (this is easily proved using simple algebra) and so not all the natural numbers need to be tested. Setting up the array $p$ is still very slow and so, after the initial execution, the program was saved using SAVE LINE 3. This ensures that the array $p$ contains the prime numbers on loading the program, by running the program from line 3 , so avoiding DIM $\mathrm{p}(1000$ ) which would set all the members of the array to zero.

I find this program a convenient way of storing the prime mumbers, which can be output as a list, or as the sieve of Eratosthenes. Children enjoy checking their results for the sieve against those displayed by the computer.
3. Prime numbers. Program name 'prime'.


Initial display, on loading the program.

The following series of figures shows the results of pressing the various keys.


Fig. 2.53

Pressing ' $p$ ' lists the prime numbers up to the 1000 th.


Fig. 2.54

Pressing ' $e$ ' results in the sieve of Eratosthenes being printed. Prime numbers are printed white on a black background. Other numbers are printed in black on white, the background being set to BRIGHT 1 for even numbers, BRIGHT 0 for odd numbers greater than 1.

Pressing any key continues the sieve.


Fig. 2.55


Fig. 2.56

After 1000 numbers have been printed, the sieve continues as in figure 2.57, with five 4-figure numbers to each line.


Fig. 2.57


Option ' $n$ ' - the $n^{\text {th }}$ prime number is printed when $n$ is input. The screen display shown is after input of $3,5,1,23$, $75,44,1000$ and 872.154 is about to be input.


Fig. 2.59

The screen display after 154 is input. Pressing the ' $y$ ' key will await input, as in figure 2.59, pressing the ' $n$ ' key will return to the initial display of figure 2.52 .


Fig. 2.60

Option ' $t$ ' - tests whether the number which is input is prime or not. Any number up to $7919^{2}$ may be tested ( 7919 is the 1000th prime). The figure above shows the screen display after $45,3,79,98,100,-5,0,7.4,13,1983$ and 1987 have been input. 406 is about to be input.

```
45 is not a prime.
35is is not a prime
```

```
98, is not a prime. .
```

98, is not a prime. .
100 is is not a prime.
100 is is not a prime.
-5is nota aprime.
-5is nota aprime.
13}\mp@subsup{}{}{4}\mp@subsup{|}{is}{is}\mathrm{ not prime. prime.
13}\mp@subsup{}{}{4}\mp@subsup{|}{is}{is}\mathrm{ not prime. prime.
133}\mp@subsup{\}{3}{15}\mathrm{ is prime.prime.
133}\mp@subsup{\}{3}{15}\mathrm{ is prime.prime.
1987 is natprime.me.
1987 is natprime.me.
yOnyou wish to test another?

```
yOnyou wish to test another?
```

Fig. 2.61

The screen display after 406 has been input. Pressing the ' $y$ ' key will await input as in figure 2.60 , pressing the ' $n$ ' key will return to the initial display of figure 2.52 .

## Chapter Three

The final program which I have produced for inclusion in this study is concerned with loci. The idea of a locus occurs throughout many mathematics texts, but I have found that a great deal of time is required to investigate the topic in a practical way, to any depth. Using the computer to draw the loci lifts the burden of producing numerous time-consuming diagrams, and allows the pupils to concentrate on the mathematics behind the locus. I use this program to promote discussion about loci, how they change when the conditions are changed and, where possible, the underlying mathematics.

There are five main sections in the program, four of which stem from the School Mathematics Project ' 0 ' level course, the other is intended for use at ' $A$ ' level.

Throughout the program pressing a key will execute the next stage. So that only one stage is executed at a time, the program continues to run only when the key is released. Each locus is drawn by (i) drawing any necessary construction lines to find a position of $P$, (ii) erasing those lines and plotting the position of $P$. This is then repeated for the next position of $P$, until all the positions have been plotted. During the drawing of the locus, holding down the ' $m$ ' key will halt this process at the stage after the construction lines are drawn, holding down the ' $n$ ' key will halt the process after these lines have been erased. Releasing the key continues the demonstration. The scale is adjusted after the required input, to accommodate the figures on the screen. When the locus is complete, pressing the 'r' key repeats the demonstration, pressing another key returns the initial option display to the screen.

The program name is 'loci'. On pressing RON, the initial options are displayed on the screen (see figure 3.1). As with the transformations program, the printing is white on a black background.

I have, so far, used this program with two groups of pupils, an able 4th year set and with a sixth form group. I shall describe the way in which I have used it within each section.

The program listing is given in appendix E.

## This pragram demonstrates the

lotus of a point p under Eestain conditions

```
P lies on AS where
( -9 and bare tuo fixed points
perpendi cutar ing
- A lies on a circte and \(b\) is
    fixed
* - The ratio of the distances
    from a fixed point ans fom
    a fixed line is constant
```

( - Relation between angie pars
and angle peng there $A$ and $B$
are fixed points

The option is chosen by pressing the appropriate key.

## Option A

Figure 3.2 shows the screen display when option $A$ is chosen.

```
A and E are fixed points
m-Pmoves such tha*
    AP:EP=m:n
```


Fig. 3.2

Pressing and releasing the ' $a$ ' key at this stage results in the display as in figure 3.3, which requires $m$ to be input. If $m$ is not positive then the error message in figure 3.4 is printed. When $m$ has been accepted, $n$, which must also be positive, is input (see fig.3.5). After $n$ has been input, the letters $m$ and $n$ are replaced with their values, and the message in figure 3.6 is printed. When a key is pressed and released the locus is drawn as already explained.

Locus of a point p suct thヨt
$A P: E F=n: n$


Input m

Lacus or a point p such that $A P: B P=B=\square$
where $A$ and 5 are ixxed
m must be positive, try ag3in

Locus of a point $P$ such thezt AF: BF $=A: n$
mhere find 3 ars fixen

InPut $n$

Fig. 3.3
Input of $m$ is awaited.

Fig. 3.4
Error message
if $m$ is not positive.

Fig. 3.5
Input of $n$ is awaited.

Fig. 3.6
The values of $m$ and $n$ are printed.

I used this section with the 4th year group in an introductory lesson on loci. It had been explained what was meant by a locus and I asked what the locus of $P$ was, where $P$ was a constant distance from a fixed point. Some pupils suggested a circle immediately, but others needed a concrete example, for which I used a 'conker' being whirled round on a string. When asked the locus of $P$, where the distances of $P$ from two fixed points, $A$ and $B$, were equal, there was no response. Asking for one position of $P$ produced the answer 'midway between $A$ and B'. At this stage, I asked the pupils to draw a diagram with $A$ and $B$ marked, and to draw some possible positions of $P$, after which the mediator was suggested. I then demonstrated the locus using the computer - this is shown in figures 3.7-3.9.


Fig. 3.7
The ' $m$ ' key is held down to show the first position of $P$.


Fig. 3.8
The 'm' key is held down to show $P$ in an intermediate position.


Fig. 3.9
The completed locus.

Following this demonstration the class considered what the locus of $P$ would be if the ratio $P A: P B$ was not 1:1. With the ratio $3: 5$, the first suggestion was that the locus would be a line perpendicular to $A B$ cutting $A B$ in the ratio 3:5. Another suggestion was that it would curve something like a parabola. No-one predicted a circle, and the pupils were surprised when the locus was drawn. Figures 3.10-3.12 show the demonstration of the locus.


Fig. 3.10
An intermediate position to show that
$\mathrm{PA}: \mathrm{PB}=3: 5$.


Fig. 3.11
An intermediate position shown without the construction lines (holding down the ' $n$ ' key).


Fig. 3.12
The complete locus.

Further discussion led to the realisation that the line through $A$ and $B$ formed a diameter of the circle, and that the centre was to the left of A. Pressing a key plots the centre of the circle and draws the complete circle (see figure 3.13).


Several other ratios were demonstrated to show that a circle was produced in each case. Figures 3.14 and 3.15 show that when $m / n>1$ the circle encloses B. (The computer program automatically adjusts the positions of $A$ and $B$ to accommodate the complete figure on the screen.)


Fig. 3.14
The locus of
$P$ when
$\mathrm{PA}: \mathrm{PB}=3: 1$.


Fig. 3.15
The complete circle has been drawn, and its centre plotted.

To conclude this lesson on loci, I asked the pupils what they thought the locus of $P$ would be if $A P+P B$ were constant. Most thought that it would be a circle. Demonstration of the locus under this condition required the ' $b$ ' key to be pressed at the stage shown in figure 3.2 - this resulted in figure 3.16.

```
    Locus of a point P such that
        AB:AF}+PE=m:
    where R and S are iixed
```

Fig. 3.16

Input m

The ratio 3:2 was susgested, but this resulted in an error message-saying that $n$ could not be less than $m$, and so the ratio 3:4 was chosen (see figure 3.17).

Locus of a point P such th
$\mathrm{AB}: A P+P \mathrm{~A}=3: 4$
Where A and $B$ are rixied
Fig. 3.17

Press bhy key to show the focus

Figure 3.18 shows the stage by which most pupils realised that the locus was not a circle.


Fig. 3.18
An intermediate
stage with
the 'm' key
held down.


Fig. 3.19
A later stage
with the ' n '
key held down.


Fig. 3.20
The complete locus of $P$.

Some other values were chosen for $m$ and $n$, which showed that the ellipse approached a circle as $m / n$ approached 0 and that the ellipse became long and thin as $\mathrm{m} / \mathrm{n}$ approached 1. After discussion, it was agreed that $m$ and $n$ could be equal, in which case $P$ is on $A B$. This was confirmed using the computer. Figure 3.21 shows an intermediate stage in plotting the locus when $P A+P B=A B$.


Fig. 3.21

With the sixth form group of pupils, I used this section of the program to reinforce the idea of a locus and how to find its cartesian equation. I first demonstrated that the locus of $P$ such that $P A=P B$ was the mediator of $A B$ (see figure 3.9). I then asked how the equation of the mediator of two points could be found. The suggestion from the pupils was to find the equation of a line perpendicular to $A B$ through the midpoint of $A B$, which was found for two specified points. I then showed that the same equation could be obtained by writing dow the condition on $P$, i.e. $\sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}=\sqrt{\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}}$, and simplifying it.

The demonstration that the locus of $P$ when $P A: P B=3: 5$ is a circle (see figure 3.13) surprised this group as it had the fourth year pupils. The suggestion that the equation could be found by finding the centre of the circle and its radius led to the emergence of some useful ideas concerning the division of a line in a given ratio, internally and externally. Using $A$ as $(0,0)$ and $B$ as $(8,0)$ gre the centre $\left(-4 \frac{1}{2}, 0\right)$ and the radius $7 \frac{1}{2}$ units. It was pointed out that we were assuming that the locus was a circle without proof. By considering the condition on P, i.e. $P A: P B=3: 5$, gave $\sqrt{x^{2}+y^{2}}: \sqrt{(x-8)^{2}+y^{2}}=3: 5$, which led to the required equation $x^{2}+y^{2}+9 x-36=0$. The pupils recognised this as the equation of a circle, and worked through several examples using different ratios and different points. I referred to these resuits in a later lesson which dealt with the division of a line in a given ratio more formally.

## Option B

Figure 3.22 shows the display which results from choosing initial option B as shown in figure 3.1.

```
Locus of a point which lies
On AB
G moves on the y-axis
AP:PB=m:n
```

Fig. 3.22

This section of the program was written as a follow-up to an investigation in the School Mathematics Project book G (4th year) which asks what the locus is of a man who is standing on a slipping ladder which has one end leaning against a wall and the other end on the ground. The first suggestion from the class was that the man would fall in a straight line, but most pupils thought that the locus would be a curve. It was suggested by one pupil that the curve would be concave - later questioning revealed that she was thinking of an envelope. No-one suggested that the path would be circular.

As before, I asked the pupils to draw a diagram to illustrate the locus by plotting the midpoint of the ladder in various positions. All the children were surprised to find that the locus was a quarter circle. This investigation was extended to consider a line of fixed length moving with one end on each of the axes. To set up the situation using the computer, $m$ and $n$ were both input as 1 (see figure 3.23).

```
Locus of ヨ point whict lies
On RE
A moves on the y-axis
G moves on the x-axis
        AP:PB=2:1
```

Fig. 3.23

I had already input $m$ and $n$ into the computer, and had also pressed the ' $a$ ' key for option $A$. This displays the two axes, and awaits a key to be pressed to show the locus. By turning down the contrast of the television, the screen appeared blank until I was ready for the demonstration.

Figures 3.24-3.26 show the demonstration.


Fig 3.24
The 'm' key is
held down to
show $A B$ in the
first quadrant.


Fig 3.25
The ' $n$ ' key is
held down to
show the locus
when $A B$ is in
the second
quadrant.


Fige 3.26
The complete
locus.

This demonstration was followed by discussion on how the locus changes when the man is higher or lower than the centre of the ladder. One pupil suggested that the locus would be an ellipse, which was confirmed by computer demonstration using several values of $m$ and $n$. Figures 3.27 and 3.28 show two examples.


Fig. 3.28
$\mathrm{PA}: P B=3: 2$

The pupils were interested in these findings, and so we considered the locus of $P$, where $P$ divides $A B$ externally. I introduced this by drawing on the blackboard a ladder whose top was leaning over a garden wall. Guided discussion led to this being expressed as the
ratio of $-1: 2$, when the centre of the ladder was at the top of the wall. The pupils were very able 4th year pupils, and so had little trouble in visualising how thw ladder would move although appreciating that, in practice, such motion would be impossible. Figure 3.29 shows part of the locus for $P A: P B=-1: 2$, halted so that the relative lengths may be discussed. Figure 3.30 shows a similar stage for $\mathrm{PA}: \mathrm{PB}=5:-2$.


Fig. 3.29


Fig. 3.30

Questioning the pupil who had expected a concave curve confirmed that she had been thinking of the envelope of an astroid which she had met earlier in the S.M.P. course. I asked if the pupils recalled an envelope which they had previously drawn similar to the astroid. Some remembered drawing the envelope of a parabola by loining points on the two exes. The difference between the two envelopes was realised ( $A O+O B$ is constant in the latter case) and so I asked what they thought the locus of $P$ would be under this condition. The general opinion was that a curve would be produced. Several ratios were demonstrated using the computer, some of which are shown in figures 3.31-3.37.


Fig. 3.31
An intermediate stage for $\mathrm{PA}: \mathrm{PB}=1: 1$, with the 'm' key held down.


Fig. 3.32
An intermediate stage for $\mathrm{PA}: \mathrm{PB}=1: 1$, with the ' n ' key held down.


Fig. 3.33
The completed
locus for
$\mathrm{PA}: \mathrm{PB}=1: 1$.

Fig. 3.34
The completed
locus for
$\mathrm{PA}: \mathrm{PB}=1: 2$.


Fig. 3.35
The completed locus for $\mathrm{PA}: \mathrm{PB}=3: 2$.


Fig. 3.36
An intermediate
stage for
$\mathrm{PA}: \mathrm{PB}=-1: 2$.


Fig. 3.37
An intermediate
stage for
$P A: P B=5:-2$.

The computer program will also demonstrate that, when $m$ or $n$ is zero, the locus of $P$ lies on an axis.

## Option C

Figure 3.38 shows the display which results from choosing option C (see figure 3.1). Error messages occur if 1 is negative or $r$ is not positive. Figure 3.39 shows the display when $l=3$ and $r=1 ; m$ and $n$ are now required to be input. An error message occurs if both $m$ and $n$ are zero. Ratios are adjusted so that, if $m$ or $n$ is negative, the numerically larger is made positive. If both $m$ and $n$ are negative the ratio is expressed as the equivalent ratio of positive numbers.

```
A lies on a circle, centre c.
B is a fixed point
The ratio of BE:radius: = v:r
```

Input 1

Fig. 3.38

Fig. 3.39
A lies on a circle, centre c.
O is a fixedpoint
The ratio of EC: radius = 3: I
Lociss of a point which lies
$A P: P E=m: n$
Input m

This section was also developed from an investigation in the S.M.P. course. A rotating wheel has a piece of elastic attached to its rim at point $A$, the other end of the elastic is fixed at point $B$. The middle of the elastic is marked and the children investigate the locus of this midpoint by drawing several positions of the wheel. With the 4 th year group I followed the procedure of the previous lessons, the pupils producing a diagram to find the locus, which is a circle, followed by the computer produced diagrams to investigate the results for different positions of $P$ on $A B$. Before using the computer $I$ asked the class why the locus was a circle, to which one pupil stated that the original circle had been enlarged with scale factor $\frac{1}{2}$. Most of the pupils realised that this was so because the way that they had constructed the locus was as they would construct the enlargement. It was suggested that if $P A: P B=2: 3$ then the scale factor woulb be $2 / 3$, but was found to be $3 / 5$. Figures $3.40-3.43$ show this.

By holding down the ' $m$ ' key for figure 3.41, the drawing of the locus was halted to enable the pupils to see that $B P: B A=3: 5$, giving an enlargement, scale factor $3 / 5$, centre of enlargement $B$.


Fig. 3.40
$B$ is the fixed point.

The circle, centre C, represents the wheel.


Fig. 3.41
An intermediate stage in demonstrating the locus.


Fig. 3.42
The completed locus.


Fig. 3.43
The final
stage of the
demonstration
plots the
centre of the locus, and draws the circle.

Generalising this finding produced the result that if $\mathrm{AP}: \mathrm{PB}=$ $m$ :n the circle is enlarged with scale factor $n /(m+n)$. Negative values of $m$ and $n$ were discussed (i.e. $P$ lies outside $A B$ ) and some values were chosen to test whether our result was true in these cases. Figure 3.44 shows that $m=-1$ and $n=2$ gives an enlargement scale factor 2, and figure 3.45 shows that $\mathrm{m}=3$ and $\mathrm{n}=$ ) 2 gives an enlargement scale factor -2 . Both results satisfy $n /(m+n)$ for the scale factor.


Fig 3.44
An intermediate
stage where
$\mathrm{PA}: \mathrm{PB}=-1: 2$.


Fig. 3.45
An intermediate
stage where
$\mathrm{PA}: \mathrm{PB}=3:-2$.

When asked if having $B$ inside the circle would affect the result, most pupils thought that the locus would still be a circle. The computer demonstration confirmed this and also that the scale factor for the enlargement was $n /(m+n)$. Figures 3.46-3.49 show various values which result in $B$ inside the original circle.


Fig. 3.46
$1: r=2: 3$,
$m: n=3: 4$,
enlargement
scale factor
4/7.


Fig. 3.47
$1: r=2: 3$,
$m: n=-2: 3$,
enlargement
scale factor
3.

Fig. 3.48
$1: r=2: 3$,
$m: n=3:-1$,
enlargement
scale factor
-1/2.

Fig. 3.49
$1: r=1: 4$,
$m: n=3:-1$,
enlargement
scale factor
-1/2.

Option D
When the 'd' key is pressed at the stage shown in figure 3.1, the following display results.

```
foint fixed line, \(A\) is a ixed
PN is the perpendicutar fromp
to the line l
            \(A P: P N=m: n\)
```

Infut m

The loci which result from the various values of $m$ and $n$ are (i) a parabola if $m=n$, (ii) an ellipse if $m<n$, (iii) a hyperbola if $\mathrm{m}>\mathrm{n}$.

I decided to produce this section of the program to use with the 6th form group as an introduction to the conic sections. In teaching the topic in the past, I have felt that pupils are often unable to visualise how the curve changes with different eccentricities. By using the computer to show the locus being drawn point by point, the relation between the curve and its eccentricity was seen more readily than from a text book diagram.

The first values which $I$ input were $m=1$ and $n=1$, which led to a parabola. Apart from saying that the locus passed midway between the fixed point and line, no-one suggested what shape would result.

Figure 3.51 shows the parabola being plotted, with the construction lines clearly showing $\mathrm{PA}=\mathrm{PN}$.

Figure 3.52 shows the completed locus.


At this stage I introduced the concepts of focus, directrix and eccentricity.

Figure 3.53 shows the locus produced when $m: n=3: 5$, which gives an ellipse. Several values were input to give an eccentricity which was less than 1 , from which it could be seen that, as $m / n$ approached 0 , the ellipse approached a circle, and as $\mathrm{m} / \mathrm{n}$ approached 1 the ellipse became longer. The pupils quickly realised that the ellipse has two foci and so it was shown that, by letting $m / n \rightarrow 1$, a parabola may be compared to an ellipse with its second focus at infinity.


Fig. 3.53
A stage in the plotting of the locus when $\mathrm{m}: \mathrm{n}=3: 5$.

Figures 3.54-3.56 show the locus when $m=7$ and $n=6$. The hyperbola is drawn in two stages, the pause after the first part has been drawn allowing time for discussion. At first the pupils thought that the curve was a parabola, but on further consideration they realised that the parabola approached two parallel lines, but the hyperbola approached two intersecting lines.

Pressing the 'a' key after the hyperbola has been plotted draws the asymptotes as in figure 3.57.


Fig. 3.54
$\mathrm{PA}: P N=7: 6$.

-127-

Fig. 3.55
The second part of the hyperbola.

Fig. 3.56
The complete hyperbola.

Fig. 3.57
The asymptotes
have been
drawn.

As before，different values of $m$ and $n$ were input to see how these affected the hyperbola．As $m \rightarrow n$ the asymptotes became less steep，showing that the hyperbola became nearer to the shape of the parabola．As $\mathrm{m} / \mathrm{n}$ became larger，the asymptotes became steeper．

Figure 3.58 shows the completed hyperbola and its asymptotes when $m / n=2$ ．


Fig． 3.58

## Option E

Pressing the＇e＇key at the stage shown in figure 3.1 produces the display of figure 3．59．

```
F and Ei are fixed
P moves in surh \(\exists\) may titat
圆 ...FB rotates antictockuise
圂 ...P日rotates antictockwise at
(2. . Other reistions
```

This section was written to be used in conjunction with an investigation in the S．M．P．＇0＇level course which concerns two rotating double－ended searchlights at A and B．Different relations
between the angles of rotation give various loci for the point of intersection of the searchlight beams. The pupils are supplied with several copies of the diagram in figure 3.60, and plot the intersection of the required lines.


I have found from experience that some pupils are confused because of the number of lines in the diagram. Using the computer helped to make the situation clearer.

This section has three options - 'a' where the two searchlights rotate at the same rate, ' $b$ ' where one searchlight rotates at twice the rate of the other, ' $c$ ' which allows the user to define the relation between the searchlights.
(a) When the 'a' key is pressed figure 3.61 results, which requires the initial angle which the searchlight through $B$ makes with the horizontal to be input.

Figure 3.62 shows the initial positions of the searchlights when 60 has been input. Part of the letter $B$ has been erased because of the 'exclusive or' print command.

```
    A and B are fixed
    mowes in such a way that
M ...PB rotates antictockwise:
```



```
葍...Othef rezations
```



```
Input the inorizontalial angie, in
degrees, which pe makss wizh the
positivi x uirection
園 . . Other relations
```



```
Input the initial angie, in positive x \(\begin{gathered}\text { irection }\end{gathered}\)
```

Fig. 3.61


Fig. 3.62

At this stage $I$ asked the pupils to draw the line through $B$ in red to mark the initial position of this searchlight, and then demonstrated the locus on the computer. By using the ' $m$ ' key, each position was held so that the pupils could plot the points on their diagrams and also discuss what was happening. Figure 3.63 shows one position of $P$.


Fig. 3.63

As expected from having previously taught this topic, a number of pupils were unsure how to continue from where the line through $B$ was horizontal. I had halted the locus plotting at this position so that the pupils could discuss how they thought the locus would continue. Some thought that the locus would be symmetrical about $A B$, 'like a figure 8', but on showing the next position (see figure 3.64) the pupils were able to complete the circle (see figure 3.65).


Fig. 3.64
The next
position plotted after PB becomes horizontal.


Fig. 3.65
The final
positions of
the lines are as the initial positions.

Having found that the locus was a circle, I pressed the ' $r$ ' key, which repeated the demonstration. From figure 3.63, the pupils were able to see that, because the angle subtended from $A B$ was $60^{\circ}$, the locus from $B$ to $A$ was an arc of a circle. From figures 3.63 and 3.64, where angle $\mathrm{APB}=120^{\circ}$, the circle is completed because opposite angles of a cyclic quadrilateral are supplementary.

Figure 3.66 shows an intermediate stage of drawing the locus when the initial angle which PB makes with the horizontal is $120^{\circ}$.


Fig. 3.66
(b) Pressing the ' $b$ ' key results in the locus where PB rotates at twice the angle of PA. Initially $A$ and $B$ are plotted with both searchlight beams horizontal.

I used this demonstration in a similar way to that outlined above, advancing in steps to enable the pupils to mark the positions of $P$ on their diagrams. Figures 3.67 and 3.68 show intermediate stages, clearly indicating that the locus is a circle centre B , radius AB . This was easily proved by joining $A$ through $B$ - if angle $P A B=k^{\circ}$, then the exterior angle $P B A=2 k^{\circ}$, making the triangle PBA isosceles, and $P B=A B$.


Fig. 3.67


Fig. 3.68
(c) Pressing the ' $c$ ' key results in the message displayed in figure 3.69. Printed at the bottom of the screen is $j=" L^{n}$, which indicates that a string is required to be input. The string is evaluated in the program to find $j$, the angle which $P B$ makes with $A B$.

```
P andes aresfixed may that
|...PB rotates antiglockwise
⿴囗...pB rotates anticlockmise at
G ...other retations
Option try - Pa is initialig
                norizontal.
pa rotates antictuctuise to make
#ngte x degrees oflth the
positive x direction.
Input the relation tetween the
angle j, Which Pe makes orith ttre
Po:itive x direction, and x
```

Since a circle could be predicted for options ' $a$ ' and ' $b$ ' above the circles were drawn to fill the screen vertically, with the positions of $A$ and $B$ adjusted accordingly. Because the locus in this section cannot be predicted, $A$ and $B$ have been plotted 30 pixels apart, in the centre of the screen. This was found to be suitable for the relations which were considered. Unlike the previous two loci, the plotting is in a continuous loop. Holding down the ' $m$ ' key halts the process with the two lines drawn, the ' $n$ ' key halts the process without the lines. Pressing the ' $x$ ' key will exit from the loop and return to the initial option display.

The S.M.P. text suggests other relations which may be considered but many pupils find these difficult to plot. The remainder of the loci which I shall illustrate were therefore shown on the computer without the pupils reproducing them.

The first relation which was considered was $j=120-k$ (see figures 3.70-3.73). I halted this locus at the stage shown in figure 3.70 to ask the class what happens to the curve. Most could see that the curve approached a straight line, and this was a way of introducing the idea of an asymptote which they could easily
understand (although I did not use the word 'asymptote'). Figure 3.71 shows that the curve continues from the other direction of the asymptote. At the stage shown in figure 3.72, the pupils predicted that the locus would meet the first point plotted. Figure 3.73 shows the completed locus by holding down the ' $n$ ' key. Pressing the ' $x$ ' key at this stage returns to the initial option display.


Fig. 3.70


Fig. 3.71


Fig. 3.72


Fig. 3.73
The completed locus is a rectangular hyperbola.

The pupils were keen to try various other relations, some of which are shown below. Figure 3.74 shows another rectangular hyperbola from the relation $j=90-\mathrm{k}$. It can be demonstrated that any relation of the form $j=\theta-k$ will result in a rectangular hyperbola, unless $\theta=180$ when the mediator of $A B$ is produced (see figure 3.75).


Fig. 3.74
The complete
locus for the
relation
$\mathrm{j}=90-\mathrm{k}$,
showing the
final position
of the
searchlights.


Fig. 3.75
An intermediate
stage in
plotting the
locus for
the relation
$j=180-k$.

Fig. 3.76
A stage in the plotting of the relation
$j=3 k$
(input as $3 * k$ ).


Fig. 3.77
A further
stage in
plotting the
relation
$j=3 \mathrm{k}$.

Fiģ. 3.78
The relation
$j=3 \mathrm{k}$,
showing the
searchlights
returned to their initial
positions.


Fig. 3.79
An intermediate
stage of the
locus when
$\mathbf{j}=120+2 \mathrm{k}$.


Fig. 3.80
The completed locus for the relation
$j=120+2 k$.


Fig. 3.81
A stage in plotting the relation $j=120-2 \mathrm{k}$.

I halted the demonstration as in figure 3.81 to ask the pupils how they thought that it would continue. Most thought that the branch about to be drawn would pass through $B$, but this curve had three asymptotes, as can be seen from figure 3.82.


Fig. 3.82
The completed locus for the relation $\mathrm{j}=120-2 \mathrm{k}$.

Fig. 3.83
The completed locus for the relation
$j=4 \mathrm{k}$.

## Conclusion

I found that the idea of a locus as the path which a point traces out when moving under certain conditions was more easily understood by the pupils when demonstrated using the computer, than by methods which involve only drawing. The demonstrations promoted discussion among the pupils and an interest in investigating how different conditions changed the locus. They were keen to experiment and to try to predict the outcomes.

Although I do not expect many pupils to remember which loci resulted from the different conditions, the series of lessons was
valuable in showing the pupils that mathematics is not just learning facts and techniques. In addition, as has been shown, other aspects of mathematics were reinforced by considering why certain loci were produced.

At the sixth form level, demonstrating the locus of $P$ dynamically helped the pupils to understand the technique of finding the cartesian equation by writing down the condition which $P$ must satisfy. When teaching the conic sections in a later lesson, I felt that a greater insight had been achieved by investigating the curves using the computer.

## Bibliography

```
HART, K.M. (editor) (1981)
    Children's Understanding of MATHEMATICS : 1l-16
    London : John Murray
```

JEGER, M. (1966)
Transformation Geometry
London : George Allen \& Unwin Limited
LaND, F. (1960)
The Language of Mathematics
London : John Murray
MAXWELL, E.A. (1975)
Geometry by Transformations
Cambrige University Press
VICKERS, S. (1982)
ZX Spectrum BASIC programming
Cambridge : Sinclair Research Limited
School Mathematics Project, Books 1-5, A-H, X, Y, Z
Cambridge University Press

## Appendix A - The listing for the program 'transforms'.

```
1 BQRDER Q：PAPER DA TNK 7 O C ＂SDemonstratiant y ynin prike eke 59，
```

```
n": \GOFTNKEY$="N" THEN LET d京="
```

n": \GOFTNKEY\$="N" THEN LET d京="
4 LET dNKEY岀多沙" THEN ED TD =
4 LET dNKEY岀多沙" THEN ED TD =
5 IF INKE\&``** THEM GO TO S     5 IF INKE\&``** THEM GO TO S
G CLS : FESTDRE : EUER R

```

```

Any=-3: LEI m×4=1
20 DEF FN f {X {={X\div0x) \#SE+5
12 DEF FN g(y)={y+5y) 文S5+5

```

```

"Chaose range? \#ノ\Omega ": POKE 巳ふ⿱丆贝
\#,2
*** THEN *O SLR
i4. IF INKEY\$<>"n" THEN GO TO 1
3

```




```

0

```

1 －Sets the screen background to black and writing to white． CLS clears the screen．POKE 23659，0 enables printing on the bottom two lines of the screen（normally used only for the input messages）．POKE 23659，2 returns to normal．

2 －Sets \(\mathrm{d} \delta\) to＂ y ＂or＂ n ＂depending on which key is pressed．
3 －The INKEY，control is used so that this operation is carried out by pressing one key only．No other key will produce an exit from the 2－3－2 loop．
5 －The program continues only when the key is released．
6 －RESTORES DATA statement for the preset object：OVER 0 is the normal printing mode．
7 －Sets minimum values of the axis scales to -1 （mnx and mny）， maximum values（mxx and mxy）of the axis scales to 1．
10 －FN f and FNg are used for the PLOT command．ss＝the number of pixels per unit of the axes．ox，oy translate the origin from \((5,5)\) on the screen．

12 －Option message to choose the ranges of \(x\) and \(y\) ．
Pressing the＇y＇key results in the execution of the sub－ routine 280 to input minimum and maximum values of \(x\) and \(y\) （mnx，mny，mxx，mxy）．The＇\(n\)＇key is the only other key which allows the continuation of the program．
15 －The program only continues when the key is released．
16 －The values of minx，maxx，miny and maxy will change during the execution of the program．This line is so that the original values are not lost．
18－ss＝number of pixels per unit，ff \(=\) number of images on the screen， \(\mathrm{gg}=\) number of invariant lines of the form \(\mathrm{y}=\mathrm{mx}+\mathrm{c}\) on the screen， \(\mathrm{hh}=\) number of centres of enlargement／rotation， \(i i=\) the number of lines of the form \(x=c:\) SUB 300 draws axes．
 f the object



n:

3
24 IF INKEY\$くソ"n" THEN ED TQ 2

 GOTQ INPUT
ES INPUT "How many points? ";
n
30 IF INKEY\$ 31 DIM THEN GO TO 20
 (10): DIM U(10): DIMz(10): DIN a(n): DIM \(\sin (n): D I M \cup(10, n+1): D\)

 \(n+1\}: D I M f(n+1\}: D I N P(n+1): E I\) \(M \mathrm{q}(n+1)\)

22 - Option message to choose the preset object, or not. ' \(y\) ' is pressed if the preset object is required. The DATA statement is on line 970. \(c \delta=\) " y " to indicate that the shape is closed. \(n=\) the number of vertices of the object.

Only 'y' or ' \(n\) ' keys continue the execution of the program.
25 - The program only continues when the key is released.
\(26-r \beta=\) the response ( \(y\) or \(n\) ) to the question 'Preset object?'
27 - Requires "y" or " \(n\) " to be input in response to the message 'Closed curve - \(y / n^{\prime}\). \(n=\) the number of vertices of the object.
30 - Program only continues when a key is released.
31 - Sets up arrays to store the images displayed on the screen (maximum 10). \(m=\) gradients of invariant lines, \(c=\) their \(y\) intercepts. \(k=\) values of the \(x=k\) invariant lines. ( \(u, z\) ) \(=\) the centres of enlargement/rotation. \(a, b\) are used to compute and draw the sides of the images. \((v, w)=\) coordinates of the various images. \((x, y)=\) coordinates of the object of the current transformation. \(s, t\) are the vector components of the sides of the object. e,f store the final image of the current transformation. \(p, q\) - various uses.

35 - SUB 950 inputs the DATA for the preset object.
40 - Inputs the coordinates for the object, if the preset object is not required


42-49 Each point is tested to see if it lies within the existing ranges of \(x\) and \(y\). If not, the range is extended to include \(\left(x_{j}, y_{j}\right)\). (The range is extended to include the next integer.) If the range has been extended, the flag tt is set to 1 (it was initially set to 0 , in SUB 300).

50 - SUB 300 redraws the axes, if necessary.
55-60 s and \(t\) are the components of the vectors which form the sides of the object.

75 - SUB 523 draws the object, SUB 730 stores the object in memory.
90-150 Jumps to the transformation subroutine corresponding to the key which is pressed: \(r\) - rotation, \(f\) - reflection, \(t\) - translation, e-enlargement, \(h\) - shear, s-stretch. No other key will produce a response.

220-225 On return from the transformation subroutine, a key needs to be pressed and released to continue execution.


 a": 60 sum 2 ab: 60 sur \(95 \%\) : 8 UB SOO: GO SUB 53日: 6O SUB ret: GO TO 220
 : Go sub ret: go to ean



230 - Prints the message listing the options as explained in the notes on the program.
\(235-{ }^{-1} a\) ' response allows the axes scales to be changed (SUB 280). SUB 850 tests if all the images and lines on display are within the new ranges, increasing the range if necessary. SUB 300 draws new axes. SUB 530 draws all images, lines, centres of enlargement or rotation, on the new axes. SUB ret returns and repeats the previous transformation.

240 - 'r' response repeats the transformation. CLS clears the screen. SUB 490 draws the axes. SUB 530 and SUB ret as above. The value of ret is the current transformation subroutine address. (See note below *.)
\(250-\) 's' response sets the original object as the object for the next transformation. SUB 730 stores the current image in the memory. SUB 910 recalls the original object.

255 - ' p ' response sets the previous object as the current object (SUB 775).
260 - 't' executes the program starting with the display of the original object, on the original scales (unless they have been altered by response ' \(a\) ' above). SUB 800 recalls the original object.

265 - 'f' response sets the current image as the object for the next transformation.
270-276 If none of the other keys have been pressed, only ' \(n\) ' will produce a response.
'n' response reruns the program from the beginning.



5
276 GO TO 1
*Repeating the transformation requires erasing the current image. Doing this using the OVER 1 command resulted in erasing parts of the axes, etc. on occasions. I therefore decided to achieve the desired effect by clearing the screen and redrawing the display as it was prior to the transformation.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{40}{*}{}} \\
\hline & \\
\hline
\end{tabular}

280-290 Subroutine to change the ranges of the scales.

300-522 Subroutine to compute the scales and axes.
310-370 If both minx and maxx are less than 0 , maxx is set to 0 . If both \(\operatorname{minx}\) and \(\operatorname{maxx}\) are more than 0 , \(\operatorname{minx}\) is set to 0 . The range of \(x\) is maxx-minx. sx gives the number of pixels per unit necessary on the x-axis. ox is the horizontal translation from \(\min x\) to the \(y\)-axis.

400-460 As above but for the y range.

470-480 ss is set to the smaller of sx and sy.
490-500 Draws the axes.
510 - Marks the scale on the x-axis.
520 - Marks the scale on the y-axis.
522 - End of the subroutine.
523 - 528 Subroutine to draw the object.
\(c \beta=\) " \(n\) " indicates that the shape is not closed, and so the first and last vertices are not joined.
```

        530 DUER O: REtM REdraw scretr,
        535 FOR 9=1 TO ff
        540 PLOT FN f(v{G,I}),FN 3is(7,
    1)3
5SO FOOR k=1 TO n

```

```

    SS: LET b{k}={u{{3,k+3}-w{3, k;}%E
    S
    5565 DRAIN a(k), b(k)
    570 NEXT K
    5@0 NEXT g T OT FNT
    EOQ FOR K=1 TO Hh: PLOT FN f(U&
    ```

```

    Kid FOR K=1 TO 9G: OQ SUS SSO:
    ```

```

*)
EON LET lOWX=m5TX

```

```

    E5@ IF ly?maxy OR ly<miny THEN
    ```

```

\&ET GO\&X=10GX+1:

```




```

g=g PLOT Fr, (0wx)\&FM,G{l=
RGE RETLRN
630-700 Subroutine to draw lines of the form $y=m x+c$.
630-650 Finds the lowest value of $x$ (lowx) such that $m x+c$ lies within the range of $y$ by setting low $x=\operatorname{minx}$ and increasing lowx by 1 until the value of $m^{*}$ lowx $+c$ lies between miny and maxy.
660-680 Finds the highest value of $x$ (hix) so that the value of $\mathrm{m}^{*} \mathrm{hix}+\mathrm{c}$, hiy, lies between miny and maxy.
690 - Draws the line from $x=$ lowx to $x=$ hix.
7ad RETURN
530 - 620 Subroutine to redraw all the images, lines, etc. on display. 535-590 Draws all the previous images. 540 - Plots the first vertex of the image. $550-570$ Draws the edges of the image. -2 RETURN
600 - Plots all previous centres of enlargement/rotation.
610 - Draws all previous invariant lines of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ (see SUB 630).
615 - Draws all previous lines of the form $x=k$.
620 - End of the subroutine.
700 - End of the subroutine.

```
```

730 LEN if= ry+4

```

```

x = 5 (x)
750 NEXT K

```

```

{ {ff, n+i}=w{f; {, i}
7>Q RETURN
Z7S LET ff=ff+1

```



```

u{ff, rimi)=w (f \&, i)
子78'RETHFN
78Q LET G9=99+1: LET m(g|)=m:L

```


```

ET a (hhs:=3: FRETGRAN
군 LET $i f=r y+i$

```

```

$x 3=5(x)$

```

```

: $\{f f, n+1\}=(6\{f f, 1\}$
$\rightarrow 7 E$ RETUFIN
LE KF $=f f+1$

```


```

$\left\{\xi \in, r_{i}+2\right\}=w(f \dot{F}, 1)$
7BO LET $93=99+1:$ LET $m(99)=m$ 79G L LET $u$ (hin) $=x$ ET $x$ (hh $=3$ : FiEt idid

```

730-770 Subroutine which sets the next members of arrays \(v\) and \(w\) with the \(x\) and \(y\) coordinates respectively of the current object.

775-778 Subroutine which sets the next members of arrays \(v\) and \(w\) with the \(x\) and \(y\) coordinates of the current image. (These are stored in arrays \(e\) and \(f\) when the subroutine is called.)

780 - Subroutine to store the gradient and the \(y\)-intercept of the current invariant line of the form \(y=m x+c\) in arrays \(m\) and \(c\).
790 - Subroutine to store the coordinates of the current centre of enlargement/rotation in arrays \(u\) and \(z\).

800-840 Subroutine to reset the program with the original object. 800-815 Sets the object for the next transformation as the original object (stored in \(\mathrm{v}(1,1\) to n ) and \(\mathrm{w}(1,1\) to n\()\) ). 820 - Resets the parameters for drawing the display.
830 - Resets the scales to the original values or those which were input following the ' \(a\) ' response in line 230.

850-868 Subroutine to change the ranges of the axes, i.e. the values of mnx, mxx, mny and mxy

854 - 856 Tests all the images on the screen to ensure that the ranges are increased to include them on the new scales.

860 - Tests centres of enlargement/rotation, as above.
863 - Tests the y-intercepts of the invariant lines of the form \(y=m x+c\), as above.
866 - Tests values of \(k\) for invariant lines of the form \(x=k\), as above.
870 - 880 Subroutine to increase the range of \(x\) to include pp from subroutine 850 . tt is set to 1 if the range has been increased.
885-895 Subroutine to increase the range of \(y\) to include qq from subroutine 850. tt is set to 1 if the range has been increased.
900 - Subroutine to store the current value of \(c\) in array \(k\), for the invariant lines of the form \(x=c\).
\(910-945\) Subroutine to set the object for the next transformation as the original object. It differs from subroutine 800 in that all images on the screen are not erased. This subroutine is called when the 'superimpose' option is chosen in line 230.

95Q REM FiEEET GbiEEt. DRTG Give今 the number of poiftis iskiosud by the coordinates
 QD y (k) NEXT

GGB RETLRN








950-980 Subroutine to set the transformation object to the preset object.

970 - "y" indicates that the preset object is closed. The number of vertices is 3 . Coordinates \((6,-3),(3,-1),(4,1)\).
1000-1700 Rotation subroutine. The subroutine is not executed until the key is released. ret is the line number for the start of the subroutine. \(\mathrm{gs}=\mathrm{mr}\) " indicates that the subroutine has been called by the 'repeat' option of line 230 , " p " by the 'previous image' option, "f" by the 'follow' option, "s" by the 'superimpose' option, "a" by the 'axes' option.
The subroutine continues at the appropriate line number, depending on the value of ge.

1030 - Input the angle of rotation.
1040 - Input the \(x\) coordinate of the centre of rotation.
1050 - Input the \(y\) coordinate of the centre of rotation. 1060 - SUB 790 stores these coordinates.

1080-1135 This section is only executed if the angle of rotation is 0 , i.e. the transformation is the identity. 1080-1110 Tests \(x\) and \(y\), the centre of rotation coordinates, for inclusion in the ranges of the axes. \(t t=1\) if the ranges have been increased.

1120 - If \(\mathrm{tt}=1\) then SUB 300 clears the screen and redraws the axes, SUB 530 redraws the screen display. 1130 - Plots the centre of rotation.
\(114 \mathrm{~F} \quad \mathrm{FOR} \mathrm{K}=1\) TO T


2LE日 IF白inx三INT（x－radius）：LET dt＝3 1170 IF \(\{x+r a d i U S\}>\operatorname{Bax}\) THEN LET



 1290 IF \(\{y+r a d i u s) \geqslant\) Maxy THEN LET


120® NEXT \(x\)
121Q IF tt＝1 THEN GO SUE BOO：GO 54E 530
LEQ IF \(a=\Leftrightarrow\) THEN RETUFN


\(1150-\) radius \(=\) the distance of the object point from the centre of rotation．
1160 － 1190 The ranges of \(x\) and \(y\) are extended to allow a rotation of \(360^{\circ}\) about the centre of rotation．

1210 －The screen is redrawn if necessary．
1220 －The transformation subroutine begins here if＇repeat＇ option has been used．If the angle of rotation is 0 and \(\mathrm{g} \delta=\)＂ r ＂then the centre of rotation has already been plotted and RETURN is executed．If angle \(\neq 0\) ，then the ranges will have been adjusted．

1225 －Plots the centre of enlargement．\(d=1^{\circ}\) ，in radians．
\(1230-\mathrm{b}=\mathrm{a}\)（modulo 5）． b is the angle of the first image． \(\mathrm{bb}=\) the increase in angle for each successive image（5 or -5 ，depending on a）．
If a is a multiple of 5 ，then \(b=5\) or -5 depending on 2 ．
\(1260-s=\) the sine of the angle of rotation for the first intermediate image．\(c=\) the cosine of the angle．
1270 －（e，f）are the coordinates of the first point of this image．
1275 －arrays \(e\) and \(f\) contain the vector components of the sides of the image．

12BQ FOR j＝t TE ヨ STEF bt


 420
1330 PLOT PAO
 pik！t（k）：NENT
15등 pLot p，
1ふ巴日 LET \(=\) Cis \((\{i+\) bbl \(\ddagger d\}\)

 1
\(1-x \div 5\)
1
13 BO FOR \(k=1\) TO n：LET E\｛x；＝E\｛x！



 \(P(x), q(k): N E X T K\)


1280－1430 See notes below．＊
1300 －（ \(p, q\) ）are the coordinates for the first point of the image，adjusted for scale．
1310 －The arrays \(e\) and \(f\) have been calculated in the previous execution of the loop．
1320 －The final image is to be drawn if \(j=a\) ．
1330－1350 Draws the image．
1360 －The sine and cosine of the angle of rotation for the next image．
1370 －（e，f）are the coordinates of the first point of the next image．
1380 －The vector components of the sides of the next image．
1400－1420 Erases the image（or draws the final image）．
＊For a rotation of angle a about \((x, y) \quad\binom{x_{k}}{y_{k}} \rightarrow\left(\begin{array}{cc}\operatorname{cosa} & -s i n a \\ \operatorname{sina} & \operatorname{cosa}\end{array}\right)\binom{x_{k}}{y_{k}}+\binom{t_{x}}{t_{y}} \quad\) Let \(s=\) sina and \(c=\) cosa． \(\binom{x}{y} \rightarrow\binom{x}{y} \Rightarrow \begin{aligned} & c x-s y+t_{x}=x \Rightarrow t_{x}=x(1-c)+s y \\ & s x+c y+t_{y}=y \Rightarrow t_{y}=y(1-c)-s x\end{aligned} \quad\) and \(s o \quad\binom{x_{k}}{y_{k}} \rightarrow\binom{c x_{k}-s y_{k}+x(1-c)+s y}{s x_{k}+c y_{k}+y(1-c)-s x}\) Also \(\quad\binom{x_{k+1}}{y_{k+1}} \rightarrow\binom{c x_{k+1}-s y_{k+1}+x(1-c)+s y}{s x_{k+1}+c y_{k+1}+y(1-c)-s x}\) and so \(\begin{aligned} & \left(x_{k+1}-x_{k}\right) \rightarrow c\left(x_{k+1}-x_{k}\right)-s\left(y_{k+1}-y_{k}\right) \\ & \left(y_{k+1}-y_{k}\right) \rightarrow s\left(x_{k+1}-x_{k}\right)+c\left(y_{k+1}-y_{k}\right)\end{aligned}\)
If \(s_{k}\) and \(t_{k}\) are the components of the vector joining（ \(x_{k}, y_{k}\) ）to（ \(x_{k+1}, y_{k+1}\) ），then \(s_{k} \rightarrow c s_{k}-s t_{k}\) and \(t_{k} \rightarrow \operatorname{ss}_{k}+c t_{k}\) ．These images are evaluated as \(e_{k}\) and \(f_{k}\) and then transferred to \(p_{k}, q_{k}\) on the next execution of the loop 1280－1430．This is so that the time－consuming calculations are carried out between the image being drawn and its being erased．This makes the time that the image is on the screen longer than the time between erasing the image and drawing the next．
```

1440 IF d度="4" THEN GO SUS \&SNB:
GOTO 25SO
145B TETUFIN THEN FETURN

```



```

147% LET x (k+1)=人(x)+p(x) < = S: LE

```


```

p<K],FSE:LET

```


iS10 IF \(a=Q\) THEN FETVLRN



i550 LET e（x＋1）＝e（k）＋p（k）人S ：LE
\(T f(x+1)=f(x)+Q(x)<s=\)
155日 NEXT K

1440 －SUB 1520 sets arrays \(e\) and \(f\) with the coordinates of the final image．Line 1580 starts the demonstration．
1450－1500 Executed only if the transformation subroutine has been called using the＇follow＇or＇superimpose＇option．The present image becomes the object for the next transformation if the option is＇follow＇．＇Superimpose＇will store these coordinates in arrays \(v\) and \(w\) ，and then set the first members of these arrays，i．e．the coordinates of the original object， as the object for the subsequent transformation．

1510－1570 Executed only if the transformation subroutine has been called using the＇previous image＇option．
The coordinates of the image are stored in arrays \(e\) and \(f\) ． The coordinates for the object remain unchanged．
```

15SQ OUERK2

```

```

1590 IF INKEY出=".. THEN EC TO 2E=心

```


```

15

```

```

LOTFNN\&(X),FNGG{y): DRAW (E {K?-

```

```

IEON IF INKEY定="F" THEN GG TG IE

```

```

@S
\&%%%3 6OT0 1E30

```



```

<ifss,{f{x} vivives

```




```

16
IE5N IF INKEY官="F" THEN GOTO {E
要会SS IF INHEY$く,":THENS GOTO IE
总旨SS IF INHEY$くS":THENS GO TO 生E

```


```

208

```




```

\&ESNEXTK
170R OUER D: RETUFN
1.

```

1580-1700 Demonstration of the properties of a rotation.
1591-1610 Draws lines from the centre of rotation to the
    object point and to the image point.
    Holding down the ' \(f\) ' key results in the lines flashing
    off and on.
    Demonstration continues at line 1630 when any other key
    is pressed (the lines are left drawn on the screen).
1630-1680 Draws an arc from the object point ( \(x_{k}, y_{k}\) ) to the
    image point ( \(e_{k}, f_{k}\) ) with the centre of rotation as the
    centre for the arc.
    The arc may be caused to flash by holding down the 'f' key.
1685 - Erases the lines and arc.

2000-2970 Subroutine for the Reflection transformation. The subroutine is in two parts, one for invariant lines of the form \(y=m x+c\), the other for invariant lines of the form \(x=c\). The subroutine is only executed when the key is released.
ret \(=\) the return address if GOSUB ret is called after the transformation has been completed.
Jumps to various line numbers according to the option which called the subroutine.

2006 - Requires the form of the invariant line to be chosen.

If the invariant line is of the form \(x=c\), then the subroutine continues at line 2500 .

2010-2014 Input \(m\) and \(c\). The \(y\) intercept, \(c\), is tested for inclusion in the \(y\) range. \(t t=1\) if the range has been increased.

```

20CD FOR k=1 TO n

```



```

(2)
SE4G IF E (N)<MinX THESHLET Minx=
INT E(k) (\& LET tt=1 THEN LET maxN=

```

```

t=1

```

```

den

```




```

t=1
2070 NEXT \&

```
2015 - SUB 780 stores the values of \(m\) and \(c\) in memory. den \(=1+m^{2}\).
2025 - 2030 Evaluates the \(x\)-coordinate of the image.
2040-2045 Tests the \(x\)-coordinate for inclusion in the range of \(x\).
    \(t t=1\) if the range has been increased.
2050-2065 As above, for the y-coordinate of the image.

2020-2070 evaluates the coordinates of the image of each point in turn using the following formulae:


If the object, 0 , has coordinates \(\left(x_{k}, y_{k}\right)\) then \(O N=\frac{m x_{k}-y_{k}+c}{\sqrt{1+m^{2}}}\)
\[
\begin{aligned}
& \overrightarrow{O N}=\binom{\frac{m}{\sqrt{1+m^{2}}}}{\frac{1}{\sqrt{1+m^{2}}}} \quad O N=\binom{\frac{m y_{k}-m c-m^{2} x_{k}}{\sqrt{1+m^{2}}}}{\frac{c-y_{k}+m x_{k}}{\sqrt{1+m^{2}}}} \\
& \overrightarrow{O I=} \overrightarrow{O N}=\binom{p}{q} \quad I=\left(x_{k}+p, y_{k}+q\right)=(e, f)
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{こø¢ \({ }^{(1)}\) OUER 0：EO SUS 530} \\
\hline 2155 & OUER 1 － & 2155 －The＇exclusive or＇print command． \\
\hline 2169 &  & \\
\hline \multicolumn{3}{|l|}{云フ70 XF INKEY \(5=4\) THEN GO} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{S180 IF INKEY\＄くっ＂＂THEN GO TO E2} \\
\hline \multicolumn{3}{|l|}{ \(* 55\)} \\
\hline \multicolumn{3}{|l|}{2190 IF U＝2 THEN OUER O：PLOT FN 2190 －Plots the image when the line is erased，i．e．when \(u=2\) ． f（ \(\in(x)\) ）FNG \((f(k)\}\) OUER 2} \\
\hline \multicolumn{3}{|l|}{} \\
\hline 2 e 95 &  & \\
\hline ミ300 & RETURN & End of Reflection subroutine． \\
\hline
\end{tabular}
```

2Na FOR }x=3,TO

```

```

kj LE
234E=

```

```

2%4(1)
2355% QUEF O: RETURNS
ESOQ IF INKEY卓く,""THEN GO TG EE
QQ LET ret-35QQ- LET t - O
2501 LET ret=R5QO: LET t = =0

```


```

25
253@ INPUT*Invari\#nt ivne ix=c,
c? "; C

```

```

LET\&も=1

```

```

ENS IF ESNAXN THEN LET M ヨXX=5:

```



```

2500 LE{ E (k) =x(k)-בxS

```



```

t=1
2ESN NEXT k

```
\(2320-2350\) Executed when the＇follow＇option has been chosen．The image of the reflection becomes the object for the next transformation．
2500-2850 Reflection in lines of the form \(x=c\).
Continues only when the key is released.
ret \(=\) the return address if the subroutine is recalled.
2505 - 2525 As 2002-2005.
    2530 - Input the mirror line in the form \(x=c\).
    2535 - 2536 Tests \(c\) for inclusion in the range of \(x\).
    SUB 900 stores this value of \(c\) in the array \(k\).
    2580 - 2590 Computes the \(x\)-coordinate of the image (the \(y-\)
        coordinate remains unchanged).
    2600 - 2610 Tests the \(x\)-coordinate of the image for inclusion
        in the range of \(x\).
\(2570-2650\) evaluates the coordinates of the image of each point in turn using the following formulae:

\[
\begin{aligned}
& \mathrm{ON}=x_{k}-c=s \quad \overrightarrow{O N}=\binom{-s}{0} \\
& \overrightarrow{O I}=2 \overrightarrow{O N}=\binom{-2 s}{0} \\
& I=\left(e_{k}, y_{k}\right) \text { where } e_{k}=x_{k}-2 s .
\end{aligned}
\]
```

SEGO IF t = =1 THEN CO GUS G%E: GO 2660 - Redraws the screen if necessary
257% LET E{ri+1}=E(2)

```

```

cक\& तuc\& %
274Q PLOT FN f(E},0: WRAW 0,175
275Q OUER { = TOR TOR

```



```

2780 IF INKEY完:% THEN ES TO O
2790 PLOT FN {{x{K}} F{4 G{4{\&},

```

```

20,0 IF U=2 THEN QUER O

```

```

2
EB2R NEXT U
Z2ES IF'INKEY走="f" THEN EO TO ET
5%
2%OL NEXT K
2B40 NEXINKEY\&="M THER GO TO EE\&

```

```

5%%5 आ\&\&R *

```



```

LETQ \&(x)=P(y(k+1)-4(k)

```

```

2gi0 DRAN F(K),q(K)
S巳15 OUER 0: PLQS FN f{E{1:},FR
9(4(3))
EBRG RETLRN
\#94\& FOR x=3 TO ת

```




```

=y (1)
2g70 RETURN

```

BROg IF INKEY家
 ponent and y component of \＆－ヨn与s BGOS LET ret \(=3000\) L LET IT \(=0\)
 3015 工品
 SO1 TF 9 훈…
 BO23 IF \(x=0\) AND \(y=0\) THEN RETBRH
 \(3 \mathrm{~B}_{3} \mathrm{G}\) G TO 5445

 31 3 IF \(x=Q\) AND \(4=0\) THEN RETUFY






 \(5=1\)
 INT f（k，\＆



\section*{\(t=1\)
30}

3IGQ NEXT \(I F\) THEN OO SUE SOO：EC

 310
\(=19\) 3175 IF INNEY\＄＝＂M THEN OO TG З卫T 3175 IF INKEY安く：＂．THEN GO TO Ei 318 B IF \(x=0\) AND \(4=0\) THEN RETURN

3000－3500 Translation subroutine．
3000 －The subroutine is executed only when the key is released．

3023 －The identity transformation．
3027 －From line 5445 the image is set as the object for the next transformation，for＇follow＇or＇superimpose＇options．
3030 －Input the \(x\) and \(y\) components of the translation vector．
3090－3100 Translates（ \(x_{k}, y_{k}\) ）onto（ \(e_{k}, f_{k}\) ）with vector \(\binom{x}{y}\) ． \(3110-3140\) Tests \(e_{k}\) and \(f_{k}\) for inclusion in the ranges of the \(x\) and \(y\) axes．

3160 －Redraws the screen if necessary．

Pause until a key is pressed and released．
```

3106 QUER N 2
3197 IF k=10 THEN OUER

```

```

\y(1)+4**, (10)
3210 FOR j=1 TO n-{c\$="n"")

```

```

3az5 DREW p,q

```



```

BESQ NEXT m
326E NEXT K

```

```

8

```


3185 - The 'exclusive or' printing command.
3190 - 3260 Draws 10 stages of the translation. The 10th (final) image is drawn using the OVER 0 command so that it will not erase any lines with which it coincides.

3226 - d \(\boldsymbol{s}\) contains the response to the option for the demonstration. If the response was 'no' then RETURN.

3330-3500 Demonstration of the translation properties. 3330 - 3370 For each point in turn, a line is drawn to its image and then erased (when a key is pressed). Pressing any key initiates the next stage of the demonstration.
Holding down the 'f' key will cause the line to flash.

3375 - 3435 As above, but the translation lines are drawn for all the points before they are erased.
 0：मEM Enlargement．Infut Eentre of enlargement foltowed by tie ctale factor
4005 LET ret＝4日Q日：LET \(t=0\)



 6n T04030
4027 60 T0 544

；＂y coord？＂； 4
 4045 GO SLE 790

 \(x+(I N T \quad x<>x): \frac{L E T}{T} t=1\) 407Q IF \(4<m i n g\) THEN EET Mines＝INT当 LET \(t_{1} t=1\)
4RER TF \(y+(\) INT \(4<>1 j):\) LET \(t==1\)
 든 S气


4000－4620 Enlargement subroutine．

4009 －The identity transformation．

4030 －Input the centre of enlargement（ \(x, y\) ）．
4040 －Input the enlargement scale factor．
4045 －SUB 790 stores the coordinates of the centre of enl． 4050－4083 Adjusts the scales，if necessary，to include the centre of enlargement．

4087 －If \(\mathrm{sf}=1\) ，then the transformation is the identity，and the centre of enlargement is plotted．

\section*{\(409 Q \quad F O R \quad x=1\) TQ \(\quad 4\)}


Iry ek \(k=1\) LET \(t t=1\)
\(412 a\) IF ék3>mヨxX THEN LET \(m \exists x \times=\)



4140 IF i (x) 3 maxy THEN LET \(\rightarrow \exists x y=\)

\(t=1\)
415 a NEXT
\(\stackrel{4}{4} ? 8\)
```

$416 \mathrm{OF}+\mathrm{IF}$ THEN GO SUE ЗOO: GE

```

``` \(e(n+1)=E(1): L E T \quad f(n+1)\)
```

4090-4170 For each object point, the coordinates of the image are computed. The scales are adjusted if these coordinates are outside the range of the $x$ and $y$ axes. Each image is found as follows:


$$
I=\left(x+\left(x_{k}-x\right) s f, y+\left(y_{k}-y\right) s f\right)
$$

4180 - Plots the centre of enlargement.
4190 - The subroutine continues at 4400 if the scale factor is negative.
$\binom{p_{k}}{q_{k}}$ is the vector from the centre of enlargement to the object point ( $\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{K}}$ ), adjusted for scale.

4른든 OUEF

空
40

3
4240
F（k），FL（X）FN f（x），FNG（Y）：DRG\＆）
多
425E NEXT m
4252 IF INKEY主＝＂F＂THEN GO TS $4 E$
30
425
2


70
426
6


 4
4269
436
홍
4505
4310 NEXT $K$



3


4340 LET $P(x)=\{E\{x+3\}-2\{x\}\}+5 \Xi:$
LEt $q(x)=\{f(k+1\}-i(k)\} \times 5$
4 ㄴㄷㅇ DRAW s（k）， $9(k)$
$43 E 0$ NEXT
437 RETURN

4230－4253 Draws a line from the centre of enlargement to the object point，and then erases it（when a key is pressed and released．
Holding down the＇f＇key causes the line to flash．

4255－4300 Draws a line from the centre of enlargement to the image point．When a key is pressed and released the line is erased and the image point is plotted．
Holding down the＇$f$＇key causes the line to flash off and on．

Pause until a key is depressed and released．

4315 －Plots the centre of enlargement．
4320－4360 Draws the image．



4430 QUER 1
44
4450 PLGT FN F (x), FN 9 (9): DFF4\}
(K) 9 (K
8
8
449日 IF INKEY定="F" THEN FLGT FN


0
1kj*5

46
88




4EEO PLOT FN f(x), FN 9 ( 4$\}$ : EPA)

457日 PLOT FN F $\{x\}$, FN $9(y):$ DRAH



훙


$4 E 20$ GOTO 4320

4400－4620 Executed only if the scale factor is negative． The procedure is as $4200-4315$ except that the line from the centre of enlargement to the object is not erased before the line from the centre to the image has been drawn．


5000 － 5970 Subroutine for the Shear transformation．

5008 －The identity transformation．

> 5030 - Allows the choice of the form of the invariant line, $y=m x+c$ or $x=c$.
> 5031 - If the invariant line is of the form $x=c$, then the subroutine continues at line 5500 ．

5034 －Input $m$ and c．
5035 － 5036 Tests if c lies within the range of the y－axis． $t t=1$ if the range is increased．
5037 －SUB 780 stores $m$ and $c$ ．
5045 － 5050 Input an object（ $x, y$ ）and its image（ $x x, y y$ ）under the shear．
$5060-\binom{a}{b}$ is the vector from（ $x, y$ ）to（ $x x, y y$ ）．
5062 －If $a=0$ and $b=0$ then the transformation is the identity．SUB 630 draws the invariant line．

5053 IF $9=0$ THEN POKE $23659,0: F$ RINT AT פコ，©．＂Incorrect iñormat
 error＝1
SO64 IF error＝1 RND INKEY\＄＝‥＂TH ENGO TO 5054
 HEN GO TO 5Q4R
 XtE THEN FOKE ESG59，O：PRINT RT 22；a；＂Incorrect information－Fr 25s

 EN GO TO 505？
 HEN GO TO 5040
 sobe LET tt＝1

x＋ SQ74 rF 鸟
 $T \times x:$ LET $_{t} t=1$
S日才E IF yy \＆niny THEN LET mirig＝If THy：LETY $t=1$

T $X x+\left\{I N T X X\{x \times x): L E \frac{1}{i}\right.$ it $t=1$


SOTO IF t $t=2$ THEN 00 SUS SOO：EO

5063 － 5065 An error message is printed if $a=0$ ，since $b \neq 0$ and the invariant line is not vertical．
Pressing a key returns to 5040 which requires（ $x, y$ ）and（ $x x, y y$ ） to be input again．If $a \neq 0$ then the subroutine continues．

5066 － 5068 An error message is printed if $\frac{b}{a} \neq \mathrm{m}$ ，since each point must shear parallel to the invariant line，or if $y=m x+c, i . e .(x, y)$ lies on the invariant line．

5070 － 5079 The ranges of the $x$ and $y$ axes are extended，if
necessary，to include $(x, y)$ and $(x x, y y)$ ．

```
gme
$gᅭ名
S=(m*M (K)
```



```
zx=x: GOTO SIEQ
```




```
5IO4 IF AESS {S -1}<IE-4 THEN LET
```




5085-5105 (See below for the mathematical formulae.*)
$d=m x+c-y$ (previously calculated) $. s=m x_{k}+c-y_{k}$

$$
m x+c-y
$$

( $e_{k}, f_{k}$ ) is the image of $\left(x_{k}, y_{k}\right)$. (ax,ay) is the point on the invariant line as shown in the diagram, unless ( $x, y$ ) and ( $x_{k}, y_{k}$ ) are the same distance from the invariant line, in which case ax and ay are given the values of $x$ and $y$ respectively. Lines 5094 and 5104 avoid division by 0 .
 INT E ${ }^{2} 115$ LET t $t=1$
E115 IF axsminx THEN LET minx=IN

ISN IF e \{x)

 T $0 \times+1$ INT $3 x<3 \mathrm{Bx}\}: L E T$ t $t=1$
 INT f(k): LET t $t=1$
둔 IF SUSMiny THEN LET Miny=IH T 3y: LET t $t=2$
 INT $f(K)+\{I N T f(\hat{K})<\{i\{K\}\}: L E T \neq$ $t=1$
SI45 IF aysmヨxy THEN LET A axy=In

도 50 NEXT $k$ THEN GO SUE JOO
Sige IFtit=1 THEN GO SUE SOO: GO 548530


Distance of ( $x, y$ ) from the invariant line $=\frac{m x+c-y}{\sqrt{1+m^{2}}}=d_{1}$.
Distance of $\left(x_{K}, y_{K}\right)$ fron the invariant line $=\frac{m x_{K}+c-y_{K}}{\sqrt{1+m^{2}}}=d_{2}$.
$e_{k}=x_{k}+\frac{a d_{2}}{d_{1}}, f_{k}=y_{k}+\frac{b d_{2}}{d_{1}}$.
5110 - 5170 Extends the ranges, if necessary, of the $x$ and $y$ axes to include ( $e_{k}, f_{k}$ ) and also (ax,ay) - this is necessary since (ax,ay) will be required on the diagram in the demonstration which follows the transformation (if $d \delta=$ " $y$ ").


## 5180 - Draws the invariant line.

## $5280-5340$ Draws 10 intermediate stages of the shear, the 10th being the final image. <br> 5285-5295 Evaluates the intermediate points for the images, using $k / 10$ of the vector joining ( $x_{k}, y_{k}$ ) to ( $e_{k}, f_{k}$ ).

5305-5335 Each image is drawn twice, the second time to erase the image, except the final image.
5312 - Plots the first point of the intermediate image. 5315 - 5325 See notes on the next page *.
$u=10$ - the final image.
$5316-5317$ If $x_{k+1}-x_{k}=0$ then the side of the object is not parallel to the invariant line.

5318 - Since $\operatorname{infg}\left(x_{K+1}-x_{K}\right)$ does not equal zero, infg may be used as a divisor without the risk of error. GOTO 5325 if the side of the object does not have a gradient $m$ or if the intermediate image does not coincide with the object.
5319 - Case 2 (see notes).
5320 - Case 1 (see notes).

5321 - Case 2 (see notes).

5325 - Not executed if 5320 or 5321 has been drawn.

5345 - Jumps to 6000 if the demonstration is required.

* Notes on section $5315-5325$

Because it is likely that an edge (line) of an object is parallel to the invariant line, this means that the drawing of the intermediate image will erase part of the object if OVER 1 is used. This section has been written to avoid this, as follows:

Consider the line and its image (shown in red). We have two possibilities depending on the direction of the shear.

| Case 1 | $\left(p_{k}, q_{k}\right)$ |
| :---: | :---: |
| $\left(x_{k}, y_{k}\right)$ | $\left(p_{k+1}, q_{k+1}\right)$ |
| We require $\left(p_{k}, q_{k}\right)$ to $\left.\left(x_{k+1}\right), y_{k+1}\right)$ to be drawn using OVER 0 |  |

## Case 2

| $\left(p_{k}, q_{k}\right)$ | $\left(p_{k+1}, q_{k+1}\right)$ |
| :--- | :--- |
| $\left(x_{k}, y_{k}\right)$ | We require $\left(p_{k}, q_{k}\right)$ to $\left(x_{k}, y_{k}\right)$ to be drawn using OVER 1 |

```
S440 IF x=x> AND y=y THEN RETUR 5440-The identity transformation.
N443 LET E (n+1)=e(1): LET f(n+1}
#f(2)
5445 FOR x=1 TO ת
```




```
= f(x+1)-f(N)
5450 NEXT &
S4E5 LET }\times(n+1)=x(D}: LET y(n+1
=4 (1)
5470}\mathrm{ RETURN
5442 - 5470 Executed if the 'follow' or 'superimpose' option is
chosen. The image of the shear becomes the object for the
    next transformation.
```

```
S500 IF JNKEY京く>"* THEN GO TG ES
00
S501 LET ret=5500: LET t &=0
5503 IF'G$="P"THEN FETUFN
```



```
5%O IF x=xx AND y=US THEN FETUF
N
```








```
LESES IT=1
LET t t=1
```




```
ES4S INPUT *OEjert x coord?":x,*
```





```
S5EB LET a=Q: LET b=yy-y: LET d=
```





```
so;nincorrect information - Prys
#kEn处 ke4
```




```
HEN GO TO 554Q
S5ES IF b=0 THEN PLOT FN f(E), e:
```

$5500-5970$ This part of the subroutine is executed in a similar way to $5000-5430$ ，but for invariant lines of the form $x=c$ ．

5530 －Input $c$ ，where $x=c$ ．
$5535-5536 t t=1$ if the range of $x$ has been increased to accommodate c．

5537 －SUB 900 stores the value of $c$ ．
$5545-5555$ Input an object point（ $x, y$ ）and its image（ $x x, y y$ ） under the shear．
$5560-\binom{a}{b}$ is the vector from $(x, y)$ to $(x x, y y)$ and so $a=0$ ． 5561 － 5563 Error message if $x \neq x x$ or if $x=c$ ，i．e．（ $x, y$ ） lies on the line $x=c$
$5568-\mathrm{b}=0$ gives the identity，in which case the invariant line is drawn and RETURN is executed．

| $\begin{aligned} & 559 \mathrm{IF} \\ & x: \angle E T \end{aligned}$ | $\begin{aligned} & x \leq m i n x \\ & t=1 \end{aligned}$ | THEN EET | Minx゙＝InvT |
| :---: | :---: | :---: | :---: |
| 5571 工际 | y＜miny | THEA＊LET |  |
| Y：LET | t $2=1$ |  |  |
| 5572 IF | $x>m \exists x \times$ | THEN LET | maxx $=$ IrT |
| $x+1$ INT | x（＞$\times$ ） | LET t |  |
| 573 IF | y＞maxy | THEN LET |  |
| $\underline{y}$ ¢INT | 4＜＞${ }^{\text {c }}$ | LET ${ }^{\text {E }}$ t $=3$ |  |
| 5574 IF | $x \times<m i n$ | N L | $\operatorname{minx}=\mathbf{I f}$ |
| xx： | T $t=1$ |  |  |
| 둔5 IF | 49く7in | EN L | nimus＝Ift |
| 43： 2 | T $t$ t $=1$ |  |  |
| 76 IF | xx＞max | ， |  |
| $T \times x+17$ | $T \times \times 1$ | （）：LET | 1 |
| 5577 IF | 노＞max | THEN L | a $\times 4=10$ |
| T $\mathrm{H}_{5}$＋ | 4 5 | ：LET | － |
| $5 S 80$ | $t t=1 \quad \mathrm{~J}$ | $E N E D$ E | 38000 |

5570－5580 Increases the ranges of the axes，if necessary，to include（ $x, y$ ）and（ $x x, y y$ ）．
$x_{k}-c$ is the distance from（ $x_{k}, y_{k}$ ）to the line $x=c$ ．
（ $x_{K}, y_{k}$ ）will shear vertically a distance $(y y-y) \frac{x_{K}-c}{x-c}=s$ ．
So，$e_{k}=x_{k}$ and $f_{k}=y_{k}+s_{0}$
（ax，ay）is，as previously，the point where the line through（ $x, y$ ） and（ $x_{K}, y_{K}$ ）meets the invariant line．If $x_{K}-c=x-c$ then ay is given the value of $y$ ．

5630－5660 Increases the ranges of the $x$ and $y$ axes，if necessary， to accommodate（ $e_{k}, f_{k}$ ）and（ax，ay）．

5740 －Draws the invariant line．

```
S?50 GUER 1 
5780 LET प(N)=\{{x)+{f{x}-5{{x}} 天自
10
SY0 NEXT k
SEQQ LET Q(n+1)=Q(1
SBIQ FOR j=1 JO P
SESO IF U=10 THEN LET \=㕠: OUEF
\
```




```
=10 THEN OUER O G% GO TO SESO THFI)=y (KJ THEN GO TO E
5B41 IF y(k+I)=4(k) THEN GO TO E
550
```



```
MUER O: ER =O SNDO
5E43 rF x(k+1} s>x{k) OR QSS {{4
k)-y(k)}
&口TO5550
```




```
1 SB47 GUER O: DRAM, O, (S{X+3)-G{k}
```




```
5848 DRAW) O,(4(k)-4(N)) %5s: GUEF
```




```
1}-2{x}, *SS
5s55 QUER 1
Sg心E NEXT K
```





```
SGEQ DUER Q
SESO RETURN
SG40 IF X=XX AND &=yS THEN EENUF
N
S942 LET e(n+1)=e(1): LET f(n+1)
=f(2)
5g45 FOR k=1 TO n
```




```
SGER NEXT K
SGES LET }\times(n+1)=x\mp@code{(1): LET y (n+2)
=y(1)
5g>0 RETURN
```

5760 － 5890 Draws 10 intermediate stages of the shear．
5780 －The intermediate points will be（ $x_{k}, q_{k}$ ）as the $x$ coordinate does not change．

5820 －The final image is drawn only once，in the OVER 0 mode．
$5842-x_{k}=0$ and $x_{k+1}=0 \Rightarrow$ the image and object sides coincide with the $y$－axis，and so OVER 0 is used．
5843 －This condition occurs if the image and object lines do not coincide．
5845 － 5848 Draws the image line when it overlaps the object line，as before in lines 5319 － 5321.

5850 －Not executed if 5847 or 5848 has been executed．

5900 －Jump to 6000 if the demonstration is required．
5930 －End of the subroutine．
5940 －Identity transformation，therefore REIURN．
5942 － 5970 Subroutine to set the image of the shear as the object for the next transformation．

 01

$$
\text { EQas OUER }{ }^{1}=1 \text { TR }
$$

$$
-4(k)
$$

GQRS IF ABS

$$
\begin{aligned}
& \text { EOSS IF ABS (a-E) (IE-4 GND FES } \\
& \text { H-f }
\end{aligned}
$$

$$
\text { E-f } 1 \times 1 E-4 \text { THEN GO JC } 5150
$$

$$
\text { EQ4Q LET m } A=2
$$

EOSQ TOR USZ

$$
\therefore(f-b)
$$

EDGE HEXT ES IFY INKEY = THEN EO TO EIO
é

$$
\text { 淢 } 5, b x 5 今
$$

是트N NEX

$$
\begin{aligned}
& 61 E Q \text { NEXT \& } \\
& 8170 \text { IF INKY } \\
& 8
\end{aligned}
$$

$$
\text { QIBQ IF INKEY虫="F" THEN LET } M a=\text { ? }
$$

6000－6500 Subroutine to demonstrate the properties of a shear．

6020 －（ $\left.\begin{array}{c}e \\ f\end{array}\right)$ is the vector which shears（ $x_{k}, y_{k}$ ）onto its image． 6025 －If $e=0$ and $f=0$ then no demonstration is given as the point lies on the invariant line．

6035 －If the object point is the same distance from the invariant line as the specified object，omit 6040－6120．

6060 －If（ $x_{k}, y_{k}$ ）is on the opposite side of the invariant line from the specified object（ $x, y$ ）then a line is drawn from （ $x_{k}, y_{k}$ ）to（ $x, y$ ）to cross the invariant line at（ $a x, a y$ ）．
6070 －If（ $x, y$ ）is nearer the invariant line than（ $x_{k}, y_{k}$ ）and on the same side，a line is drawn from（ $x_{k}, y_{k}$ ）through（ $x, y$ ） and extended to meet the invariant line at（ax，ay）．
6080 －If $\left(x_{k}, y_{K}\right)$ is nearer the invariant line than（ $x, y$ ）and on the same side，a line is drawn from（ $x, y$ ）through（ $x_{k}, y_{k}$ ） and extended to meet the invariant line at（ax，ay）．
6050－6090 is executed once unless the＇f＇key is held down， when the line is drawn and then erased，causing it to flash． The program continues to 6130 only when the line has been drawn an odd number of times in the OVER 1 mode．This ensures that the line is not erased at this stage．
6140－6190 A line is drawn from（ $x, y$ ）to（ $x x, y y$ ）with the option of＇flashing＇by holding down the＇$f$＇key．



52J0 LET $m m=1$
G를 FGR $u=1$ TQ m m


 Q 6200
ED4R IF（ABS 三＜ABS e）OR iARS tc







愛易 NEXT U
G270 IF INKEY虫二＂．＂THEA GO TO 5ご

으ㄴㅜㅜㄹ
E300 LET $m m=2$



E330 NENT U

EBSO IF INHEEY定="G" THEN LET MB=E

Es
$6200-\binom{p}{q}$ is the vector from（ $e_{k}, f_{k}$ ）to（ $x x, y y$ ）．
6205 －If the object（ $x_{k}, y_{K}$ ）and the specified object（ $x, y$ ）are the same distance from the invariant line，omit 6210－6290．
6210－6290 As section 6040－6120，to draw a line from
（ $e_{k}, f_{k}$ ）to（ $x x, y y$ ）produced if necessary to meet the invariant
line at（ax，ay）．


6370－6500 Erases the lines previously drawn in section 6040 － 6360 by redrawing them using the OVER 1 mode．

ZQBO IF INKEY出く，＂ATHEN GO TE TO习O：REH 5tretthe InPut invarignt line $y=m x+c$ or $x=c, ~ a n d$ the
今cヨlefaにtor．

7ERB IF $\mathrm{IA}_{\mathrm{B}} \mathrm{I}=1$ THEN RETURN
 707440
「OE4 IF G安＝＂P＂THEN RETUEN


；Invariant line．

06

 3
 E：LET tt＝ 1



40
 LS ESQ：RETLSN
 らい\＆530
$7000-7970$ Subroutine to stretch an object with a given scale factor from an invariant line．

7008 －The identity transformation．

7030 －As for the shear，this subroutine is written in two parts，one for invariant lines of the form $y=m x+c$ ， the other for invariant lines of the form $x=c$ ．
7031 －If the invariant line is of the form $x=c$ ，then the program continues at line 7500 ．

7034 －Input $m$ and $c$ for the line $y=m x+c$ ．
7035 － 7036 increases the range of the $y$－axis，if necessary， to include c．

7037 －SUB 780 stores $m$ and c．
7050 －Input the scale factor for the stretch，sf．
7060－If $\mathrm{sf}=1$ then the transformation is the identity．
7075 －Redraws the screen if the range of the $y$－axis was increased．

7080 FQR $k=1$ TO $\quad 7$




7105 LET $3 y=4$（x）$+d$
子I鸟 IF e th？ INTE E（x）：LET t t三生


 $t=1$

 ？ 30 IF $f(x) \leq m i n g$ THEN LET mins＝



 SNT
$t=1$

 T 커여N（INT

7085－7105 Evaluates the coordinates of the image of each object point（ $x_{k}, y_{k}$ ）and also where the perpendicular from（ $x_{k}, y_{k}$ ） meets the invariant line（see notes below＊）．
$7100-7145$ Adjusts the ranges of the $x$ and $y$ axes，if necessary， to accommodate these points on the screen．


$$
\begin{aligned}
& O X=\frac{m x_{k}-y_{k}+c}{\sqrt{1+m^{2}}} \quad I X=O X * s f \quad O I=O X *(s f-1) \\
& \overrightarrow{O I}=(s f-1) \overrightarrow{X O}=(s f-1)\binom{\frac{m}{\sqrt{1+m^{2}}}}{\frac{-1}{\sqrt{1+m^{2}}}} O X=(s f-1)\binom{\frac{m\left(m x_{K}-y_{K}+c\right)}{1+m^{2}}}{\frac{m x_{k}-y_{k}+c}{1+m^{2}}}=s\binom{m}{-1} \\
& I=\left(x_{K}+s m, y_{K}-s\right) \quad X=\left(x_{K}-d m, y_{K}+d\right) \text { where } d=\frac{m x_{K}-y_{k}+c}{1+m^{2}}
\end{aligned}
$$

7160 IF $t=1$ THEN GO SUE SOG：GO
7270
？ 270
$=$ \％（1）
Gise OUER ：EO SU日 5Je
725＠GUER 1
7芑QD FOR u＝，TO 20
7285 FOR -1 ，


730
7 륻 NEXT $x$
7300 LET $P(n+1)=P(1):$ LET $7(n+1\}$
$7=2$
与20 FOR $5=1$ TO 2
7310 IF $u=10$ THEN LET $j=9: ~ Q U E F$
7
 $=16$ THEN O以㖃 G GO TO 73OQ LET inf $=x i k+1,-x$（k）：IF AE

7325 IF $m=0$ THNㄴ 50 TO $73 G 0$


7346 IF


7160 －Redraws the screen if the ranges have been increased．

7180 －Draws the invariant line．
7280－10 intermediate stages of the stretch are drawn and erased．
7290 －$\left(p_{k}, q_{k}\right)$ are the coordinates of the intermediate images．

7312 －First point of the image．
7320 －If $\mathrm{x}_{k}=\mathrm{x}_{\mathrm{k}+1}$ then the object line is vertical．Jumps to 7340 to see if the gradient of the invariant line is 0 ．

7340 －If the gradient is not zero，then jump to 7390.
7345 －If $x_{k}=0$ and $m=0$ then the object line is perpendicular to the invariant line and also coincides with the $y$－axis．
7320 － 7345 establishes whether or not the line joining（ $x_{k}, y_{k}$ ）to （ $x_{K+1}, y_{k+1}$ ）is perpendicular to the invariant line．If it is，the intermediate images may coincide with the object，in which case the image needs to be drawn so that parts of the object are not erased．The notes on the following page explain how this is achieved．

7350 IF $50 N(4\{x+1)-4\{x+2\}\} \leqslant 256\}$

 $+11-5(k+2) \quad$ THEN GOTO $37 \%$子EO IF SF（1 AND ABS（q（K +2$)-4\{x$ $\pm 1\}$（AES $\{y(x)-y(x+1)\}$ THEN GO T
〈ABS \｛y\｛x＋1\}-乌\{x\}\} THEP Gも TG 75

7370 IF $58<1$ ATN AES $\{9(x+2\}-\xi!k$
 9738 운
 35
Э73 ©

7350－7373 is executed if the object line is perpendicular to the invariant line．Six possibilities exist where the object and image coincide．These are shown below（the images have been drawn in red）．
1． $\mathrm{sf}<1$
2． $\mathrm{sf}>1$



Cases 1 and 2 lead to the execution of line 7375 ．
3． $\mathrm{sf}<1$
4． $\mathrm{sf}>1$


Cases 3 and 4 lead to the execution of line 7380 ．
5． $\mathrm{sf}<1$


6． $\mathrm{Bf}>1$


Case 5 leads to lines 7386 and 7390，Case＇ 6 to 7385.

7375 OUER O：DFFN $0 \times\{x+\{ \}-F\{x\}\}$

 ＋1）＊5s： 60707420
（38）DFAN（X（K）

 $55: \frac{19}{70} 480$
7385 IF

口f，$x+2$（x）




13－6（k）\} 455
7395 OUER 1
742 NE TF $\mathrm{TH}=1$ THEN PAUSE 10
74 云家 NEXT

7429 OUER
7430 REFR
7430 RETUFN 740 THEN RETURN
 7442,
7445 FOR $x=1$ TO




 $=4(1)$ $=4\left(\frac{1}{7}\right.$
7470 RETURN

7375－7390 Draws the line from（ $p_{k}, q_{k}$ ）to（ $p_{k+1}, q_{k+1}$ ）using the OVER 0 mode where the line coincides with the object line and OVER 1 mode elsewhere．

7428 －Jump to 8000 if the demonstration is required．
7440－7470 If sf $=1$ then the transformation is the identity． This section is executed when the＇follow＇or＇superimpose＇ option is chosen．The image of the stretch is set as the object for the next transformation．If＇superimpose＇was chosen then this object will be stored in arrays $u$ and $v$ ， and then the first members of arrays $u$ and $v$ will be set as the next object．

```
7SOQ IF INKEY多&"" THEN GO TO FE
G0
?501 LET ret=7500: LET tt=0
750S IF 9$ ="P
```



```
750E IF Sf=1 THEN RETURN
7510 IF g$="r" THEN EQ TO 7750
```



```
75257340
75
7EOg. INPUT "Invariant line x=s.
¢%%35;
7535 TF E<minx THEN LET minx=e:
```



```
7S3G IF'c>maxX THEN LET mヨ人x=c:
LET t!=1
75%7 GO SUE 900
7540 IF INKEY行"" THEN GO TO TE
H 4@
4@ & T
```




```
SUR 5%%
75%5 FOF k=1 TO n
755 FOF k=2 TO n
75QQ LET G=(x(k)-c): LET s=d#(Sf
7S@@ LET f(k)=y(k): LET e(N)=x {k
j+5
ZESO IF e (k)<winX THEN LET Minx=
```




```
IN=3
7三3,
7ESQ NEXT K NF THEN OQ SUB 300: SO
FSUR IF tI=1 THEN GO SUB 300: S%
SETG LEO f(n+q}=f{1): LET E{n+I}
=e(1) OUER O
7EBQ OUER Q PNOT FN {c}, e: NRSU 0. 2F5
7500-7970 Subroutine for a stretch when the invariant line is
    of the form x = c.
    7530 - Input c, where x = c is the invariant line.
    7537 - SUB 900 stores the value of c.
    7550 - Input the scale factor, sf.
    7560 - If sf = 1 the transformation is the identity, in which
        case the invariant line is drawn, followed by RETURN.
    7580 - Redraws the screen if necessary.
    7590 - d = distance of the object point from the invariant line.
        s = displacement from the object point to its image.
    7600 - The image of ( }\mp@subsup{x}{X}{},\mp@subsup{y}{K}{\prime}\mathrm{ ) is ( }\mp@subsup{e}{K}{\prime},\mp@subsup{y}{K}{\prime}\mathrm{ ) as the stretch is
        horizontal.
    7640 - Adjusts the scales and redraws the screen as necessary.
7740 - Draws the invariant line.
```

77 空日 OUER 1
フᄀプ FQR $u=1$ TO 20

4분
子7GQ NEMT：
7800 LET $F(\Gamma+1)=$ た（1）
$7 \delta 10$ FGR $j=i$ TO
วSEO IF $L=20$ THEN LET $j=2$ ：OUEF $\emptyset$


$=10$ THEH OUEF $0:$ EO TO 7 GOS
7845 IF $y(x+1)$ \｛ 3 与 $\{x\}$ THEN GO TE
$\rightarrow 99$



TEEQ IF RBS（x（K）－E（K）SABE（X（k
$1 \quad+1\}-\mathrm{E}\{\mathrm{K}+1\}\}$ THEN EOTO TOSE


 75
7875 GQ TQ TERS

 97890
 85
7803 co 70 790s

7750 － 7883 Draws 10 intermediate images for the stretch as described in 7250－7373．

```
    TEB5 OUERRQ: DFAGU (x (k+1}-P{k}}**
J 的S 6: GO TO >0ig
7890 DRAN (X (K)-F(K)) N=S.0: PLOT
FN f{x(x}),FN g{y{k}? OUER C
DRAU (P (k+1)-x(k)) ※55,0: GUER i
    GO5 TO 7910
TEGS IF Sf:3 THEN EROU (X (N)-F{X
)}x55,0: OUER Q: DRAW (x (x+1)-x;
```



```
(K+13) ※5S:Q GOTO 7910
7G00 IF Sf<3 THEN OUER O
79日S DFAH (P(k+1)-P(k)} #5s, {4{k+
1)-4 (k)? ※5s: OUER 2
?910 NEXT
7915 NEXT
7GEQ NEXT I
```



```
7930 OUER 6: RETURN
7940 IF ST=1 THEN RETURN
```



```
=%11.
7945, FOR {=2 TO n
```




```
TBEO NEXT K
7955,LET x(n+1)={(2): LE{ y(n+2)
7g(1) RETURN
```

7885-7920 As 7375-7426.

7925 - Jump to 8000 if the demonstration was requested. 7940 - 7970 As 7440-7470.



## 01

Bgas GUER 3


－ 4 （․）
BESE IF $E=0$ FIND $i=0$ THEN GO TO $\delta$ 3 B
愛定
2
㤩OSQ IF INKEY虫二＂F＂THEN EOTO EO
7 \％

Bg
EQ7Q PLOT FN $\{(x\{k\}\}$ FNA G\｛4\｛X\};

空1
今1QE NFXT
各110 IF INNKEYヶ＝＂f＂THEN GOTO EO 30
己IER IF INKEY\％＝＂＂THEN GOTO 811 6
8
8
Si3O FQR u＝1 TO
B240 IF IRNK
Q

70
 51


 8
E2R5 NEXT 4
 30
В己DQ IF INKEY守＝＂＂THEN EOTO EE\＆合


8000－8350 Demonstration of the properties of the stretch． Pressing a key and releasing it moves the demonstration into the next stage．
$8020-\binom{e}{f}$ is the vector from（ $x_{k}, y_{k}$ ）to（ $e_{k}, f_{k}$ ）．
8025 －If the object point is on the invariant line，GOTO 8300.
8030－8120 Draws a line from the object point onto the invariant line，perpendicular to it．
Erases the line when a key is pressed and released． The line flashes off and on when the＇$f$＇key is held down．

8130－8235 Draws a line from the image point onto the invariant line，perpendicular to it． Erases the line on the second execution of the loop． Holding down the＇$f$＇key will cause the line to flash．
-189-

```
```

8240 FOR U=1 TO.? 只

```
```

8240 FOR U=1 TO.? 只
8250 IF INKEY$=.... THEN GO TO 8ES
8250 IF INKEY$=.... THEN GO TO 8ES
BESQ IF INKEY多="\&" THEN GO TO EE
BESQ IF INKEY多="\&" THEN GO TO EE
8こ6S IF INKEYक<>... THEN GO TO E` 8こ6S IF INKEYक<>... THEN GO TO E`
55
55
S570 PLOT FN,f(x(k)},FN G{y{x}):

```
```

S570 PLOT FN,f(x(k)},FN G{y{x}):

```
```




```
```

S280 NEXT U

```
```

S280 NEXT U
B2EO NEXT UNEY的="f" THEN GO TO EE
B2EO NEXT UNEY的="f" THEN GO TO EE
*QSO IF INKEY方=".' THEN SO TO SES
*QSO IF INKEY方=".' THEN SO TO SES
堑
堑
8300 NEXT }
8300 NEXT }
83OD SEXT INKEY%=... THEN GO TO ESO
83OD SEXT INKEY%=... THEN GO TO ESO
5
5
SGOG IF INKEY$<>"M THEN GO TO ES
SGOG IF INKEY$<>"M THEN GO TO ES
BE
BE
B34日 OUER OR

```
```

B34日 OUER OR

```
```

8240－8350 Draws the line from the object point to the image point and then erases it．Holding down the＇$f$＇key will cause the line to flash．

Appendix B - The listing for the program 'num-pat'.


3 PAUSE 3 FQR $K=0$ TQ 7 AEFD $x:$ POKE
 ⑦. 0.6


0


31 든
[35 PRINT "Sn=5n-2 $+\{\{2 n-1\} \cdots=$

36 IF INKEY $3=" \mathrm{~F}$ THEN GO TO 20

TOB IF INKEY安 $={ }^{*}{ }^{3} x^{\prime \prime}$ THEN CLS : GO

5

1 - Sets background to black, writing to white. Restores DATA line 4
2 - Pause until a key is pressed.
3 - Sets the user defined graphics 'a' to $\div$ which will be used for division on the display as / is unfamiliar to the pupils for whom this program was developed.
10 - Prints the option message.
20-30 Jumps to the appropriate section of the program according to the reponse to the options.
Only the ' $t$ ', ' $r$ ', and ' $s$ ' keys produce a response.
31 - clears the screen.
35 - Prints the options for the square number demonstrations.
36-39 Jumps to the appropriate section for the square numbers option.
Pressing the ' $x$ ' key returns to the options in line 10. Only the 'a', 'b', 'c' and 'x' keys produce a response.

```
    40
    70 FGR K=3 TO i
    SQ PRINT AT i,k-1,*":FT &.i-2
    "#":NEXTKK
    &드 INK i=1 THEN GO TO S, IG
```



```
FLASH i, "?...
    G5
```






```
E
```





```
5
```



```
7
    \20 FRINT AT i,EOQ:"\"
```



```
3
125 TMK 4
```




```
    15Q IF INVKEK
    155 FLFSH=0
IEQ IF i=OG OR INKEY息="x" THEN
GOTO-31自
    IE1 coram sa
```

40-161 Demonstration of $s_{n-1}+2 n-1=s_{n}$.
$i=$ the number of dots in the side of the square, initially set to 1 and increased by 1 at each execution of the loop.
60-80 Prints a magenta gnomon of dots around the green square of dots, as in figure 2.19.

86 - Jumps to 115 if the first square ( 1 dot) is displayed.
90 - Prints the number of dots in the green square, followed by " + ?". The question mark flashes.
95-96 Pause until a key is pressed and released.
100 - Overprints '?' with the number of dots in the gnomon, followed by " = ?". The question mark flashes.

110 - Overprints '?' with the total sum of dots on display.
111 - Omits lines 115 - 123 when $i>1$.
115 - Demonstration continues only when the option key is released,
116 - Pause until a key is pressed and released.
120 - Prints '1' for the first square (one dot).
122-123 Pause.
125-130 Changes the dots of the gnomon to green, making the next square.
150 - Pause until a key is pressed.
155 - Normal mode of flashing.
160 - Jumps to the section which displays the sequence without the dot demonstration when the ' $x$ ' key is pressed or the screen is filled ( 20 by 20 dot square).
161 - Repeats the demonstration for the next square.

```
170 CLS
```



```
            \(2+2+5 ; \cdots+n=T n,-2\)
```



```
    a@ IF INKEY出= THEN GO TO \(2=\)
17ミ IF INKEY\$="わ" THEN GO TG 9 \&
174 IF INKEY完="x" THEN CLS : SO
    \({ }^{1}{ }^{7} 5^{\circ}\) IF INKEY\$く>"3" THEN GO TO 3
72
```



```
7
    18日 LET \(i=i+1\)
    385 LET
```





```
    (
```




```
2QE IF \(i=1\) THEN GQ TO E2Q
OOB INK 7
○1OLASH INKEY゙5=… THEN GO TO ヨュo
```



```
1
"2
```




```
    6
```




```
    首解 For \(k=1\) ro
```



```
    帘 +K ; "M AND INT
```



```
    250 IF INKEY\$=... THEA GO TO 250
```



```
    2GGGOTE 50
```

170－Clears the screen．
171 －Prints the options for the triangle numbers demonstrations．
172－175 Pressing the＇$x$＇key returns to the initial options． Pressing the＇$a$＇，＇$b$＇or＇$c$＇key jumps to the corresponding demonstration．
No other key produces a response．

176 －s is used to store successive triangle numbers．
177 －Demonstration A continues when the key is released．
180 －i stores successive integers．
185 －Generates the next triangle number．
$190-201$ Prints a row of green dots below the previous triangle of dots．To keep the pattern of dots running diagonally，when $i$ is even the dot is in the top right of the character square， when $i$ is odd the dot is in the top left corner．
202－203 Pause．
206 －If the first triangle number is displayed（1 dot）GOTO 220. 208－218 Prints，in stages，the numerical values of
$t_{i-1}+i=t_{i}$ ，where $t_{n}$ is the $n^{\text {th }}$ triangle number． The question mark flashes at each stage until a key is pressed，when it is overwritten with the numerical value．

220 －＂1＂is printed for the first triangle number．
225 － 240 Changes the row of green dots to magenta，the colour of the previous triangle．

250－260 Repeats the demonstration for the next triangle number when a key is pressed．If the＇$x$＇key is pressed or the screen is full the sequence above is printed without the dots．

```
    300
```



```
7
312䍃 INK ?
    312号 EET i=i +1
```





```
        325
```

    40 CL
    405 LET \(5=0\) :
    
${ }_{5}^{4}$
430 LET $i=i+1$
450 LET $2=2+1$

45心 IF
TO 5
460 CO TO 420
$300-305$ Redundant unless it is required that the sequence below is printed beginning with the first term at the top of the screen，in which case line 160 needs to be changed－GOTO 310 is replaced with GOTO 300．
$310-330$ When the key is released，the numerical values of the sequence $s_{i-1}+(2 i-1)=s_{i}$ continues being printed below the last square which was demonstrated． Pressing a key halts the sequence until the key is released． Pressing the＇$x$＇key returns to the initial option display．
$400-405$ Redundant unless it is required that the sequence below is printed beginning with the first term at the top of the screen，in which case line 255 needs to be changed－GOTO 420 is replaced with GOTO 400.
420－460 When the key is released the numerical values of the sequence $t_{i-1}+i=t_{i}$ continues，being printed below the last triangle which was demonstrated．
Holding down a key halts the sequence，until the key is released．
Pressing the＇$x$＇key returns to the initial option display．

500-740 Demonstration of the relation $t_{n}+t_{n-1}=s_{n}$.
$515-\mathrm{n}$ stores successive integers. Initially $\mathrm{n}=0$.
517-s stores the current triangle number.
$520-\mathrm{n}$ is the number of rows of dots in the larger triangle.
530 - 545 Prints a row of dots (magenta) of the first
triangle. The rows alternate with the dots in the top left
and then in the top right corner of a character square
to ensure a diagonal pattern.
550-570 Prints a green row of dots for the second triangle.
580 - Next row of dots of the triangles.
610 - Prints the number of dots in the first triangle.
616 - Prints the number of dots in the second triangle.
617-618 Pause until a key is pressed and released.
619 - Prints ' + ' between the two numbers, followed by $1=$ ' .
The question mark flashes.
620-621 Pause until a key is pressed and released.

```
IMK 3
    52S FOR k=1 TQ i
```



```
:%我
    640
    541 NEXT &
    643 FCRR q=O TO IOO: NENT 4
    545 INR 4
    G4G FGR i=N TO O STEP - - 
    550 FOR j=i TO n
```



```
    G总总
    GENA NEXT S
    GE& FEXR qo TO 2OO: NEXT Q
    E%O FGR {=n TG G% E%ER -1
```




```
    -%5N NEXTV
```



```
O
EG# INK F: FLFSH D: FRINT AT n+
```



```
59に+NNK
    693 FDR i=0 TO n
    EO4 FOR j=e TO n
```



```
    EGS NEXT 
    ED7 N!E以NT i
```




```
    GOTO}71.
    700 GO TO 515
```



```
72P INK 7: PRIMT : LEET }N=n\div1:
ET S=5+n
    715 LET n=n+1
    700 LET 5=5+n
```



```
    T05
    740GOTO 72S
```

622－641 Rearranges the first triangle of dots into a right－ angled triangle，row by row．

643 －Pause for about two seconds．
645－664 Rearranges the second triangle into a right－angled triangle，row by row．

666 －Pause for about two seconds．
670－675 Moves the second triangle next to the first triangle to form a square．
685－690 Pause until a key is pressed and released．
691 －Overwrites the question mark with the number of dots in the square．
692－697 Changes the colour of all the dots，row by row，to cyan．

698－790 Pressing a key repeats the demonstration for the next pair of triangle numbers．Pressing the＇$x$＇key or if the screen is full（ $n=19$ ）jumps to line 710.
710 －The program continues only when the key is released．
712 － 740 Continues printing the sequence without the dot display． Pressing the＇$x$＇key returns to the initial option display．

800-995 Demonstrates $1+2+3 \ldots$ n ..... $3+2+1=n^{2}$.
805 - The demonstration shows the first 10 square numbers.
810-850 Prints a square of green dots.

854 - The demonstration will not begin until the option key (c) is released.

855-856 Pause until a key is pressed and released.
860-890 Draws straight lines to divide the square into diagonal rows of dots.

Pause.
905-911 Prints the number of dots in the diagonal rows, at the edge of the square.

Pause.
918 - Three lines space beneath the square.
919 - Omits lines 920-970 for the first square.
920-940 Prints $11+2+3+1$ up to the value of $i$, followed by the values of '(i-1) + (i-2)+...+2+1=?' The question mark flashes.

Pause until a key is pressed and released.
960 - Overprints the question mark with the square number. 970-981 Pressing a key continues the demonstration. Pressing the ' $x$ ' key returns to the initial option display.
990 - Repeats the demonstration for the next square.
995 - Return to the initial option display after the $10 \times 10$ square.

```
1000 ELS % INKK 4
```



```
定要 FQR j=1 TO
```



```
I04Q AEx\
gOLGQ NEXT
```



```
00TOT1055
```







```
IQSO IF INHKY名=... THEN GO TO 1BS
```



```
8
3BB2 INK 7
{QBS FNR i=1 TO i: PRINT AT t. i t
```





```
88
1GGQ FDR L={ TO i-2: FRINT RT 3,
```




```
3094 IF INKEY$<>": THEN GO TO &%
1Q94 IF INKEY$<>"" THEN GO TO 2.0
```



```
IGgE IF INKEY'$="利" OR i=9今 THE\{
CLS: GOTO 5
1899 CLS: INK 4
110% NEXT: i
```

1000－1100 Demonstration of $1+3+5+\ldots+(2 n-1)=n^{2}$ ．
1010－1050 Prints a square arrangement of green dots．

1055 －The demonstration begins only when the option key
（b）is released．
1060 － 1061 Pause until a key is pressed and released．
1070 －Divides the square into gnomons．

## Pause．

1082－1085 Prints the number of dots in each gnomon，at the edge of the square．

## Pause．

1090 －Prints a column of $+^{\prime} \mathrm{s}$ next to the odd numbers． 1092 －Underlines the bottom number．

## Pause．

1096 －Prints the total of the odd numbers．
1097 － 1098 The demonstration continues only when a key is pressed．The initial option returns when the＇$x$＇key is pressed or when the $19 \times 19$ square has been demonstrated．
1100 －Repeat the demonstration for the next square．

```
1马00 IF INKEY定《>"" THEN GO TG 2N
释
1201 LET P=1: CLS
12Q5 &ET F=&%\div:
ME㐘品 ENK S
\2,息 FGR j=1 TQ p
1230 FER X=1 TO p-1
```



```
1242
2%42 NEXT
```




```
1246
```




```
1%
l己5S IF INKEY主=": THEN GO TO 2ES
İ5S IF INKEY多く\":THEN GO TG &E
56
I2GQ INK 4
I2E1 FOR j=1 TO P
120, FEOR &=, %o% %-2
1263 PRINT AT j, k+10, :="
12E4 NEXT
1265 NEXT K
126S NEXT j
```







```
1%80 FLASH 0: PRINT CHR$ B:P*!\rho-
I%%㐘 IF INKEY直="* THEN GOTO TSES
```



1200－1399 Demonstration of $n(n+1) / 2=t_{n}$ ．

1220－1242 Prints a rectangular arrangement of magenta dots n by $(\mathrm{n}+1)$ ．Initially $\mathrm{n}=1$ ．

1245 －Prints the values $\mathrm{n} \times(\mathrm{n}+1)=$ ？$^{\text {＊for the current }}$ rectangle．The question mark flashes．
1246－1247 Pause until a key is pressed and released．
1250 －Overprints＇ 3 ＇with the value of $n(n+1)$ ． CHR\＄8＝backspace．

Pause．
1260－1265 Overprints half the rectangular array of dots in green．

1266 －Draws the diagonal line to divide the two halves． 1268－1270 Prints，in white，the value of $n(n+1)$ ，followed by＇$\div 2=3^{\prime}$＇The question mark flashes．
Pause．
1280－Overprints＇ 3 ＇with the value of $n(n+1) / 2$ ．
Pause．


1290-1296 Prints the dots and line as in 1261-1266 using the 'exclusive or' command, thus erasing them. This leaves a right-angled triangle of magenta dots, of size $n(n+1) / 2$.

1305 - Normal printing mode, colour magenta.
1310-1350 Rearranges the triangle of dots into an isosceles triangle, row by row.

1360-1380 Pressing and releasing a key continues the demonstration. Pressing the ' $x$ ' key results in the sequence being printed without the dot demonstration.
Pressing the ' $z$ ' key executes subroutine 1500.
1395 - If $\mathrm{p}<18$ the demonstration is repeated for the next triangle number. The screen is filled when $p=18$.
1397 - The sequence below is printed when the ' $x$ ' key is released.
1398-1399 Prints the sequence without the demonstration. For example, if $p=8,8 \times 9=72 \quad 72 \div 2=36^{\prime}$ is printed. Pressing the ' $x$ ' key returns to the initial option display.


```
3
14OS LET i=i +1
1402 LET i=i +i
1403 FOR j=1 TO i
```



```
2)+K;":RND INT
ND INT (j, ja) xこ<<j
14OO NEXT N
24B NEXTMJEY年=.... THEN EO TO 24S
```



```
I4ЗE IF INKEY&くゝ"."THEN GO T0 24
```



```
1430 IE INNEY出=R THEH SOTS 24S
```



```
1440 INK 7: FOR i=1 TO i: PRINT
```



```
1441 2F INKEYक= THEN GO TO I44
4242 IF INKEY${>N:THEN GO TO 34
1443 FRF, i=1 TQ j PAINT AT j-I,
```




```
|4SN IF INKEY末= MEN SO %O 1&5
14S1 IF INKEY$<>"." THEN GO TO 34
1455 CLS : 60 TO 1401
```



```
DRAW 24, © FLFSH 2: PRINT ST i f 
```




```
56
1470 FLASH U: PRINT CMR多 E:i#\i+
```

1400－1495 Demonstrates $\sum_{i=1}^{n} i=t_{n}$ ．
1401 －The demonstration only continues when the option key （b）is released．
1402 －i increases by 1 at each stage of the demonstration． 1403 － 1430 Prints the $i^{\text {th }}$ triangle number as an arrangement of cyan dots．

1435 － 1436 Pause until a key is pressed and released．

1437 －Draws horizontal lines to divide the triangle into rows of dots．

## Pause．

1440 －Prints the number of dots in each row，at the side of the triangle．

Pause．
1443 －Prints a column of + ＇s beside the numbers．
1445－1455 If the first triangle number（1）is being demonstrated，then pause until a key is pressed and released after which return to line 1401 to demonstrate the next triangle number．For subsequent triangle numbers continue with line 1460 ．
1460 －Draws a line under the column of numbers，with a flashing question mark below．

## Pause．

1470 －Overprints＇？＇with the current triangle number．

| $\frac{1}{0} 480$ | IF．INKEY安＝＂＊THEH E®T TO 34E |
| :---: | :---: |
| 1485 | E2 |
| 148 |  |
| 60 | 5 5NW |
| 1491 |  |
| 1495 | GO TO 1402 |
| 15ํํㅇ |  |
| 68 |  |
| 1505 |  |
| 0 | NEXT ${ }^{\text {NE }}$ ，．．．THEN |
| $\underline{510}$ |  |
| 1590 |  |
| $2 \mathbb{2}$ | INK E：FOR $j=1$ TD |
| $T$ HT | $i+1, F+10, j: N E X T$ |
| 1540 |  |
| 1550 |  |
| $\begin{aligned} & 56 \\ & 1560 \end{aligned}$ | FOR j＝1 TO P－i ：FFINT FT |
| $p+12$ |  |
| 1572 | PLDT \％Q＋8＊p，1E7－8＊P：DRAW 三 |
| $4 \leq 80$ | PRINT FLAAS $1 ; A T$ F＋S． $1+\mathrm{F}$ |
| 1560 | IF INKEY䋆\＃＂\＃THEM GO TO 25\％ |
| 1600 |  |
| 00 1E： |  |
|  | $P+2,10+P ; p \div(p-1) \gamma 2$ |
| $1620$ |  |
| 1630 | RETURN |

1480－1495 When the＇$x$＇key is pressed or the screen is filled （after the 19th triangle）return to the initial option display．Any other key continues with the demonstration of the next triangle．

1500－1630 Demonstration of $\sum_{i=1}^{n} i=t_{n}$ after $n(n+1) / 2=t_{n}$ has been demonstrated．
1505 －Draws horizontal lines to divide the triangle into rows of dots．
1510 － 1520 Pause until a key is pressed and released．

1530 －Prints the number of dots in each horizontal row．

## Pause．

1560 －Prints a column of＋＇s beside the numbers．
1570 －Draws a line below the column of numbers．
1580 －Draws a flashing question mark below the line．

## Pause．

1610 －Overprints＇？＇with the current triangle number．
1620 － 1630 REIURN when a key is pressed．

Appendix C - The listing for the program 'fibonacci'.

SGO1 PAFER Q: GORDER G: INK $7: C$

## 55 <br> 200260 5LB soed <br> 2ag



 $54,254,254, \dot{2} 54,124,6$

```
E®21 ELS
```




5OBS GO SUR 25月a
203760 Sum 2200
2037 60 5um 227a

2001 - Sets the whole screen black.
2002 - SUB 3000 sets up array rk.
2005 - Pause until a key is pressed.
2010 - 2020 Sets up the user-defined graphics from the DATA in line 2020. "a" $=\div$ " $b$ " = rabbit head, " $c$ " = rabbit body. It was decided to use $\div$ for division in the printout as the pupils for whom this program was written were not familiar with the use of $/$.

2021 - Clears the screen.
2022 - w and y are used to store successive Fibonacci numbers.
2025 - SUB 2200 prints a green horizontal line (to represent grass) for the ( $c+1$ )th month.

2029 - Pause until a key is pressed and released.
2030 - Prints the first rabbit of the first month, in white.
2035 - Pause.
2037 - SUB 2270 prints '1' at the right of the first row. 2038 - Pause.

2040-2185 One stage of the demonstration.
2044 - SUB 2200 draws a green horizontal line for the (c+1)th stage).
2045 - Pause.
2046 - Sets colour of printing to yellow.
2050 - 2080 Prints a yellow rabbit wherever "y" appears in the string $r \phi(c)$, i.e. mature rabbits from the previous month. Each rabbit occupies two character squares, column (j-1) on lines $2 c$ and $(2 c+1)$.
2082 - Pause.
2085 - Sets the colour of printing to white.
2090 - 2120 Prints a white rabbit where " $w$ " appears in the string $r b(c+1)$, i.e. the current month.

2125 - Pause.
2130 - Sets colour of printing to yellow.
2140 - 2170 Prints a yellow rabbit where "w" appears in the string r $\$(c)$, i.e. the rabbits which were born in the previous month and mature in the current month.

2175 - Pause.
2177 - 2179 Sets $y$ to the number of yellow rabbits and $w$ to the number of white rabbits.
2180 - Prints the sequence at the right of the row.
2181 - Pause.

```
2Aga GQ TO E40R
E2GOS INK 4
2SOS FOR j=\Omega TO =@
```



```
2`琣 NEX\
2こ2@ RETURN
250 TNu 
E2SG INKy<\, THEN EO TO ESNQ
```



```
๕こ%Q RETLIRN
```



2190 －Jump to by－pass the subroutines．
2200－2220 Draws a green horizontal line 21 characters long．

2250 －Sets colour of printing to white．
2260 －Jumps to line 2300 from the 3rd stage onwards．
2265－2270 Prints＂1＂at the right hand side of the screen，white
at the first stage（ $w=0$ ），yellow at the second（ $w=1$ ）．
2280 －RETURN executed only for stages 1 and 2.

2300－2305 Prints at the right of the screen，in white，the value of（ $y-w$ ），the number of white rabbits displayed，followed by ＂+ ＂，then the value，printed in yellow，of w ，the number of yellow rabbits．The line is completed with＂$=1$ followed by the value of y ，the total number of rabbits．
2310 －End of subroutine 2250.

| $2400$ | FRINT | ＂continue sequence Repeat demonstrきもうの品 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Fist } \\ & \text { EOLden } \end{aligned}$ | を安如ぎ！ |  |  |  |
| W |  |  | 「もてら囚．．．．．辰 |  |  |  |
|  | $\begin{array}{ll} \text { IF IN } \\ \text { EO } \end{array}$ | $\begin{aligned} & \text { EY\$="c" } \\ & =4 B=" \end{aligned}$ | THEN CO ELS ${ }^{\text {S }}$ |  |  |  |
| $2402$ | IF IN | INKEY「お曲「 | THEN | B | T0 |  |
| $2403$ | IE IN | INKEYょ＝＂ $\mathbf{g}^{\prime \prime}$ | THEN CLE |  | ：En |  |
| $\begin{aligned} & 2404 \\ & 401 \end{aligned}$ | IF IN | Ey＊く－＂P | THE | 2c | I | 3 ㄹ |

2400 －Prints the options．

2401 －Option＇c＇－SUB 2700 clears the bottom of the screen． Line 2409 continues printing the sequence without the rabbit demonstration．
2402 －Option＇r＇－returns to the start of the program，to clear the screen and repeat the rabbit demonstration．

2403 －Option＇g＇clears the screen and prints the ratios of successive pairs of numbers in the Fibonacci sequence．

2404 －Jumps to 2401 if＇$p$＇is not pressed．Only one of the four keys will produce an exit from the loop．

2405 －Option＇$p$＇－sets $w$ and $y$ to 1．Clears the screen and prints 1 on the first two lines of the screen（line 2406）．
2409 －Continues printing the values of $w^{\prime}+{ }^{\prime} y^{\prime}=\prime^{\prime}(w+y)$ ，where $w$ and $y$ are consecutive numbers in the sequence，for options ＇ p ＇and＇ c ＇．
2410 －Sets $w$ and $y$ as the next pair of consecutive numbers．
2415 －Clears screen and displays options when the＇$x$＇key is pressed．
2420 －Continues the sequence if＇$x$＇has not been pressed．
2500－2520 Subroutine to pause until a key is pressed and released．

2600 －Option＇g＇－sets w and y to 1.
2610 －Prints the values of $w^{\prime \prime}{ }^{\prime \prime}$＇$^{\prime}{ }^{\prime}=1$（ $w / y$ ）．
2620 －Sets $w$ and $y$ to the next pair of numbers in the sequence． 2630 －Jumps to the option display if the＇$x$＇key is pressed．
2640 －Continues the sequence of ratios if＇$x$＇is not pressed．

2700 - 2750 Subroutine to clear the option display from the bottom of the screen and set printing to line 15 of the screen.
$3000-3090$ Subroutine to set up the string array r $\beta$ which contains the information for printing the rabbits.
$r \beta(k)$ is the $k^{\text {th }}$ row.
$y$ indicates where a yellow rabbit is to be printed. $w$ indicates where a white rabbit is to be printed. $s$ indicates a space.

The printout below was obtained by :- FOR $k=1$ TO 8: PRINT r\&(k): NEXT $k$. It shows the final arrangement of white and yellow rabbits after all 8 months have been demonstrated. (A 9th stage would not have fitted on one line.)

 प5S5SS5SS5S5S5S5SSSS
 U5s $555505 E 55 y 55555=5$ yss $5 w 55 y s E S 5 y s 5 s 5 u s 5$ 3smusussusbusyssusys


Appendix $D$ - The listing for the program 'prime'.


 aer＂．＂r es．prestor the 末ieve os प्य 及
 Prime＂，＂press fig to test a Br use

06 IF INKEY㖛＝＂E＂THEN SQ Tロ \＆


Tの ${ }^{9}$ TER INKEY\＄＝＂t＂THEN ELS ：EE TG 3EG エNKE

1 －Executed only on the initial RUN，to set up the array $p$ with the prime numbers．
3 －Sets the background white，printing black．BRIGHT 0 is a lower brilliance than BRIGHT 1.
4 －Prints the initial option display．

5－10 Jumps to the appropriate part of the program when the ＇e＇，＇s＇，＇n＇，＇p＇or＇t＇key is pressed．No other key will produce a response．

```
    11 REM This part of the prograg
    més
    14 DIM P (1000)
    15 LET P(1)=S: LET P{き}=3
    BE:ET
```



```
    2S LET j=j+1
    20
    40 LET 5=TMT 50R P
    50 FOR K=2 TO年-2
```



```
    OQTO A20
```



```
    BQ NEX丁口
    SO LET P{m)=P: LET m=%a+1
    OS IF M P1001 THEN CO TO 3
1RO LET P=5交j+1
305 LET S=INT SOR F
```



```
GOTO
136 IFFP{K\ \S THEN GO TO 160
140 NEXT
2EQ LET} F{的}=p: &ET m=年+1
16S IF m=10QI THEN GO TONS
170 50 50系
```

11－170 Executed only when setting array p with the first 1000 prime numbers．
14 －Sets up a one－dimensional array p of dimension 1000. Each member is initially set to 0 ．
15 －The first two prime numbers．
$16-m$ is a counter for the array $p$ ．
20－21 Sets $j$ and $t$ initially to 0 ．
25 － 140 Uses the fact that all primes above 3 are of the form $6 j \pm 1$ where $j$ is a natural number to avoid considering all the natural numbers，or all the odd numbers，when finding the primes．
p is the number being tested whether it is prime or not． 25 －Increases $j$ by 1.
30 －Considers p as $6 \mathrm{j}-1$.
$40-s=\sqrt{\mathrm{p}}$ rounded down to an integer．
50－80 Tests if $p$ is divisible by the primes $p$ ，to $p_{m-1} a s$ far as $p_{k}$ where $p_{k}>\sqrt{p}$ ．If $p$ has no prime factor less than $\sqrt{p}$ ， it will have no prime factor greater than $\sqrt{\mathrm{p}}$ ． GOTO 100 if $p$ is composite．GOTO 90 if $p$ is prime．

90 －Sets the next member of array $p$ with the value of $p$ ，and increases $m$ by 1.
95 －If $m=1001$ then the array $p$ is full，return to line 3.
$100-140 \mathrm{As}$ the above section，considering $p=6 j+1$ ．
GOTO 25 if $p$ is not prime． GOTO 160 if p is prime．

160 －Sets the next member of array $p$ with the value of $p$ ，and increases m by 1.
165 －As 95.

```
    18Q ELS INKEY${>\cdots'\ THEN 2O TO IE
1
1B2 FOR m=3 TO 200Q: PRINT P{m}
```



```
185 :\EXT %
18E S゙®O
```


180-186 Executed when initial option ' p ' is chosen.
180-Clears the screen.
181 - The program only continues when the key is released.
$182-186$ Prints all the primes up to the 1000 th, unless the
' $x$ ' key is pressed, which returns to the initial option
display.

190-286 Prints the Sieve of Eratosthenes when the ' $e$ ' option is chosen.
190 - clears screen and sets brilliance to BRIGHT 1.
191 - Pause until the key is released.
192 - Prints the number ' 1 ' in the sieve.
196 - Prints '2' and '3' in the sieve, white on black. $198-m=$ the number of the current prime, $a=$ the number of numbers per line, $b=$ the number of spaces per number, $c=$ the number of numbers to fill the screen.
200 - w takes the values of the numbers between the last prime printed, and the next to be printed.
210 - BRIGHT 1 if $w$ is even, BRIGHT $O$ if $w$ is odd.
220 - Prints the value of $w$ in the appropriate place.
240 - Black background, white print.
250 - Prints the next prime in the appropriate position.
260 - Sets white background, black print.
265 - Pressing the ' $x$ ' key returns to the initial options.
270 - Increases m by 1 and continues the sieve.



```
Sas INPUT; "InPut N |i|{| 子ive t
```




```
zain,";m more than 土a&a* m
```















```
350 GOTO 3
```

Subroutine 275-286 is called from line 225 when the screen is full.
275 - 280 Pause until a key is pressed and released. Pressing the ' $x$ ' key returns to the initial option display.
$281-t=$ the number of multiples of $200(c=200)$ which have been printed.
283 - When 1000 is reached each number has 4 digits ( $b=4$ ), 5 per line $(a=5), 100$ per screen $(c=100), t=$ the number of multiples of 100 which have been printed.
284 - When 10000 is reached each number has 5 digits $(b=5)$.

300-350 Executed when the ' $n$ ' key is pressed after the initial option display.
300 - The program continues only when the key is released.
305 - Prints an input message for which prime is required.
310 - Error message if input is greater than 1000.
320 - Prints the $m^{\text {th }}$ prime followed by "is the " and the value of m .
321-323 Prints "th" if $4 \leqslant m \leqslant 20$, "st" if the unit digit of $m$, mm , is 1 , "nd" if the unit digit is 2, " rd " if the unit digit is 3, "th" otherwise, followed by "prime".

330 - POKE 23659,0 allows printing on the bottom two lines of the screen. POKE 23659,2 returns to normal.
340-350 Pressing the ' $n$ ' key returns to the initial option display. Pressing the 'y' key jumps to 300.


```
35S INFUT "InPUt thE Tumbe5 ta
bettestey "人贸
```




```
T040%
    37Q IF m{=Q QR m=1 OR \INT m! \
```



```
    a Pri施E: GO TO 40%
```




```
        PRINT AT EO,0; 品; is not a Prim
    Q "G:GO TO 3GG
    B日S IF P{x,\SNR m THEN EQ TO ZE
    5
    39% NE\\,
    395 PRINT AT 20,0;m;" is a prim
    400 POKE \Xi3659.0: PRINT AT 2a, R
```




```
5415 IF INKEY$:>"n" THEN EQ TQ &
Q015 IF INKEY交&`"" THEN EO FO <<
E
    4PQ EOTTO
    456 STaf
```

$360-420$ Executed when the＇t＇key is pressed after the initial option display．
360 －Pause until the key is released．
365 －Prints a message requesting input of the number to be tested．
366 －Error message if the number is larger than the square of the 1000 th prime．Then jumps to line 400.
370 －Prints the value of $m$ followed by＂is not a prime＂if $\mathrm{m} \leqslant 0, \mathrm{~m}=1$ or if m is not an integer．
$375-390$ Tests if $m$ is divisible by each of the primes． 380 －If m is divible by a prime the message ${ }^{1} \mathrm{~m}$ is not a prime＇is printed，then jump to line 396 （400）． 385 －It is only necessary to test for divisibilty by primes which are less than $\sqrt{m}$ ． 395 －Prints when $m$ is a prime．
400 －Gives the option of inputting another number for testing．
$410-420$ Jump to 365 if＇yes＇response，jump to the initial option display if＇no＇．

450 －Executed if the＇s＇key is pressed after the initial option display．

Appendix E - The listing for the program 'loci'.

```
    5 EORDER O: PAPER O: INK F: 
        10 QUER 0: CLS : PFINTT "THiSSP
    rogram demonstrates the loEs`
of a point p under certaincondit
```



```
dPoints要-A and E are two fixe
```



```
        & - &Eregnimitutaritinesg
nd B is fur fixed
```



```
    e distancesm irom,a fixedeg f
aint andfrom a fixea kine 2
```



```
    #\mp@code{anglegmas and and angle pob&}
    where A and E
    &
    2Q IF INKEY方="e" THEN EO TO 4%
QQS IF INKEY$="d" THEN GO TO OQ
30 IF INKEY$="E" THEN GO TO EO
30, IF INKEY知"b" THEN SO TO 20
```



```
0
    45 IF INKEY古S`".. THEN GO TO 45
        45 IF INKEY尔NT".GTHEN GOGTO 45
```





```
    * GO IF INKEY注く"a" THEN EO TO 5
    E{ IF INKEY$\,\cdots', THEN GO TO EI
```

5 －Sets background colour to black，printing to white． 10 －Prints the option display shown in figure 3．1．

20－45 Jumps to line 4000 if option $E$ is chosen， 3000 if option $D$ ， 2000 if option C， 1000 if option B．
The program continues with line 50 if option $A$ is chosen． No other key（except＇BREAK＇）produces a response．

50 －Prints the option display shown in figure 3．2．

55－61 Jumps to line 600 if option $B$ is chosen． Continues with line 65 if option $A$ is chosen．

$65-595$ Locus of $P$ such that AP/PB is constant.
65 - Prints the display shown in figure 3.3.

70 - awaits the input of m .
80 - Continues only when a positive number has been input. An error message is printed if $m \leqslant 0$.
90-100 Requires $n$ to be input.
105 - 110 Continues only if $n$ is positive. Error message if $\mathrm{n} \leqslant 0$.

120 - Prints the values of $m$ and $n$ in place of the letters $m$ and $n$ displayed on the screen.
130 - SUB 900 - pause until a key is pressed and released.
140 - If $m=n$ the locus is the mediator of $A B$, drawn at line 470.
150-190 The locus is a crcle. Two situations are possible.

1. $m>n$.

$A Y: B Y=m: n \quad A X: B X=m: n$
Sets $A B=|m-n|, A Y=m, A X=\frac{m}{m+n} A B$
2. $m<n$.


As above but $A Y=-m$.
180-190 If $m>n$ then $A$ is on the left of the screen, if $m<n$ then $B$ is on the right of the screen.
DRAM Xー末
BSQ IF INKEY市="m" THEN GO TO ЗS
BEE OUEF $9:$ PLOT $3, \delta B: ~ Q U E R ~ I:$

DRAG x-É
380 OUER 3 PLOT $88+4$

| 390 |
| :---: |
| 39 |
| 39 |

$5^{3}$
4QQ NEXT i
410 GO 5LW ginc
420 PLOT 6,88
430 GN SUE GOE
440 CIRCLE CERB,
$45 \%$ 턴 TQ

```
```

20Q LET <S=INT (2SO<m): IF m<n

```
```

20Q LET <S=INT (2SO<m): IF m<n
THEN LEET xS=INT
THEN LEET xS=INT
XS=ItT {250, (ay-3x}
XS=ItT {250, (ay-3x}
LET r=RES \ay-Bx,
LET r=RES \ay-Bx,
210 LET r=RES IAY-3.

```
```

    210 LET r=RES IAY-3. 
    ```
```




```
```

    2ZQ IF XE>yS THEN LET Sf=yS: G0
    ```
```

    2ZQ IF XE>yS THEN LET Sf=yS: G0
    <40
    <40
    240 EET E = = % 
    ```
```

    240 EET E = = % 
    ```
```




```
```

    200 IF m>n THENN LET &=#b*SG
    ```
```

```
```

    200 IF m>n THENN LET &=#b*SG
    ```
```










```
    210
```

```
    210
```



$T$ y=-r
PLIT a, ©S: DUER 1:


200－240 Evaluates the scale（pixels per unit）to accommodate the diagram on the screen，horizontally and vertically． If $m>n$ then $x s=250 / A Y$ ，if $m<n$ then $x s=250 / Y B$ ．
$210-r=$ the radius of the circle．
$220-\mathrm{ys}=$ the y scale．
230 －sf（scale factor）is set to the smaller of $y s$ and $x s$ ．

255 －When $m<n$ the position of $A$ on the screen is set．
260 －When $m>n$ the position of $B$ on the screen is set．
270 －Plots and labels A and B on the screen．
280 －Pause until a key is pressed and released．
$290-c=$ the $x$ coordinate of the centre of the circle．
300－400 Draws the locus（a circle）with $\theta$ from $-180^{\circ}$ to $180^{\circ}$ ， stepping $3^{\circ}(\theta=3 j)$ ．
$310^{-}$－Evaluates the $x$ and $y$ coordinates of the current position of $P$ ，where $x=a+r \cos \theta$ and $y=-r \sin \theta$ ．
330 －Plots $A$ and draws a line from A to $P$ ．
340 －Plots $B$ and draws a line from $B$ to $P$.
350 －The demonstration halts while the＇ m ＇key is held down．
360 －Plots A and erases the line AP．
370 －Plots B and erases the line BP．
390 －Plots the current position of P．The demonstration halts while the＇key is held down．
410 ．Pause．
420 －Plots the centre of the circle．
440 －Draws the complete circle．
450 －Sub 950 jumps to line＇rep＇when the＇r＇key is pressed，to repeat the demonstration．Pressing any other key returns to line 10 ，which displays the initial options．


```
    4#Q PRINT AT IQ,9;"A:品AB 20:"E
        :FLOT OO.3B: PLOT 2BG.8S
        4%5 50 SU& 9&&
        4GR FOR Y=-8B TO 87
        510 OUER 0: FLOT \Xi,8B: OUER 2:
    DRA| 40,%
    52R OUER Q: FLOT b,BR: OUER 2:
    DFAts -40,4
    SWQ IF INKEY$="m" THEN GO TO ES
\
    540 DUER क: PLOT ヨs⿱宀⿱二小欠: OUER i:
```



```
    DRAN -4EOS
    5EO OUER O
    G7Q PLOT D2Q, 8B+!
    575 IF INKE夕&=.%% THEN EO TO 5%
5
    5%B NEXT y
    SGQ NEXT Y'YP=470: GO 5UB 9%0
```






```
    星S INPUT #
    E10 IF m{=Q THEN& FFTHW AT 20, #; 
    m must be positiver trut ヨgain":
    GO5TOPRINS AT 1G,Q;"InPut п
    E2Q INPUT n
    EDE5 IF n<=Q THEN PRINT AT 20,00:
    Trmust be.pasittive.
```



```
#remnot te less than m.
```

470－480 Plots and labels A and B．
485 －Pause．
490－580 Draws the mediator of $A B$ ． 510 －Plots A and draws AP．
520 －Plots B and draws BP．
530 －Halts the demonstration while the＇ m ＇key is held down．
540 －Plots A and erases AP．
550 －Plots B and erases BP．
570 －Plots P．
575 －Halts the demonstration while the＇$n$＇key is held down．
590 －SUB 950 pauses until a key is pressed and released．If the＇r＇ key is pressed the demonstration is repeated．
600－740 Locus of P where AP +PB is constant．
600 －Prints the display requesting input of the ratio $A B: A P+P B$ ．
605－630 Inputs $m$ and $n$ where $A B: A P+P B=m: n$ ．
Error messages if $n \leqslant 0, m \leqslant 0$ or if $n<m$ ．

$$
\begin{aligned}
& \text { 6ふ5 LET ys=250: LET x }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 一等兴等) } \\
& \text { E4Q TF x } \\
& \text { 으응 } \\
& 645 \mathrm{LET} \leq 5=15
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2?-at・ス2: LET ゅx=ax4ab }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㄴ․ }
\end{aligned}
$$

[^0]The locus is an ellipse．


If $A B=2 m$ and $X Y=2 n$ ，then $O Y=n$ ．
Also $A Z=n$ ，and so $O Z=\sqrt{n^{2}-m^{2}}$ ．
635 － xs is the horizontal scale so that $X Y=250$ pixels． ys is the vertical scale so that $\mathrm{OZ}=87$ pixels．
640－645 sf＝the smaller of $x s$ and ys．
$650-a$ and $b$ are such that the equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ．$a x$ and $b x$ are the $x$ coordinates of the foci．
655 －Prints the values of $m$ and $n$ in place of the letters $m$ and $n$ on the screen．
660 －Pause until a key is pressed and released．
665 －Plots and labels A and B．
675 －If $m=n$ then GOTO 800．（The locus of $P$ is AB．）
685－730 Draws $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ using $x=a$ cost，$y=b$ sint for $t=0^{\circ}$ to $360^{\circ}$ in steps of $5^{\circ}$ ．
690 －Evaluates the coordinates of P．
695 －Plots A and draws AP．
700 －Plots B and draws BP．
705 －Halts the demonstration while the＇$m$＇key is held down． 710 －Plots A and erases AP．
715 －Plots B and erases BP．
720 －Halts the demonstration while the＇$n$＇key is held down． 725 －Plots the position of P．
735 －Pause until a key is pressed．If＇$r$＇is pressed，then GOTO rep otherwise return to the initial option display．

```
SQQ FOR *=&x TQ ax F丁EP
    8QS OUER 0: PLOT Fx AE: OUER 1 
```



```
0
```



```
    BEO
0
    825 PLOT }\because,8
    S% NEXT X,0日
```




```
    GQQ IF INKEY串="." THEN ER TE QOR
```



```
0
gEQ RETURN
    G5Q IF INKEY古=":"THEN ED TD DSQ
```




```
0
g日Q RETURN
```

$800-840$ Executed if $m=n$ ，i．e．the locus of $P$ is $A B$ ． $800-830$ Plots points along AB ，stepping 2 pixels．

805 －Plots A，draws AB，plots B．
810 －Halts the demonstration while the＇$m$＇key is pressed．
815 －Plots A，erases AB，plots B．
820 －Halts the demonstration while the＇$n$＇key is pressed．
825 －Plots the current position of P．
$835-$ rep $=$ the line number for repeating the demonstration． 900－920 Subroutine to PAUSE until a key is pressed and released．

950－980 Subroutine to pause until a key is pressed and released． Pressing the＇$r$＇key returns to the line number which starts the repeat of the demonstration．Any other key executes RENURN．


```
        00
        10日S ELS ; PRINT "LQGUE Of E F FQj
```





```
        IO10 PRINT AT 13,0;"InPut %"
        AQSE TNFINT m, mT 10,0;"
            Irspzて滛
        1030 INFUT=0'AND n=Q THEN FFINNT P
        T 10,B;"m and n cannot moth bev R
        ":GÓTQ 2Bn多
        1Q45 IF m<Q AND ABS m >5 THENV LEJ
```



```
        m=-m: LET n=-D
```


$1000-1780$ Locus of $P$ where P lies on $A B, A$ lies on the $y$－axis， $B$ lies on the $x$－axis．
1005 －Prints the message asking for $m$ to be input，where $\mathrm{AP}: \mathrm{PB}=\mathrm{m}: \mathrm{n}$（see figure 3．22）．

1015 －Input m
1020 －Asks for $n$ to be input．
1030 －Input $n$ ．
1040 －Error message if $m$ and $n$ are both zero．
1045 －If either $m$ or $n$ is negative，the ratio is expressed so that the numerically larger is positive，e．g．$-5: 3 \rightarrow 5:-3$ ． 1046 －If both $m$ and $n$ are negative，the ratio is expressed using positive numbers，e．g．$-7:-3 \rightarrow 7: 3$ ．
$1050-a b=86$ so that $A B$ occupies half the screen height when it is vertical．
1055 －If $m<0$ ，then $P$ divides $A B$ externally．$A B=86(m+n) / n$ so that $P B=86$ pixels when vertical．
1060 －If $n<0$ ，then $P$ divides $A B$ externally，but $P$ lies on $A B$ produced． $\mathrm{PA}=\mathrm{mAB} /(\mathrm{m}+\mathrm{n})$ ． PA is maximum when AB is horizontal． If $m A B /(m+n)>126$ pixels then $A B=126(m+n) / m$ to fit on the screen．




```
|DEQ IF INKEY直="a"THEN GD TO IS
00
IQgQ IF INKEY定く>"b" THEN ED TQ I
D8&
21■O IF INKEY安《`"" THEN GO TO 3I
210S PRINT "."Press any kEy to s
```



```
1110 CLS : PLOT 1AS,0: DRAl
1120 FLOT O,8B: DRAH 25S, 定
```



```
1M45 LEEG N=1
```

1070－Overprints the letters $m$ and $n$ on the screen with their values，and asks for a choice of options．
1080 －Jumps to line 1500 if option $A$ is chosen，i．e．$A B$ is constant．
1090－1100 Continues only if the＇b＇key is pressed（or the＇a＇key at line 1080）．
1105－1430 Option B．
1105 －Prints a message to press any key to show the locus． 1110－1120 Draws horizontal and vertical axes，with the origin at the centre of the screen．
1130 －Pause．
1140 －If $m>n$ then the overall width of the locus is greater than the overall height．
1150 －＇Exclusive or＇printing command．


```
2150 LEET 准=ab-9ES %
```




Q





冬
1240 NEXT
124Q NEXT Y
1155


1155-1250 Draws the locus in two halves, one with $j=1$, the other with $j=-1$. The complete locus will be a rhombus whose larger diagonal lies on the y-axis and so $y$ is chosen as the independent variable. Taking $x$ as the independent variable may result in very few positions of $P$ being plotted.
$1160-x=$ the current position of $B$.
$1170-x$ is negative for the second execution of the loop. ( $y=$ the current position of $A$ on the $y$-axis.)

1175 - Plots the current position of $B$.
1180 - If $m<0$ then a line is drawn from $B$ to $P$.
1190 - If $m \geqslant 0$ then a line is drawn from $B$ to A.
1200 - Halts the demonstration while the ' $m$ ' key is held down. 1205 - 1220 Plots B and erases the line.

1230 - Plots the current position of P.
1235 - Halts the demonstration while the 'n' key is held down.
1250 - Loop 1155 - 1240 is executed a second time with $j=-1$.
1260 - Sets rep $=$ the line number which starts the locus demonstration.

Loop 1310 - 1390 is executed 3 times. Firstly from $x=0$ to ab when $A B$ moves from the vertical to the horizontal in the first quadrant. Secondly from $x=a b$ to $a b$ when $A B$ moves from horizontal to horizontal below the $x$-axis. Thirdly from $x=-a b$ to $O$ when $A B$ moves from the horizontal back to the vertical. As $1155-1240$, the locus is a rhombus but here the longer diagonal is horizontal and so $x$ is taken as the independent variable.

1330 - Evaluates $y$, the current position of $A$.
1345 - Plots A.
1350 - If $n<0$ then a line is drawn from $A$ to $P$.
1355 - If $\mathrm{n} \geqslant 0$ then $A B$ is drawn.
1360 - Halts the demonstration while the ' $m$ ' key is held down. 1365-1375 Plots A and erases the line.

1380 - Plots the current position of P.
1385 - Halts the demonstration while the ' $n$ ' key is held down.
$1400-1410 j=1, a=0$ during the first execution of the loop, $j=-1, a=a b$ during the second execution of the loop, $j=1, b=0$ during the third execution of the loop.
$1420-r e p=$ the line number for the beginning of the demonstration.

```
HEN ba ro 3n
```



```
how the locus": EO Sus gaw
1520 CLS: PLOT 12S,0: ORAM 0,17
\frac{1}{3}540 PLOT Q BGE DRAM ESS, %
```



15EO LET B=a $\because \cap / m$
15BG FOA $t=0$ TO $35 G$ BTEP 4


1610 LET h=abノSQR ©
*)
1020 LET ob=n*x*h
1630 LET O3=6xysh
$1500-1780 \mathrm{AP}: P B=m: n, A B$ is constant. The locus of $P$ is an ellipse. The coordinates for $P$ are evaluated using the parametric form of the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,
i.e. $x=a \operatorname{sint}, y=b$ cost.

1500 - Pause until the key is released.
1510 - Prints a message to press any key for the locus.
1520-1530 Draws a horizontal and vertical axis with the origin at the centre of the screen.
1540 - Pause.

1545 - If $m=0$, the locus of $P$ is the $y$-axis. 1546 - If $n=0$, the locus of $P$ is the $x$-axis.

1550 - Evaluates $a$ and $b$ for the equation of the ellipse, $a=m A B /(m+n), b=n A B /(m+n)$.

1580-1750 Draws the locus (ellipse) by drawing positions of $A B$ and plotting $P$ where $A P: P B=m: n$. 1580 - 1630

$$
x=a \sin t, y=b \text { cost }
$$


$\tan \theta=\frac{y}{O B-x}=\frac{y}{\frac{n}{m} \cdot x}=\frac{m y}{n x}$
$O B=A B \cos \theta=A B \cdot \frac{n x}{\sqrt{(n x)^{2}+(m y)^{2}}}$
$O A=A B \sin \theta=A B \cdot \frac{m y}{\sqrt{(n x)^{2}+(m y)^{2}}}$
$-160$



TO 1680

EQRQ IF INKEYF="A" THEN EQ TE IE


1710 IF
To 173 m
3720 DRPA -0b-

1740 PLOT $126 \pm x . ~ B ล+2$
1750 NEXT
176日 LET rep=352Q


1640 - If $n<0$ then $A$ is plotted and $A P$ is drawn since $P$ lies on AB produced.
1650 - Plots B.
1660 - If $m<0$ then BP is drawn since P lies on BA produced.
1670 - Draws $A B$ if both $m$ and $n$ are non-negative.
1680 - Halts the demonstration while the ' $m$ ' key is held down. 1690-1720 Erases the line drawn above.

1730 - Halts the demonstration while the ' $n$ ' key is held down. 1740 - Plots P.
$1760-1780$ If the 'r' key is pressed, the demonstration is repeated from line 1520. Any other key returns to the initial option display.

\＆




7673 NEN ？
 1812
解家

298 包 OUER 1
2905 LETE $i=1$ ：LET $y=0$





19

 45
455e NENT ジ




1375

$1902=7012$

1800－1895 The locus of $P=$ the locus of $A$ ．
$1810-y=$ the current position of $A$ ．
$1820-x=$ the current position of $B$ ．
1830 －Plots A and draws AB．
1840 －Halts the demonstration while the＇$m$＇key is held down．
1850 －Erases $A B$ and plots $P(P=A)$ ．
1860 －Halts the demonstration while the＇$n$＇key is held down．
1880 －Repeats the above loop for $A B$ in quadrants 3 and 2.
1885 －If the＇$r$＇key is pressed，the demonstration is repeated from line 1520．Any other key returns to the initial option display．
1900－1990 The locus of $P=$ the locus of $B$ ．
1910－1915 Sets as and af for $A B$ in the first quadrant．
$1920-x=$ the current position of $B$ ．
1925－y＝the current position of $A$ ．
1930 －Plots A and draws AB．
1935 －Halts the demonstration while the＇$m$＇key is held down．
1940 －Erases $A B$ and plots $P(P=B)$ ．
1945 －Halts the demonstration while the＇$n$＇key is held down．
1960－Repeats 1920－1950 with AB in the 4th and 3rd quadrants．
1970 －Repeats 1920 － 1950 with AB in the 2nd quadrant．
1975－1990 If the＇$r$＇key is pressed，the demonstration is repeated from line 1520．Any other key returns to the initial option display．

2000-2400 The locus of P, on AB, where A lies on a circle, centre $C$, and $B$ is fixed.
2000 - Pause until the key is released.
2005 - Prints the message as in figure 3.38 and awaits the input of 1 .

2020 - Input 1.
2030 - Error message if $1<0$. ( $1=0$ results in $B$ and $C$ being coincident.)
2040 - Prints an instruction to input $r$.
2050 - Input r.
2060 - Error message if $r \leqslant 0$.
2070 - Pause until the key is released.
2080 - Overprints the letters 1 and $r$ with their values.
2090-2160 Inputs $m$ and $n$ where AP:PB $=m: n$.
Error message if $m=0$ and $n=0$.
$2150-2160$ The ratio is expressed so that the numerically larger number is positive.
2165 - Overprints the letters $m$ and $n$ with their values.

```
2170 LET L{=L+r: IF L{T THEN &ET
```



```
2180 IF n{0 THEN LET {}={{##*}#%
```




```
(m+n): LET xS=INT (2S定{{{}
```



```
Yf THEN LEJ YSEINT QTCF
2巳1Q IF अ5.3XS THEN LET SF=xS: ER
    10 2ご36
```





```
#5;
```






```
2v=5
```

The locus of $P$ is a circle which is an enlargement of the circle， centre C．Centre of enlargement $=B$ ，scale factor $=n /(m+n)$ ．
$2170-11=$ the distance from $B$ to the opposite side of the fixed circle，or its diameter if $B$ lies inside the circle，i．e．when $1<r$ 。
2175 －ys $=$ the vertical scale needed to accommodate the fixed circle on the screen．$x s=$ the horizontal scale（pixels per unit）to accommodate 11 on the screen．
2180 －If $m<0$ the enlargement scale factor is greater than 1，in which case the horizontal distance to accommodate the enlarged circle is ll＊ $\mathrm{n} /(\mathrm{m}+\mathrm{n})$ ．xs is also adjusted．
2200 －If $\mathrm{n}<0$ the enlargement scale factor is negative． 11 ＝the distance from the extreme left of the locus to the extreme right of the fixed circle．

2205 －rr is the radius of the circle which is the locus of $P$ ． If $r r>r$ then the vertical scale，ys，is reduced in proportion．
2210 －The scale factor，$s f$ ，is the smaller of $y s$ and $x s$ ，to accommodate the whole demonstration．
2230 －If $I \geqslant r$ ，B lies on or outside the fixed circle，in which case $B$ is plotted on the extreme left of the screen．

2235 －If l＜r，B lies inside the circle，in which case $b=$ the distance from $B$ to the fixed circle（shortest distance）． If $m<0$（enlargement s．f．$>1$ ）and $B$ lies inside the fixed circle，the locus of $P$ will lie partly outside the fixed circle， so $b=$ the shortest distance from $B$ to the locus of $P$ ．
2240 －If $\mathrm{n}<0$（enlargement s．f．$<0$ ）and $11>2 r$（part of the locus lies outside the fixed circle）then $b=$ the distance from $B$ to the extreme left of the locus．
$2250-c=$ the position of $C$ ，the centre of the fixed circle，from the left of the screen．$c c=$ position of the centre of locus P ．
$2251-r=$ radius of the fixed circle．$r r=$ radius of locus $P$ ．


```
-1:"c". PLDT b,念: FLDT c,B
2"65 CIACLE c,8E,%
2\Omega70 %O SLE GG|
```






```
    LET U\O-5S*SIN (PI,30%N)
```




```
2B7G GO SUR GAO
```




2255 - Clears the screen.
2260 - Plots and labels B and C.
2265 - Draws the circle with centre C.
2270 - Pause until a key is pressed and released.
2275 - 2350 Draws the locus of P.
$2280-(x, y)=$ current position of $A$ on the fixed circle.
2285 - ( $x x, y y$ ) $=$ the current position of $P$.
2290 - If $\mathrm{n}<0$, the enlargement scale factor is negative, and so A is plotted and AP is drawn (AP passes through B).

2300 - If $n \geqslant 0$ then $B$ is plotted.
2305 - If $m<0$ then $P$ lies on BA produced, so BP is drawn.
2307 - If neither mor n is negative, then BA is drawn.
2310 - The demonstration is halted while the ' $m$ ' key is pressed.
2315-2327 Erases the line drawn above.

2340 - Plots the current position of $\mathrm{P}_{\text {. }}$
2345 - Halts the demonstration while the ' $n$ ' key is held down.
2355 - Pause until a key is pressed and released.
2360 - Plots the centre of the circle which is the locus of P.

2370 - Pause.
2380 - Draws the circle which is the locus of P.
2390-2400 Pause until a key is pressed. If ' $r$ ' is pressed then the demonstration is repeated from line 2255, any other key returns to the initial option display.
380
30
300
380
30
300


ine, A is a fixed point".".Pptis
ine, A is a fixed point".".Pptis
e inemerpendicularnpram pap:pN $=$ tanth
e inemerpendicularnpram pap:pN $=$ tanth
3gio FRINT AT 12, Q:"Input min
3gio FRINT AT 12, Q:"Input min
3020 INPUT
3020 INPUT


"m must beqpasitiver t5y Bgeinis:
"m must beqpasitiver t5y Bgeinis:
3040 PRINT AT 1P, 0: "InPut
3040 PRINT AT 1P, 0: "InPut
3月5 INPUT $n$
3月5 INPUT $n$
З匂E日 IF INK゙EY守氏:""THEN EO TO 3Q
З匂E日 IF INK゙EY守氏:""THEN EO TO 3Q
3070 IF $\because \varepsilon=0$ THEN PRINT AT 12, 分;
3070 IF $\because \varepsilon=0$ THEN PRINT AT 12, 分;
GO TO 3ase
GO TO 3ase





3000 －Pause until the option key is released．
3005－3070 Prints the message as in figure 3.50 which requires $m$ and $n$ to be input．
Error message if either $m$ or $n$ is negative．

3080 －Overprints the letters $m$ and $n$ on the screen with their values，and prints a message instructing the user to press a key for the locus．

3085 －Pause until a key is pressed and released，then clear screen． 3090 －If $\mathrm{m}>\mathrm{n}$ then the locus will be a hyperbola．
3100 －If $\mathrm{m}<\mathrm{n}$ then the locus will be an ellipse．

```
3110 REM Parabola.....
```



```
3130 PRINT AT 11,12;"A": PLOT EG
.38
3135 60 Sub gqa
3140 FOR y=-S7 TO 37 STEF :
3145 OUER 1
3150 LET x =15+4*y/60
3160 PLOT
```



```
    DRAM x-30,4
```



```
30
3190 PLOT EO, 8B+y: DFANH %, B
```




```
3210 OUER D
3220
```



```
S230 NEXT Y
3<50 20 T0 IG
```

$3110-3230$ Draws the locus of $P$ where $P N: A P=1: 1$, i.e. the locus is a parabola.
3115 - Draws and labels the fixed line, 1 , at $x=50$.
3130 - Plots and labels the focus, A. Pause.

3150 - 3170 Evaluates the $x$-coordinate for the parabola. Plots $N$, where $N$ is the foot of the perpendicular from $P$ to the directrix. Draws NP. Plots A and draws AP.
3180 - Halts the demonstration while the ' $m$ ' key is pressed. $3190-3200$ Erases PN and AP.

3220 - Plots P.
3225 - Halts the demonstration while the ' $n$ ' key is pressed. $3235-3250$ Pause until a key is pressed. The 'r' key will repeat the demonstration. Any other key returns to the initial option display.

```
33GQ REH E!{j%EE
```











```
40
```




```
䄸昭
```



```
360 FOR T=0 丁O 35E STEF S
```



```
Ty=b*SIN {PIMN日G*!)
```

```
3BBQ DUER 0: PLOT OB,BB: DHER IS:
    BRAN FL+X,Y,Y, y +88: DRAL 0+x, R
```



```
ga
3420 DUER 0: PLOT OB,BE: QUEF I:
DRAW S+X,G
```



```
30
3040 OUER R: PLOT 0+x,y+BB
345Q NEXT t P
```



```
347% 65 50, %0, 50%
```

$3300-3480$ Draws the locus of $P$ when $A P: P N=m: n, m<n$ ，i．e．an ellipse，eccentricity，$e=m / n$ ．


Taking $C$ as the origin and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ as the equation of the ellipse，$b=a \sqrt{1-e^{2}}$ $=\frac{a}{n} \sqrt{n^{2}-m^{2}}$ ．
$O Z=O C+C Z=\frac{a}{e}+a=a\left(\frac{1}{e}-1\right)=\left(\frac{m+n}{m}\right) a$.
$3305-3335$ Computes the scale to accommodate the ellipse on the screen．$o a=$ the distance $O A$ on the above diagram， $0=$ distance $O C, s=$ distance $A C$ ．
3340 －Pause until the key is released．
3345 －Draws the directrix，1，and the focus，A．

## Pause．

3370 －Evaluates the coordinates of $P$ using the parametric form $x=-a$ cost and $y=b$ sint．This ensures that the ellipse is drawn starting at point $Z^{\prime}$ in the diagram．

3380 －Plots A and draws AP．
3390 －Plots $N$ and draws PN．
3400 －Halts the demonstration while the＇$m$＇key is pressed．
3410 －Plots A and erases AP．
3420 －Plots $N$ and erases PN．
3430 －Halts the demonstration while the＇$n$＇key is pressed．
3440 －Plots the current position of P．
$3460-3480$ Pause until a key is pressed．Pressing the＇r＇key repeats the demonstration，any other key returns to the initial option display．
$3600-3930$ Locus of $P$ where AP:PN $=m: n, m>n$, i.e. a hyperbola whose eccentricity, $e=\mathrm{m} / \mathrm{n}$.


Using the equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,
$b=a \sqrt{e^{2}-1}=\frac{a}{n} \sqrt{m^{2}-n^{2}}$.
0 is the origin, $S$ is the focus.
$O S=a e=\frac{a m}{n}$, directrix $-x=\frac{a}{e}=\frac{a n}{m}$.
$3610-a=50 \mathrm{n} / \mathrm{m}$ ensures that the two foci are 50 pixels apart. This was found to be satisfactory for all likely values of $3660^{\text {mi }}$ - and $\mathrm{n}_{0}$ and labels the directrix, 1.

Plots and labels the focus, A.
3670 - Pause until a key is pressed and released.

3690 - 3770 Executed with $j=1$, i.e. $y$ from -86 to 86 in steps of 2. The loop is then executed a second time with $\mathrm{j}=\mathbf{- 1}$, which draws the left part of the hyperbola.
Uses $x=\frac{a}{b} \sqrt{b^{2}+y^{2}}$ during the first execution,
$x=-\frac{a}{b} \sqrt{b^{2}+y^{2}}$ during the second execution.
3700 - Translates $\times 127$ to the right so that 0 is central. 3705 - Jumps to the end of the loop if $x$ is off the screen.
3710 - Plots S (labelled A on the screen) and draws PS.
3720 - Plots $N$ and draws PN.
3730 - Halts the demonstraion while the ' $m$ ' key is pressed.
3740 - Plots S and erases PS.
3750 - Plots N and erases PN.
3760 - Plots P.
3765 - Halts the demonstration while the ' $n$ ' key is pressed.


3780 - Repeats 3690 - 3770 with $\mathbf{j}=-1$, i.e. draws the other part of the hyperbola.
3790 - 3830 Pause until a key is pressed and released.
' $r$ ' repeats the drawing of the locus.
'a' draws the asymptotes (from line 3840).
Any other key returns to the initial option display.

3840 - Pause until the key is released.
3850 - The asymptotes have equations $y= \pm \frac{b}{a} x$.
If the gradient $b / a$ is greater than $87 / 127$ then the asymptotes disappear off the top and bottom of the screen rather than off the sides, and are therefore drawn as in lines 3900-3910.

3860 - 3870 Draws the asymptotes when they disappear off the sides of the screen.

3890 - Avoids 3900-3910.
3900 - 3910 Draws the asymptotes when they disappear off the top and bottom of the screen.
3920-3930 Press the 'r' key to repeat the locus. Press any other key to return to the initial option display.


4000-6150 Locus of the point of intersection of two rotating lines through $A$ and through $B$.
4005 - Prints the option message as in figure 3.59.
$4010-4045$ Jumps to the line number corresponding to options $A$, $B$ or $C$ when the appropriate key is pressed.

4050 - Option A - The two lines are rotating at the same rate. The line through A is initially horizontal. The line through $B$ is initially at an angle $r$, where $r$ is to be input.
4060 - Input r .
4065 - 4066 Adjusts the value of $r$ so that $0 \leqslant r<180$.
$4070-4080$ The locus is a circle. $A B$ is a chord of the circle which subtends an angle $r$ at the circumference.

To draw the circle so that its diameter equals the screen height, ax = distance of $A$ from the left of the screen, $b x=$ distance of $B$ from the left of the screen, ay $=$ the height of $A B$ from the bottom of the screen.

```
4QGO IF INKEY字《>*" THEN EQ TO 4B
90
```




```
;TAE EX
```






```
41SOFOR K=3 %O, ISO STEF 3
```






```
+r-g61 ※PI/18Q)
```



```
4290
```



```
10
```





```
35
4, 4Q PLOT D,G: DRALE S-F,{-7: FLE
```



```
425Q जE=NT K
4OE LEN IEP=4O9O: NO ELE SEO
4270 G& TaITG
```

4090 - Pause until the option key (a) is released.
4100-Clears the screen.
4110 - Plots and labels A and B.

4120 - SUB 5000 calculates ( $p, q$ ) and ( $s, t$ ), the coordinates of the endpoints on the edge of the screen of the line through A. 4130 - SUB 6000 calculates ( $u, v$ ) and ( $w, z$ ), the coordinates of the endpoints on the edge of the screen of the line through $B$. 4140 - Draws the initial lines through $A$ and $B$.
4150 - Pause until a key is pressed and released.
$4160-4250 \mathrm{k}$ is the angle which PA makes with the horizontal. jos is the angle which PB makes with the horizontal, as a function of k . In this option $\mathrm{j}=\mathrm{k}+\mathrm{r}$.
4170 - Allows the next positions of the lines PA and PB, and the coordinates of $P$, to be calculated before $P A$ and $P B$ are erased. This is so that the time between drawing the lines and erasing them is longer than the time between erasing the lines and drawing the lines for the next position of $P$.

4180 - Evaluates the $x$ and $y$ coordinates for $P$, the intersection of the two lines.
4190 - Calculates the endpoints of the next line through A. 4200 - Calculates the endpoints of the next line through B.
4210 - Halts the demonstration while the ' $m$ ' key is pressed. 4220 - Erases the lines AP and BP, previously drawn.
4230 - Plots $P$.
4235 - Halts the demonstration while the ' $n$ ' key is pressed. 4240 - Draws the next lines through $A$ and $B$.

4260-4270 Pressing the ' $r$ ' key repeats the demonstraion. Any other key returns to the initial option display.

```
43QQ LET ax=4Q: LET bx=127: 1ET
```



```
10
420 CLS
```




```
F Ex, ay
4S4Q'LET k=ス EO 5LE SQQR
```




```
&-9
437B EO SUR Q&&
```



```
4-980
```



```
s-2%
S-P:
```





```
44\a GQ SuE 50&5
4420 GO SLB EBGOB
```



```
30
4440 P!OT PE,QQ: PRF|! SS,&t: F1口
```



```
444S IF INKEY$="\Omega" THEN EQ TR
45
44EQ PLDT P,q: DRAW音-p,t-7: pLE
T4,V: DRAW, w-u&z-v
```



```
4475 PLQT P P, D: DRAN E-p,t-G
```



4300－4480 Option B－the locus of P is a circle centre B， radius $A B$ ．ax，bx and ay are as before，but with values 80 that $B$ is at the centre of the screen and the radius is 87 pixels．

4330 －Plots and labels A and B．
4340－4350 Evaluate the endpoints of the lines through $A$ and through B．
4360 －Draws a horizontal line through $A$ and $B, a s$ the lines PA and PB are coincident．
4370 － 4375 Erases the line above when a key is pressed and released．
4380－4470 As lines $4160-4250$ except that $j=2 k$ ， $x=127+87$ cos $2 k, y=88+87$ sin2k．
The locus is a circle，centre $(127,88)$ ，radius 87 pixels．

## 4475 －Draws a horizontal line through A and B．

4480 －Pressing the＇$r$＇key repeats the demonstration．
Pressing any other key returns to the initial options．


4600 - Pause until the option key (c) is released.
4605 - Prints the message as in figure 3.69.

4610 - Prints at the bottom of the screen - $j=$ " 3 ", which awaits an expression in $k$ to be input.
4620 - Since the locus of $P$ is not predictable, these positions of $A$ and $B$ were found to suitable for the general case.

4625-Clears the screen.
4630 - Plots and labels A and B.
4640-4650 Finds the coordinates of the endpoints of the lines through $A$ and through $B$, having set $k=0$.
4660 - Draws the line through A (initially horizontal).
4661 - $f=0$ when both lines are horizontal.
4665 - Draws the line through $B$, unless it is horizontal. If it is
not horizontal, $f$ is set to 1.
4675 - Coordinates of the first position of P, i.e. at B.
4680 - increments $k$ by 3 and sets $e=0$.
4690 - As 4170.
4700 - Finds the endpoints of the line through $A$. 4710 - Finds the endpoints of the line through $B$.


4720 - If $k=j$ then the two lines are parallel and so do not intersect, in which case e is set to 1 and $4740-4760$ omitted. 4740-4760

If $N$ is the foot of the perpendicular from $P$ to $A B, P N=A N t a n k=B N t a n j$, i.e. $(A B+B N) \operatorname{tank}=B N \tan j$, and so
$B N=\frac{A B \tan k}{\tan j-\operatorname{tank}}, P N=B N \tan j$.


4740 - If $j=90, B N=0$ and $P N=A B t a n k$.
4750 - If $k=90, B N=-A B$ and $P N=-A B \tan j$.
The jump to line 4770 avoids an error when $\tan 90^{\circ}$ is required.
$4740-4760 \times$ is $\mathrm{BN}, \mathrm{y}$ is $\mathrm{PN}+88$ pixels.
4770 - Pause in the demonstration while the ' m ' key is pressed.
4780 - Erases the line through A.
4781 - If $f=0$ then both lines are horizontal initially, in which case only one line was drawn and so only one needs to be erased. (line 4785 is omitted).
4785 - Erases the line through B.
4786 - The demonstration is halted while the ' $n$ ' key is pressed.
4787 - Pressing the ' $x$ ' key returns to the initial options.
4790 - Plots ( $x, y$ ), the position of $P$, only if it fits within the screen and the lines are not parallel (indicated by $e=0$ ).
4810 - Draws the line through A.
$4820-\operatorname{Sets} \mathrm{f}=0$ if both lines are horizontal.
4830 - Draws the line through $B$ if the lines are not both horizontal.


```
SQQS TF KJSO THEN GO TO SGREQ
```




REETRA



Subroutine 5000-5120 finds where the line through A meets the edges of the screen. A has coordinates (ax,ay).
$5000-$ Sets $k=k$ (modulo 180).
5005 - If $k$ is obtuse then the gradient of PA is negative, in which case jump to 5080 .
5010 - If $k=90$, then PA is vertical and so the coordinates (ax,0) and $(a x, 175)$ are returned.
5020 - If $k=0$ or 180 ( $k=180$ is possible when the subroutine is called from line 5005) then PA is horizontal and so the coordinates ( 0, ay) and (255,ay) are returned.

5030 - If $\frac{a y}{a x}<$ tank, i.e. the gradient $O A$ is less than the gradient of PA, then PA meets the bottom of the screen at the point with coordinates (ax - ay/tank,0).
5040 - If $\frac{a y}{a x}>_{\text {tank }}$, i.e. the gradient of $O A$ is greater than the gradient of PA, then PA meets the left side of the sereen at ( $0, a y-a x$ tank)
5050 - If the gradient of $A S$, where $S$ is the top right corner of the screen, is less than the gradient of PA, then PA meets the top of the screen at (ax + (175-ay)tank,175).
5060 - If the gradient of AS is less than the gradient of PA, then PA meets the right side of the screen at ( 255 , ay $+(255-a x)$ tank).
5080-5120 The coordinates of the points where PA meets the edges of the screen are evaluated in a similar way to that above, but for obtuse values of $k$.

On RETURN ( $p, q$ ) and ( $s, t$ ) are the coordinates for the endpoints of the line to be drawn through $A$.


```
    GO TO 6010.
6020 IF j<0 THEN LET j=j+180: EO
Ta 6%2,
6030 IF j>OQ THEN EOTO EA10
```



```
GQSE IF j=Q THEN LET }u=0\mathrm{ : LET }|
By:LET w=255: LET Z=3y, RETUP娄
```





```
SOTO LET }u=0, LET v=ay-bx*TATH (P
T<180*j?
```





```
N
6090 LET w=255: LET z=ay+{255-&x
3TAN :FF,MBQ#j)
E100 RET1m4
```



```
i) THEN LET V=0: LET U:bx-ay,TAN
```



```
5120 LET U=e55: LET v=ay+ie55-E%
*TGM [PIM1EQ*;
EISM IF {ay-175},EK\TAN iPI,1BQ%t
i) THEN LET Z=17E: LET BHEhx+!375
-ay),TAN (PI;1BO#i): RETURN
5140 LET w=0: LET z=ay-bx*TAN {f
T/380.j)
Sise ferupm
```

$6000-j=$ the angle which $P B$ makes with the horizontal.
Subroutine 6000-6150 is similar to subroutine 5000-5120, except that on RETURN ( $u, v$ ) and ( $w, z$ ) are the coordinates of the endpoints of the line to be drawn through $B$.


[^0]:    
    
    空 $+x$ ，
    
    
    $5_{7}^{7}$
    7I® OUER B：PLOT ax，BE：LEAER $1:$
    
    
     ${ }^{\circ}$
    725 RUER G：PLDT 土尺アチン，BA＋y
    730 NEXT
    

