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Dietary nitrate and population health:
a narrative review of the translational
potential of existing laboratory studies
Oliver M. Shannon1, Chris Easton2, Anthony I. Shepherd3, Mario Siervo4, Stephen J. Bailey5 and Tom Clifford5*

Abstract

Background: Dietary inorganic nitrate (NO3
−) is a polyatomic ion, which is present in large quantities in green leafy

vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting
dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of
inorganic NO3

− consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive
function, and exercise performance. Translating the findings from small laboratory studies into ‘real-world’
applications requires careful consideration.

Main body: This article provides a brief overview of the existing empirical evidence basis for the purported health-
promoting effects of dietary NO3

− consumption. Key areas for future research are then proposed to evaluate
whether promising findings observed in small animal and human laboratory studies can effectively translate into
clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer
duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and
acceptability of different strategies to facilitate a prolonged increase in dietary NO3

− intake; 3) exploitation of
existing cohort studies to explore associations between NO3

− intake and health outcomes, a research approach
allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4)
identifying factors which might account for individual differences in the response to inorganic NO3

− (e.g. sex,
genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the
influence of oral health and medication on the therapeutic potential of NO3

− supplementation; and 6) examining
potential risk of adverse events with long term high- NO3

− diets.

Conclusion: The salutary effects of dietary NO3
− are well established in small, well-controlled laboratory studies.

Much less is known about the feasibility and efficacy of long-term dietary NO3
− enrichment for promoting health,

and the factors which might explain the variable responsiveness to dietary NO3
− supplementation between

individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the
potential applications of dietary NO3

− supplementation to improve population health.

Keywords: Nitrate, Beetroot juice, Population health, Epidemiology, Randomised controlled trials, Blood pressure,
Exercise performance, Translation
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Background
Dietary inorganic nitrate (NO3

−) is a polyatomic ion
present in large quantities in green leafy vegetables and
certain root vegetables such as beetroot [1]. In recent
years, inorganic NO3

−has attracted substantial attention
as a potential health promoting and exercise
performance-enhancing dietary compound. These effects
have largely been attributed to its ability to serve as a
substrate for the ubiquitous gasotransmitter, nitric oxide
(NO; Fig. 1) [2]. Following consumption, inorganic
NO3

−is absorbed in the upper gastrointestinal tract, in-
creasing plasma NO3

− concentration [3]. In the blood,
exogenous NO3

− mixes with endogenous NO3
− pro-

duced via oxidation of NO. Most (~ 60%) of the ingested
NO3

− is excreted in the urine [4]. However, ~ 25% is ac-
tively taken up by the salivary glands via the transporter
protein sialin [5], and secreted into the oral cavity, where
it is reduced to nitrite (NO2

−) by facultative anaerobic
bacteria residing primarily on the dorsal surface of the
tongue [6, 7]. Salivary (in the saliva) NO2

− is then swal-
lowed and a portion is converted into NO and other ni-
trogen oxides in the acidic environment of the stomach

[2, 8, 9]. A further portion of the swallowed NO2
−

reaches the systemic circulation, where it can be trans-
ported to various tissues and reduced to NO by a range
of enzymatic and non-enzymatic catalysis [2, 3]. By in-
creasing the bioavailability of NO and other nitrogen ox-
ides, which play a role in the regulation of multifarious
physiological processes, inorganic NO3

− has the capacity
to elicit far-reaching effects in the human body.
One of the most well-documented effects following in-

organic NO3
− consumption is a decrease in blood pres-

sure (BP), an effect which was first demonstrated by
Larsen and colleagues from the Karolinska Institute in
2006 [10]. This group reported that 3 days of supple-
mentation with NO3

− salts (0.1 mmol/kg/d sodium
NO3

−) reduced diastolic and mean arterial BP by − 3.7
and − 3.2 mmHg, respectively, in young healthy adults. A
number of independent research groups [11–16] has
substantiated these promising findings across a range of
participant cohorts and using various supplementation
strategies, including the provision of whole and juiced
vegetables, especially beetroot juice [17]. Over the past
10 years, as this burgeoning research area has expanded,

Fig. 1 A schematic representation of the nitrate-nitrite-nitric oxide pathway. Created with Biorender.com
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various other potentially beneficial effects of inorganic
NO3

− consumption have also emerged. Notably, NO3
−

has been shown to improve a range of cardiovascular
risk factors [17], increasing endothelial function [14, 18–
21], decreasing arterial stiffness [15, 20, 22, 23], and re-
ducing platelet aggregation [20, 24, 25]. Some [26–28],
but not all [18, 29–31] studies have also shown benefi-
cial effects of inorganic NO3

− on cognitive function – ef-
fects which may be underpinned by alterations in
cerebrovascular blood flow [31–33] and could be of
value to a range of clinical and healthy populations [34].
Likewise, NO3

− has been identified as a potential pre-
biotic for the oral microbiome [35], with the potential to
positively impact oral health [36]. Moreover, NO3

− con-
sumption has been demonstrated to improve perform-
ance during continuous [12, 13, 29, 37–42], intermittent
[43–45] and strength-based [46, 47] exercise, especially
in untrained and recreationally active individuals [40,
48–50]. The mechanisms for the ergogenic effects of
NO3

− have not been fully resolved, but may include: 1)
improvements in mitochondrial efficiency (reported by
some [51], but not others [52]); 2) enhanced muscle con-
tractile efficiency/ function [53–56]; and 3) augmented
tissue blood flow, particularly to areas of low oxygen
tensions such as type II muscle fibres (demonstrated in
animal models [57, 58], but with less convincing data in
humans [59–63]).
Current research has provided valuable insight into

optimisation of NO3
− supplementation strategies (e.g.

pharmacokinetics, dose-response and supplementation
duration) [13, 64, 65] and mechanisms of action [51, 53,
57, 66]. Nevertheless, more research is needed to under-
stand whether findings from typically small, well-
controlled laboratory studies are likely to translate into
clinically relevant improvements in population health.
This article highlights key areas for further research that
could help in this regard. Such research is warranted to
help guide practitioners, influence policy, and form
guidelines for the effective and safe consumption of
inorganic NO3

−.

Main text
Research focus 1: large-scale, longer duration trials
Although NO3

− consumption has been linked with a
range of positive health outcomes, the majority of trials
exploring the salutary effects of inorganic NO3

− have in-
volved short-term supplementation regimens, typically a
few days in duration. Only a handful of trials have ex-
plored the medium- to longer-term effects of NO3

− con-
sumption (4 weeks to 6 months), usually focusing on BP
or endothelial function as an outcome. Whilst not a uni-
versal finding [67, 68], beneficial effects of medium- to
longer-term NO3

− supplementation protocols have been
reported in some trials [69–71]. For example, Siervo

et al. [69] found that 2 months supplementation with
NO3

−-rich beetroot juice (~ 6.5 mmol/d NO3
−) de-

creased 24-h systolic and diastolic BP by − 10.8 and −
5.4 mmHg, respectively, in a Sub-Saharan African set-
ting. Similar effects were also observed when NO3

− rich
beetroot juice was co-ingested alongside folate. In an-
other study, Mills and colleagues [70] showed that 6
months consumption of NO3

−-rich beetroot juice (~ 11
mmol/d NO3

−) decreased central systolic pressure by −
2.6 mmHg. Likewise, Kapil et al. [71] reported reductions
in 24-h systolic and diastolic BP (7.7 and 5.2 mmHg, re-
spectively) and improved endothelial function and arter-
ial stiffness with 4 weeks NO3

−-rich beetroot juice
supplementation (6.4 mmol/d NO3

−) with no change
after placebo. Although focusing on different outcomes
to the above trials, a study by Thompson et al. [72] also
showed greater adaptations to sprint interval training in
individuals consuming NO3

− rich beetroot juice (13
mmol/d) over a 4-week period, providing further evi-
dence of a benefit of this supplement when given over
prolonged periods.
By contrast, studies by Blekkenhorst [67] and Sundq-

vist [68] observed no effects of 4- and 5-week NO3
− in-

terventions on BP. The lack of effect in these studies
could be related to the relatively low NO3

− doses admin-
istered (2.4 and 4.8 mmol/d NO3

−, respectively). Con-
versely, the source of NO3

− (vegetables or NO3
− pills

rather than NO3
−-rich beetroot juice) could be relevant

in explaining the lack of effect in these studies, given dif-
ferent foods providing equivalent doses of NO3

− appear
to have divergent effects on plasma NO2

− concentration
and BP [16], which could be linked to the (poly) phenol
and ascorbate content of these foods [73]. Indeed, in
most studies to date NO3

− has been administered as
beetroot juice, which is also rich in a constellation of dif-
ferent bioactive compounds, particularly (poly) phenols
and the betalains [74]. Independent of NO3

−, betalains
have been shown to possess antioxidant [75], anti-
inflammatory [76], and vasodilatory [77] properties, al-
though studies in humans are still scarce. To isolate the
effects NO3

− from other compounds in beetroot juice,
researchers often compare the effects of a NO3

− rich
beetroot juice to a taste-, smell- and appearance-
matched NO3

− depleted juice. One limitation of this
strategy is that it cannot account for any synergistic in-
teractions between NO3

− and the other bioactive com-
pounds that may augment the physiological effects of
beetroot juice; in other words, we cannot be certain if
the positive effects in these studies are simply due to
NO3

− or its interactions with the other bioactive com-
pounds present. Thus, studies chiefly aimed at untan-
gling the mechanistic effects of NO3

− may prefer to
administer NO3

− in the form of NO3
− salts instead of

food-based supplements that contain other compounds.
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Overall, additional comparisons of NO3
− rich beetroot

juice and sodium NO2
− or NO3

− supplements are re-
quired. When interpreting the findings of the studies
discussed in this review, it is important the reader is
aware that studies with NO3

− salts and NO3
− -rich beet-

root juice do not contain the same compounds and
therefore different effects are possible. Notwithstanding,
as discussed in Section 4 of this review, cross-talk be-
tween NO3

− and other dietary components or
participant-level differences in the response to NO3

−

could also account for the lack of effect of NO3
− in the

studies of Blekkenhorst [67] and Sundqvist [68].
Based around the current evidence it is likely that, under

the right circumstances (which remain to be fully elucidated),
consumption of inorganic NO3

− could elicit longer-term
health benefits. In order to fully appreciate the potential ap-
plications of NO3

− on population health, large-scale (e.g. n=
> 1000), longer duration (e.g. 2–5 years) trials which focus
not only on risk factors (e.g. BP, endothelial function, cogni-
tive function), but also incidence of key non-communicable
diseases (e.g. CVD, dementia) are warranted. Specific consid-
erations for the design of such studies are provided in
Table 1. Whilst likely to be logistically complex and require
substantial financial backing from funders, this research
could be justified by the promising evidence from short-term
trials and the potential application of findings to ease the un-
sustainable societal and financial burden of conditions such
as CVD (annual global costs ~$863 billion [78]) and demen-
tia (annual global cost ~$1 trillion [79]). Prior to undertaking
this research, it is essential to obtain more data on the feasi-
bility and acceptability of different strategies to increase ha-
bitual NO3

−intake by a sufficient quantity and for a sufficient
period to obtain long lasting health benefits. This informa-
tion is critical for the design of feasible longer-term trials and
translation to the general population, and will be explored in
more detail in the next section.

Research focus 2: feasibility and acceptability of different
strategies to facilitate prolonged, increased consumption
of nitrate
To date, a limited number of studies have reported data
on the feasibility and acceptability of beetroot juice as a
vehicle for increasing habitual NO3

− intake. Mixed find-
ings have been reported. For example, Ormesher and
colleagues [80] gave 40 pregnant women 70mL/d con-
centrated beetroot juice (~ 400 mg of NO3

−) and, after 8
days of ingestion, 97% of participants indicated they
would consume the supplement again, if they were ex-
periencing benefits. However, only 62% of participants
reported finding it easy to consume the beetroot juice
and just over half of the participants rated the drink as
palatable (54%). These findings suggest that longer-term
consumption of beetroot juice may be difficult in this
cohort, which could impede longer-term adherence.
More recently, Kandhari et al. [81] evaluated the feasibil-
ity of a 60-day concentrated beetroot juice and folate
intervention to treat hypertension in Sub-Saharan Africa.
No serious adverse events were reported, and compli-
ance was > 90%, suggesting beetroot juice was well ac-
cepted in this population. In addition, all participants
rated the taste as “good” or “very good” and most partic-
ipants (~ 87%) indicated a preference for beetroot juice
over BP medication. The studies by Ormesher et al. [80]
and Kandhari et al. [81] both administered the same
brand of concentrated beetroot juice, such that the dif-
ferent findings cannot be attributed to a different type of
supplement administered. Alternatively, it is possible
that the different findings of Ormesher et al. [80], which
was conducted in the UK, and Kandhari et al. [81],
which was conducted in Tanzania, reflect cultural/ re-
gional differences in food preference. However, it is
noteworthy that participants in the Ormesher et al. [80]
study were also pregnant, which may have further

Table 1 Key considerations for future randomised controlled trials exploring the health effects of NO3
− ingestion

Consideration Recommendation

Dose Consumption of a NO3
− dose ≥8 mmol

NO3
− form Provision of NO3

− salts or vegetables, with NO3
− content independently verified

Study duration Longer duration (e.g., months-to-years) warranted

Participant cohort ‘At risk’ cohort studied (e.g., individuals with hypertension for studies exploring effects of NO3
− on cardiovascular disease risk)

Genetics/
microbiome

Consider recruitment of T allele carriers with G894T polymorphism in the eNOS gene

Microbiome Consider recruitment of individuals with greater abundance of NO3
− reducing oral bacteria

Mouthwash Avoidance of mouthwash prior to and during the study

Dietary controls Avoidance of thiocyanate and sulphate rich foods in conjunction with NO3
−

Other lifestyle
factors

Avoidance of smoking

Outcomes Inclusion of hard clinical endpoints (e.g., CVD or dementia incidence) to build upon promising findings on risk factors for these
conditions
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contributed towards the difference in palatability given
pregnancy is known to influence taste [82].
In another study, Babateen et al. [83] examined the

feasibility of different doses of concentrated beetroot
juice in overweight and obese older adults over a 13-
week period. Compliance was high, no adverse events
were reported, and the attrition rate was 19%, which is
similar or lower than the dropout rates reported in other
human intervention trials [84, 85]. Collectively, these
studies suggest that beetroot juice may represent an ac-
ceptable strategy to facilitate increased consumption of
NO3

−, at least in certain cohorts. However, future stud-
ies need to evaluate the feasibility and acceptability of
beetroot juice consumption over longer periods (e.g., > 6
months) and in other populations.
Concentrated, commercially available beetroot juice

shots have the advantage of being readily available (they
are now sold in many major supermarket chains) and
contain a standardised dose of NO3

− sufficient to influ-
ence myriad health outcomes. This form of beetroot
juice has also been shown to be more effective at redu-
cing BP (and presumably eliciting other physiological
changes) than non-concentrated beetroot juice when the
same dose is administered [86]. In addition, as men-
tioned in the previous section, beetroot juice also con-
tains other bioactive compounds that may contribute to
overall health. Nevertheless, as participants do not al-
ways enjoy the taste of beetroot juice and the relatively
high cost of commercially available beetroot ‘shots’ (~
£1–2 or $2–3 each) may be prohibitive to some users, it
is essential for researchers to explore the feasibility and
acceptability of other strategies to increase NO3

− con-
sumption. This could include other NO3

−-rich foods
(e.g. lettuce, rhubarb, spinach, radish), gels, powders,
crystals, capsules and non-beetroot drinks. To this end,
both Blekkenhorst et al. [67] (> 98% compliance) and
Sundqvist et al. [68] (> 97% compliance) demonstrated
excellent compliance to 4 and 5 week interventions, re-
spectively, with NO3

−-rich vegetables, which were well
tolerated with minimal side effects. Importantly, Sundq-
vist et al. [68] reported similar compliance between
NO3

−-rich vegetables and NO3
−-containing pills (> 97%

vs. > 98%). Nevertheless, neither Blekkenhorst et al. [67]
nor Sundqvist et al. [68] reported beneficial physiological
effects of their interventions, which could be related to
the relatively modest NO3

− doses provided (~ 2.4 and
4.8 mmol/d respectively) or other methodological factors
which were discussed in Section 1 of this review. A com-
prehensive investigation of patient preferences and the
real and perceived barriers of adopting a high-NO3

− diet
or consuming NO3

−-rich supplements warrants further
investigation. In addition, studies need to determine the
amount of NO3

−-rich vegetables required to elicit bene-
ficial physiological effects, whether this is achievable for

different populations, and whether effects are superior to
non-vegetable NO3

− sources. Finally, it is worth explor-
ing whether there are regional and population prefer-
ences, as this knowledge could be used to develop more
targeted NO3

− products.

Research focus 3: nitrate intake and health outcomes in
epidemiological studies
The role of dietary NO3

− for human health has gradually
shifted over the last five decades. Indeed, this compound
was initially considered as a risk factor for cancer, endo-
crine disorders and infant methaemoglobinaemia. How-
ever, the stigma attached to dietary NO3

− has gradually
dwindled, and NO3

− is now viewed by many a potential
health-promoting compound (see Section 6 for further
details). The initial results suggesting a harmful role of
dietary NO3

− intake (from food) were mostly derived
from animal models and weakly designed epidemio-
logical studies which have had a prominent, almost de-
monizing, influence on defining the role of dietary NO3

−

for human health [87]. These initial studies informed the
still contentious WHO nutritional recommendations for
dietary NO3

− intake in humans which was set at 3.7 mg/
kg body weight [88]. The perception of dietary NO3

− as
a risk factor started to change with the discovery of the
role of NO3

− as key substrate for the NO3
−-NO2

−-NO
pathway and the evidence of a beneficial effect of NO3

−

on health parameters such as BP.
After the study by Larsen et al. [10] in 2006, which

first demonstrated a BP lowering effect of sodium NO3
−,

there was a rapid surge in research testing the effects of
dietary NO3

− on health outcomes [89]. However, the re-
search strategy in the last decade has almost taken an in-
verse approach to that typically adopted in nutritional
science as the conduction of clinical trials have sur-
passed epidemiological investigations, which are gener-
ally considered as a first step to validate research
hypotheses [90–92]. One of the primary reasons for the
inverse trend is the lack of reliable and representative
food databases of NO3

− content to support an accurate
dietary assessment [93]. An additional limitation is the
severe lack of validation studies testing the accuracy of
dietary assessment methods against valid biomarkers of
NO3

− intake (e.g. 24-h urinary NO3
− concentrations)

[94]. This is compounded by the fact that the NO3
− con-

tent of vegetables will vary by farming method (whether
NO3

− fertiliser is used or not), growing conditions, time
of year the crop is harvested, and storage conditions [1],
such that there is likely to be a degree of error in esti-
mated NO3

− intake values [95]. Several research groups
have developed independent databases by collecting data
on NO3

− food content from published sources in an at-
tempt to obtain valid estimates of NO3

− intake and
evaluate associations with health outcomes [96, 97].
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Although this is a step in the right direction, it remains
difficult to accurately estimate long-term habitual dietary
NO3

− intake for the reasons mentioned above. In
addition, NO3

− concentrations measured in biological
fluids have been used in some analysis as indirect
markers of NO3

− intake [98]. Whether these objective
markers of NO3

− intake show stronger links with health
outcomes compared with subjective, self-reported NO3

−

intake values, is the subject of ongoing research. A sum-
mary of the key non-cancer related epidemiological
studies testing the association of inorganic NO3

− with
health outcomes is provided in Table 2.
The first studies to evaluate the association between

dietary NO3
− intake and health outcomes were con-

ducted in 2016 in Iran (two studies) [99, 101] and in the
United States (one study) [100]. The former evaluated
the association of vegetable NO3

− intake with risk of
chronic kidney disease in the Tehran Lipid and Glucose
Study and found a higher prevalence of chronic kidney
disease (CKD) at baseline (cross-sectional analysis) in
the high- NO3

− intake group whereas no significant as-
sociation with CKD risk was observed after a 3-year fol-
low up [101]. Using the same dataset, Bahadoran et al.
[99] found that dietary NO3

− intake, overall and from
animal sources, was not associated with prospective risk
of diabetes. The US study was conducted in a very large
sample (> 100,000 participants) and assessed dietary
NO3

− intake in the Nurses’ Health Study and the Health
Professionals Follow-up Study [100]. The results showed
a significantly lower risk of primary open-angle glau-
coma in participants with higher NO3

− intake [100].
However, a subsequent analysis conducted in the
Nurses’ Health Study found a non-significant association
between dietary NO3

− and prospective risk of coronary
heart disease [111]. More recently, several cross-
sectional and longitudinal studies have observed signifi-
cant associations between high NO3

− intake or urinary
NO3

− concentrations (as a proxy for NO3
− intake) with

cardiovascular outcomes including lower BP [107], risk
of hypertension [109], common carotid intimal medial
thickness [103], congestive heart failure [114] and CVD
mortality [109]. Conversely, higher plasma NO3

− con-
centrations in the Framingham Offspring Study [106]
were associated with an increased risk of all-cause mor-
tality, which may be explained by the rise in plasma
NO3

− concentrations in participants with impaired kid-
ney function included in the analysis and highlights the
potential risk of reverse causality in these investigations.
The improvements in physical performance and cogni-
tion observed in some of the NO3

− supplementation tri-
als were also explored in two cross sectional studies [98,
112]. Improved hand-grip strength and timed up and go
tests (a test of functional mobility) were observed in
middle-aged and older Australian participants with a

higher NO3
− intake [112] whereas NO3

− concentrations
measured in spot urine samples were not associated with
improved cognition in 1015 older Americans partici-
pants enrolled in the National Health and Nutrition
Examination Survey [98]. The NIH workshop on dietary
NO3

− held in 2016 [115] advocated for more epidemio-
logical research to be conducted to better define the pre-
dictive role of dietary NO3

− consumption for the
prevention as well as treatment of chronic diseases. The
consensus statement also encouraged the development
of detailed and country-specific NO3

− food composition
tables for a more accurate assessment of the exposure to
dietary NO3

− [115]. The current epidemiological evi-
dence points towards a protective role of dietary NO3

−

intake for cardiovascular events and mortality whereas
the predictive role for cancer risk is still undefined as
latest meta-analyses on the topic indicate a lack of asso-
ciation between dietary NO3

− consumption and cancer
risk [116, 117]. There is still scarce or no data from pro-
spective studies on the association of dietary NO3

− in-
take with other chronic conditions with established links
with NO3

−/NO2
− and NO pathways such as diabetes,

hypertension, physical disability or dementia. Further
epidemiological studies in this area are therefore war-
ranted. Such research will complement the findings from
RCTs, by providing information on the effectiveness of a
NO3

− for disease reduction in real-world circumstances
with greater sample sizes and longer follow up than is
logistically feasible in most RCTs [90, 91].

Research focus 4: inter-individual differences in the
response to nitrate
At the individual participant level, several groups have
suggested the existence of possible ‘responders’ and
‘non-responders’ to NO3

−, irrespective of the vehicle
used to provide this inorganic anion [64, 118, 119]. It is
important to note that random within-subject variation
could explain much of the variability in response to
NO3

− supplementation between individuals [120, 121].
Similarly, issues may also arise when attempting to es-
tablish whether an individual is a dependable ‘responder’
or ‘non-responder’ on different occasions [122, 123].
Nevertheless, several factors have been identified which
could explain genuine differences in the response to
NO3

− between individuals. These include individual
characteristics such as age [124, 125], health [126] and
exercise training status [40, 49], sex [14], genetic factors
[127], and differences in the oral microbiome (explored
further in Section 5 of this review). In addition, between-
participant differences in potentially plastic lifestyle fac-
tors such as smoking status [128], use of mouthwash
[129], and habitual diet [49, 130] might also impact an
individual’s response to NO3

−. We briefly review the
impact of these variables on the effects of NO3

− below.
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Table 2 Key epidemiological studies exploring associations between inorganic nitrate consumption and non-cancer related health
outcomes

Author,
year

Population
Size

Study Design Duration
of Follow
up (y)

Nitrate
Assessment

Health Outcome Key Findings

Bahadoran
et al., [99]

4920 Prospective
(Tehran Lipid
and Glucose
Study)

5.8 FFQ Type 2 Diabetes (T2D) No significant association between
NO3

− intake and the risk of T2D in fully
adjusted model

Kang et al.
[100]

Nurses’
Health Study
(63,893
women)
Health
Professionals
Follow-up
Study (41,094
men)

Prospective ~ 30 years
for both

FFQ Primary open-angle glau-
coma (POAG)

Higher dietary NO3
− and green leafy

vegetable intake was associated with a
lower POAG risk, particularly POAG
with early paracentral VF loss at
diagnosis.

Mirmiran
et al. [101]

1546 Prospective
(Tehran Lipid
and Glucose
Study)

3 FFQ Chronic Kidney Disease (CKD) At baseline, higher intake of high-
vegetable NO3

− intake was associated
with a 48% higher chance of having
CKD (OR 1.48, 95% CI 1.05–2.13). After
3 years of follow-up, there was no sig-
nificant association with the occur-
rence of CKD

Blekkenhorst
et al. [102]

1227 Prospective
(Perth
Longitudinal
Study of Aging
in Women)

15 FFQ Atherosclerotic vascular
disease (ASVD) mortality

A high vegetable NO3
− intake was

associated with a lower risk of ASVD
(HR: 0.79 95% CI: 0.68, 0.93, P = 0.004)
and all-cause mortality (HR: 0.87 95%
CI: 0.78, 0.97, P = 0.011)

Bondonno
et al. [103]

1226 Prospective
(Perth
Longitudinal
Study of Aging
in Women)

14.5 FFQ CCA-IMT, plaque severity and
risk of an ischemic
cerebrovascular disease
event

Higher intake of vegetable NO3
− was

associated with 17% lower risk of
cerebrovascular disease events (P =
0.02) and lower CCA-IMT (P = 0.002).

Gumanova
et al. [104]

1087 Cross-sectional
(Stress Aging and
Health Study)

– Plasma NOx Diabetes type II,
hyperthyroidism, coronary
heart disease, gout and
thrombosis/stroke,
osteoporosis, cancer

NOx over 44.7 μM were associated with
increased prevalence of diabetes type
II, hyperthyroidism, coronary heart
disease, gout and thrombosis/stroke

Kuhnle et al.
[105]

7598 Cross-sectional
(EPIC Norfolk)

– Drinking water
NO3

−

concentrations

Blood pressure (BP) At low sulfate concentrations, NO3
−

was inversely associated with BP (− 4
mmHg in top quintile) whereas this
was reversed at higher concentrations
(+ 3 mmHg in top quintile)

Maas et al.
[106]

2855 Prospective
(Framingham
Offspring Study)

17.3 Plasma NO3
− All-cause mortality and

incident CVD
Plasma NO3

− was weakly associated
with an increased risk of death (HR,
1.16; 95%CI, 1.00–1.35 P = 0.057) but
not with incident CVD

Smallwood
et al. [107]

919 Cross-Sectional
(InChianti)

– 24-h urinary
NO3

−
Blood pressure Systolic blood pressure in the ≥2 mmol

urinary NO3
− excretion group was 3.9

(CI: − 7.1 to − 0.7) mm Hg lower than
in the comparison < 1 mmol excretion
group.

Liu et al.
[108]

2900 Prospective (Blue
Mountains Eye
Study)

15 FFQ CVD mortality In multivariable-adjusted analysis, par-
ticipants in quartile 4 [> 137.8 mg/d;
HR 0.63 (95% CI 0.41, 0.95)] of vege-
table NO3

− intake had lower hazards
for CVD mortality compared to partici-
pants in quartile 1 (< 69.5 mg/d)
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Individuals with lower aerobic fitness levels may respond
more favourably to NO3

− supplementation [40, 131]. This
theory stemmed from several studies reporting that while
NO3

− supplementation from any source enhanced exercise
performance in recreational level athletes (V̇O2peak 40–60
ml/kg/min), such effects were less pronounced or non-
existent in well-trained and elite endurance athletes (typically
manifesting a V̇O2max > 60ml/kg/min) [132–135]. Porcelli
et al. [40] provide the most convincing evidence to support
this notion and demonstrated that, when all other methodo-
logical factors such as the exercise test and NO3

− dose are
held content, individuals with a higher aerobic fitness status
are less responsive to the ergogenic effects of NO3

−. Indeed,
those authors reported beneficial effects of sodium NO3

− on
3 km running performance in individuals with low (V̇O2peak:
28.2–44.1ml/kg/min), and moderate (V̇O2peak: 45.5–57.1ml/
kg/min), but not high (V̇O2peak: 63.9–81.1ml/kg/min) aer-
obic fitness levels. Several possible explanations have been

put forth to try and explain why high fitness levels might
render NO3

− supplementation less effective, and these are
discussed in detail elsewhere [40, 131, 136]. One prominent
explanation is that elite endurance athletes might produce
more NO via the canonical NOS pathways and are therefore
less reliant on NO3

− as a substrate for NO generation [132].
Furthermore, recent evidence indicates that NO3

− might
elicit preferential effects on type II compared with type I
muscle fibres [54, 57, 58]. Well-trained endurance athletes
might therefore benefit less from NO3

− supplementation
given a lower proportion of type II, and a higher proportion
of type I, muscle fibres compared with recreationally active
individuals [137, 138]. In contrast, some studies have shown
a beneficial effect of NO3

− in well-trained athletes [42, 139–
141]. Jonvik et al., (2015) suggested that methodological limi-
tations of some studies could at least partly explain the null
findings in some studies with elite athletes. Notably, there
are far less studies assessing the effects of NO3

−

Table 2 Key epidemiological studies exploring associations between inorganic nitrate consumption and non-cancer related health
outcomes (Continued)

Author,
year

Population
Size

Study Design Duration
of Follow
up (y)

Nitrate
Assessment

Health Outcome Key Findings

Mendy et al.
[109]

17,618 Prospective
(NHANES)

4.3 Urinary NO3
−

in spot urine
samples

Hypertension and CVD
prevalence and all-cause
mortality

1-unit increase in log-transformed urin-
ary NO3

− was associated with a > 30%
decrease in the odds of hypertension
(odds ratio, 0.67; 95% confidence inter-
val [CI], 0.55–0.81), stroke (OR, 0.61, 95%
CI, 0.43–0.87) and cardiovascular mor-
tality (HR, 0.44; 95% CI, 0.26–0.73)

Jackson et al.
[110]

5324 Prospective
(Australian
Longitudinal
Study on
Women’s Health)

15 FFQ Incidence of self-reported
CVD-related complications

Women reporting higher total dietary
NO3

− intakes (Q4 > 78.2 mg/d) and
vegetable NO3

− intakes (Q4 > 64.4 mg/
d) were 25 and 27% reduced risk of
developing CVD-related complications,
respectively.

Jackson et al.
[111]

Nurses’
Health Study
and Health
(62,535
women)

Prospective 26 FFQ Coronary heart disease Dietary NO3
− intake was not related to

risk of CHD after adjustment for other
lifestyle and non-vegetable dietary
factors

Sim et al.
[112]

1420 Cross-sectional
(Perth
Longitudinal
Study of Aging
in Women)

– FFQ Hand-grip strength and time
up and go (TUG)

Higher NO3
− intake (31.2 mg/d) was

associated with lower odds for weak
grip strength (OR 0.84, 95% CI 0.74–
0.95, P = 0.005) and slow TUG (OR 0.86,
95% CI 0.76–0.98, P = 0.021)

Riddell et al.
[113]

2656 Prospective 1.5 Urinary
NO3

− to
creatinine
ratio (uNCR)

Prediction of renal transplant
rejection

Overall uNCR was highly variable with
no diagnostic threshold for kidney
transplant rejection

Wu et al.
[114] 2020

14,894 Cross-sectional
(NHANES)

– Urinary NO3
−

in spot urine
samples

Congestive heart failure,
coronary heart disease,
angina pectoris, myocardial
infarction

Significant association between urinary
NO3

− and congestive heart failure
(OR = 0.651, 95% CI 0.507–0.838, P <
0.001)

Pereira et al.
[98]

1015 Cross-sectional
(NHANES)

– Urinary NO3
−

in spot urine
samples

Cognitive function Urinary NO3
− concentrations were not

associated with cognitive performance
on any of the cognitive tests.

EPIC European Prospective Investigation of Cancer, FFQ Food Frequency Questionnaire, CCA-IMT Common Carotid Intimal Medial Thickness, NO3
− Nitrate, NO2

−

nitrite, NOx Nitrate + Nitrite Concentration, CVD Cardiovascular Disease, OR Odds Ratio, HR Hazard Ratio, NHANES National Health and Nutrition Examination
Survey, uNCR Urinary nitrate to creatinine ratio
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supplementation, irrespective of vehicle, in well-trained ath-
letes in comparison to healthy, physically active, individuals.
This is likely because well-trained athletes are only a small
fraction of the population, and are logistically harder to test
and recruit to studies due to their desire to avoid potential
training interruptions. Thus, more research is still required
to ascertain the influence of aerobic fitness levels on the re-
sponsiveness to NO3

− supplementation.
Women are underrepresented in research into the

health effects of dietary NO3
− [142]. Nevertheless, pre-

liminary evidence suggests potentially differential effects
of NO3

− (at least in regard to the effects of NO3
− on BP)

between the sexes, which warrants further investigation.
Women have been demonstrated to have greater oral
NO3

− reducing capacity than men due to an oral micro-
flora composition that is more conducive for NO3

− re-
duction to NO2

− [143]. Nevertheless, Kapil et al. [14]
and Coles and Clifton [144] both demonstrated BP-
lowering effects of NO3

− (potassium NO3
− and beetroot

juice, respectively) in men with higher baseline BP and
lower plasma NO2

− concentrations but not in women.
Likewise, in a meta-analysis by Jackson et al. [17], BP re-
ductions with NO3

− were greater in studies with more
male participants. Those authors speculated that this
could be related to a greater vascular production of NO
in pre-menopausal women due to oestrogen-related re-
lease and activity of NO [145], diminishing the response
to supplemental NO3

− in women compared with men.
Although studies remain scarce, there is some evi-

dence that the heterogeneous responses to NO3
− supple-

mentation are partly explained by polymorphisms in the
eNOS gene. This was first explored by Hobbs et al.,
[127], who examined the effects of NO3

− supplementa-
tion on BP in patients with and without a specific poly-
morphism in the eNOS gene (G894T), which has been
suggested to inhibit NO production from eNOS [127].
Although findings are equivocal [146], the G894T poly-
morphism, alongside being a T allele carrier, has been
associated with cardiovascular disease [147–149], of
which a key risk factor is diminished NO bioavailability
[150, 151]. Intriguingly, despite the small sample size
(n = 14), Hobbs et al., [127] found that NO3

− supplemen-
tation (beetroot bread) only reduced BP in patients who
were both T allele carriers and had the G894T poly-
morphism in the eNOS gene. A more recent study ex-
amined the influence of the G894T polymorphism and
NO3

− therapy on mortality in chronic heart failure pa-
tients [146]. Somewhat at odds with the findings of
Hobbs et al., [127], Azzam et al. [146] found that NO3

−

therapy (source not specified) increased the risk of mor-
tality in patients with the G894T polymorphism, and to
a greater extent in G allele carriers, suggesting that
NO3

− therapy might increase mortality in advanced
heart failure. However, as this study was observational,

cause-effect relationships cannot be established. More-
over, the findings are at contrast to the beneficial effects
of NO3

− shown in most [152–155], but not all [156,
157], short term intervention trials which show that
NO3

− improves cardiac function and/or exercise capacity
in heart failure patients. Clearly, more studies with larger
cohorts are required to determine the extent to which
genetic variation influences the responsiveness to NO3

−

supplementation, but the findings from these two studies
raise the possibility that that genetic factors could con-
tribute towards the inter-individual variability reported
by many studies.
Smoking has been shown to increase plasma and saliv-

ary concentrations of thiocyanate [158], a compound
which competitively inhibits uptake of NO3

− into the
salivary glands [159], potentially reducing the amount of
‘substrate’ available to the oral bacteria for reduction
into NO2

−. Consequently, it is possible that smokers will
experience compromised NO3

− metabolism and thus a
diminished physiological response to NO3

− supplemen-
tation versus non-smokers. Indeed, Bailey et al. [128]
demonstrated a smaller increase in salivary NO3

−,
plasma NO3

− and NO2
− concentration, and an attenu-

ated BP response, following a NO3
− bolus (beetroot

juice) in smokers compared to non-smoking controls.
It is possible that supplemental NO3

− is ineffective at
eliciting meaningful physiological changes in individuals
habitually consuming a high NO3

− diet. Nevertheless, as
population intake of NO3

− is typically low — Babateen
et al. [93] reported a median intake of 108 mg/d in
healthy individuals. With very few individuals regularly
consuming NO3

− levels to match those provided
through supplementation [160], high habitual NO3

− in-
take is unlikely to explain a lack of response to NO3

−

supplementation in most ‘non-responders’. Alternatively,
there is compelling evidence to suggest that consump-
tion of other dietary compounds alongside NO3

− may
have the capacity to influence response to this com-
pound, such that an individual’s background diet could
determine (at least transiently) their status as a NO3

−

‘responder’ or ‘non-responder’. For example, consump-
tion of glucosinolate-rich vegetables, such as those from
the Brassica family like broccoli, cauliflower, and cab-
bage, proximal to consumption of NO3

−-rich vegetables
was shown to blunt the BP lowering response of the lat-
ter [130]. Interestingly, this appears to be related to a
similar mechanism to which smoking attenuates the ef-
fect of NO3

−. Specifically, during processes that result in
plant cell membrane damage such as mastication, gluco-
sinolates are exposed to the enzyme myrosinase, which
catalyses the hydrolysis of glucosinolates into thiocyan-
ate [161]. Although consumption of thiocyanate-rich
vegetables leads to lower salivary and plasma thiocyanate
concentrations compared with smoking, Dewhurst-Trigg
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et al. [130] showed that the BP-lowering effect of a
NO3

−-rich smoothie was attenuated by the presence of
thiocyanate rich vegetables. In that study, thiocyanate
did not seem to interfere with NO3

− transport into the
mouth (as evident by similar salivary NO3

− concentra-
tions when NO3

− was consumed alongside vegetables
that were both high and low in thiocyanate), suggesting
that thiocyanate may influence other aspects of NO3

−

metabolism. Specifically, co-ingestion of thiocyanate syn-
thesising vegetables and NO3

−-rich vegetables lowered
salivary NO2

− concentration compared to ingestion of
NO3

−-rich vegetables alone. This suggests that some
Brassica vegetables might transiently alter the oral
microbiome, consistent with the antimicrobial effects of
thiocyanate derivatives in the oral cavity [162].
A study by Hughan et al. [163] found that the co-

ingestion of sodium NO3
− alongside conjugated linoleic

acid, an unsaturated fatty acid particularly abundant in
dairy and meat products, attenuated the rise in plasma
NO3

− and NO2
− concentrations and supressed the BP-

lowering and platelet-inhibiting effects that were appar-
ent when supplements were administered in isolation.
Mechanistically, co-consumption of conjugated linoleic
acid altered the metabolic fate of ingested NO3

− leading
to the formation of conjugated linoleic acid nitration
products, which do not appear to have the same vaso-
dilatory and platelet inhibiting properties as NO2

− and
NO. Likewise, Bailey et al. [164] found that the ingestion
of iodide, which is fortified in many foods [165] and
known to compete for salivary NO3

− uptake [159], low-
ered salivary NO3

− concentration when co ingested with
NO3

− rich beetroot juice. However, the increase in saliv-
ary and plasma NO2

− concentration, alongside the low-
ering of BP, were similar compared with NO3

− alone.
Finally, a possible interaction between dietary NO3

− and
sulphate was identified by Kuhnle et al. [105] who indi-
cated that when estimated sulphate intake was low,
higher dietary NO3

− intake was associated with lower
BP. Conversely, when sulphate intake was high, this as-
sociation was reversed, such that greater NO3

− intake
was actually associated with higher BP. The mechanistic
basis through which sulphate could modulate the BP
lowering effects of dietary NO3

− is presently unknown.
Collectively, the evidence presented above indicates

that the response to NO3
− is unlikely to be uniform be-

tween individuals, and could also potentially differ
within individuals based around malleable lifestyle fac-
tors such as habitual diet. Better understanding the fac-
tors that influence responsiveness to NO3

− is crucial to
maximise the efficacy of NO3

−-based interventions and
will facilitate the development of targeted interventions
for individuals most likely to benefit from consumption
of this compound. Given many of the factors which ap-
pear to moderate the effectiveness of NO3

− impact the

oral conversion of this compound into NO2
−, future re-

search could also explore the potential physiological ef-
fects of direct NO2

− administration (for a recent
example, see [166]), which does not require processing
in the mouth and could theoretically elicit more consist-
ent responses between individuals. Nevertheless, caution
should be taken to ensure such a strategy does not in-
crease formation of potentially carcenogenic nitrosa-
mines [167].

Research focus 5: oral microbiota and oral health
Once in the oral cavity, NO3

− is reduced to NO2
− during

the anaerobic respiration of facultative and obligate bac-
teria which are particularly abundant on the dorsal sur-
face of the tongue [168]. The oral microbiome
collectively comprises over 700 individual species or
phylotypes of bacteria that are organised in a series of
complex interdependent communities [169]. To date, 14
species of bacteria have been identified as NO3

− re-
ducers, the majority of which are from the genera Veillo-
nella, Prevotella, Neisseria, and Haemophilus [170]. A
greater relative abundance of these bacteria on the
tongue has been shown to augment the rate and magni-
tude of salivary NO2

− production following the ingestion
of NO3

− rich beetroot juice [171]. Conversely, disruption
of the oral microbiome by antibacterial mouthwash
causes a transient loss of viable NO3

−-reducing bacteria
[172] and severely blunts the generation of NO2

− in the
saliva [173]. Strong antibacterial mouthwash has also
been shown to increase BP, likely due to suppression of
NO production from the NO3

−-NO2
−-NO pathway

[174–176]. These data confirm the essential role of the
oral bacteria in NO homeostasis and support the hy-
pothesis that oral and systemic health are inextricably
linked [177].
The mouth is continually exposed to the external en-

vironment and is regularly subjected to brushing, floss-
ing, and nutrient intake, all of which may influence the
physiological conditions inside the oral cavity and alter
the composition of the bacterial milieu [178]. Ageing is
known to cause a reduction in salivary flow rate [179]
and has been reported to alter the composition of the
oral microbiome in some [180, 181] but not all [182]
studies. Other factors may also be expected to influence
the abundance and activity of oral bacteria, including ex-
ercise, diet, oral and systemic diseases, haemodialysis
[183] and peritoneal dialysis [184] and medication (par-
ticularly antibiotics). In particular, the ingestion of
NO3

−-rich beetroot juice has been shown to increase sal-
ivary pH and cause meaningful alterations to the oral
microbiome in favour of oral health [182, 185]. Given
the multitude of potential modifiers, it is perhaps unsur-
prising that there is profound between-individual vari-
ation in the abundance of NO3

−-reducing bacteria [121].
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Of note, these authors also reported significant within-
individual week-to-week variability in the abundance of
these bacteria and the magnitude by which plasma NO2

−

increased following the ingestion of NO3
−-rich beetroot

juice. This was despite participants standardising their
diet, physical activity, use of mouthwash, teeth brushing,
and tongue cleaning between visits. The unpredictability
in how different individuals respond to NO3

− supple-
mentation and how the same individual responds across
repeated visits poses a particular challenge for re-
searchers who wish to explore the therapeutic effects of
this dietary intervention.
While recent advancements in genomic sequencing

techniques have greatly enhanced our understanding of
human bacterial interactions in the context of NO
homeostasis, several important questions remain un-
answered. To date, the majority of the research explor-
ing links between the oral microbiome and health
outcomes has only reported the relative abundance of
phyla, genera, or species. Although this quantifies the
proportional makeup of the community structure it does
not reveal the metabolic activities of individual bacterial
species [186] which may vary depending on substrate
availability, metabolite expression from neighbouring
microbes and host cells, and the impact of environmen-
tal conditions [187]. Future research should deploy
meta-transcriptomic analysis to determine how factors
such as diet, medication, physical activity, ageing, and
disease influence NO2

− and NO3
− reductase gene ex-

pression of the oral bacteria. Furthermore, data from
epidemiological studies and short-term intervention tri-
als seem to support the notion that increasing habitual
dietary intake of NO3

− can improve markers of oral
health and reduce the incidence of caries [185, 188, 189].
It remains to be established whether dietary NO3

− sup-
plementation may also be an effective treatment method
for those already suffering from oral diseases such as
chronic periodontitis.

Research focus 6: risks versus rewards
NO3

− is increasingly recognised as a beneficial ion that
protects against chronic disease, yet, as noted in Section
3 of this review, historically, it was considered a food
contaminant with adverse health effects, particularly in-
creased risk of certain cancers and methaemoglobin-
aemia [1, 88]. While the aforementioned WHO ADI for
NO3

− of 3.7 mg/kg of body mass remain in place today,
the discovery of multiple positive health effects of NO3

−

have prompted a re-examination of these claims.
In 2004 the WHO reaffirmed their restrictions on

NO3
− intake yet, in 2008, a panel of experts from the

European Food Safety Authority, concluded that the epi-
demiological evidence did not support an association be-
tween NO3

− and cancer risk [190]. Similarly, in 2010,

the International Agency for Research on Cancer con-
firmed that there was inadequate evidence to suggest
NO3

− from food or water was carcinogenic in humans
[191]. Evidence that NO3

− might cause infant
methemoglobinemia, which was first mooted in the
1940s [192], has also been questioned. Indeed, an inves-
tigation conducted on behalf of the WHO in 2004 found
no exposure-response relationship between dietary
NO3

− and methemoglobinemia in infants [193]. It is also
worth noting that although some studies report mild ad-
verse symptoms with high NO3

− intake such as nausea
and sickness, to the authors knowledge, no serious ad-
verse events have ever been reported in clinical trials ad-
ministering NO3

− [1, 93].
Notwithstanding, the available evidence does not rule

out the possibility that prolonged consumption of NO3
−

above the ADI could harm health. Currently, at least
with short to medium term intakes, research suggests
that doses exceeding the ADI are needed to optimise
vascular health or exercise performance [17, 48]. Because
most human trials have only examined the acute health
effects (< 4 weeks) of increased NO3

− intake, the long-
term safety of consuming NO3

− in amounts that exceed
the ADI is not well understood. At present, epidemio-
logical studies provide the strongest evidence that pro-
longed, high intakes of NO3

− are safe. Indeed, these
indicate that rather than being harmful, dietary NO3

− in-
take is inversely associated with cardiovascular disease
risk [102, 194] and certain cancers [117]. Furthermore,
diets and dietary patterns high in fruits and vegetables
are linked to greater longevity [195, 196], protection
against type 2 diabetes [197] and chronic obstructive
pulmonary disease [198], and improved cardiovascular
[92, 199, 200] and cognitive health [201, 202]. This sug-
gests that higher intake of dietary NO3

−, at least through
plants, is more likely to be associated with health bene-
fits than adverse effects.
Some animal studies have explored the longer-term ef-

fects of high dietary NO3
− intake on health. In a study in

rats, 10 weeks of a low sodium NO3
− dose (0.1 mmol/kg/

d), which the authors suggest is equivalent to amounts
achievable in the human diet, reduced BP, whereas a
much higher dose (1 mmol/kg/d), elevated BP [203].
Interestingly, this study found that the high NO3

− dose
down-regulated eNOS activity, not only suggesting a
crosstalk between the canonical and NO3

−- NO2
−-NO

pathway, but also that any vascular benefits afforded by
NO3

− supplementation could wane over time. Nonethe-
less, these findings were not supported by a more recent
animal study from the same group. Hezel and colleagues
[204] fed mice the human equivalent of 350 mg/d or 26
mg/d of sodium NO3

−. After 17 months, mice consum-
ing the high NO3

− diet did not have elevated BP or any
other adverse health effects, despite the fact the dose
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exceeded the WHO recommended ADI for an adult
under ~ 95 kg. On the contrary, the high NO3

− diet de-
creased plasma insulin and modulated inflammation,
findings consistent with the metabolic benefits observed
in acute human studies [205]. These effects need to be
verified in humans but support the notion that
prolonged increases in NO3

− intake are not harmful to
health.
It is important to note that any carcinogenic risk at-

tributed to NO3
− intake could be mitigated by the intake

of antioxidants such as vitamin C or (poly) phenols,
which are present in most fruits and vegetables. Studies
have shown that vitamin C and E are effective inhibitors
of nitrosamine formation [167]. In addition, (poly) phe-
nols, which are abundant in commonly consumed NO3

−

sources such as spinach and beetroot [206], can also ab-
rogate nitrosamine formation [73]. Thus, increasing
NO3

− intake through a greater vegetable intake may sig-
nificantly lessen the risk of any NO3

− induced nitrosa-
mine formation. This could partly explain why diets
high in vegetables are associated with a reduced and not
heightened risk of cancer.
Health concerns have also been raised over the high

oxalate content of NO3
−-rich vegetables [207, 208]. Oxa-

lates are present in several foods, but particularly high in
spinach, beetroot, and rhubarb [208, 209]. Intake of
these foods increases urinary oxalate excretion, a risk
factor for renal stone formation [209–211], thus, it is
currently recommended that foods rich in dietary oxa-
lates are consumed in moderation [208, 210]. However,
the link between dietary oxalates and kidney stone for-
mation remains equivocal. Although consuming oxalate
rich foods increases oxalate excretion, a large prospect-
ive study (> 190,000 participants) found only modest
non-significant associations between dietary oxalate in-
take and kidney stone risk, concluding that dietary oxal-
ate intake is not a major risk factor for the formation of
kidney stones in younger or older adults [212]. Further-
more, the Dietary Approaches to Stop Hypertension
(DASH) diet, which is high in oxalates and NO3

−-rich
vegetables [1], was recently shown to increase urinary
oxalate excretion but reduce the risk of kidney stone for-
mation in ~ 260 patients [213]. The authors attributed
these findings to the high calcium and magnesium con-
tent of the diet limiting oxalate absorption. This is sup-
ported by previous research showing that oxalates from
beetroot have low bioavailability (< 1%), owing to their
high calcium content [209]. While more prospective hu-
man trials are needed, evidence that oxalate rich vegeta-
bles increase the risk of kidney stone formation is
limited.
To summarise, claims that dietary NO3

− promotes
cancer or methemoglobinemia, or that dietary oxalates
cause kidney stones are weak and unsubstantiated.

Rather, there is compelling evidence that dietary NO3
−

has salutary health effects and warrants consideration as
a long-term therapeutic treatment strategy to manage
vascular and metabolic health. Notwithstanding, longer-
term studies in humans are lacking and thus it cannot
be ruled out that a prolonged increase in NO3

− intake,
above the WHO recommended ADI, may have adverse
effects for some individuals. Thus, it is incumbent that
researchers examine the long-term safety of increasing
dietary NO3

− consumption in a range of contexts and
populations. This research will be vital for convincing
the public and regulators that NO3

− consumption is safe
and that current recommendations to limit dietary NO3

−

intake should be re-considered.

Conclusions
This article has briefly outlined the current state of
knowledge around the potential health effects of dietary
inorganic NO3

−. Six key areas worthy of future research
were identified to enhance understanding of the poten-
tial role of NO3

− in improving population health. As
such, it is hoped that this article will help direct re-
searchers to further explore the role of NO3

− as a poten-
tial health-promoting dietary component.
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