i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A theoretical and practical investigation of stress distribution in metal plates
subject to various loads

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

Loughborough University of Technology

LICENCE

CCBY-NC4.0

REPOSITORY RECORD

Gordon, G.W.S.. 2021. “A Theoretical and Practical Investigation of Stress Distribution in Metal Plates Subject
to Various Loads”. Loughborough University. https://doi.org/10.26174/thesis.lboro.14748303.v1.


https://lboro.figshare.com/

A THBORBIICAL AUD  PRACTICAL INVESDICGATION
OF STRESS DISTRIDUPION IN LWTAL PLADRS

SUBJECT TO VARICUIS LOAD3

by

G005, GORDOW

THESIS  Subnitted in partial fulfilment
of the reguirements Lnr the
award of llaster of Technology
of Loushbhorough University of

Technology

SUPRBRVISORS  J,W, Dutters, Ph.D., A.Tust.P., Deader,

Lougavorough Univergity of Technology

B.FP, Holownia, 1',82.,, Lecturer, Louchbhoroush
y ] 3 o iy

University of Technology

November, 1969 Copy IMamber 3.



- ABSTRACT

Dynanic relaxation is used to caleulate the siress distribu-
tion in a flat vlate with a =mall circular hele at the centre and
loaded by forces in the plane of the plate, The resulis arc compared
with those of an analyiical solution, Toe deflection of a flat circu-
lar'plate, ginply supportod, under transverse loading is measured using
Lolographic interferometry. The deflection and stress distribvution in
the plate is deterwvined using dynanic relaxation, Phe holograrhic and
dynanmic relaxation results are compared with an analytical solution.
The methods and proceduvrcs used to analize these sinple objzctz, are
extended to the analysis of a geometrically complex vlales the plate is

a flame plate from a large diesel engine,
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SYIBOLS

constant

constant

velocity of normal-stress wave propagation, in./seo.
displacement vector, inches

medulus of elastieity, lb./in.

gravitational constont, in./seo.2

shear modulus, 1b./in.2

subsripts denoting spatial location

damping constant

critical danping constant

constant

rormal-stresses on a boaundary, lb./in.2

iterative time step, radius, inches

time, time increment, scconds

temperature or temperaturc difrerence, °p

resolved components of displacsment vector "d%
velocity, in./sec,

cylindriczl coordinates

rectangulay coordinates

Lame' conctants, 1b./in.2

wavelensth of light, He-le = 6328%

Poisson's ratin

coefficient of linear thermal expansion, in./in./oF
fundanental frecuoncy ol vibration, radians/sec.
angles of viewing and illumination zelative %o the surflace
angles of viewing gud illumination relative to the dis-
placenent vector "d4"

nornal siress, 1b./in.2

nornal strain, in./in.

shear stress, lb./in.2

shear strain, in./in.

mass density lb-sec®/in%



TR ODUCT I CT

In this thesis, the stress distribution ian a water cooled
flame plate froi: a large diesel enzine is investigated., The engine
is a recent developnant of Tuston~lorngby Limited, Lincoln, England
and is capable of developing 500 lLiorse-power per coylinder. The flomoe
plate is essentially a flat, thin, circular plate which is complicated
by wvalve porin, fuel injector hole, and intornal cooliry passases, In
addltion to being zecmetrically three dimenzional, the plate is sub-
Jeet to complex thernal gredients in three dimensions and thus a three

dimensional analysis is required.

The geometry of the plate lends itself to 2 cylindrical co-
ordinate systen and thus the problem is to obtain a solutioun of the

following partial differential enuations,
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The solution of the ghnve equations which define equilibrium, must also

satisfly the following thorme-clasticity cquaticns,
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Generally, these equations con only be solved analytically in canes
where the geometry of the object and of the leading and support con-—
figuration is simple, For geometrically complex objects or loading

conditions, numerical and/or cixperinmantal methods must he used.
3 i

In formulating tane problem for solutien by numerical methods,
certoin simplifying assumptionsmay have to be made to the geometry of
the object or to the loading or support confisurations and as a result
the accuracy of the recults may be questionable., In such cascs, it is
considered good practice bo accompany a numerical solulion with an
eéxperimental solution or at least with a few experimental values with
which one can compare the theoretical or numerical solution and esti-
nmate the credibility of the rumerical solution, The experinental worlk
need not be carried out undor the actual working conditions of the
object as for exanple in the case of the flame plate being investi-
gated in this thesis, 1t was not considered feasible to atteupt to
simulate engine conditiont in the laboratory nor was ;; considered
feasible 1o attenpt an experimentai solution with the plate in “situ",
It was however reasoned that if {the plate could be anzlized hoth ex-—
perimentally and theoretically under a set of conditicns compatible
. with the engine conditions end if the results of both solutions arsreed
favourably with each other, then substituting the actual working con-
ditions into the arithmetic of the theoretical solution should produce

a set of results in whiosh one could be confident.

The methods chosen for the analysis of the flame plate are
dynamic relaxation and holographic interferometry. The method of

dynanmic relaxation is described in Chapter 1, with the aid of sinple



eiamples and again in Chapter 3 by the analysic of a flat plate with a
swmall circular hole at the centre and loaded by Fforces in the plane of
the plate. The results are compared with those from an analytical sol-

ution,

In Chapter 44 the tranaverse deflection of a imply supporbod
flat eircular plate subject to a transverse mechanical load is doter—
mined using holovraphlo 1nterferometry and dynanmic¢ relaxation, Dynamic
relaxation is also used to determine the stress distribution in the
plate. ‘'the results of the holographlc and dynamic relaxation analyses

are .compared with the results from an analytical solution,

In Chapter 5,the procedures developed in the analysis of the
geometrically simple objects described above, are extended to the anal-
yeis of the flame plato._ The analysis of thé‘flame plate is in two
rarts, The first part consists of a holographic and dynamic rélaxation
analysis of the flane piate under a transverse mechanical load, Using
the holographic'results as a basis for comparison, the dynamic relaxa-
tion solution was refined fo improve the accuracy. The second part of
the analysis consisis of substituting the engine ox wor&ing conditions
of the plate into the arithmetic of the dynanic relaxation solution,
The temperature distribution in the plate which constitutes the thernmal
loading in the plhte was determined by dynamic relaxation;however the
tenperature information available for thé\thermal aﬁalysis is somewhat

limited hence the results are questionadle.

' In Chaptei 6y on the basis of the overall work done through-
out this thesis, oomments and conclusions withgregardxzccuracy.and'app-
lication of the methods of dynamic relaxation and holographic interfer—
omeﬁry are given. Suggestions for future work on the flame plate and
for devélopment.of the methods of dynamic relaxation and holographic

interferometry are given,

In the follow:ng section, precedlnﬂ Chapter l,, a brlef sur—

vey of current numerical and experimental methods 1s glven.



SURVEY CF NUMERICAL ANWD LXPSRIMENTAL HETHODS

Numerical Methods

The numerical metpods in current use for solving problems in
elasticity can be classified into two groups namely finite difference
methods and finite element methodss, The finite difference methods
will be dealt with first,

In general, a mumber of finite difference methods exist
however with digital computers being a common place item to-day tho
number can be reduced to four, Thesc are the Jacobi iterative, the
Gauss—Siedel iterative, successive over relaxuiicn, and more recently,
dynanic relaxation, These methods arve classed as follows:

1, Jacobi (J.I.) ~ simultaneous basic rclaxation

2, Dynamic Relaxation {D.R.) - simultancous acceleratcd
relaxation

3, Gauss-Siedel (C.-S.) — successive basic relaxaticn

4, Buccessive Over Relaxation (S.O.R.) - successive accelerated

relaxation,

These methods are compared by Otter and Hobbs in (3), again by Otter
in (17), and by Wood in (18)., In comparing these methods, the workers
cited abvove looked at Poissons egugtion and compared the speed of
convergence from a mathematical point of view., One might also compare
“the methods from a point of view of ease of avplication or ease of
progranning and accuracy. Until D,I., was developed, 5,0.R, offered
the best appreoach since it is much fester than U.-5, which in tura is
faster fhan J.I., and is equally casily applied., Dynamic relaxation
is slower than S.O.R. and G,-S, but faster than J.I. and appears to

be more difficult to progromme because of the introduction of
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cuxilliary voriables, which is fundamental to the methed of D. R, The
introduction of auxilliary variables requires greater storage space

in the computer however it doss reduce the second order Laplace or
Poisson equation to three first order equations. It would appeazr then
that S.0.R. is still the best choice as far as Foisson's equation is
concerned however Irom Otler's experience in solving the partizl
differential equaticns which arise in clasticity problems, it is much
simpler to use D,R, than 5,0.R1, and sinze 35.0.R. is essentially
derived from J.I. and G.-3, the same holds true for tliese methods,

The reason for L. . being simpler to apily or to programme in the case
of elastiecity problems is that one is*invdlvcd with first order
equations which meles the boundary conditions sasier to specify than
in the case of using S5.0.R, vhere one is involved with secoud order
equations or fourth order equations if the problen is formulated in

terms of stress functions,

e direet cemvarisons of D. R. and 5.0.R, with regards
accuracy were Zound in the literature however simple illustrations of
D.R. being used to solve the siress distribution in o tension member
(2), {3), and the stress disbtribution in a tension member with a
stress concentration (4), chow D.R. to zive a high degree of accuracy.
S.0.R. being a well estublished method is also reputed to give acourctie
iesults. The accuracy of bvoth methods is perhaps not the real gquestion
but roather the accuracy of tho applicution, or ths assumpltions which
go intc¢ the formulation of the protlem., In additiocn it goes withoutb
saying that the gccuracy of numerical solution will be enhanced Ly the
fineness of the mesh, Dynamic relaxation is compared with the methoed
of finite elcments in (19); both methods are in good cgrecment with

each other,

While the speed of convergence of S.0.R. and D.R. have not
yet been wmmpared for clasticity provlems, it is belicved that S.0.R,
will be the gquicker, hence one is faced with nmaking o choice hetween
speed and sinplicity, If one is compleiely unfanilicr with both
metiodsy, D.R. being the simpler nethod to apply, appecrs to be the

nost attractive and mey initislly prove to be the guicker method,



The Pinite Element llethod

The method of finite elements originated in the field of civil
engineering in the analysis of structures and is considerably difforent
in concept from the finite difference methods. In finite difference
methods, the partial differential squations which define equilibrium
and stress-strain relaﬁionships are written in finite difference form
and solved numerically using an iterativs proccdure, The finite elenent
method does not seek a solution to Lhese equations but rather to solwve |
a set of simultaneous eguations which have . been formulated on the hasis
of the stiffness of the elementis, into which the object has been div-
ided, the displacement of the node points of the elements, and the
forces which act at the node points of the e¢lemenis, In the case of

a structure this usually means solving the expression:

d- x7'p

where "d" is the displacement wvector of the node points, "p" is the
force vector at the node points, and, "K" ic the stiffness matrix of

the elements,

The above procedure has been extended to confinuous structures

or elasticity problaus and takes the form:

o - Kd
Por stress analysis, the stiffness wmatrix is formulated on the basis
of energy methods, i.e, by equating the external work done on an elew
ment to the internal energy stored by the element, In order to deter-
nine the internal energy stored by the element, the strain or stress
distribution within the element is assunmed to be a function of the

displacenents at the node points and the geonmetry of the element.

In the finite element method, one is not confirned to element
shapes which are dictated by the coordinate system used as is the casze
in finite difference methods and one cen take advaniage of such element
shapes as triangular, octagonal, rhombic, etc, The use of different
shape elements often allows a better approximation to be made to the

boundaries of an object. For example in the case of an object which



has both curved and straight boundaries which do not conveniently co-
incide with a conventional coordinate system, triangular elements can
be made to fit the boundaries more closely than say rectangular or
truncated triangles which result from rectangular coordinates and polar

coordinates respectively.

The greatest difficulty in applying the method of finite ele-
ments is the formulation of the stiffness matrixz and in practice this
is usunlly left to the computer; programmes have been written such
tIat one need only input the ccordinates of the node points after hav-
ing chosen the shape of the elemnts and having appropristely divided

the object up into elenents,

Without actually investigating the method of finite eolements
in detail and actually using it 1o solve a probvlen, one carnot cempet-
antly compare the methed with finite differcnce meihods and few com-
parisons were found in the literaiture. Onc comparison found, (19),
looked at the accuracy of a finite element solution and & dynamic re-—
laxation solution of an arch dam problem and as previously mentioned
the two methods compared favourably with each other., Rushton, in (4),
states that for the particular problem of the analysis ot a stiess
concentration in a notched plate, the method of finite difrerences
would be more accurate than a finite element solution and would be

much simpler to programme,

In summarizing, it might be reasonzble to assume that those
who have a c¢ivil engineering background and who are experienced in
matrix solutions of structural problems mirsht choose the finite ele~
ment method and those with a mechanical engineering background faced
with the solution of partial differential equations might choose
tirnite difference method, It might also be assumed that no matter
which method is chosen, the accuracy of the solution will depend on
how well the metﬁod is applied.

Bxperimentel lethods

A nunmber of experimental methods have been developed and

many books have been written on the subject. The job of the analyct



is to select the method or methods best suited to the problem at hand
and in some cases prescribe a set of exporiments from which useful ine-
formation may be obtained. The name experimental stress analysis :.
somewhat of a misnomer since it implics that one measures stress and
in practice one is involved in measuring displacements which when
averaged over a finite distance give strains from wvhich one can calcu-

iate stresses,

The methods available can be classgified in two groups namely
point methods and whole field methods. As the names imply, point
methods give intormation at discrete points on the surface of the ob-
Jject while whole field methods give information over a laorge area of
the surface, Point methods are confined to various forms of strain
gauges; the electrical resistance type being the most widely used.
Whole field metheds include brittle coatings; gzriis, loire' frings,

photoelasticity, and recently, holographic interferometry.

Hleetrical resistance strain gouges are dz2signeld 1o meacure
in-plane surface strains or average displacements over a gauge length.,
Gauge lengths of 0.2" to 2.0" ave readily available, Under laboratory

microstrain

¢onditions, strains as low as % reers=o¥TETTs can be accurately meas-—
ured and special gauges are manufactured which can measure plastic de-
formations or strains in the region of 204,000 ﬁzﬁézﬂﬁﬁgéigs. Temper=
ature compensated gauges which exhibit Jow sensitivity to temperature
change are available for use in thermal stress problems, To determine
the mammitude and direction of the prircipal strains requires the usze
of at lcast three gauges; thesc are usually a comhined gauge called a
rosette, No information regarding the dismlacements normal to the

surface of the cbject can he obtained froem strain gauges unless the

relationghip between the normal displacements ard the in-plane strain

iz Xmown,

Generally, brittle coating melhods pive only the direction
and relative magnitude of the prinecipal struains and as with strain
gauges, give no information regarding normal displacements of the sur-—
face. Drittle coating methods are often used in conjunction with
strain gauges as an indicator of the location of stress concentration

and as a guide for positioning the strain gauges,

Grid methods are used in cases where the displacements are
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large for example in deep drawing operationsi a coarse grid is applied
to the object belfore the drawing operation. OCrids are also used in

analizing objects made from rubber and such like material.

The Moire'.fringe method involves applying a high density
grid to the surface of the object ( 100 to 2000 lines por inch ),
The grid on the surface of the object is alipgned with a master prid
located between the object and the obzerver. When the object is
strained, the {two grids are no longer in alignment and a fringe pattern
is formed which is representitive of theldisPlaccments in the plane of
the surface of the object. The fringes are loci of peints having con=
gtant displacement, To determine the principal strains, the exporiment
has to be repeated with the grid on the surface of the object at diff-

erent angles relative to the surface. Two or three patterns are re-

"quired which can be differentiated 1o give the in-plane normal strains

‘and shear strain or fthree in-plans normal strains respectively.

Measurement of normal or flexural displacements is possidble
with the lioire' Ttut in general, the displacements must be large hence
models are maderfrom perepex or such like material which has &z low
modulus of elasticity. The method of measuring flexural displacenents
involvers reficction of a grid off the surface of the object and making
a double exposure photograph of the surface one hefom and one after the

load has been applied,

Photoelasticity methods involvwe passing polarized light
through a model of tae objeet which is made from a photoelastic ma~
terial. When the obhject is strained, the refractive index of the ma-
terial is altered in accordance with the magnitude of the strain and
interference fringes are formed cn the projected image of the object.
'wo types of fringes are Tformed depending on the set-up used in the
experiment., One type of fringe, referred to as an isoclinie, repre-
sents the loci of points having constant inclination or direction of
principal strain., The scecond type of friage referred to as an izo-
chromatic, rspresents the loci of points having constant shear strain
or difference of the two pricipal strains, Determination of the prin-
cipal stresses at a free boundary is cuite simple however for points
inside the boundaries, determination of the prineipal stresses is much

more difficult and reguires the measurement of the change of thickness



of the object, The above description applies to plane stress prob-
lems, Three dimensional problems can be solved however the procedurec
is quite complicated and difficult, In three dimensional problems, a
technique referred to as the frogen stress technique is uged, This
involves loading the object while at an elevated tenperature and while
maintaining the load, the object is allowed to ccol thus as it were
freczing *the stress in. Slices are cut from the objiccet and analized
in a manner similar to a plane stress problem. Like strain gauses ond
brittle coating, no information can be obtained regarding normal or
flexural displacements unless the relationship ?ctween the normal dis--

placements and the in-plane strains is known,

Hblographic intertferometry offers an extremely sensitive and

. 8imple method ideally suited to the measurement of normal or fleoxural
displacenments, Very 1little work has heen done in applying holcgraphie
interferometry to the measurcemeunt of in-plane displacements althougn

a hunber of methods have been proposed, These methods will he investi-

gated in this thesis,-

In selecting a suitable experimental method, one might besin
by deciding whether point or whole field information is required.
Obviougly whele field methods previde a more complete picture of the
stress distribution on the surface of the object or of the deflected
shape of the object however if one has a belore hand knowledge of the
stress distribution and requires only a fpw specific values to comvlete

the analysis cquantitatively, then point measuremenis may suffice,

A second consideration to be made is whether or not one can
work directly on the part or is a model required. If a thrce dimen-
sional analysis 1s required, then usuzlly a model is required in srhich
strain gauges can be imbedded or a photoelastic medel is required with
which one can apply frozen stress technigues. A nodel may also be re~
quired if the actual object is too large to accomodate in the labora-—
tory or in the early desisgn stages when the actual component iz not

available and an analysis is required to complete the design.

A third point to consider is whether or not the experimental
solution will be the only solution or will it be used to collaborate

a numerical or theoretical solution., If the experimental results are



to be used in support of a numerical solution, then it may not be
neccessary for the experimental solution to be a detailed or complete
soluticn., In such cases one may be more interested in the character-
isticg of the object, For example if the operatigggconditions under
which the part is to function are too complex or e difficult to re-~
produce in the laboratory or the economics of producing them are pro-
hibitive, then one might seeck a numerical solution but at the same tine
require some experimental results with which to compare the numeorical
solution, It iz inevitable that the numerical solution will be based
on certagin simplifying assumptions which will limit its accuracy hence
it is pood practice to accompany a nurerical solution with some exper-
imental results. One might reason that if the part is analized Loth
mumerically and experimentally using a set of conditions that are com-
patible witl the actual operating conditions but easily produced in
“the iaboratory, and the results of bheth analyscs ure in good agrecment
with each othep, then substituting the actual conditions into $he ar-
itometic of the numerical solution should producsz a set of results in

which one can he confident,

While each of the above experimental methods differ ¢onsider—
ably in concept, their aim is the same which is to provide information
from which cine can calculatc the magnitude and direction of surface
stresses or in some cascs to determine the deflected shape of an object,
In general only surface stress information can be obtained however for
many problems especially those which involve mechanical leads, the sur-
face stresses are the largest stresses in the object hence one can

neglect or not be concerned with internal stresses.

In sumarizing, one might assert that experimental methods
apply more to a specific type of »roblemy, hence the experimental stress
analyst must be skilied in all methods and may often Lave to rezort to
more than one method to obtain a set of useful results for a given

problem,
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DINAMIC RELAXATION

1.1 Intecduction -

Dynemin relaxation was devised by A.3. Day at Hendel, Palmer
and Tritton, Consulting and Designing Chartered Civil Lngineers.
Historically, the method ewolvci from calculations made in 1958-60 on
tidal flow in.the Thames estuary aad in the North Sea., Since that
time, the method has been ecxiended by Day, Otter, et., al.,, to include
stress analysis, (2)(3)(4), anulysis of structures, {1), plate bend-—
ingy (1)(5)(6), shell analysis, (7), and to solve problems in heat
conduction, (2), PFundamentally, dynamic relaxation is a digital come
puter method of obbtaining a numericael solution for a rumber of partial
differential equations wvhich arise in engineering problems. The prime
requisite for the use of dynamic relaxation is a large core—storage

digital couputer,

This chapter descrives the method of dynamic relaxation as it

iz applied ¢o solving problems in stress analysis and heat <conduction.

1.2 Application to Stress Analysis

To solve the partial differential equations wvhich arise in
problens of stress analysis, the stress-—equilibrium equations are written
in damped wrave form. These damped wave equations are then written

in finite difference form using centred differences, The stress—-strain



equations are differentiated with respect to time to provide a form of
coupling with the damped wafe equatioﬁs and then written in fihite
difference form using centred differences, The use of centred differ-
ences results in the variables veing specified on an interlacing net
in time and space., The finite difference equaticns, with known boun—
dary conditions, can ©be solved using an iterative proceduvre and pro-
vide values of stress, velocity, and displacement at any point in the
object and at any time. Since the procedure is based on ucing a danped
wave equation for the stress equilibrium equation, the values cbtained
by the jteration process are made to converge to a steady state con-
dition by the selection of a suitable domping constant and in partic-
ular, the rate of convergence has been found to be a maximum when the
damping is slightly less than critical or dead beat, (2). A simple
problem will serve to illustrate the formulation of the finite diff-

erence egnations @id the iteration procedwre,

Figure (1.1) represents a simple rectangular cross section
bar held at one end and loaded by a vensile forcc, which produces a
stress on the free cnd of "p" lb./in.2 The stress—equilibrium equa-

ticn for this problem is:

LR
> = 0 (1.1)
S X
Writing this expression in damped wave form gives:
0 2y” Ju
d X ot Jdt
¥riting Eg. (1.2) in finite difference form gives:
r r ra r
0% ¢ - Geiz-) _ ¢ Ly _Um(Le K
A7 = U (f4K) -V (5 - %) (1.3)

In practice it is more convenient to write the damping term in Za,
(1.2), with no loss in generality, in the form APK/At thus Iq. (1.3)

becones:

r r ' 4
Ow(T)- Ox(z-t) _ 2 [ RV S
= - Kt[ V(14X ) - G g_)] (1.22)

The stress-strain relationship for this case is:s

AU
Tx = E'S?F | (1.4)
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Differcntiating the stress-strain equation with respect to tine gives:

3 ; .
2% . 5—33 (1.5)

Writing Eq. (1.5) in finite difference form givos:

r41 r . r
Gx(z) - G}(IY £ G {xet) = U ()

Y Ax (1.6)

Rearranging Ba's (1.32) and (1.6), expressions for the new velocity

and new stress value are obtained thus:

ben = um[“‘”‘ st [oeq)- me)]

+k{2 P(,+K,2)L (107)
4!
Tx(z) . m + EM.rUfIH) ]
. fa
" (1.8)

The displacement at each mesh or node point is obtained by integrating
the velocity with rospect to time thus:

4 r , i
U) = ul) + G(@) At (1.9)

In the above expressions, the subscript "I" refers to the position of
the stress, velocity, or displacement in space and the superscript
"y refers to tho postion in time,

Evamining Bz, (1.7), a literal translation can be derived
which states tiaat " the new velocity is eé&al to the 01ld wvelocity,
multiplied by a term containing the damping constant, pius a velocity
increment", The velocity increment is in the form of a force impulsea
{gtress multiplied by the time interval) divided by the muss of the
element and then multiplied by a term containing *the damping constant,
Similarily Zq., (1.8) can be stated as " the new stress is equal to
the old stress plus a stress increment'". The stress increment is
simplylthe difference between the displocements at the two node points
on either side of the stress node, divided by the lengih of the eleuent,
( the displacement being the velocity times the time interval ) and .
then nultiplied by the appropriate constant of elasticity., Looking at

Eq. (1.7) again,'it can be seen that as the velocity approaches zero,
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the original ecuilibrium cauation, Zq. (1.1), is satisfied,

As previously mentioned, the usé of centred differences leads
40 the variables being specified on an in%erlacing net. This is
illustrated in Fig. (1.1), and examining BEq'ns (1.7) and (1.3) a
degree of plysical significonce in the equaticns can be observed. As
shown in Fig. (1.1), the velocity and displacement node at the fixed
end has been chosen to coincide with the boundary. =Since Ax i8
censtant then a velocity and displacement node oceurs at the free end
of the bar. In spevifying the boundary conditioen at the fixed end
the velocity at I = 1 is zero mince the displacement is zero, The
boundcry condition at the free end is not so casily specified because
the boundary coincides with the velocity and displacement node and the
velocity oand displacenent ocre unknown., The stress at the boundury is
known to be "p" howevsr the stress at the first node point inside the
boundary is not knouwn, Tho stress on the end can be specified in terms”
of the stresses on each side of the houndary ( the stress ouiside the
boundary being imgginary or fieticious), by exvtrapolating linearly

acress the boundary thusly:
0T} ¢ Ox(T) = 2P . (1,10)

In this expression , 0%(I) is the ficticious stross outside the
boundary, Adding ~26x(I-1) to both sides of Bq. (1.11) a tern is

obtained that cun be substituted into the wvelocily equation,

Ox(x)~ Ox(1-1) = 2 (P~ Ox(I-)) (1.11)

1.11
Substituting Bq., (=2R) intc Bq. (1.7), the velocity at the free end

igs

. . 0 [1-x12 At . [ - G}(PIJ
U(I) uc:r)LHm t S aiei) 2 'P'_ET:‘—) (1.12)

In this method of specifying the boundary condition at the free end
the stress on the free end has been specified implicitly in the
velocity equotion and consequently for "' wvelocity nodes there are
¥-1 stress nodes, The alternutive method is to specify the ficticious
stress in terms of the strems on the free end and the stress Jjust
ingide the boundary. This means having "I" stress nodes instecd of

-1 and consequently requires more storage space in the computer and



longer computer time,

Por this simple problem, the stress nodes could have been
chozen to coincide with the boundaries without any additicnal pro-—
gramming difficulties however in two and three dimensional problens
it beccmes more complicated to specify conditions on a boundary that
coincides with a normal-stress node, This is bacavse the shear
strosses are specified on the corners of the mesh which forms a velo-
city node and in cases where onc can take advantage of symmetry or in
the case of a free surfoce, the shear stresses are uero and can he

easily specified if the velocity node coineides with the boundary;

180
L,

Some further comments on specifying boundary conditions will be gziven in

later chapters.

In a2ddition to specifying the boundary conditions, the time
increment, ANt, and the damping constant, "k", muct be specified.
The rate of convergence and hence the length of computer time required
1o obltain a sclution, is dependant on both the time inczoment and the
damping constant, In addition, the stability of the iterative process

ig dependant on the time incremecnt,

The stability of the iterative process is based on the concept
that the sryeed of the calculations, considered as a travelling wave,
must be greater than the wave propagatiocn in the actual physical prob-
lem. For stabilityy the following limit is applied to the times incre-
ment, (2).

At < *-E’E (1.13)

In this expressions "c" is the speed of wave propagation in the physi-

¢3l problem and in the case of a one dimensional problem is given as:
P

. = [ =
C = \/7'";_ = 2,02 x 10° in,/sec, (1.14)

for steel
For elasticity problems in more than one dimension, the speed of wave

propagation is given by: (2)

¢ = \/_AfgiéL = 2,35 x 10° in./sec, (1.15)

for steel

Also, for problems in more than onc dimension, the stability criterion



is given by: (2)

A _
- .
At § v (1.16)

where "m" is the number of dimensions of the problem. When the mesh
sige is not equal in all directions, the stability criterion is given

by: (3)

!
B < ¢l dar g1 (0
In practice, it has been found possidle to deviate slightly from the
values obtained from these stability oriterion expressionrs howevcr

they do provide a good starting peoint from which to work, If the wvalue
of the time increment is too large, the solution will diverge instcad
of converge and if the time increment is too smal! in comparison with
the optimum, the optimum being the largest value that can be used with-
ous the solution becoming wstatble, then the convergence will be unduhr
oy slow, The procedure adoptced to obtain an optimum time increment
ig to calculate the value from the above expressions and to run the
programne with a value slightly larger. If afier a few iterabtions the
solution shows signs of diverging, then the time increment is reduced
and conversely if the sclutioen is converging,; the time increment is

increased until the solubtion diverges and is then reduced.,

In any damped vibrating system, nct under the action of ex-—
ternal haramonic excitation, convergence to 2 static equilibrium con-
dition is most rapid when the damping is cxritical or dead beat. The
critical damping coastant is related to the fundamental natural fre-
quency of the system thus: (14)

kCrn ZMU)VI, (1,18)

For use with dynamic wrelaxation, this expression becomes: (2)

Ker

= ' 1.19
A% 2 Wn (1.29)

Bquation (1.19) can be easily applied in the case of a simple rect—
angular bar where the natural frequency is known to be, for a bar held

at one end:



]
=

Wy =

|

N
=

(1.20)

where "2 is the length of the bar, however in the case of o geomotri-
cally complex object where the natural frequency is unknown, a trial
and error method may have to be used., To estimate the critical damp-
ing constant by trial and error, the programme must be run for a few
iterations and the convergence rate measured in terms of the rate of

change in the values of the variables.

One measure of the rate and the degree of convergence is the
change and value of the kinetic energy of the system, The sum of the
sQuares ¢f the velocity at every node point in the object is a measure
of the energy of the object and as the solution converges to a steady
state, so the sum of the squares of the velocity approaches zero,

The procedure adopied in uwsing the kinetic energy to measure the con-—
verzence is to calculate the sum of the squares of the velocity at
cacn point in fhe object after each iteration and have the values
printed oubt. The programme can be run for o few iterations and the
effects of varying the damping constant can be debermined afier a few
trial runs, The programme can then be restarted and allowed to run

until the sum of the squares of the velocity rcaches a low wvalua.,

~ As an alternative to using the kinetic energy as a measure of
the convergoence, the values of stress and displacement at a few poinig
in the object can be printed ocut after each iteration and their pro-
gress towsrds o steady value watched., This method can be conplicated
by secondary harmonics in the early stages of the calculatiocns but
which are dampad out as the calculations proceed, It is felt that the
best method is to use both the kinetic enersy and displacements or all
three, i.e. kinetic energy, displacements, and stresses, to estimate

when a solution has been reached and the rate at which it is reacped.

Solving the problem of a simple tension member, consider a
steel bar with unit cross sectional area, 4 ~1/2" long, held at one
end and subject to an axial tensile force of 500 1b., Dividing the baw

into 9 parts gives 10 velocity nodes, The physical details are:

'8

A x
B

P

0.5 in.
30 x 108 1b, /in, 2

-3 2. 4
0.732 x 1077 1b. sec. /1n.
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Estimating the time inecrement from Za. (1.13):

{

OS5 -5
At- 202 y105 = 9248 o™ see,

Estimating the critical damping constant Trom ¥a., (1,1¢) and (1,20):

u
egi
=
[i]
=]
]
o
[$]
~
0

A copy of the computer progranne is‘given on page 245..

‘'he programme was run with the time increment 5 percent largzer
than tho above calculated value and the solution diverged, A time in~
crement 3 percent swaller than the above calculatéd value was found to
be satisfactory. Tour damping constunts werc tried, These were, 0.44,
0.30, 0,20, and the cwritical damping value, 0,349, Tke value 0.30 cave
the fastest rate of convergence and is approximately 85 percent of the
critical wvalue., The stress at point I = 3 is plotted against number of
iterations in Fig., (1.2) for tlree values of damping and it can be scen
that when k = 0.44 the solution is over damped, and when k = 0,20, %he
solution is underdamped, In all three cases of damping, a steady state
solution is achieved however the length of time'requirod varies by o facter

of about two between the 0,30 danping constant and the 0,44 and 0,20

values,

Tabies {1.1),(1.2),(1,3), and (1,4), give the stress at each
node point after each iteration, The sum of the squares of the velo~
city is also given and the rate and degree of convergence can easily
be compared Lor the four damping constants. Table (1.5) gives the
displacenent at each velocity node after each iteration for the 0.30
dawping constant, The calculated deflectinn at the free end ¢l the
bar is:

V=% 0: 075 x10”% in.
E
and is complete agreement with the value obtained by dynamic relaxation.
For this simple prodlem, the accuracy of the solution is very

good; the dynamic relaxation resulis are in complete agreement with

the analytical results., The high degree of accuracy is attributed to
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the simplicity of the geometry of the object. In subsequent chaptens
vhere dynamic relaxation is used to analize more complex shaped objects,

the accuracy of the solutions will be discussed,

1,3 Application to Thermal Stress Analysis

The application of dynamic relawation to problems cf thermal
stress analysis is very simple, The effects of temperature are taken
into account by the initial conditions, In the above cxamnle, the
iteration process is begsun with all values of stress, wvelocity, and
displacenent being made equai to zero. In the case of thermal stresses,
one assumes that initially, the normal-stress at each node point is
equal to the temperature stress that would exist if eaclh element was
completel;” consirainel in all directions and the temperature of gach
was changed by "I degrees, sce App. (). In any object this means
knowing the temperaturc at each normal stirese node point., To determine
the temperature at each node point is & task in iftsell but foxtunately
dynamic relaxation is also adept at solving problems in steady stato
heat conduction or solving Laplace's equation; the procedure will be

discugssed in the following section,

1.4 Application {o Heat Conduction

I appliying the method of dynanic reloxation to elasticity
problems, one is concerned only with first order partial dilferential
eguations, the reason being that there is a natural rzlationthin Tetrzon
the damped wave equation and the stress—sirain equation., In heat con-
duction, the brezkaown of the second order partial differentinl equa-
tion in denped wave form, which defines cquilibrium for heat con-
duction,is not directly obvious and requires the introduction of aux-
illiary var'ables; This can be demonstrated vsing & simple one dimen—

sional problem,

Mor steady state heat conduction in a solid in which the cen-
ductivity is constant throuzhout the objeect and is constant over the
. temperature range in which one is working, the equilibrium equation is:
2
Sx?



(3]
o~

Writing Bq. (1.2)) in damped wave form:

8T _ JrT QT
ox+ T 8 *X3E (1.22)

An auxilliary variable "u!" is introduced such that:

Su T |

3% " %—; (1.23)
éﬁ = kU = .é_I \
3t ° b . K (1.24)

Bquation (2.23) is similar to 3q. (1.5) when dot notation is used in

Eq. (1.5) and, Ba. (1,24) iz similar 30 Bg. (1.2) when dot notation is
used in Bg. (1.2)., The variable "u" is analogous to the quantity of
heat flowing acress a boundary of unit cross sectional area in an ob-
ject having unit conductivity since under steady state conditons the
derivative of "u" with respect to time Will be zZero hence the term '"ku"
mist equal the temperature gradient wanich in turn is proportional to the
heat flow., This concept can be taken advantage of when specifying
conditions on a houndary, for example on a boundary which is insulatfed
or a boundary which forms an axis of aymmetry, the heat flow is zero

hence one need only specify "u" as being zero,

Bguations (1.23) and (1.24) are written in finite diffcrence
fonzand rearranged to provide expressions for temperature in terms of
the variable "u" and conversely "u" in torms of temperature I,

These equavions ares

rit r r r
T = T 4+ %E [U‘I*')"U‘T’j (1.25)
£33
1-x/2 At T(I)-— T(I—i)
v = uu) WRE Y ek ] (1.26)

The stability criterion for heat conduction problems is bpased
on the zame concepts as in the elasticity problems however since the
conductivity, specific heat, and density have been elimirated by the
right hand side of 3q. (1.21) being zero, the wave speed becomes equal
to unity. For two and three dimensional problems, it is expected that

the wave speed "e', will behave in a manner sinmilar to elasticity prob

lems and will therefore be slightly greater than unity.
The criterion for .critical damping is also applicable to the heat con~

duction prodvlem since the elasticity and heat conduction problem are



r.'.r
analogous,

o illustrate the method of dynamic relaxation as applied to
a heat conduction problem, assume that the bar shown in FPig. (1.1) is
insulated at the fixed end and on the edges, and that heat is applied
to the free end such that the temperature on the surface at the free
end is 500°F. The problem is one dimensional, The tine iIncrement and
damping constant will bes

Ar = A
jus = O-34q

The commputer programme is given on page 246 and was run with danping
constants of 0.30, 0,32, and 0,34, with the time interval caleculated
above, The 0,32 value for damping gave the fastest convergence, Inw
creasing the time increment to 0,52 caused the solution to diverze,

The results of the solution are given in table (1.6) Tor the 0,32 damp-
ing constant.

1.5 Closure

From the discussicns and illustrations given above, the exten-—
sion of dynanic relaxation to problems in two and three dimensions is
straight forward. The finite difference equations for elesticity prol-
lems in cylindribal coordinates, for plane stress prsblems in polar
coordinates and ror problems in axisymnetric stress distribution, bave
been derived in the appendices of this thesis along with finite diff-
erence equations for heat conduction in cylindrical coordinates. In
subsequent chapters of this thesis, the accuracy of the solutions ob-
tained by dymamic relaxation in solving more complex prodlems will be

discussed,



CHAPTER TVO

-

HOLOCRAPHIC INTERTERCHETRY

2.1 Introduction -

The principles of holography were first demonstrated in 1940
by Dennis Gabor. OGabor showed that a sharply focused image of an
object could be formed from a rhotographic record of its interference
rattern, Virtually no development of the principle of lholography took
place until the laser came iulo being; tho laser being the fundamental
tool in holecgraphy because of its high temporal and spatial coherence
and high intensity. ©Since the advent of the lascr, bholography has been
developed by Leith and Upatnieks et. al., and a great many applicationz
have been found including helographic interfercmetxy, 'he uze of holo-
graphic interfercmetry to measﬁre surface deforrations of strained ob-
jects is under current investigation and a number of workers in the

field have zlready shown the possibilities, (9)(20)(1t)

In this chapter, the holographic process is desoribed briefly
t0 provide the basic requirements for the nnderstanding of holographic
interfercmetry. The application of holographic interferometry Lo stross

analysis is investigated.

2.2 The Holographic Process

The process.by which a hologram is made and allows a three

dimensional virtual image to be reconstructed in space can bo described



briefly as follows,

Figure (2.1) represents a typical set up for making a holo-~ .
.gram. A coherent light sourcey a laser beam in this case, is split
by means of a beam splitier into a reference beam and an object beam,
The reference heam, after passing through o lens which spreads the
highly collimated laser beam, is allowed to fall directly onto a hish
rcadlution photographie plate. The object beamy, also passing through
a lenz, is directed onto the object and the light which is scatlered
oi'f the object is allowed to fall directly onto the same photographic
plate., The liput waves which make up the object and reference beams
maintain a definite phase relationship with each other over a pericd
of time and vpon reaching the photopraphic plzte, intexfere with each
other, the interference being recorded by the photographic plate.
The recorded inbterforence pattern is effectively a type of diffraction
grating, If after the photographic plate is procassed, it is illumin-
ased by the reference bheam incident on the plate at the same angle asg
when the holvgram was made, the reference beam is diffracted into a
muber of components one of which has a wave front identical to that
light which was scattercd from the c¢bject with the exception of inten—~
gity and phase; the wave front being uniformly 180° out »f phase with
original wave front, Since the diffracted reference beam has a con-—
ponent which is identical teo tle original wave coming from the object,
then a full three dimensional image is formed and is located in the
game position that the object occupied during the making of the holo-

gram, The process can be described mathematically as follows,

Let the lizht reflected off the ¢bject and inecident on the

photographic plate bs described by:

U= a(xy) Cosl};t +¢<:¢,9)] (2.1)

vhere a(x,y) is the amplitude of the light and is a function of the
coordinates "x" and "y" in the plane of the photographic plate, and
¢(x,y) is a phase shift imposed on the objeet Dbeam by the object.
Sinmilarily let the reTference beam incident on the photographic plate
.be described by:

U, = Gy CoS\:wt —«x'] (2.2)

™3
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where 2., designates a uniform amplitude at the photographic plate and,
olx designates a linear phase shift across the photographic plate in~
dicating that the reference beam strikes the plate at an oblique angle,
The importance of the reference beam striking the plate at an angle

will be discussed later on.

The total amplituds of the light falling on the plate ic the
sum of the zaplitudes of the two heams thus:

U atny) Cas[w£+¢fx,yﬂ + Gr CDS[“’i “"‘""] (2.3)

The photographic plase reccrds the tire averaged square of the total

amplitude or the iime averaged intensity of the light thus:
1 T ‘
I- 9__‘:_4:5.2-222’_) + Qr atwy) Coseex + & ] (2.4)

If the plate is ‘vrocessed and illuminaied by the reference heam as
previously describved, the licht tranemitied by the plate is the pro-
duct of the amplitude of the reference beanm and the transﬁissivity of
the plate. The transmissivity of the plate is proportional to the time
averagsed intensity of the light falling oun it (uring the exposure time

thus the transmitted light con be described by:
Uip = a.r(Or's Q(K,Vf) Cos[ut-o(ﬂ + 9_!-1' oY) Qs[wt + ¢(ny)J

2 2
+'92).'1 awy) Cosfw{'— 20¢ X —cp’(x,y)j (2.5)

In Eq. (2.5), the first term represents that portion of the reference
beam which passes divectly through the plate at an anle o and which

is attenvated by the overall darkening of the nlate, The second term
is indentical to the light scattered from the object as definced by

Bq. (2.1) with the exception of the constaut aE/E. The third term rep-
resents a third wave which lecaves the plate atlan argle ™ and the neg-
ative sign in front of the term $(x,y) in the argument of the Cos., in-
dicates that the wave has a conjugate wave front or in other words,

a conjugate image is formed in front of the photograhic plate, This
conjugate image nan be_focused on a screen positioned in front of theo
plate without any optical apparalus. From this description it can he
seen that if the reference beam does not strike the plate at an angle

of then the conjusate wave will interfere with the wrave which represents

r

ja¥



virtual image and thus interfere with the viewing of the wvirtual in-

ase.

The above description of the holographic process is quiite
basic however it is sufficient to allow the principles of hologsraphic

interferometry to be discussed,

2.3 Holographic Interferometry

If a hologram is nmode as deseribed above, and if after pro-
cessing, it is put back in the exact same position as when it wos mado,
in accordance with Pig, (2,1), and illuminated, the rcconstructed vir-
tual image will be superimposed cxactly onto the objéct or in other
words the rays coming from the objeelt will ceineide exactly with the
. rays which make up the rsconstructed image. As previously mentioned,
e reconstructed wave froat is 180o out of phose with the actual wave
front coming from the object hence the image will appear dark as com-

pared with the image that would be produced in the absence of the ob~

P,

ject, The reason for the reconstructed wave front being 180° out of
phase is that the hologram is effectively a '"negative", If the object
is displaced so that the two wave fronts are in phase then the object
will appear bright. This change from dark to bright corresponds to an
optical path lengtl chanze of one half wave length of the light being
used,

The brightening and darkening of the surface will be uniform
over the entire surface if the angles of illunivnation and viewing are
constant over the cntire surface and every peoint on the surface moves
by the sane amount. As a simple example consider an object that is
viewed and illuninated normal %o the svrface, As the object 1is dis—
placed, the number of times the surface goes from dark to bright and

back to dark again can be expressed as:
N = Zd/.«\‘ _ (2.6)

where "N" is the number of times the surface drightness changes or the
number of Ffringes or fringe order numbery Nis the wave length of light

and "d" is the displacemnent of {the obJect, For the general case where



the anzles cf vicewing and illumination are not constant and where "d"
is not constant over the surface, the fringe order number at a por-
ticular point on the surface is related to the displacement and the

‘angles of viewing and illumination at that point thus, see Fig.(2.2):
NA= d(Cos6 +Cosb') (2.7)

where G and 6' arce the angles of illumination and viewing rcspectivel:
L3 P Y’

relative to the dircction of the displocement "ar,

The above description of the formation of interferconce frinzes
due to displacement of the object relative to the holosram is referred
to as the live fringe technique since the fringes can be observed as
they are formed. A second method of obtaining a fringe patiern rep-
reosenvitive of the displaccment of the object is referred to as the
frozen fringe technique, The procedure for the freozen frinse tech-
nique is to nake a hologram as descrbed above with the exccption that
the exposure time is halved, PFellowing the firsi exposure, the object
is displaced and a second exposure made to conplete the total éxposure
time, Effectively one has proiuccd a double hologram and upon illum-—
inating it after processing, two wave fronts are produced corresponding
to the object in its initial and final position. These two wave fronto

interfere to produce a frozen fringe pattern,

The advantage of the freozen fringe method over the live fringc
method is that the hologram plate need not be accurately positioned
or replaced in the exact same position, and, a permanent record of the

interference fringes is nmade that can be examined at a later date,

2.4 Determination of Surface Displecements from 2 Fringe Pattern

To detormine the displacenent of the surface of an object,
Eq., (2.7) is applicable however if the direction of the displacement
is unitnown, then the angles 6 and 8' will be unknown hence it is in-
possidle to solve Eq; (2.7) from a single fringe pattern or angle
of viewing., Some simple cases exist that can be easily analized; these

will be discussed in this section,

The displacenent "d" can be considercd as being made up from
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three components, two of which, "u" and "v", are in the plane of the
surface, and the third component “w'y nornmal Yo the plane of the sur-—
face. 3By illuninating and viewing the object parallel to one of the
planes of the coordinates, an expression can be derived which includes
only one of the in-plane compenents of displacenent, For example if
one were to view and illuminate in the xs% plane, then ounly the com—
ponents "u" and "w" can ccantribute to a change in the optical path
gince displacements normal to the direction of viewing and illumination
will not cause an optical path length change i,e. w{(Cos 900) = 0, Thig
argunment assumes that the surface in question is small in comparison
to the distance from which it is wviewed and that the illuminating boan
divergence is small so that effectively the angles of viewing and ill-
unination are constant over the surface in the "j“ dircction and that
the displacement in the "y" direction is of {he same order of magni-
tude or less than the displacements in the "x" ond "g" dircctions,

From Fig. (2.3), the cptical path length change for the illuminating

beam is u(Cos @) + w(Sin @) where @ is the angle the illuminating beam

33.

makes with the surface, Similarily for viewing, $he optical path length

change is u{Cos @') + w(Sin @') from which the following expression is

derived:
NA= u(cosd+ Cos @) +w( Sin g + Sin ¢') (2.8)

Examining this cxpression, it is interesting to uote that when ¢?=¢=90,

or when ¢‘=¢+9U°, displacements in the plane of the surface, 1.e. "u",
do not contribute to the change in optical path length. Also when
B1=@=90°, the sensitivity to normal displacement is a maximum, Un-
fortunately couditions for maxiuum sensitivity to in-ylene displace-
ments or conditions which are insensitive to normel displacement can
not be realized since it is impossible o view and illuminate the sur-
face at zn angle of zero desrees, Thus while it is possitle to set up
a system which will detect only those displacements normal to the sur-
face, it is inpossible to have a systerm which detects only in-plane
displacements, Again this assumes that the displacements are all of
the same order of magnitude and that the angles of viewing and illum-
ination are constant over the surface, From this argument, a useful
expression can be derived for the analysis of flexural displacements

of beams, plates, diaphrams etc, thuss

NA = W (Sing + Sin ¢') (2.9)
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In flexural problems, the angles of viewing and illumination can vary
over the surface and can easily be taken account of in the above ex-
‘pression the contribution to the optical path length change by the
in—-plane displacements being neglected since for example in the case

pf a sinply suppoxrted beam, the in-—plane displacements are proportional

to the first derivative of the normal displacement,

Using Bq. (2.8); and having a Xnowledge of the displacements
that are imposed on the object, one can predict the general shape of
the fringe patterns for some simple cases., TFor example, consider the
case of pure rotation about the "y" axis, For small rotations, the
normal displacement "yw" at a distance "x" from the origin, will be xyﬁ
where Mis the angle of rotation, Substituting for ™" in Bq. (2.8) and
assuming that for small rotations the displacement in the "x" direction

is negligible, gives:

N A = xﬁ(5m¢+5m¢v

For. o given angle of rotation, and if the angles of viewing and illum--
ination are constant over the surface, then the fringe order number is
linesr with respect to the distance "x", thus the fringe pattern will
conzist of a series of equally spaced fringes normal to the "x" axis,

At the axis of rotation, the fringe order nmumber is zevo and reprecents
a point on the surface with Zero displacement. In the case of using
fhe live frinuge technique, the zero order fringe will be a dark band,
whercas in the case of a frozen Iringo rattern, the zero order iringe
will be a'bright fringe, If the location of the axiz of rotation ic
unkknown, it can be found by determining the lccation of the zero order
fringe. This is done by changing the angle of viewing and observing
the changing fringe order numbers over the surface i.c. the fringes move
as one chanves the direction of viewingz., The {ringe that does not move
is the zero order frinze. OCne obvious problem which arisez in analysis
of rotation patterns is that if the direction of rotation is unknown, it

can not be ldetermined from the fringe pattern using 2 simple equation,

A pattern which is identical to the one described above is oue
due to constant in-plane strain. Consider a simple tension member sub-
ject to an axial load that induces a stress Ox and a strain oOx/E = €X,
The displacement in the "x'" direction at a distance "x" from the fixed
end is u = x€x., The lateral displaccnent, "w"', is due to Poissons

effect and assuning it is equal on both sides of the mid-plane of the



30,

member, "' is equal to-yi€x/2, Substituting for "w" and "y in

Bq. {2.8) gives:

NA = €x[K(CosrCosdl)opt (sind 45 @]

If tho strain is constant along the length of the member and the angles
of wviewing and illunination are constant then as in the case of rota-
tion, the fxinge order mumber will he linear with respect to "x" and
the pattern will consist of a series of equally spaced fringes, normal
to the "x" axis., It may b noted that in this case @' must not equal
g + 900, and both ﬁ' and ﬂ must not simultauncously be equal to 900 oxr
the sensitivity to in-plane displacement will be zero., The effects of
the latorazl displacement,"u", will be to cause a uniform phase shift
over the entire surface mince the contribution to the optical path
length change will be the same at every point "x", ie problen yhich
arises in atfenpting to determine the strain from a'fringe patlern as
desceribed above-is That if the direction of the applied load is un-
incwn, then one cannot tell from the pattcrn whether the strain is

positive or negative i.e, tension or compression using a simple equaticn,

The fringe patterns described above for the case of szolid
body rotation and constant in-plane sirain are idontical and in a
pracfical engineering problem, one can have any manner of displacements
simultaneously in which case it would be impousible to tell from a
single fringe pattern what is actnally transpiring in the way of in-
plane displacements. llethods have been developed which involve ana-
lizing the fringe patierns vhich have been obtaincd,by viewing the
image from different angles, In effect one obtainz o set of simul-
taneous equations which whan solved will yield the three components of
displacenment. The most general of these methods is given in (11) and

will now be described.

The basic provlem is to solve Bq, (2.7) with the displacement
vector "d" broken Aown into the three components; the two in-plane

components, "u" and "v", and the normal ccmponent, "w'", The procedure,

for determining u,v, and w, given in {11) is as folows,

Consider a point on the surface of the object having coordin-

nates xo3yo,zo where the x,¥ axes are in the plane of the surface.



The illuminating bean comes from a point source located at coordinates
X975 N and the image is wiew throuzh a point or small window in the
hologram plate at coordinates x,,y¥ys2; as shown in Fig. (2.4).

Letting the fringe order number of the fringe at the point in question

on the surface of the object be I, Bq. (2.7) becomes:

N,A = cl(Cos6 +Cosg)) (2.10)

By changing the viewing angle to corresvond with point "2" on the holo-
gran plate, the fringe order number of the fringe at the point in queu-

tion is N, and 3q. (2.7) becomes:

No A= d (COSQ+C059;_) | (2.11)
Subtracting Bq, (2.10) from (2,11) gives:

(N2-Ni) A = d(Co_s 6, - Cos 0)) (2.12)

In Bq, (2.12), the angle that the illusinating beam makes with the
displacerent vector has been eliminated, Repeatirg the process for

points "3" and "4" on the hologram plate gives fthree equations thus:

(Na-Ni) A= d (Cos &) - Cos8!)
(Ns—ts\l)?\s d (Cos 9; - Cos 8') | (2.13)
(N4 ~NJA = d{(Gs 8, Cos6))

The anzle between the displacenent vector "d" and the direction of

vieving can be defined in termes of cosine directions thus:

COS 9:—, H LOLn + Mo Mp -S-POPN

where: Lo = U Mo s V P, » W
d d d
Ln= Xo-Xn Mn= Yo-Yn Ph- Zo-Zn
rn ) I"n rn

and:

rn =\/(>(o-»<n)1 + Mo-Yn)? +(Za-1n)?
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Substituting for Cos 6' in Eq. (2.13) zives:

(N'}_-- N|))\ = (X"r':(’- Xo- X|)+ Vv (Yu-yz -Yor-;‘ﬂ) + W(Zor-'-:.'a. - Zor::Z:)

(N3-N)A= v (Xo;a)(z >(o- ) )+ v(Ya-Ys vor:;w) bW Zo-Zs zc,z,)
Xo-Xa _)(o X} V Yo-Y4 _ \/o ‘/) w {202y _ 70-2i

(N4M (f'«- )4(4 + (M Y'z)

In applying this approach o obtain the three displacement components
one would view the image from position "1" and allocate a fringe order
number to the fringe at X3V 2% e The actual fringe number is not im-
portait since one is interested in determining differences in Lringe

order numbers. The direction of wviewing is thon changed to correspond
to point "2" on the hologram plate and a fringe number assigned to the
fringe at the sams po’nt on the surface of ihe object. TFrom this pro-

ce2s one can obtain N, - Ni. Repeating the procedure for points 3"

[

ani 4", one can obtain HS - Nl and H& - Ni and thus complese the L,I.S.

of Eq. (2.14). If the zero order fringe position is known and one can
see and count the fringes easily, then the process is straigzht forward
however if the zero order fringe position is not known then the number
of fringes which pass the point on the surface of the obiect as the

viewing anzle is changed, represents the differcnce between the fringe

order nunbers cbrresponding to the two viewing angles: viz, AN = 1

T2 "-.Lu 1
ete, The value of AN can be positive or negative and one must adopt

a conveintion for example fringes moving from left to right are positive

and fringes npoving from right to left are negutive,

Having obtained the L.H.5, of 3q, (2.14) anco by neasuring
the cogrdinates of the point on the ovject and the four poinis on the
hologram, one has enouch information to solve #q, (2.14) and thus ob-
tain the values of the three displacement components, Before looking
into the methods of measuring in-plane disvplacemncrnis as described in
(9) and (1C), it is adventageous at this point to look at the applica-

tion of the method described above to problems of stress analysis,

2,5 Application of Holographic Interferometry to Stress Analysis

The strain information that is reguired to calculate the

32,

(2.14)



principal stress at a point on the surface of the object is the princi-
strains €1 and 62. Generally +the direction of the principal strzins
o will be unknowm hence the sirains cannot be measured directly., They

can however be calculated from the relatioship:

€,€2 = EA4EY r\[(€x-Ex)*+ 2 ¥  (215)

Heasuring the normal strains €x and €y, is straight forwvard in the case
of using strain gauges however the measurement of the shear strain, 3’:@,
is dimpossible , in which case the strain in a third direction must be
measured and the shear sirain obtained by solving three simultansous

equations thus:

Exy = ExCos?, +E€y Sinx, + Exy Sinety Coseg,
Exe = ExCos’oin + Ey St + é’xy Sinotz Cosoln (2.16)
Exla =ExCos?ely + €y Sin?c{a + ¥xy Sincla Cosola

Using hologrophic interferometry, the shear strain can be obtained di-
rectly along with the strains €x unil €y, To do this the in-plave dis-
placenents would be determined at four points which form a square mesh
enclosing the point at which the principal strains are to be calculated,
The strainz at the centre of the mezh can be estimated using finite

difference equations thus, see Figz. (2.5):

= L U1—U| Ua-Us - ¥ 3 - V V-\/
€« 2 Ax * Ay ] ﬁy 2[ I 4(.\\12-’
(2.17)

¥y = & [Qa=b2 , da ul] + 4 v.q, v3 \/2-\/:'}
2L Ay ax
laving the strains €x, €7, and b’vur, one can calceulate €l and 62 from

which the principal stresses 0" , and T cen be calenlated thus:
a, ]
(2.18)
G—')_ = E [E'L -+ )Jélj
-y
]
Tax = =% [U_" 0_"]
The direction of the principal s:bresseé can be determined from:
Tan 20 = _ 8% (2.19)

Ex~-E£v

A0



FIGURE 2.5

41,



—

In considering the application of the method given in (11)
to stress analysis, certain limitations become apparent. The most ob-~
vious undesireable featﬁre is that unless one has a bench or set up
with built in precision measuring equipment, it is very difficult to
accurately measure the coordinctes on the surface of the objeet and on
the hologran plate. To determine the strese at a single point on the
opject requires the measurement of 12 coordinate points on the object
and the solucion of four sets of three simalbtaneous equations, Initi-
ally one must aclso measure the 12 coordinates of the 4 points on the
hologram plate. The simultancous ecguations could be assembled and
solved by computer however to measure the couordinates associated with
say ten points on the surface at whick tho principal stresses arc re-
quired would be a formidable task and prone to error with out some form
of built in nmeasuring equipment, Another problem that is also expected
to arise is that inevitably one would be required to estimate a fractiom
of a fringe order number and if the fringe spacing is large or if the
spacing is changing rapidly, onc camnot rcsolve hy eye the variation
in intensity between two dark fringes hence it wbuld be possible to
have large errors entering into the fringe order nmambers especially if
when ccunting the number of fringes which pass a point on the surface
ag the wviewing angle is changed, the number of fringes is less thau one
or even in the region of two or three, In cadditicn to these practical
difficultics, one other obvious problem can he forseen and that is that

if the problem unier consideration is a Tlexural vroblem then the dis—

placement "w" will nost likely be much larger than "u' and "v" hence

one is trying to solve a set of equations which involve large and swmall

nenbers which is & noioriously inaccurate process,

Another meihod developed for use in stress analysis is given
in (9). This method uses a set up which eliminates one of the in-plane
cumponents of digplacement by illuminating and viewing normal to the
axig of one of the in-plane displacements, In this case one can make

use of ®q. (2.8) and proceed as folows,

Tro holograms are made in which the angle of illunination is
common but the ansles of viewing are different; see Fig. (2.6)., TFron

these two hologzrams one can obtain the following expressions:

NA = u(Cos¢+Cos¢,) +W(Sm¢+$m¢;)
szk = U(Co§¢+CdS¢1) +W(Sln¢ +Sln¢z)
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Eliminating the normal displocement "“g' gives:

T2 (Smep + Sind) =N (Sin g +Sin qﬁzﬂ/\ = U [(Cosq‘ +CosP,)(Snch +Sin $)
~(Cos b +Cos¢,)(5m¢+5m¢3)j (2,20)

The L,HI.S, of the above equabtion can be written as Nr&'where Ni can he
thousht of ~s the fringe order number corresponding to a pattern in
wvhich only *the in-plane displacencntsg have contributed to the optical
path iength change, If a grid were drawn on the surface of the objeci
then one could calculate the value of Nr at'each srid point and putting
these values of N& cunto a duplicate of the grid drawn on the object, one
could graphically construct a frince pattern that represented in-plane
displacements oniy, This pattern would cover the entire surface of the
obiect and would correspond to loci of points having constant in-plane
displacement similar to what one would ecxpect from a lMoire' exveriment,
To obtain the iﬁ-plane stroin, one would have to plot a curve of the
in-plane displacenent and numerically differentiate the displacement
with respect to a length increment; viz., €x = du/dx. To obbtain the
principal stress at a point onthe object one would have to repeat the
process at different angles say at 450 and 900 to the "x" axis and then
usc Eq. (2.16) to obtain the shear strain nnd subsequently the principal
gtrains and stresses, In its simplest Iorm, this method can be thought
- of as the graphical subtraction of two fringe patterns one of which
is due to in-plane and normal displacenments and the second due to nornmal
displacements only. This case can exist if the second hologram ls made
with the angle of viewing equal to the angle of illumination plus 900.
If for the first hologram, the angle of viewing is equal to the angle

of illwnination and both are not 900, then Bq, (2.20) becomes:

Ni-N2) A= 2v Cos¢f |  (2.21)

In this cace, subtraction of the two fringe order numbers at the sane

grid point yields the resultant in-plane fringe order number,

Ao with the previously described method the above method hos
"practical limitations especially when it comes to a flexural problem.
In a flexural problenm one would have two fringes patterns which would

be almost identical since the normal displacement would be large in come



parison with the in-plone displacements. Effectively one would be in-
volved in subtracting two large numbers to obtain a small nunber vhich
again is prone to large errors, In addition one would again be faced
with estimating a fractional fringe order number at a grid point and if
the fringe order mumbers were close to being equal on the two holograns,
a great deal of error can be incurred in the subtraction of the two num-
bers. o illustrate the difficulty that would be encountered in trying
determine the in-plane displacements in the case of a flexural problem
consider a simple cantilever beam, loaded at the frec end by a force

"I,  The lateral displacement "w'" is defined by:

. F 'y 3
we = (- )

Tho surface strain is given by €x = t/2R = du/dx wherec ™' is the depth

of the beam and "R" is the radius of curvature which is, for small de-

flection, approximately d2x/dw2, Thus the surfsce strain can be written

ag:

du .

diW _ _Fi(i-x)
dy

£ .
2 dy*  2eIX

The in~plane dis@lacemenﬁ at any point "x" from the fixed end is:
2

o= [y de = EE (Lx- )
At the free end, the lateral displaccuent "w" is FL3/3EI and the in-
plane displacement is FtL2/4EI. The ratio of lateral to in-plane dis--
placement is 4I/3t. If in a practical case, the length to thickness
ratio was 10:1 and assuming that one was vieving and illuninating the
cantilever at an ansle of 450 so that the serzitivity to in-plane and
lateral displacements was equal for both, then the normal or lateral
displacement would contribute 40/43 or 93 percent of the number of
fringes while the in-~nlane displacenent would contribute only 7 percent,
Thus if one made two holograms such thal one contained a fringe pattern
due to normal displacements only and the second, a fringe pattern due
to in-plane and normal displacenments, then one would be faced with try-
ing to subtract 93'from 100, graphically, which is not likely to be very

accurate,

Thorthird method proposed for determining surface displace-
ments is given in (10). This method appears to be rather complex and
is not really understood by the author. Like the first method described
it entails determining the three displacement components of '"d" hence is

likely subject to the same practical difficulties in application,

T

L



2.6 Closure

In surveying the literature on the use of holozravhic inter-
forometry to determine surface displacemcnts and in particular, applica-~
tion to stress analysis, only three methods were found., It iz thus
concluded that while in theory it is poésible to deternine in-plane
displacements, in general application the methods are restricied to
problems where the normal displacements are small or of the same order
of magnitude s the in-plane displacements, In addition, to make the
methods economically attractive, development of hardware which would
allow rapid and accurate meoasurement of coordinates, angles, and frac-

tional fringe order mumbers i3 required.

The use of holographic interferometry to measure normal dis-
placements of beams, plates, and diaphrams etc, has been demonstrated
and is in curremt use, If one can conveniently relate the in-plane
displecenents to the normal displaceoments as is often the casc in
flexural probiems, then the method of holographic'interferometry is
a very convenient method to apply since one can work directly on a com—
ponent with very little preparation of the part. It is also a very
sensitive method since one is working with wavelengths of light and per-
haps in some instances it may be too sensitive however other methods
such ags loire! fringe are in some insiances net sensitive enough, This
area of holographic interferometry is applicable the problem of the
flame plate hence it is used in chapter four to determine the flexural
displacements of a flat circular disc ard agsin in chapter five to-
deternine the flexural displacements of the Rustor Hornsby flame plate

under a transverses mechanizal load,



CHAPTER THREE

AWALYSIS CF A FLAT PLATE WITH A SHALL
CIRCULAR HOLE

3.1 Introduction

In this chapter tne stress distribation in a flzt plate with
2 small circular hole at the centre and loaded by an axial tensiie
force in the "x" direction is analized 1ty dynamic relavation and the

results coapared with an anzlytical solution.

The analytical solution provides equations for the stress
distribution based on a polar coordinate system, These expressions
are fourth order polynominls and the stress values change rapidly reor
the hole in the centre of the plate. Tlsing polar coordinates for the
sclution by dynamic relaxvation requires the tangential stress on the
hole boundary, which iz unknown, to be extrapolated from values within
the plate and it was suspected that using a simple linear exirapolaition
nizht not zive accurate reosults, As a resuli, sxtrapclation based on
a higher order varigtion in the tangential sitress was . used and the
results compared for accurazcy, For the mesh size used, the lincar
extrapolation gowe good results ond assuming a hizher order polynomin

did not arfect the solution,
3.2 Analytical Solution
Figure (3.1) represents a flat plate of unit thickness

- subject to a tensile load in the "x" direction and having a small

circulur hole ot the centre,  The plate has the following seometrical
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and physical properties:

2a = 0,375 in.

2b = 2,25 in,

£ = 0,732 x 10_3 1b.~soc.2 /in.4
Y = 0.3

o= 30 x 10° 1'b./in.2

The stress distribution in the plate is affected by the hole
however the effects are localized and if the hole is small in compar-—
ison to the widsh ¢f the plate, the stress at the edge of the plate
can be asawmed to have the same value as if the hole did not exist.
This asswaption is based on the principle of Szint-Venant which
effectively asserts that if the forces on the boundary of an elastic
bedy are replaced by a staticolly eaunivalent system of forces ol
whose distribution is different, then the stross distribution abt some
distance from the point of application of the foreces renains unchangeds
the distonce from the voint of application of the load being of the
same order of magnitude ws the dimensiong of the bedy. An analytiocael
solution Hr this problem is given in (12) wund the stress distribution,
using a polur coordincte system with the conire of the hole as the

orizin, is given by the following expressiung,

Ty ? 4 z :
Tr = --2—(|- %‘1)+%(‘+ 3%‘4“ 4%’1)605 20¢ (3-1)
4 :
0o = %CHQF:-)—%(H 3% ) Cos 2 | (3.2)
. ot .2 E)
Tre = —-%ﬁ(l:- 3?4 + 2%1 ) Sin 2dl (3.3)

; S . . Gy .
The stress distribution alons the "y" axis (i.e. wheneg= 90 ) is

given by:

Tre & (39'_1 - 39“-4) (3.4)

(3.5)



Tro = 0 ' (3.6)

It can be scen fronm Lq. (3.5) that the tonzential stress distribution
along the #y" awis hos o maximum ot the elge of the heole and is eouzl
to three times the stress at the edse of the plate., TFrom By, (3.4)
it can be seen that at the edpe of the hole when r = 4y the radial
stress is zero and is again sero vhen "r" is largse compured to "av,

The stress distribution alony the "x" axis (i.e. whenel= 0°) is:

. 2

Cr= Z(243%)-5&) (3.7)
2 g \

(o= (% -3%,) O (3.8)

From Eq. (3.8) it can be seen that alons the "x" axis the tangential
stress is a maxinun at the edze of the hole znd iz equel to the
applied stiess wut with opposite sisn, The rodial stress is zZero at
the edge of the hole and when "r" is large compared with "u.", the

radial otress is cqual to the applied stress,

Fizure (3.3) shows the tongential stress distribution along
the "y" axis and Fiz. (3.4) alonz: the "x" axis. The tangentizl,
radizl, ani shezr stresses are given in tabdles (3.1}, (3.2), and (3.3),
The wvalues have Been celculated at coordinates compatible with the
mesh voints used in the dynanic relaxation solution Dr compariscn

puUrposes,

3.3 BSolution by the lethod of Dynamic Telaxation

Because theplate and loading is symmetrical about the "x"

and "y" axis, only onc quarier is the plate need be considered as



shown in Fiz. (3.2)., The selcction of the coordinute system for use
with dynzmic reluxation is not directly obvious. If a rectanpulor
coordinate system is uscd, the hole will have to be approximated by

a series of stevps, however if thoe mesh wero fine enough this would
not likely be toogreat a disadvantarc, Ono advantage of using rect-
ansular coordinctes for this problem is that no assumption weuld have
to be made regarding the stress at the edse of the plate not being
affected by the stress concentrotion at the hole, The assunption,
based on the principle of Szint—Venunt that the stress at the edge

of the plate iz unalfected by the siress concentratien at tho hole,
will lead to large errora if the hole is not small., The liniting caue
for this particular problem is a plate width to hole dizmeter ratio
of 5 : 1, The problem chocen for unalysis has a ratico of 6 : 1 for
this reason, hence, usze can be made of the principle of Saint-Venant
and il weuld aprear thet w polar coordinate system weuld be better in
view of having to approximate the hole by 2 sbepped boundary in the

case of using rcecianguluer coordinates.
Using polar coordinates, a pseudo-~boundury can be formed b
’
specifying the stress conditions on a radius "b" equal to one half

the width of {the plate., The stress on radius "b" specified in polar

coordinates is obiained by transfornaticn of coordinates tlrus

O = Tz Cos’st + Oy Sinet +2 TxySimd Cosy  (3.10)

Tu= = (0x-0y) Swat Cosok Ty {los™(-Sim) (5 11

since the stress in the "y" directiun at radius "u" is zero and the
sheor stress in $he "x" and "y" direction is zero, then the stresses

on radius "b" are:

0r= (x Cos* (3.12)
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o= 0x Sin*ed (3.13)
Trgg — Ox Sined Coset ‘ (3'-14)

The problem now takes the form of a flat circular plate with a hole at
the centre and loaded by forces at the outside diumeter, Therne forces
give rise to stresses defined by Egs. (3.12), (3.13), and (32.12).

The finite diffcrence equations in polur coordinates for Lhe case of
plane stress are given in App. "B",

In specifying the houndary ;onditions, the procedure used in
this thesis is to arranve the mesh points so that the velocity and
shear nodes coincide with the boundaries and specify all hounda
conditions in the velocity and shear cquatiocns, Bxamining Eq, (B.8)
on the bosis of the atove procedure for specifying boundary conditions,

the radial VOIObltJ on the outside diameter is given vy:

o) = Gz loK2 | Ak 2(p- G'CI-"")
B(L,9) = U3 555 *;u—,m:z)[ E—

+ Tro(z,06) - Tre(2,3) + P—fL (3.15)
AG

In this equation p,q, and of are:
P= Gx Cos*k
q = Tx Sintx
o= A6 (J-V2)

Ont the inner or hole boundary, the radial wvelocity is:

' —KI2 Ak : -
UL,y = 0(1,7 + 2(Cr(n,2-P)
) V1R AOIRI2) Ar
+ P;%] | (3.16)

In this cquation, "p" is zero since there is no applied radial roree in
- the hole. The tansential stress *“q" is unkncown, however it can be
estimated by extrapolation of wvalues caleulated within the plate. ™70
extrapolation formulae have been derived in App, "F'". Since the plaie
is being entered in the direction of advaoncing subscripts, then from

Bq. (F.4);“q" can ﬁe'exprcssed as s
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q = To(5,3) - +5 [Go(Tr,a) - olr,3)] + _755 [0‘9(11-2,.)’) — 2 0o (T+),3)
+ qgcx,:)] - L;%ZE[G‘@(HB,J) - 366 (T+2,3) + 3 T (T+,J)

-G (TN ]+ .- - ' (3.17)
If it is ossuwned that the tangential stress varies linearxly in the
radial dircction, all terms in the above expression beyond the 2nd
term vanish since 2nd and hicher order difference§ arc zervo, Thus

"q" becomes:

q = 6oz, - .s[Tecx+),3) - To(3,3)] (3.18)

Similarily if it is assumed thot the stress varies as a 2nd cxder
polynomial, then 211 terms boyond the third vanish and “"¢" is given
by .

3= Go(z1) - .s[O'eCI+l,J,!-G'9(I,J)J +'225[O'af142,J)—20’e (:+|,J_)+G'a(:,.;ﬂ(3.19)

Assuming a 4th order polyncmial "q'' is given by:
3 = Gal{xJ)~ .5[6‘9(:“,5)-6'6(:,.1)} + -zz_s_'[c'a (T42, )~ 206(1+1,7) +G® c.r,.:r)_]

- ""’——-E[Ge(ns,s) - 300 (I+2,7) + 3 06{1+l,J) -~ O'G(I,J)j

+ ‘%‘3—3’ [GG(IM,JJ ~406(1+3,3) + 6 00( T+2,T) - 4 Ca(T+,3) +G‘e(r,:)]

. (3.20)
The shsar stress on the outer bo.ndary is given by Ea. (3.14) and
since on tne inner boundary there ave no cxternally applied forces the
shear stress is zerc., These conditions are specified when working on

the shear ecu-ticns.

Specifying the conditions on the twoe radial houndaries is
much simpler, Because of symactry, no tangential dicplacement occurs
on either boundary hence the tansential velocity is zero, Sinilarily

becucse of symmetry the shear strcsses are zZero on both boundaries,

In selecting the mesh size, the accurwccy and length of com-
puter time reguired to achieve a steady state solution must be con-
gidered, The number ¢f equations to be selved is directly proportionnl
to the number of mesh points of inversely proportional to the produch

of the nmesh dinension for a specific problem. In additiony the valuo



of the time increment is proportional to the mesh dimensions and in
turn the nunhber of iterations requiredlfor a solution is inversely pro-
portional to the time increment; the number of iterations is related

to the periodic time of oscillation thus, I = 7/At where T is the
periodic time and N is the number of iterations in one oscillation,

As an example, if in a given problem the mesh sizes are Ax and Ay, then
the number of equations te be solved iz propertional to I/CdxAy). The
time increment is proporiional to 1/(1ﬂAx2 + lﬁdye)ﬂl/z. Since the
length of time required is directly pronortionzl to the number of equ-
ationz to be zolved and inversely proportional to the time interval,

one can write:

VAR 2.
Length of computer time 4 Ax 1Ay . L
Axdy Axdy

or if Nx is the nuwber of mesh points in the "x" direction and N is

the number of mesh’'points in the "y" direcction one can write:
lLength of computer time < Nx Ny\/-Nx"f.N,\ﬂ-

It can be seen that if one doubles the number of mesh points in both
directions then the length 2f time to obtain o solution is increased

eight times,

As in all numerical methods, the accuracy of the solution is
enhanced by a fine mesh or large number of mesh points therefare it is
desireable to have as fine o mesh as possible, It is obvious then '’
that some sort of compromise must be made between computer time and
accuracy. For the problem in this chapter, the nmesh size chosen was
19x19, Since the plate width to hole diameter ratio is 6 : 1, the
nunber of radial elements nust necessarily be a multiple of 6 and in
view of the fact that one would normally expect the stresses to be
chanzing rapidly in the region of a stress concentration, a 19x19 net
does not appear too extravazant. For {this problem then, the messh or

elenent dimensions are:
Ar
Ao

2.25/36 = 0,0625 in,

]

H

3.1416/36 = 0,0873 rad.
The smallest mesh length is:

» A6 = 3,5 x 0,0625 x 0,0873 = 0,0191 in,

=2
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Estimating the time interval using g, (1,17):

(1 + 1/(z20)")/?/c

0.775 x 1077 500,

At

]

This value for At was found to be low; a value of 0,9 x 1077 seened to
be about right, The damping constant was obtained by trial and error
and a value of k = 0,03 gave rapid convergence, The computer progsramme
is giﬁen on page 247.

Satisfactory convergence wags achieved in 600 iterations which
took approximately 25 minutes on the I,C,T 1905 computers the sum of

velocities squared decreased by approximately 8 orders of magnitude.

Two programmes were run., The first programme uses Bq, (3.18)
to determine the tangential stress on the hole boundary; this equation
assuﬁea that the tangential stress varies linearly near the hole, The
results of this solution are given in tatles (3.4),(3.5), and (3.6).

Tre tangential stress is plotted against radius in Fig's (3.3) ard (3.4)
for angles of A= 87.50 and 2.50. Thesa two angles oorrespondhghe Tt
mesh points near the "y" and "x" axis respectively and are suificiently
close to these axes to assume that the siress distribution along these
radial lines, i.e. 2t 87.5 and 2.50, is representitive of the stresces
along the “"y" and "x" ocxes respectively. The second programme uses

Bg. {3.20) to specify the tangential stress on the hole boundarys this
equation assumes that the tangéntial stress varies as a fourth order
equation, The taungential and radial stresses for auzgles of 87.50 and
2.50 are given in table (3,.7) and should be compared with the corres-
ponding values in tables (3.4) and (3.5)

3,4 Discussion of Results

The main reason for using a nunerical method to solve the
differential equations which govern equilibrium conditions and define
stress-strain relationships is that an analytical solution cannot be
found or is too difficult to {find because of the complexity of the go-
onetry of the part or of the leading conditions. The results that are

obtained from a numerical solution cannot therefore be checked arminst
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an analytical solution ( with the exception of cases such as in this
chapter where the numerical method is being examined and a problem hos
chosen that has an analytical solution ) however, certain checks can be
made which will give the user confidonce in the results, One check iz
the cguilibrium of a portion of the object, Thisz can be illustrated
as folluwus, .
Trhe sumnmation of the forces in the direction of the appliecd
load must be zero., Taking the tangential stresses along the line 0-4,
Fig, (3.2), and multiplying these stresses by the respective areas upon
which they act mives a load in the M"x" direction of ~1123.8 1b. The
applied load is 1125,0 1b, The sum of the loads in the "x" direction
is 1.2 1b, which in view of the mzgnitude of the applied load is neg-—
ligivle thus it iz assumed that the plate ie in equilibrium in the "x"
directicn or direction of the applied load, Similarily the suwumation
of forces in the "y" direction must be zZero. IMultiplyine the tangential
gtresses along line O-B by the scrresponding arecas gives 12,9 1b, Swees
'Since there ave no other forces acting in the "y" direction, this value
of 12,9 1V, ropresents a certain amount of unbalance in the "y" direc-
tion hwwever in the light of the applied load this unbalance is small

thus it is ussumed that the plate is in vertical equilibriunm,

Tn addition to equilibriuwm in the "x" and "y'" directions,
the plate musi be in equilibrium with regards momenis about any point.
Taxing moments about the centre of the hole, the upplied load producses
a moment of ~632.8 1b,~in, The tangential stress along line 0-A pro-
duces a moment of 661.0 1b,-in, and along O0-B, a moment of =30,4 1lb,~
in, Summing the moments gives -2,2 1lb,--in. Azain, while this indi-
cates some unbalance, in view of the applied moments it is smnall thus

it is assumed that the plate iz in equilivrium with regards moments,

Another check that can be made is on the equilibrium of an
individual element. This can be done using Bq, (B.1) and (B.2) in
finite difference form. . For equilibrium, the stress equilibrium equa-~
tion must be Zero and substituting the siresses obfained by dyﬁamic
relaxation into the finite difference form of the equilibrium equation
will dinevitably give a residual which is an indication of lack of equi-
librium. In the early staces of the iteration process this residual

will be large and as the solution converges the residual will dinin-—-

Ut

pXo



ish and approach a value orders of marnitude leas than the maximum cal-
culated in the earxrly stages. Effectively, the velocity at the node.
points is measure of the residual and by calculating the sum of the
squares of the velocity throughout the boedy, the overall internal equi-
librium is measured. As the velocities throushout the hody approach
zero, the stress equiliirium equations are satisfied; viz. Ig, (B.1)
and (B.2) in danped wave form as the velocities approach zero, This
check has been made and fof the first programme, i.,e. ihe one using

3q. (3.18) for the tungential stress, Initially the sum of the vel-
ocities sqguared incrcased from zero to 0,304 x 104 in the first 58
iterations, and then decreased to 0,325 x 10_4 in the remaining 542
iterations thus indicating that a high degree of equilibrium had been-

reached,

Without ‘comparing the dynamic relaxation solution with the
anulytical solution, on the basis of the equilibrium checks both oxter-
nal and internal it would appear that a satisfactory solution has heen
achieved in as much as the programme has been correctly written and the
boundary conditions are compatibvle with the finite difference equations
and therefore one can be reaconably confident in the results., As fer

accuracy, this will depend at this stage, on the finencss of the mesh,

The final check by comparing the dynamic relaxation solution
with the analytical solution will give an indication of the accuracy of
‘dynanic relaxation solution. In Tig. (3.3), ithe tanzentizl stress ob-
tained from the first computer run is compared with the analytical sol-
ution along the radial line at an anzle of 87.50. The‘stress at the
edoe of the hole is obtoined by extrapolation using Za. (3.13) and is
2839 lb./in? The value obiteined from the analytical solution is
2992 lb./in.z; the value obtained by D.R. is low by about 5 percent,
The remaininzg values obtained by D.R. follow the analytical curve
reasonably well although a deviction of 13 percent occurs at the ed:se
of the plate, Pigure (3.4) compares the tangential stresses along a
radius 2.5o from the "x" axis, At the ecdse of the hole, D.R. gives,
by extrapolation, a stress of -956 lb./in.2 and the analytical solution
gives =992 1b./in.2; the value obiained by ».R. is low by about 4 per-
cent. The remaining values obtained by DR, follow the analytical
curve but not as well‘as one would like and calculating percentagze

deviations indiecates large errors cspecially where the stresses are

€0,



srall or near zero, Vhile the percontage deviations arce larpe, the
effects are not felt by the equilibrium since the forces associated
with these small stresses must also be small hence from a point of
equilibriun, cne appears to be Justified in overlooking larsze deviations
in small gliresses., From a mathematical point of view this appears to
be unrealistic however fron an enzinecring point of view it appears to

be the only approach one can take,

Comparing the results of the two computer programmes, the
use of a higher order equation to extrapolate the tanmential stress at
the hole toundary does not appear to improve the solution and in zonec
arcas of the plate the solution appeaﬁ% to be sonevhat degraded, In
problems vhere onc is restricted to a coarse mesh,the vse of hisgher
order cquations for the stress variation may improve the solution how-
over for the mesh use¢ in this problem a linear stress distritution

appears to be a satisfoctory assumption.

3.5 Closure

The results cbtained by dynomic relaxation for the maximun
stresses in the plate apree reasoﬁably well with the analytical results
and waile large errors cxist in aveas where the stresses are small,
these crrors do not detract from the overall solution if looked at from
an engineering point of view in the case of designing for strength,

The use of higher order approximations for the wnknowm stresses on
boundaries is not necessary if the mash iz fine enough although this

point could be investigated further,



CHAPTER TOUR

ANALYSIS OF A SINPLY SUPPORTED FLAT. CIRCUTLAR
PLATE SURJECT T0 A LATERAL CCNCENIRIC T.0AD

4,1 Introduction

In this chapter, the deflection of a simply supported flat
circular plate subject to a lateral concentric load is determined using
holdgraphic interferometry and dynconmie relaxation., The results are
compared with an idealised analytical solution. A comprehensive anale
yois of the stress distribution and the in-plane displacements is alsc

rnade using dynanic relaxation,

The practical case examined by holographic interferomelry
consistes of a 4" diameter mild steel plate 5/16" thick supperted by a
flat steel ring, 3-3/4" inside diameter. The load is transmitted to
the plate by means of a 1" diameter brass rod, The assunptions made to
idealise the platce and leading condition are that the plate is supportéd
at its outside edge and that upon deflecting, the rod through which the
load is applied remains flat so that the load is concentraied on a cir-

cle of 1" diametexr.

The analysis by dynamic relaxation is based on the idealised
plate.‘ The fundamental equilibrium and eiasticity equations are used
in place of the differential equations for bending of thin plates foxr
reagong of interest only. Since the support is considered as acting
over one mesh width, a degree of sinmilarity exists with the experincn-

tal conditions.

w,



4.2 Holographic Analysis

The experimental arransement is showm in Pig's (4.1),(4.2),
and (4.3). The leading mechanism consists of a hydraulic ram integral
with the support ring, A dead weight tester is used to provide an acc-
urate hydraulic pressure, The load is applied direetly to the specimen
by the hydraulic ram piston, The specimen was preloaded in the riyg by
a lead of 114 1b, to ensure good contact with the svpport ring and to

eliminate any posasible extrancous movenent,
The pertinent holographic dimensions are given in Fig., (4.3).
Checking the angles of viewing and illumination, the maxinunm for both

. 0 o A .
ig 90 from the surface of the plate. The ninimum viewing angle is:

g= tan_1(23.5/2.63) = 83°36!

Thoe minimum angle of illumination is:

g = tan—l(25.0/(vrl.752 + 0.752 +1.875)) = 81°%4!

For the maximum angles of viewing and illumination, the sensitivity is
(Sin 900 + 3in 900) = 2,0 and for the mininum angles of viewing and
illumination the sensitivity is (Sin 83%36' + Sin 81°%24') = 1,983;

this value is not exactly correct since these two mininuvms do not occur
sirultancously however it does serve to justify the assumption thiat the
varigtion in sensitivity across the curfacs is nezlizible and that the

N . . . 0
angles of wvieswing and illumination are constant and equal to 907,

Seven frozen frinze holozrans were made with loads varying
from 55,8 1b, to 156, 1b., Fhotecgraphs of the interference patterns are
given in Fig's (4.4) to (4.10) inclusive, The deflected shape of the
plate was determined from the fringe spacing which was measured on an
enlarged photographic copy of the reconstiructed image, Fringe order
numbers were assigned to each dark fringe beginning at the edge of the
support and the relative deflection at each fringe was determined using
Eq. (2.9) thus; -

N)\:V W(Sln‘? + Sin (;5')
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FIGURE 4.8
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PIGURE 4.10

(Load 156 Lb.)
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Using a lhelium-neon laser ard for ansles of wvieuwing and illunination

o . R
of 907, the above expression reduces to:

W= 0,28 xjoo% N

Tables (4.1) to (4.7) give the fringe order number v.s, distance from
the edge of the éupport and from the actval ecdge of the plate, The
actual necasuvrenents of the fringe distances are rultiplied by a scale
factor relating the enlarszed photographic copy of the fringe pattern
with the aciual size of tre plate. The fringe pattern in each case
seems to have some eccentricity and in order to enhance the éocuracy
of the unalyslis, the spacing was measured along three different radii
and the resultz averaged. 'The results given in tebles (4.1) to (4.7)'
are plotted in Fig's (4.11) to (4.17) along with the analytical results
for comparison purposes.

4.3 Analysis by Dynamic helaxation

- The deflection, bending moments, and the resulting bending
stresses in a thin plate can be oblained by dynamic relaxaiion using
the differential equations for bending of thin plates, (5). This nethe~
od does not take into account deflection due to shear or local effects of
concentfated loads or support confiruration, While these effects are
generally negligible in thin plates they are not in thick plates
whare the diameter to thickness ratio ig less than 4 1 1. The plato
being analiized in this chapter falls well within the ecatezory of thin
plates and the loads being small will cause small doflections and
stresses in the plate hovever from an interest point of view, the znal-
ysis has been based on the fundamental equilibrium and elasticity cnua-
tions, To economisé on computer time, the problem has been formalaled
using axi-symuetric stress distribution equations; the finite differ-

ence equations are given in App. C.

The mesh size was chosen arbitrarily as 16x6 and gives sat-

isfactory results, The mesh dimensions are:

Ar
JAY/

0.1333
0.0625



In specifying the boundary conditions, the support acts
over one full mesh width thus for the mesh 15,1 the displacement is
zero and therofore the velocity is zZero, The applied load is specifiecd
as an axial stress acting on the surface of the plate over the mesh
4,6 and is incorporated in the velocity cquation as in previous @Xame-
ples. The shear stress Uz is zero on the surface of the plate as is
the axial stress except under the applied load, The zero axial
stresses are opecified in the velocity equation and the zero shear
stresses in the shear equation, A copy of the programme is given on

page 250,

The time increment was calculated using EZq. (1.17) and found
to be 0.255 x 10_6 sec, A wvalue of 0.270 x 10"’6 was tried and the solu-
tion diverged, A value of 0.25 x 107 was used ard found to be satis-—

~factory. The damping constant was found by trial and error and a value

of 0,010 gave o good rate of convergence,

_ng conputer runs were nade, o1ce with the load equal to
55.8 1b. and the second with the load equal %o 156. 1b, The first run
was allowed Lo complete 2000 iterations and the second, 1100 iterations.
Convergence wag saticfactory at 1100 iterations and required just over
19 minutes on the I.C.T., 1905, The results are given in tables (4.8)
to (4.17) and include radial stress, taunmential stress, transverse
shear stress, axial stress, transverse or lateral displocements, and in-—
plane displacements for both leadings cases, The lateral displacencnts
are plotted in Fig's (4.11) and (4.17) along with the resulits of the
analytical solution ani the holographic solution? The radial and tan-
gential stresses being specified at mesh points below the surface of
the plate have been extrapolated linearly to obtain the stresses on the
surface of the plate. These values are plotted in Fig's (4.18),(4.19),
(4.21) and (4.22) along with the cnalytical results, As a point of
interest, tho axial stress distribufion through the thickness of +the
plate under the concentrated load is showm in Fig's (4.20) and (4.23).
The transverse shear stress distribution throuzh the thiclmess of the
plate is given in Fig. (4.25) for the 156, 1b, load and the bending
stress dist:ibutionvthrough the thickness of the plate is given in
Pig. (4.24) for the 156 1b, load. These stress distributions throush

the thickness are wnder the concentrated load,
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4.4 Analytical Sclution

Bguations which define the deflected shape of the plate
based on an analytical solution are given in (13). Because the load
8 discontinuous, separate expressions arce required for the two arcas
¢f the plate,i,e. the area inside and outside the load cirele, The

deflection of the plate within the load cirecle is defined by:

W= P[.& . D 212 (3+v)a?= (i- V)Y"l]
3“°(b k) n“ (a%-b%) 2 (1+¥)a?

For the area cutside the load cirecle, the deflection is defined by:

- ad. b? ? oy
g ot S5 v £

The radial and tangential siresses on the surface of the plate are
defined by:

v =‘+6_I\._4..r (e ric’_rflﬁ
- 12 L

where: My = —D(j_:l".’_& + .‘.’_J._)
r r r

d?
Ma D( —-“’ ?)
cdr?
d
and: D= _E%t t
12 (1=v?)
The radial and tangential stress distribution through the thickness of
the plate is linear with both stresses being zZero on the neubral axis
cr mid plane of the plates the stress on the concave surface is negative
and on the convexr surface, positive. The transverse ghear stress dis-
tribution is paraboliec throuzh the thickness of the plate with the mox-—

imam being at the mid-plane of the plate, and is defined by:

Trs « lz\f (t‘ z? )

where "V" iz the shear force per inch in $ne tansentisl direction at

radius "r", and "z" is neasured from the mid-planc of the plate,

The deflection, radial stress and tangential stresa have been



calculated at radii corresponding to the radial mesh peints used in the
dynanic relaxation solution, The deflection is determined for the
loads uzed in the holographic experiments; the results are ziven in
table (4.18). The stresses were calculated for the 55.8 and 156, 1b,
loads only; the results are given in table (4.19) for the stresses on
convex surface, The tanzential stress and transversce shear stress
distrivbution throush the thicitness of the plate were calculaﬁcd Tor the
156 1b, loadj the calculations being simple, are not presented in the
tables,

—

4.5 Discussion of Hoiographic Selution

The difficulty encountered in analizing the fringe patterns
was thoe determination of the fringe crder numbers or parbticularily the
location of the, zero crder fringe, In the case of a frozen fringe holo—~
gram, the zero order fringe will be a bright band and of course will be
loacated at the point of zero displacement, I the support ring did
not move on the application of the load, the zZero order fringe would be
locabted at the edge of the wuppert ring hence one would see a hright
region at the edge of the support, In all of the patterus, a certain
amount of eccentricity can be scen and in some casaes a dark fringe can
be seen very close to the support ring and in other cases, disappearing
under the edge of the support., This would seem to indicate two possible
conditions; 1, the plate and support are not flat relative 1o each other
causing the support lo be nonuniform aud thus causing the plate o de~
flect nonunifornly, and 2, the support deflects on the edge, The first
condition would explain the eccentricity of the fringe pattern and the
gsecond conditicn would explein the sclose proxinity of = dark fringe to
the edge of the support ring. A paper gaskel was used between the piate
plate and the support ring in an attempt to ensure an even distrivuiion '
of the support rcaction however it iz still possitle that the dimtrbu-~
tion was not wniforn, If the support kas moved on application of the
load, then it is difficult if nol impossible to assign order numbers
to the fringses howevor if the support maves unifornly all around then
the total displacement will take the Torm of a ceonstant added 3o lhe
flexural displacenent of the plate thus only the relative displacement
of the plate is of interest. In other words, a normal displacencnt of

the support ring will cause a uniform phose shift over the surlace of



the plate which would have bthe offeccet of moving the dark fringses

closer to the edge of the support ring.

To obtain the relative deflection curve of the plate, the
actual fringe order numbers are not inmportant and for this case the
numbering system adopted was to numbver the first dork frinpge as ¥ = 1
beginning at the edge of the support and procceding toward the centre
of the plale, the fringes are numbered 2,3,4, etc, ZFrom the knowledge
that the plate moves normally with the maximum deflestion at the cenire,
the fringes can be nunbered as described in increasing order, The
repson for heginning at the edzge of the support ring is 1o provide a
reference point from which to work and gince the fringe patterns are
slightly eccentric, the fringe location was measured on three diffor-~

ent radii and the results averasged,

Having the deflected shape of the plate relative to the
first dark fringe and the location of the Lirst dark fringe in relation
to the outside diameter of the plate, the curve was extrapolated to the
outside diameter of the plate and then superimposed onto the analytical
po that the deflection at the edge of the plate was zero, Suner-
imposing the holozgraphic curve onto the analytical curve, effectively
adds a constaut to the heolozraphie curve so that the deflection at the
outside dianeter is zero. Fig's (4.11) to (4.17) show the relative
curve and the resulting curve which is obtained by matching the hola-= -
graphic curve and the analytical curve at the outside diameter. The

deflection at the centre of the plate was obtained by extrapolation.

In all of the curves, the holographic results show a greatex
deflection at the centre than the analyticel results, Two reasons fof
this have been postulated. First, it wes noticed that a considerable
amount of friction existed in the hydraulic ram and while reworking
the piston removed some of the friction, it was not centirely elinminated,
The procedurc used to load the plate was to apply a load greater than
that desired and then to remove the excess, This procedure would tend
to cause the static friction force to act in the same direction as the
hydraulic load and thus the load on the plate would be pgreater than
anticipated, The friction force is not likely to be constant however
it should constitute a smaller percentaze of the hydraulic load at the

higher loads consequently the deviation in the deflection of the plate
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should be less at higher loads, The results tend to inﬁicate this

tendancy.

The second reason for the holographic results showing a
greater deflection is that the hydraulic ﬁiston mizht not have remain-
ed flat on application of the load so that the load tended to be somee—
what distributed towards the centre of the plate., The load bLeing
cloger to the centre of the plate would cause the deflection to be
greater, Some tendancy for this condition to exist can be zeen in
Mig's (4.13),(4.14),(4.15), and {4.17) where the holographic curve
tends to be flatter in the region between the edege of the plate and

approximately two thirds of the way in towards the centre of the plate,

Cne might expect the holographic results to indicate a
lesmer deflection since the plate is not supported at the edge but on

a diameter which is abeut 6 percent smaller,

With the exception of the results shown in Fig's (4,11) ora
(4.16) the holographic results are reasonably good tut could be im-
provaod., Improvements could be rade to the loading mechanismw to rednce
the friction or if this were not pessible, a thicker plate could be
used so that the friction in the mechanism would be a much snmaller
fraction of the applied lcad, The support ring inside diameter could
‘have been greater so that +the plate would have been cupvorted closer to
the edge, Also the load could have been more concentrated; this could
be achieved by undercutting the end of the piston where it contacts the
plate, It is felt that these changes would improve the selution such

that better asreement with the analytical would be achieved,

4.5 Discussion of Dynamic Relaxation Solution

The deflection curve obtained by dynamnic relaxation deviates
from the analytical curve towards the support, The most obvious rea-
son for this is that the support is specified in the solution on act-
ing over one full mesh width vhich in this case is 0.1333 in, If the
curve obtained by dynanic relaxation were matched with the analytical
curve at the edge of the plate as was done in the holographic solution,

the dynamic relaxation curve would indicate a deflection at the centre



greater than the analyticel curve by about 4.3 percent. Part of this
discrepancy can be accounted for by the manner in which the load is
apﬁlied; the load being spread over a mesh width whose centre is 0.47
in, from the centre of the plate instéad of the actual 0,5 in, and

is distributed insteod of concentrated. Bﬁth the condition at the
support and at the point of load application could bo improved by using

a finexr mesh however the results for the resh used are guite Jood,

The radial and tongential siresces obtained by D2, are
compared with the analytical results in Pig's (4.18),(4.19),(4.21),
and (4.22) and show good agrecient with the analytical results, The
naximum error in the region of the hizhest stress does not exceed 6.5
percent for beth loading cases and for both radial and tangentiszl
stress, The results obtained by D.R. show a higher stiess at the centre
of the plaive; this -is in agreement with the deflection being greater
when the DL, curve and analytical defiection curve arz matbtched at the

outside diameter,

Figure (4.24) compares the tanzential strass distribution
throuzh the thickness of the nlate for the 156 1b, load. The D.R,
results are in good agrecument with the analytical values, Higure (4.25)
compares the transverse shear stress distribution throush the thickness
of the plate.for the 156 1b, load. The point chozsen for the comparicon
ig directly under the aprlied load and some discrepancy exists towards
the loaded surface., It is expected *that this discrepancy is due to the
load being concentrated and discontinuous in that region., In general
the dynamic relaxation results are in good agreement with the analytical

results,

From an interest point of wview, the axial stress distribution
throuch the thickness of the plate is given in Fig's (4.20) and (4.23), |
for the region under the concontrated load., It can be seen that the
concentrated load which acts over one full mesh width is wvery localized
and the effects effects are completely dispersed within one mesh width
on either‘side of the load, The accuracy of the values is assuned to
be reasonably good however since in practice the load is ruch nore
concentrated, the results cannot be considered applicable to the actual
problem, The fact.thét the dynamic relaxation solution gives the axial

stress distribution, is, in this case, the interesting feature and illu-
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stratos the easeo 4 vhich one can obtain a complete solution to a
stress problem, If one wished to accurately determine the axial stress
distribution undexr the load, that portion of the plate under the load
could he isolated und a fine mech used. The boundary conditions on
the isolated portion would bha the stresses calculated in the original

solution of the plate taken as a whole,

4.7 'Closuse ~

‘ With the excepiion of two seis of results, the holographic
resulis agree well with the analytical solution f»r the deflcction of
the plate. The discrevancy of the holographic results in two out of
seven cases is DLelieved due to cumilative errors in the experimentel

technique which can bs avoided by taking proper care,

The dynenic relaxation solution is also in good agreement
with the analytical solution in both defleciion analysis and stress

distfibution.

It is concluded thalt the procedures used in this chapter

" can-be extended to the problem of the flome plate,
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CHAPIER TFIVD

ATALYSTS OF A FLANE PLATE FROI A LARGE DISSHL ENGIND

5.1 Introduction

In this chapter, the metheds used in Chapter 4 to analize a
flat cirewlar plate are extended to the analysis of the flame plate
from a Ruston-Hornsby "AQ" engine, The analysis of the plate is in
two parts. The first part consists of a holographic cnd dynanic re-
laxation analysis of the deflection of the flame plate under a trons-—
verse mechanical Ioad, The results of the dynanic relaxation solution
arc compared with the results of the holosraphic solution to egtimate
the accuracy of the dynamic relavation which in development required
a mumber of geometric simplifications to be made to the plate, Using
2 coarse meash, the dynamic relaxation sclution was within 22 percent
¢f the hologrophic solution. In an attempt to improve the dynamic re-
iaxation solution, a finer mesh was used however no inprovement was
achieved. The coarse mesk solution required approximately 6 hours on
the I,C.T. 1905 computer, For the fine mesh solubion, the number of
mesh points in the tongential direction was doubled. For this partice-
ular progranme, doubling the number of mesh points in the tangential
direction increases the time required for a solubtion by four thus re-
quiring 24 nours and therefore in part two of the analysis the coarse

mesh solution was used,

The second part of the analysis concists of substituting the

O



engine or working conditions of the plate into the conputer programme
written for the part one cnalysis, ©he thermal sradients in the flore
plate vhich constitute part of the total leading conditions in the
plate were determined by dynamic relaxation. The temperature data
available for the analysis is somevhot limited consequently the results
may not be enbtirely relisble hovever they do serve to illustirate cer—

tain tendancies particularily with regard to tronsverse deflections,

For a first approximation to the stress distribution in the
plate, it was asswned that the plate is simply supported. Under this
condition, two loading conditions were considefed. One due to thermal
gradients only, under which the plate aeflects dovnward into the engine
¢ylinder, and two, a combined thermal and zas pressure load under which
the plate is pushed back upward to come into contact with the cylinder
heady the cylinder hexd is assumed to act as a stiff but elasiie foun-

dation,

5.2 Details of Flame Plate

Details of the flame plate are shown in Figts (5.1) to (5.4).
Basically, the plate is a flat circular disc in which a nunmber of
holes have been machined. Yhe four large holes or valve ports consisi
of a valve seat insert which is welded into the flame plate, The valve
insert has a circumferentizl groove which forms an integral cooling
passage with the flame plate, The hole in the centre of the rlate or
fuel injector hole, is made in a similar mamner to the valve pér%s
and also forms an internal cooling passazz in the flume plate, The
plate is cocled by the ensine cooling water which flows fthroush the
four radially drilled holes at the mid plane of the platc and around
the valve inserts, The cooling passage around the valve 1asert is
comected to the cooling passaze around the fuel injector insert., The
cooling water leaves the plate via the four axial holes in thz back or
cold side of the plate, ‘The large tanved hole near the rim of the
plate is used Tor the air stort valve. The flange on the rim of the
plate has a number of small holes which are used to locate and bolt
the flame plate to the cylinder head. The flange has a circumferen-
tial groove which is not shown in the 'detail drowings; the groove
is used to house a sealing ring or "O" ring. The plate, valve insert,

and fuel injector insert, are made from steel; the plate being made

K
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from 8,3.-1501-151 grade 234, and the valve insert and fuecl injector
inzert from IW-351. The physical properties used in the dynanic re-

laxation solution are¥:

It

30 = 10° 1b. /in.>

0.732 x 1075 ib.-sec /in.?
0.3

64 x 107 in./in./"F

I

It

B
P
v
oA

5.3 Details of Support

_ Pigures (5.5) and (5,6) show the flame plate and cylinder
head assembly, When installed in the engine, the flame plate is sand-
wiched hetween the cylinder heoad and the coppor head gasgitets the head
gaslet is sandwiched between the flame plate and the cylinder, The
boundary onditions at the edse of the plate will depend on whether
one assumes a clanped edge or a simply supported edge; The nlate being
clamped between the head and the pgasliet cculd be assumed fixed at the
edge.howevcr since the gasket iz copper and conparatively soft, it is
unlikely vhat the clawping or fixing at the edje will be 100 porcent
effective thus one might assume that {the plate is simply supported.

In dctunl operation, the plate will be »artially clamped however with
nb lmowledge of the slope at the edge onc can only assune a clamped or
a simple support. Tor & Cirst awproxzivation to the problem, a sin-
ply supported condition will be used, The simply supported conditiocn
only applies Wwhen the defleeotion is dowmward into the c¢ylinder since
as shown in Fig's (5.5) and (5.6), the cylinder bead is capable of
“providing a continuous support for upward deflecitions, The effective-
ness of the head irn providing a conitinuvous support is questionable if
one considers the deflection of the plate under thermal sradients ae
follows,

Under transverse thermal pgrodients in which the flame side
of the plate is ai a hisher temperoture than the side next to the

cylinder bead, the flame plate will deflect awsy from the head**,

¥ Telephone conversation with I,H. Birchaell of Rustoen-Hornsby Lid.

*¥% if the plate is simply supported

LU
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In this condition, the gas pressure locd which occurs durineg the fir--
part of the onuine cycle, will tend to push the flame plate back up to-
t its

periphery., There will exist a gas prossure load which is just suifice

Ay

wards the head; the plate is in contact with the cylinder hoad :

ient to forco the plate to contact the head wuniforsly over the surface
and if the firing pressure is less than this, then the head will not
provide any support to the flame plate except at the owiside diameter,
If the gas firing pressure is greater thon that which is just suffice
ient to push the plate w and contact the cylinder head, then the head
will provide A support in the form of an elastic foundation, It
appears then, that the plate will have to be analized under two condi-
tions, one bheing the thermal load and the secend condition being the
combined thermal and gas pressure load, Details of these two aznalyscs

will be discussed in Section 5,7.

v

5.4 Loading Conditions In 'The Engine

* . ‘s . .2
The gas pressure lood during the firing stroke is 1500 lb/ln.
This pressure is assumed to act ovar the 16.630 in, diameter; the gnse-

ket load is exerted on the 0.606 in, gasket face.

The thermal loading or thermal gradients throughout the piatve
must be determined. The only information available with regamis ther—~
mal conditious in the plate is the engine cooling water temperatu%%,
122 to 140 OF, and the temperatu?é%along a radial axis bigsecting the
valve ports; these tcomperatures were obtained using "Templugs", locatad
about 3/16 in, below the surface of the plate, see Fic, (5.7). In
order to deternmine the stress distribution due to thernal gradients,
the temperature at each normul-stress node must be known, As illus-
trated in Chapter 1, dynanic relaxation can be used t¢ solve problems
of steady state heat conduction., To determine the temperature distri-
bution the boundary conditions must be known and with the ftemperature
information available a great deal of assuming had to be done. The

assumptions nade are as follows:

1. All of the heat enters the plate from the flame side and
is carried away by the cooling water,

2, The surface tonperature at the edge of the injector hole
*Letter from J,M. Jorsfold, ref. RES/IIN/Ri:/293517, Vay 23, 1969
¥¥% Conversation with J.H. Worsfold

¥%# Tueton diasram Mo, RD 52551/66
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and at the outside diameter of the flame plate, on the
Tlame side of the plate, is obiained by extrapolation
of the points ziven in Fig, (5.7).

3. The surface temperatures on the Tlane side vary linearly
in the tangential direction from the hot axis; i.e. the
axig biseccting the valve ports, to the axis which cuts
through the valve port, see Fiz. (5.7).

4. The temperatures on the edge of the plate in the injector
hole, the radial cooling passage, and the outside dia-
meter, are the extrapolated surfdce temperature at the

edge of the injector hole, i,e, 260°F,

The basis of the first assunption is that the contact resis-

tanée between the cylinder head and the flame plate will be high rela-
ive to the convective film resistance in the cooling water channels

particularily if tke flamc plate deflenis away from ths cylinder head
thus the heat transfer to the head will be sm2ll. Ho real zrounds for
the remaing ascunptions can be glven except that of intuition and ths
authors past experience in heat transfer work. Tho 4th assumption puls
the surface temperatures in the couvling passages above boiling whicl. ig
perhaps optinmistic in that it will tend to reducc the thermal zradients
in the plate however with little information to go on, the situation is

not inconceivable,

The above conditions are used in calculating the ftemperatures
at the nornal stress nodes, The solution will bz described in Sectiom

(5.7) under the heading " Determination of Thermal Cradients™,

5.5 PFormuletion of Dynamic Relaxation Solution

In exanining the flame plate for analysis by dynamic relax-
ation, the possible mesh size in relationship to the size of the var—
ious features of the vlate must first be considered., The problen
could be treated as a thin plate since the diameter to thickness ratio
ig 13 ¢ 1 and it could be acsumed that the plate is symmetrical about
its mid-plane, i.e. by neglecting the flange which is wvery much wealk-
ened by the "O! ring'groove and transverse holes, thus making it

possible to use the bending equations for thin plates however in view
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of possible complex thermal gradienvs, it is necceszary to {reat the
provlenm as thrce dimensional, In a three dimenzional analysis by dy-
nemic relaxation, there are twelve variables for every mesh point,

Bach variable requires two "words" of core storage and the I}C.T 1905
computer in current wse at Louchborough University has on available
core storage of 23K words thus one is limited to lcss than 1000 mesh
points, Disc storage is available but the access time 4o the disc
would be prohibitive for an iterative process, Some reduction in stor-
age requirements is realized in practice because of the interlacing net
used in dynamic relaxation and in addition one may not require the

displacements at every mesh point,

In trying to decide on a mesh size, it soon bhecomes evident
that small details or features of the plate cannot be taken into account
because they are of the =zame order of masnitude or smaller thﬁn the
mesh dimensions, TFor example the small holes in the rim of the plate
are about 1/20 of the radius thus to approximate these hole by one
mesh would require 21 radial points, assuming that the mesh gize is con-
stant. In the tangential direction these holes represent aboub 1/120
of the circumference and assuning one analizes only 1/8 of ihe plate,
then 16 tangentizl nodes would be required., Thus in two dimensions one
would use up 336 points oul of a possible 1000, 'This leaves only three
point through the thickness of the plate which is in offect two rormal
stress nodes which is not enough, Thus a number of simplifying assunp-
tions have to be made, These simplifications will undeoubtedly affect
the stress distributicn and displacements in the plate and thus the
accuracy of the results will be questionzble, For this reascon, it is
neccessary to carry out an experimental analysis which,perhaps not as
conplete as the dynamic relaxation solutiorn, will provide information
which can be compared with the dynomic relaxation solubion and an esti-

mate of the accuracy of the dynamic relaxation solution made.

The first simplification made was to neglect the air start
valve hole, This makes the plate symmetrical aboui axes 450 apart thus
naking it possible to analize one eighth of the plate, This simplifi-
cation appears rather crude however without it one would have only one
radial axis of symmetry and would have to analize one half of the plate
which would require tbo many mesh points or conversely too coarse a

nesh, The second simplification was to neglect the internal cooling
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passages. The internal cooling passases affect the plate only locally
and in terns of flexural stiffness of the plate, reduce the stillfnessz

by only 12,5 percent, i.e, the ratio of the stiffness of the plate in
the region of the cooling passapge to the plate remote from the cooling

3
pacsage is (1.5‘3- -75‘3/1-5¢ = 1/8.

Another simplification was made to the flange., The flange
ig weakened by the "0 ring zroove and the tronsverze holes thus in
part may be neglected, The diameter of the plote measured to the ovi-
side of the flange is 19.5 in. nominally, and the inside diameter.of
the flange is 17.863. 1In the final mesh choeen, the outside diameter
of the plate is 18,90 in, and the flange is neglected, The final dim-—
ensions are a compronise which is more or lezs a result of fitting a
constant radial nesh widtlh to the wvalve port and outside diameter of

the plate,.

A third simplification made was t¢ neglect the‘cooling vater
outlet holes. These holes are approximately equal to the mesh dimencions
chosen and if is felt that since they are small they should not greatiy
affect the.flexural stiffness of the plate, They most liksly will give
rise to stress concentration some of which will be carricd by the waler
outlet nipple which is screwed into the plate, Finally, the 0,110

spigot which forms the rasket face is neglectod,

Thus the plate has been considerably simplifiecd and as men-—
tioned, the results will be questionmable, In theory, all of the featw
ures of the plate could be taken into éccount if the mesh uwere fine
enough, It is poszible that one might attempt to use a finer mesh in
the region of discontinuities however this would.very much complicate
the solution and increase the storapne requirements, Gesnerally speak—
ing, for a constant mesh size, only those features of the object which
are of the same order of magnitude in size as the object itself can be

taken into account,

Three mesh configurations were devised as shown in Fig's
(5.8) to (5.10); Figure (5.8) shows a mesh 16 x 6 »x 5, The fuel in-
jector hole is approximated by one radial mesh width, The wvalve port
in this case has been enlarged as indieated by the dotted line; the

80lid line represents the actual inside diameter of the wvalwve port.



-
-

Ae= T/20 FADIANS

‘Ar =z 0.630
AZ = 0.375"

I
'C

3as

IWNVYS

6

s

13

/
7
2z,
g
ViE)
VIV ERA RPN Py Yy I Y/ L
P4

?

9.45"

FIGURE 5-8




Dr . 0.630"
Ao T /20 RAD.

Az = 0.275"

SIDE

FLAME

17

V

’
y
s
4 i
1

’O =~

FIGURE 5-9

, ": ; |
5 : _ | 3 10 T\ LY 1 '
, -
- 9.45 -

|
VP4 //tLII/_l)'SI v




A'(= 00630"
Ae.

T /40 EADIANS

v N
Az = O 375 \
31) : o
Q
v 1
w o
P /
.< [}
-t
L DA
1L !
13
!/
- 3 ‘ ) : ‘
' FYi E \‘3\\ \‘ "‘!‘ " ‘z
.—_——‘%——"’_—J ‘v ‘l ]| [
/) — ! ! i
0 Xﬂ‘!‘l?"i—/':df-ﬁ itseei) [' | ,/f';uuj&(/uh”ﬂuuzuu b2 tedtie A |
S 4321 2 3 4 5 6 8 ) lo it 1213 14 15 16

46"~

FIGURE

5-10

|



* 111,

The valve port is anproximated by a series of steps, This mesh apnszars
rather coarse however the solution requires about 6 hours for conver-
gence and a storare requirement of 12.5K. Tigure (5.9) shows an iden-
tical mesh size but the approkimationlof the valve port is much more
crude, Figure (5.10) s3hows a mesh in which the number of meshes or ele-
ments in the tanzential direction has been deoubled, For this finer
mesh, the time required to achieve a steady stote condition is four
times that of the two previous mesh confisurations., The reauson for the
gsevere time increase is that doubling the mumber of noints doubles the
number of calculations to he made. In addition, the tangential mesh
rreatly controls the time increment and thus doubling the nunmber of

mesh points cuts the time increment by half in this particular inctance,

The finite difference equations are glven in App., A, for
stress analysis and in App. D for hea: conduction, The solutions will

be desciribed in .more detail in the following sections,

5.6 - ATALYSIS COF FLAIE PLATE TUNDER
BCHANTCAL  LOAD

5.6.1 Holographic Analyeis

The need for an experimental analysis has alrecdy been dis-—
cussed. Also, it has been mentioned that it was not censidered feasible
to attenpt to simulate engine conditions in the laboratory. It remaings
then tc¢ devise an experinent that is to some extent compatible with
what one might expect to transpire in the plate under engine conditions,
It seems rcusonable to assume from the foregoing description of the
enzine conditions, that the flame plate will be subjeet to loads that

will primarily cauvse ftransverse or flexural displacements, Thus a holo-

73]

graphic interferometry analysis of the flexural displacements of +he
plate under transverse mechanical load was devised, The experimental

arrangenent is shown in Fiz's (5.11) to (5.13),

The flame plate is simply supported, the support is assuued

to act at the centre of the gasket face, and is loaded at the centre
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by meanz of z hydrauliec ram, The load acts over an anmilar diameter of
22" x 1X" and to ensure that it is uniformly distributed, a canvas ro-
inforced rubber washer was positioned between the flame plate and the
'washer under the nut on the end of the loading ram, ‘he hydraulic
pressure vas obtained by means of a hand operated punp and measured
using a O—500_1b./inh2 presgure gouge graduated in 10 1b./in.2 incre-—
ments, Before assémbly, the pasliet face on the flame plate was machined;

a paper pasitet was dnstailed to encure o uniflorm support reaction.

Four frozen fringe holograms were made, iwo with a load on
the flane plate of 209 1b, and two with a load of 412 1b., 'Two were
made at each load to ensure the accurdﬁy arnd repeatabilty of the exper-
iment, Figures (5.14) and (5.15) show two of the fringe patterns ob-
toined. Inlarged photographic copies of Fig's (5.14) and (5.15) were
used ir measuring the fringe spacing from vhich the transverse deflec~
tions were obtained, <The deflection of the flame plate was determined
along the radial line O = 4 shown' in Fig, (5.8). As was the case in
the fringe patterns of Chapter 4, som2 eccentricity cxists in the
fringe patterns of the flame plate hence the fringe gpacing was measured
on two diametrically opposite radial lines corresponding to line O -~ A
which in Mig's (5.14) and (5.15) ie near the horizontal axis., Figures
(5.14) and (5.15) are proscated rotated 907 from the actusl sct up dur—
ing the experiment, In mcasuring the fringe spacing or location; the
dark fringes were numbered‘and their location measured from the centre
of the flame plate, '“he locations were mulitiplied by on appronriats
scale factor relsting the enlarged photographic copy with the actial

size of the {flaume plate,

’ Since the hologranhic set up views and illuninztes normal to
Ad -
the plane of the suxface, ecch dark fringe represents a relative dis-.

placenment of 0,125 x 10—4

in, Assunring the deflection of ihe Tlame
plate to be zero at a radiuvs of 3,625 in, from the centre, which is the
centre of the goslket facey, the deflection curve Tor the plate along

line O -« A is obtained from the kﬁouledge thot each dark frinse rep-
resents a relative deflection of 0,125 x 10—4, and by interpolating lin-
carly, the displacenent of the first dark frinze on either side of the

zero displacement point, i.e. on either side of the 8,625 radius,

The results of the fringe measurements, the scaled measure-

ments, and the deflection at cach dark frinse is given in tables (5,1)



and (5.,2). The deflectiocn of the Tlome vlate alons line 0 — A is

T
given in Fig's (5.18) and (5.17) along with the dynamic rolaxation re-—
a

5.6.,2. Dynouic Relaxation Analysis

The computer progromme written for the analysis is given on

papges 253-257, The boundary conditions of particular interest are as

1, The axizl or itransverse deflection on. the surface in con-
tact with the support is zero, i,e, at T = 14 and X = 5
and for all values of J, 'This corresponds %o the gasket
face, -

2. ''he load is applied over the second mesh on the';everse
side of the plate, i,e, I = 2 and K = 1 and for all values
J, in the form of a surface stress, The stress is equal +o

the applied load divided by the surface area of the mesh,

The method of dynamic relaxation reguires the. stress and
velocity to be caleulated al every node point in the structure however
the deflection need not be determined since it ic derived by integrat.

ing the velocity. The only deflections of interest in this particulor

117,

solution are the Lransverse surface deflections on the side ot the plate

which was seen in the holographic . solution, TYhree progsronmes vere
o I [

run corresponding to the mesh configurations shown in Pig's (5.8) to

(5.10). Solution Yo, 1 refers to Fig. (5.8), o, 2 refers to Pig, (5.9)

andg o, 3 refers to Fig, (5.10), The deflections along the radial line
0 - A are given in table (5.3) for the {hree solutions, These deflec~
tions are also plotted in Pig's (5.16) and (5.17); solution ¥o. 3 is
net shown since it almost identical to Yo, 2 ond the differences can—

not be detecled on the scale chosen for the plot.

5.6.3 Discussion of the Results of the I'echanical Load Analysis

Sinply supporting the flane plate and applying a load near the

centre of the plate provides a simple experiment that illustrates the
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Tiexural characteristics of the plate. The deflection curve could be
determined for a number of radial lines however from the fringe
patterns it appears that the deflection does not vary greatly along
other lines and that the deflection along line O « A is fairly rep-

resentitive of the deflected shape,

Since the actual flame plate was used in the experiment, one
does not need to consider inaccuracies thaot might be incurred if a
model of the plate had been used, The use of hologravhic interfero-
netry to determine normal displacenents is basically sinmple and accur-
ate. The holographic results corresponding to the two differvent loads
are in good agreement with each other if onc assunes that the defliec—
tion is linear with respect to the transverse load; the two sets of
results are within 3.5 percent of each other, The two holograms made
at the same load ghowed identical Lringe patteras thus indicating thet
the experinent was repeatable ( only one patiern at each load is pre-
seuted in this thesis), The simplicity of the experimexnt and the good
agreenent betwesn the two sets of resulis is felt to be sufficient jus-
tification to clain an accuracy within 5 percent. There is however

one area in which a discrepancy night arice,

Tn the holographic analysis, it was assumed lthat the support
acts al a radius of 8.625 in. Since the sasket face is flat and not a
knife edgse, it is possible that the support reaction cceured on the in-
‘gide diameter of the gasket face, i.e. at a radius 8,316 in, In the
dynamic relaxation solution, the support acts at a radius 9.505 in, If
the gasket face had been machined to a knife edge located at 3,505 in,,
then the sunnort diameter would be increased by 0.182 in, and assuning
that the central deflection is proportional to the sauare of the radius,
gwhich is the case for a solid flat circular plate with a load at the
centre, then the deflection of the flame plate would increase by about
5 percent, It is felt that this may be pessimistic since the support
reaction cannct aét 100 percent on the edze of the pasket face, In any
event, the hologzrchic results should form a reésonable basis with which
the dynanic relaxation results can be conmpared.

The first dynenmic relaxation solution, corresvonding to Fig,
(5,8) is in poor aszreement with the hologzraphic solution., This was be-

lieved duc fto the mesh being coarse., The running time for this solution
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was approximately 6 hours and thus hefore attempting a fine mesh, a
second progranme was run in which the valve port hole was reduced in
size. In the first solution, the valve port hole was deliherately

nade large to try and compensate for the internsl cooling passase around
the valve port which was being neglected. Thus the second solution

iz made to corne closer to the holosraphic solution by effechiively stiff-
ening the plate, and, vorsening the approximation of the boundary ar-
ound the wvalve port., This approach of stiffening the plate can, to

sone extent, be justified =ince in arceas remote from the valve port,

the stress distribution will not be preatly alffected by the shape of

the port and ftlus by making the deflected shape come c¢leger to the holo--
graphic solution, which is believed to be accurate, the stress distri-
bvution in arcos remote from the valve port should he nmore realistic or
peeurate, Thig improved solution deviates from the holographic zolu-
tion by approximately 22 percernt boscd on the dellection at the edge

of the injector hole,

Mnally, @ third programme was run based on the finer mesh
configuration shown in Fig, (5.10). Theé progfamme wvas run for 22 hours
and while the resulis had not counpletely conversged to o steady state,
the change in deflections indicated that the solution was not going to
bo significantly better than the second solution and in tect appeared
to deviate slightly more from the holograhic solution, The fine mesh
solution would undoutedly be much better than the first coarse mesh
solulion and while some of the improvemeni can he attributed to the
valve port being mode smaller, additional improvement nmust be the're—
sult of the nesh being finer., In view of the fact that the fine mesh
solution would be about 22 percent from the holesraphic solution and
reguires in excess of 22 hours couputer time, it was decided to‘bro—
ceed to the analysis of the plate under engine conditions using the
second coarse mesh solution, If is possible that an even Liner mesh,
than used in the third solution,would improve the solution however even
neglecting the length of time regired, the storaze requirements would
excead the core capacitj of $he I.C,T, 1905 in current use at Loush-—
borough University, and if one is able to live with a 22 percent de-
viation in the results, then it is not practical to proceed to a finer

mesh.
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5.7 ATALYSIS OF PLAE  PLATE
UNDER WORKING COUDITICHS

5.7.1 Determination of Thernal Cradients

The boundary conditions with resard temperature and tenper-
ature gradients were described in Section 5.4 under the heading "Load-—
ing Conditions in the Enagine". The geomelirical bouniaries used for the
thermal analysis must be identical to those that will be used in the
thermal stress analysis and of course the mesh configuration mist be
the same, The programme for the thermal analysis is given on pages
258 to 260 and is based on the mesh cohfiguration showm in Fig, (5,9),
The temperatures are calculated at each normal stress node. Tor use in
gtress amalysis, it iz nol the temperaiure thoat is required but rather
the tenperature. difference of a particular pnint rolative to a refer
ence temverature, The reference temperature will be the lowest temper—
ature in the case of the objeect being heated or the highest temperature
in the case of an object being cooled,. For the flame plate, the

: .0
reference temperature will be 26077,

The output of the thermal programme gives the temperature
differences at each normal stress node thus to determine the actual
temperature at each point, 260°7 must be added to each wvalue at cvery
point, he temperature differences are given in Fig's (5.18) tc¢ (5.21);
Pig, (5.18) being the first layer begining on the flame side of the
plate, |

The initial conditions which are used in bthe thermal stress
solution, are the normal stresses that would exist if each element in
nesh was periectly constrained in all directions and the temperature
of cach element wag changed by an amount "I corresponding to the temp-
erature differences calculated in the thermal programme, sece App. L.

In the thermal programme, these stiresses have been calculated and are
stored on magnetic tape to be used as input data for the thermal stress

programmne,
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'5.7.2 Therua) Stress Analysis

The programac written for solution Ho. 2 for the deflection
of the flame plate under mechanical load was modified to incorporate tLhe
boundary conditions for the thermal stress analysis; the prosramme is

given on pages 261 to 265, The boundary conditions of interest are:

1. All surface gtresses ave zowo, 1l.e., there are no nechan-
ical loads.

2. The transverse deflection of the plate at the outside dia—~
meter is zero on the'cold surface, i,e, at I = 15, K = 4,

and for all wvalues of J.

The second boundary ccndition assumes that the plate is
sinply supported at the outermost mesh on the cold side of the plate,
It is also assuned that the plate will deflect dovmward into the oyl-
inder or away from the cylinder heod thus no preovision is mede for the

cylinder hezad to support the platce except as described aﬁove.

_ The intial conditions with regard to normal stresses have
Leeit described, The invub data which comes from the thernral analysis
was printed out at the begzining of the pregramme as a check to ensure
thaﬁ the correct data had been transfeeced. The intial conditions
with rezard to shear'stresses, velocities, and displacenents are that

all of these variables are zero throughoul the plate.

The sare tine increment and damping was used as in the nmech-
anical load analysis, and the running tine was apyroximately 6 hours,
The results are ziven in *tabdles (5.4) to (5.30), The deflection of
the cold surface was calculated and is shown in Fig., (5.22) for radizl
lines O - 4 and O = X, Tobles (5.5) to (5.30) are in semi-pictorial

form and the stress distribution can be easily seen,
5.7.2 Analysis of IFlame Plote Under Conmbined
Thernal and Ges Pressure lLoad

The progromime used for the thermal stress anslysis was wodi-

fied to -include the boundary conditions for the gas pressure load and
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t0 incorporate the coylinder head in the calculations as an clastic fToun-
dation. It wes assumed that the cylinder head would provide a wvery
gtiff foundation and in the absence of any factual informotion resard--

6 1b./in, 3
was asscuned., This would correspond to the flame plate resting on a

1 inch thick steel plate which in turn rests on an infinitely stiffl

ing the foundation nmodulus of the head, a modulus of 30 x 10

foundation., If then under the combined thernal and gns pressurce load
the floane plate deflects upward, a foundation stress is generated that
is proporticnal to the deflection, Since the foundation is quite stiff
relative to the flexural stiffress of the plate, small upward deflec— .
tionﬁ will result in large foundation pressures or siresses and thus
the vpward deflections will be small in comparison with the flexur;l

displacenents under thermgl loading,

The nced to take this arproach of an elanstic foundation for
the analysis is {that the dellected shape of the plate under thermal
loading will most likely be incompatible with the deflected shupe of
the plate under gos pressure load such that ~inder the combined thermal
and gas vressure load, the tlame plate will not becr uniformly on the
cylinder bead, By assuming an elastic Toundation, which in nractice is
realistic, the reaction of the cylinder head on the flame plate will .
be determined autonatically and without iundueing any additioncl or ex—
trancous forces or in other words, the flame plate wiil comc to egui-

libriuvm with the cylinder head in a natural way.

The boundary conditiors Tor the elastic foundation are that
if the deflection on the cold side of the flame plate is upward or pos-—

itive, then the foundation stress generaled io:
. ' _ 6 .3
PP(I,.,) = <(I,T)} x 30 x 10~ 1%v./in,

If the deflection is zero or is nezabive, the Toundation pressure is
zero, - Thus in areas where the flame plate malkes countact with the cyl-
inder head a foundation stress 1s generated and in arcas vhere the Ilane

plate does uot touch the cylinder head, no surface siress is produced,

The boundaxry condition for the gas pressure load is sinply a
.2 . a
surface stress of 1500 1b,/in,” and as mentioned, acts over the inside

diameter of the gasket face, i.e. the 16,630 in, dianeter,



The results of the analysis are presented in tables (5.31) to
(5.57). As in the thermal stress analysis, the stresses are given in
gsemi-pictorial tables and the distribution of the stress on differcnt
layers can easily be seen, The deflection of the flane plate into the

eylinder head iz given in table (5.31),

5.0 Discussion of Results of the Analysis

of the IMame Plate Under Engine Conditions

From Fig's (5.18) to (5.21) it can be seen that o hot zone
exists between the two valve ports and towards the edge of the flane
plato, One weuld normally expect this since this region is remote from
the cooling passapes and of course the boundary conditions used tend
to create this condition. It can alszo be seen “hat the temverature
gradients through the thickness are quite high in opite of the assurp-
tion that there is zZero heat flow from the cold surface of the plate.

In general, thz large mass of material between the valve ports and to-
wards the outside diamoter is at a high temperature and high temperaturc
gradients exist through the thiciknesg, Cradients through the thicknens

of the plate will tend to cause bending in the plate,

Towards the centre of the plate the temperature is much lower
due to cooling and the thernal gradients through the thickness are also
mach lower, Thermal gradients in the radial direction will tend %o cause

uniform radial and tangential stress through the thickness of the viate,

A3 previously menbtioned, little information with resard to
thermal conditious in the plate was aveilable and a great many assunp-
tions had to be made for the analysis and consequently the results are

questionable, They do however zeem feasible and should serve to illus

trate the effects of thermzl loading when used in the thernal stress

analysis programne,

As shown in Fig, (5.22), under thernal loading and with a
ginply suvpperted edye, the flane plate deflects domward away Trom tho
cylinder head as predicted. The deflection at the edse of the injoebtor
hole iz aprwoximately 0.CLl in. It can aluso e secn thant the deflection

along the line O - A iz nob the sone az zlens line 0 - 00 dindicating
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Lw+ hending occurs in the tangential direction as well ag the raedial

direction,

Looking at the stress distribution in the nla there oonocars fo

be three regions of interest, One region is on the rim of the plate

7]

between the two valve ports, ‘'he tangential stress varies through the
thickness between 26,275 and 30,103 1b./in.2 The radial, axial, and
shear otress are neglizible or zero thus the tengentiesl stress is app-
roxihately equal to the prinecipal stress, A second regicn of hish
gtress is in the hot zone, The radial and tangentizl streszes on the
hot face are -10,924 and =25, 0604 lb./in,2 respectively., Agoin the axial
and shea>» strecses are negligible hence the rodial and tangontial stres
are approximately equal to the principal siresues, The third region is
at the edse of the valve port where the radial stress is 21,204 lb./
in.2 The tangential axial and shear stresses arec nezligible honce the
radial strese is approximately equal to the principal strecs, It is
possible that this stress is higher than will occur in the actual plate
because of the sharp corner that exists in the approximation of the

valve port by the dynamic relaxation solution,

Since the plate was not constrained, the stiress distribution must
be the result of thermal gradients and it would seem reasonable $o
assert that if the fthermal grodients were reduced so the stresses would
be reduced, This could likely be achieved by providing cooling in the
hot region ( in preference to reducing the cooling elsevhere in the
plate ).

Under the cormbined thermal and za3 pressure load, the stress dis-
trivution is altered but not increased as much as was expected., At the
rim of the plate the tangential sitrecs was increased from 30,103 to
31,257 lb./in_.2 in the third layer from the hot side and on the cold
side, from 28,516 to 31,716 lb.,, 2 In the hot zone the radial and
tangential stresses were increased on the hot face from -10,924 to
~143961 and from -238,604 to ~32,633 1b./in.2 respectively, On the cold
gide of the plate, the radiel and tanzentisl stresses were rcduced
as 1s usual with bending having talen place. In the third resion men-—
tioned above, the stress on the hol side of the plate was reduced fronm
29,189 to 12,745 and increased on the vold side from 15,612 4o 22,102,

Tn “eneral, the negative siresses on the hot side of the plate were
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increased by the zas pressure load and the positive stresses are re-
ducedj the stresses reforred to are the rodial and tansential, the amial

stress is of course increased directly by the gas pressure load,

A fourth region of high stress is created under the combined
load and is at the edge of the valve port on the radial axis bisecting
the valve port, Phe tanzentinl stress on the hot zside is increased
from =14,407 to -20,630 1b./in2 and reduced on the cold side from
13,261 to ~7139 1b./in.2

BDefore concluding the analysis of the flome plate there is
one additional point to consider, In the annlysis, the gaslet loading
was‘negleCted andi also the four 5/8 in, diameter Dolts which are fitted
into the water tronsfer tubcs, Both of these features occur in the
support of the flame plate and will tend to prevent fthe dowmward del-
lection of the plate. Under the action of the combinad thermél and gas
pressure load the platc iz pushed firmly asainst the cylinder head so
that the forces exerted by the gasket and the four bollts will have
little effect in terms of holding the plate asainst the head as compared
with the gas pressurc load and neglecting them in this part of the anel-
ysig can be Justified. By assuming the plate to be simply supported
‘the extremes of two loading conditions are obtained and vy comparing
the stress distribution under the two londing conditions one can to
some degree, separate the effects of radizl and tangentisl thermal srad-

ients from transverse thermo ”delOﬂt“ as 1ollows,

Under the action of the zas pressure load, the stress distri-
butior is altered but the mavizum stress levels are nobt sreostly increns.-
ed and in fact the seneral givess levels are not -~reatly increasecd if
compared with the maximum stresses in thé plate, The impression given
ig that the high stresses in the plate are due to radial and tanzentizl
thermal gradients and that if the »nlate iz laterally constrained the
bendinz stresses induced are small. As mentioned before, reduction of
the maximun terperotures will reduce the thernal gradients and in doing

o should reduce the overall stress levels,
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5.9 Closure

- From the analysis of the flame plate under mechanical load,
the dynanic relaxation solution gave a deflection at the centre of the
plate which was approximately 22 npercont ugreater than the holosraphic
solution and since the holographic solution is assuvmed to be accurate
within 5 percent, the dynanic relaxaiion colution is vessimistic, 4
fine mesh solution which save a bebter approximation ito the valve port
boundary did not improve the accuracy of the dynanic relaxation solufb--

ion,

Under the action of thermal gradients, the flame plate will
tend to deflect downward owsy from the eylinder head; some restraint
being provided by the gosket and water transfer tubes, Under gas pres-
sure the plate is forced into contact with the nylinder head hence in
operation the plate is suvjcet to a vibratory loading condition which
afior a period of time could cause a fatigue Ffailure or tend to loosen
the plate in the head, Turther investigation of the effects of the
casket loading and the constraint-provided by the water trarnsfer tubes

is is recommended,

The stress level in the plalte is not unduly hirgh ond one
would not expect any problems tno arise as a result of high stresses
with the exception of reversing stresses however as previously mentioned
the lack of temperature information limits the acouracy of any pre-

dictions that one mizht wish to nake,
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CONCINGICHS AID  SUGHESNIONS
roR FUMURE UORK

6.1 Conclusions

From the worll done in Shapters 3 and 4, in solving two dinen-
sional prohlems, it s concluded that the method of dyrnanic relaxation
zives an accurate solution vhen the boundaricz of the object coincide
with the coordinate syobem used and con thus be defined exactly with-ut
hawving to approxinate ihem tr o sevies ol sters, A described in Choan-
ters 3 and 4, the errors in this typo of solution are in ths region of
5 mpercent and it is conclvded that errors of this magmitude are the re-
sult of the finite difference opproximation of tle dirferentic) caguubtions
and the nesh gise ugsed. For a complex shared objesct, it iz recsoned
that bthere are twoareas in which the accouracy of the dynamic veloxation
solution iz degraded one of which is the finite diflerence approxinaticu
of the differential equations and the mesh size used., For exanmple in
trhe soluficn off the: flat circular plate in Chapler 4, the mesh size in
15 x5 and as described,; the dynamic relaxaticon solution indieates a
central deflection 4.3 percent greater than the analytical solution.

For the flwoue plate where the radial and axdial mesh is 1% % 4 and, ne-—
zlecting for the moment the effocts of the valve nort on the accuracy of
the soluticn, one might estimate an error in the region of § percent as

e

a result of f$he axial mesh beinr slizhtly more coarse, This error is

=)

congidered as inherent in the solution JTor the mesh size used,

The second area in which the accuracy of the solution will he
desraded is in the approximation of complex voundaries which do not it

exactly, the coordinate syctem beins used., In the case of the flame
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rlate, the valve port is approxinated by o stepped bLoundary. The sdore
ped boundary will tend to cuuse loecal strevs varviations around the valwve
port which may De roflected in the deflected shope of thoe plate., As

-

described in Chapter 5 with resord to the hologruphic solution, a § nor-

2

cent discrepancy could exist in the solution as a result of the supnort
reaction occurring towards the inside diamcteor of the panket face thus
maldng the deflection smaller than it would be if the support reaction
occurred at the centre of the sesket face, Allowing for o 5 norvcent
error inherent in the nethod of dynanic relzxation becouse of the mesh
sine and Tfor o b percent experimental error, the error introduced ly the
approxination of the valve port is 12 percent; the total discrepancy he-
tween the holographic solution and dynamic relaxation solubion is 22 por-
cent o8 discussed in Chapber 5, Tt is fels thot a 12 percent error as o
result of the valve port cpproximation ic not unduly high and one mizht
voatulate that if a plate were buill with boundarics identical to those
uged in the dynamic relaxation solution, the holographic and dynanic ro-—

laxation solutions would be in oebter agrecment.

In trying to estinate the magnitude of error that one night cx—
pect in solving a problem like the flame plate, a brief literature sur-
vey did not reveal any ideally convarative informgtion, Thre: dimenzion—

vaver 8 ref. (19),

oL [y

2l wrork done on arch dams using dymanic relaxation,
would seem to indiecote that an overall discrepancy of 22 pevccent is nob
unreasonable however the only wimilarity bhetween the flame plate and an
arch dam is that they are beth three dimencional problems with oémplex
boundaries and it is difficult to Jjustify any comporisons. FKeeping in
mind that the flage plate is a practical problem und not an academic onc,
it io conecluded that an overall discrenancy of 22 percent is notvunreal-

ioti

Q

The need and advantu-es of combining an experimental solution -
with a theoretical solufion hes been denconstrated, In Tormulating the
final dynamic reloxation solution, the dynamic relavation solution was
nade to come clozevr 4o the holosraphic solution by zltering the shape

and size of the valve port cut out. In doing so, it was roasozed that il

particular those remote fronm the valve port, would be more accurzte,

Thus by having experimental resulits to conpare with the theoreticar Te-

sults, one can refine the theorftical solution and at the same time obbain

a pood estimate of the accuracy of the analysis,



From the work done in Chapters 2 arnd 4, it iz concluied that
holographic interforometry is ideally suited to measuring snall lewural
displacements. For measurenent of in-plene displocenents, the nethods
described in {(9) and (11) appear theoretically possible however as ill-
ustrated in Chapter 2; there are o munber of practical difficulities that
would first have to be overcome to make the methods attractive for gen-
eral use, Tho outstanding featurcs of holosraphic interferonctry are
its sengitivity and ezse of anplication, Very little preporation of the
subject is required end one can generally work directly with an actual

4

conponent lthus avoiding the need for costly nodels,

6.2 Sugpestions for Future Work

Before attenmpting to improve on the analysis of the flane plate,
nore information with regards thermal conditions in the plate is requiresd,
Additional analyses mirht take into account the offects of the rasket
loading and the effecty of the waler transfer tubes, Tt misht be posss
ible to improve the approximation of the wvalve port boundary by using o
dirfferent mech configuraticn but without greatly increasing the number

of mesll points; this might be investigseted.

Cne problem encountered in applying the method of dynamic re-—
iaxation is determining the damping constant, A method of determining
the optimun damping auvtomatically and within the compater programme is
mentioncd in (5) and could be investigated further. Another area for
investigation is the use of non-orthogonal coordinstes, This would
allow the use of different shape elewncnts which could provide for a

better avproximation of complex boundaries,

Per holograpnic interferomctry, one might investi_ atce methods
o desensitising the method {for measuring larger engineerin; disploce-
ments, One night also investigote the design of a systoem that would
allow a rapid and accurate determination of dimensions and fringe order
nunbers &8 described in Chaptsr 2 for mecasurement of in-plane disnlace-- |

ments,
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APPENDIX A

DERTVATICH COF PINITE DIFFERENCE BOUATICNS IOR
STRESS ANATYSTS USING CYLINDRICAT, COORDINATES

The stress-—-eqguilibriwa equations written in cylindrical coordinates

are:.
SR R R e
6;[:9‘*%63% s a’gfim zﬁr_re -0 (A.2)
-ﬁr—g&i+-‘;é—;%§+_%%+lg=o {1.3)

The demped wave form eovilihrium ocouations are:

9or, t 8Tre |, 8Trz Gr-66 . %, kau

v *Tae Tt = LlGmt 3‘*'5) )
0Tre , 1390, dTro , 2Tre . A%, gy

3¢ AR v 5z 1 7 T /)(TJ&'* —at) (A.5)
3z, 1 9T2e , 302 , Tz _ oW | wow (

Sr + + I (c)t'l + 3t (£, 6)

r &8 oz ¥y

The damped wave enuatinas written in finite difference form
and rearranced to provide an evpression for the new velncity

in terms of the old welocity and stress terne are:

LIk = 0Eaf=X2) s At (G- oraeg,
Uz,3k) = W3 (iE) 4, (Hm)[ﬁu,J,mA Teh)
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Tro(T, 341, )= Tro(T,IK)
raa

Tr(X,J,K)+ Or(T=-13,K) - (GO(T,IK)+08 (I"'LK&] (A.T)
2r

Trz (3,7, K+l) Tr'z (TI,K)

+

+

VI = VT (GRs ) + At [TrS(IH,J,K)"TV‘B(LJ.K)

PO1+YK72) Ar
+ o’e(:-,.: K)=-08(T,J-LK) \ Tz8(TJ x+) ~ T26(1,0,K)
rae Az
+ 2 (TralT+1,3, K1+Tr9(I,J.KJ)] (A.8)
2r - : |
NI, K) = W5k (K2 At Tra(Is, I x)- Trz(T,1,K)
WL, K) o K)(““"’Z) ~CIYKI2)  Ar
+Tze(:r,3 K41} = T26CT,I,K) + Tz (LK)~ Cz2(T,J, K1)
r hé Az
+ Trz(Tendk) + Trz(I k) (A.9)
) zi‘ L

The elasticity or stress strain equations using cylindrical co-~
ordinates ares

Ere3, €o-Ll U, Cradw (4.10)
froet Bt okt Yool B

(A+2M)§%+ Mﬂ; rhrgd o+ o\%‘f (4.12)
9 = ()\+w)‘ 14 4.()\+2,u.)% ¢ )\%-‘:-, +)\%i"z— (A.13)

(Aszu) ¥ R )\l,.é-‘é +/\9F (4.14)
Tre = A[}i‘é "‘7’- +%T‘f.] (A.15)
Tra = & [%’i + %ﬁﬁ] (1.16)
"T1e —M[%‘ﬁz +'T.%Jg] (4.17)

Diffoerentiating Eq'ns (A.12) through (A.17) with respect to timo

and using the notation 0= SU/t

éﬂ‘=(h+2u)%u )\U +)\' ‘5—" 3!'! (1.18)
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%%LQ(AHM)-‘%‘% + A-%‘-’F + /\—',-.%% +)\J;"- (4.20)
e aFi - egh] 21

ﬁgltz = A H\% ' ﬂ:’..] (4.22)
Tz _ v A

.ééTz . M [% + L é—g] (4.23)

Fquationz (4.18) through (A.23) in finite difference form using
centred difference notation anmd rearranged to express the new

stress in terms of the o0ld stress and wvelocity terms are:

FreL ks Ok « A (o) dansy) - BE Ll + Aliu s @i
Ar ' r

+ A Ve J-H,K)A-— vearne)) + Al L) - W(T,J, KJ]} (A.24)
‘ rbe B

ge(T,I,K)= 0815k +At [)\[L‘J(I-LI;LK)—[J(I,J, Kﬁ + (M'ZJ{)[QLMJ_LK;]
' 2r

Ay
sAhrza)l vz, 3,0 - v 1,6+ AT Wz, 3 es)-Wer T k’)] 1,25
- [ rbe'] [ ’L\z”]('))

0z(T,3k)=02(I,5K) + !.\t{ A [L&CI+1,J,k}-dct,J,wﬂ + A [L'J(ﬂ:,i. K) 4-[')(3’,,3',3()]
AT 2r

+ )\[v'(:r,.ru, K)-v(1,], w)] + (A+m)[u>(1,Lms)-—Wt:r,LH ] (1.26)
rae _ A2

Tro(T,5,k) = Tro(T,I, k) + Ata[t}cr,:,r)-uu,ym
riAe

- V(IR 4V(T4L,5,K) + Y(T,5,)=V(I-,5K) (4.27)
' 27 Ar

Trz(T,3,k) = Tra(1,35,¢) + At XL[UUJJK" 0(x,, k1)
: Az
+ W(T.I,K’}- W (I‘*[Jl K):I.I

:s" Avr (A.28)
Tr6¢3,1,6) = Tz0(T,7,8) + Ak 4 \)(I,J,w)iv(:r,J,z-:)
A
+ wc:w’)ﬁ) "W(LJ’L K)] (A.29)
rAg
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APPENDIX 3B

DERIVATION OF FINITE DIFFERENCE LQUATICHS FOR THE CASE
OF PLANE STRESS USING POLAR COORDINATES

The squilibrium cquaticns in polar for for the case of plane
atresa are:

e et -0 (32
e 2o =
The stress-strain relationships are:

Er _é.“F , €o6= .:Fé!e s (3.3)
Yro = "'F%E P -y (B.4)
I “(IEV‘) ?stljr * vli{ * U%%__’ | .5
UQ:#)[J{,% +%—+V3—UF] (B.6)
Trs =2<$+v) l_rc?)_?a ¥ %;"yf'] e

Using the same procedure as in Appendix A, the finite differ-

ence equations for the velocities aro:

Sipd



UL, 3) = U(I 3)( . K,z p(uwz)[ﬂm J) - r(I-l 1)

+ tve (I,34) - Tre(I, )

+ G'r-(I,J)+G‘r(I—LI)-(G’eCT,J')+0'a(I—lJ))](v
riae 2y

J(TT)= V(T,5)f ' -2 To(3,3) - Ca(T,I-)

VT3 = V(175 “,*a(.mz)l— - o

4 Tro (T T) - Tro(T,3) TreCT+),3) -+ Tre(:r,J)] (1.9)
Av a

-

Similarily, the Ffinite diffecrence ecquations for the stresses
are: .

or(1,J) = G“y-(r D 4+ At E rU(I+I I -U(I,3)
I-v2 Ar
SRRY! LI+, 3) +0(T,T) FRY VI, TH)-V(I, .IJ] (Biio)
2r rAO
ge(1,1) = Gec:r 1) 4+ AtE [G(IH,J‘).FUCI:J,
P=-y* z2r
+ ¥ U(T+,3) - U (T,3) i V\I,JH)-—\?(I,J’)] (3.11)
Ay P AS
e (LT, )= Tre(T,3) + ALE l:d(r.n-t')(x,x—n) )
| 2(14V) raAo
4 WED-vE-LT) v, D4 \Ptr-l,.r)] (3.12)
Ar 2r

~~

-
g
2,
o)
-

Tro (T, I+1)
o

U3, 3)

/

Tre(T,7y~

L (T41,7)

-
§



APPENDIX €

-

DIRIVATION OF FINITE DIFFERENCE EQUATIONS FOR THE
CASE OF AXTALLY SYIDETRICAL STRESS DISTRIBUTICN

L

The equilibrium squations for axially symmotrical stress distri-
bution are:

oG . 3Trz , G- (e o

sr e T (e
6;C::+ aéﬁ;z. N ’Z‘;z = 0 (c.2)
The stross-strain relationships are:
Err—%_i_, €o =1, e-’-’%_"f | (c.3)
Xr‘z=%+%% , §re= dz8 =0 (c.4)
Gr = (Ar2u)SY + Al v ASY (c.5)
(o= ()\nu)% + Ki: + A i:: (c.6)
Gz= (Mzu)%{- + f\—”';- + A %%— (e.7)

Trz= M[%%-{--a‘% . | (c.8)
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Using the same procedure as in Appendix A, the finito difference

equations for velocity are:

U, Ky = u(nx)( ""’2) AL [GP(TMJ-O‘MI—M

+K/2 ,0(|+l<lz) Ar
"[rz (T,KH)- Trz(T,K) o'r(I, K} 4G r(z-1, ¥)
Az 2r
Sol(x, k) +Co CI-I,K)] (¢.9)
2r

: . K172 At Trz (T+,x)- Trz(L k)
WiT,K) = W(T,K) H-KIZ) +/9(1+K/2)[ Avr

+ Gz(1,K) - 2 (T, ¥-1) 4 Mz (41, &) 4+ Trz (T &)
Az 2r

(c.10)

The finite differcnce equations for the stresses are:

O-Y'(I, k‘) 1t U—r-C'IJ K)+A t [(A‘l"?l—{) ﬁ(I‘H;K);U(I;H)

O LT+, K) + U(T.K) w( T, Kil)-w(T, k)
+ A 2y + A Az

(¢.11)

Go(,K) = (o(3,k) + Al:[(mz ) Ua+, K’:;’(I:K) I

4 A U(T +1, 5{)--[.}(1,-52 + /\ W(I|K+|) - \N’(I:K)]

Av A (c.12)

Jz(1,x) = G'z(I,K)-;-A{—[M'z.u W (T K1) = W (1K)
Ay

D (I+0K) + U(T, K) u(I+hK) O(T, K) ]
+A o + A X

(c.13)

Trz(z, K).= Trz (I, k) + A A%[U(I,KJ;L'J(I, K=i)
Z

w T, K) = WT-LK)
Avr

+ (c.14)
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APPENDIX D

DERIVATIOI OF FINITE DIFFERENCE EQUATIONS FOR HEAT
CONDUCTION USING CYLINDRICAL COORDINATES

For steady state heat conduction in a solid medium with uniform

heat conductivity, the thermal equilibrium equation ise

ST L 1T 1 80T, 8T
3rt Y dr o et SR A

=0 (D.1)

Equation (D,1) written as a damped wave cquation is:

T 49T _1_6__ §__ . 9°T . ko (n.o
6P1+"dr+l‘ der = o2 dt"-" dt ‘“.')

Bquation {D.2) can be reduced to four first ordei partial diffoer-~
ential equations in the following manner, Iltiplying both sides
of Bg. (D.2) bty "r" gives:

Q7 .él +__§.?_I .H‘ﬁ.__T - Y‘.’a_T + kK é‘];

Y ar-Z"" ar r deﬂ. 612 = d'l:-'l'
S (r3L)4 L o AN\ QU e'r .
ar( er) T ea( ) dz(c)z) r ot ks (D.3)
Auxilliary variables u,v, and w are introduced thusly:

et‘e 38 T 3z
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let Qv KU = ol D.5
AV Vv = J ST

lot _6t+K - (D.6)
W LW = oT

let 3t + K b > (0.7)

Checking these equatioﬁs,Adifferentiate Zq'ns (D.4), (D.5), (D.6),
and (D.7) with respect to t,r,0, and 2z, respectively thus: :

T _ du Jty St

aw T gt T osent fozot (2:8)
g s AR ‘ 0
%\_f_ge i ng‘; = v 6;;?- | | _‘ (2.10)
g{%’- %‘gﬁ = r% (D.11)
Imtiplying Eq. (D.4) by "k" and adding Eq. (D.8) gives:
S S O

Adding Eq'ns (D.9), (D.10), and (D.11) gives:

Ot L W 3w [5)_9_ v aw] 3T AT, 1% 32T,
P QYL AW LN D RS- LG
Stor P arse tawse Y KLSr a6t 57 ) T e tartrget Man DY)
Subtracting Eq. (D.13) from (D.12) results ir obtaining the orig-
inal damped wave equation, BEquations (D.4) through (D.7) repre-
sent the heat conduction equation in soparated form, These equa-

tions can be written directly in finite difference form thus:

T K) = TTLIK) + At [Utm,s.w) U (L5K)

! rar

+v.(I.I+l,z;jA-;(I.J‘.k) + N(I,J.H:.)A-_LW(I:LH) (0.14)
LESK) s LK) KL ﬁfqz‘”[T‘I“""}A':(I"'J'“)] (D.15)
V(L,3¥) v(r,:f.g)l,%ﬁ + f{:—lz [TCI‘J'“L'AL(I'J"’K)] (D.16)
W(T,5,K)= W(L,5,K) ::':?2 +“it£ [T(I'J'”);_:”'J'”'”] (2.17)



APPENDIX E

THERMAL STRESS~STRAIN RELATIONSHIPS

~ Tho strain which results from a uniform temperature change in a body
ims : .
€=oT (£.1)
~vwhere "T" is the toemperature change. This strain must be added
.to the strain which is caused ©y the stress distribution in the

bedy thus the stress-strain equations are:

"

€x 'E{(J'x-vﬁ'y-vﬁz el (E.2)

€y

| Gy- 0¥z | 4T (8.3)
€z - éY_Gz- Vﬂ’x-\i(ﬁ:,] +o T B (E.4)

The shear straing are nct affected by temperature chenge since
expansion of a small elemcnt due to tempcrature change will not

cause angular distortion in an isotropic material, -

For dynamic relaxation, thermal siresses are accounted
for in the initial conditioné by assuming that every element in the
body is perfectly constrained hence the strain in every element is
zoro at time zero, OSubstituting zero into the L,E.S. of Eq'ns

(E.2), (B.3), and (B.4) the stress strain equations becomes

Gy~ ¥(Gy+ 0z) = —EaT | | (E.5)

O-



0y - V(Gx+ Gz) = —EdT
Tz~ V(Cy+Gy)= ~EoT

Solving simultanocously:

_ EdT
0x |~2V

(ry . _ EdT
-2y

})

- E T
0z - (|:izu)
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(£.6)

(E.7)

(E,8)
(E.9)

(E.10)

The stresses given by the above equations deiine the stress in cach

olement at time zero for an olement temperature of "I degrees above

the lowest toemperature in the body, for the case of neating, or below

the higheat temperature for cooling.

¥For the case of planc stress, tho initial stress con-

dition is:

= -—._E_.ﬁ.
Oy =%
GB.= _ EdT

(=)

(E.11)

(£.12)
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APTERDIX P

EXMUWPOLATTION PORITUIAN FOR CALCULATILG

STRISS OIF A DOUIDARY Wis E?RP TRING AITD

LBAVING Diie BODT I TIUS DIRDCPICH CF
ADVAHCIIG SUBSCRITIS

Tewbors divided diflerence formula is:

‘F(X) - ‘F(Xa) + (X~ Xo) -r()(o,)(r) + (X=X )(x~ X1) 7(:(’(0, Xi, X2)
.;.' (X~ Xo)(X= X1 )(X-X2) -\P(X%Y-, Yz, X3)

F(K=Xo)(X=K0) o + v v (X=X ) LCx, Ho 40, v Xn) (F.1)

Assuning that f(") is a polynomial of degrse n-l, the last term in the
above expression vanishes, Also assuning that = = h = constont, which

oy

is tho case for a corstant mesh width, Bq. (P.1) becomes:

{ex) = fo 4 (xx0)Ate A-ra + (X=Xo}(X~Xn=h) 4 -F:
2l

+(X=Xo) (X~ Xa- h)(x-xo-zh)glﬂf:s e (7.2)

If x = x_ -+ rh,-then 3g. (F.2) beconez the "Fforward Gregsory-iewton”
- o
interpolation formula thus:

‘r(x) = fo + Y'.A_"FB +P(r-\)éi¢ + r(r—t)(nz)é_ss_:[_o
3

+ r(r-1)(r- 2)(7‘-5) -Fo T (?.3)

Entering the body in a dlrcctlon of udVdﬂClnﬁ subseripts, the siress at
the first node point is (I)., If the boundary coincides with a wvelo-

city node, then "»" is -0.5 z2ud Ta. (P.3) becomes:



Gy = 0(3)=:5 [G'(IH)—-G'(I)] + % [G'(H’Z)— 20(T+) + G'(I)]

_ _I_-_zﬁ [G(z+3)-3cr(:+z)+3 () - o-(::)] EpR

For leaving the object in the direction of advancing subscripts,

(F.4)
the Y"packward Newton-~Gregory interpelation formula™ is used ond is:
5 i
4‘0‘) = 1f° + “11(‘—: +1(r+1) Azf_z + riren)(r+2) /.;If_a
24 !
¥ r(m(ra)(ry A,
4. (7.5)

The stress at the first mesh point inside the boundary is ((T4)and
r is +.5. Bgn. (.5) becomes: )

Gb = OCH-)+5[ Ta-)-0-2)] 4 %5_[0’61'-9—20; (1-2) 4 G(I—s)]

+ LO5[ 00)- 3009 +300-3)-010-4] 4« - (5.6)



Xi

X2

Xa

Xa

Yo

1Y%

Yi

Y2

Y

Ya

Yo

by

Yz -V

Y3 -Y2

Y4 -3

Yo-Ys

A%y a3y Aty | Y

Yz - 2Y2 +Y
2] h*
Ya- 3Y3 +3Y2 -V
3lk?
Ya-2V3+4Y2 Y5-4Y4 +6Y3 =4Y2 4+ Y)
2t h* . 41 ht
Yo-3Ya+3Va-Ye ' Yo=5Y5 4 10Y4-10Y3 +5Y2- Y
- 3lh3 | 51 K3
Ys-2Y4 + Y3 Yo~ AYs5 1Yo~ A\/'_-\_ + Yz
2 ht 4! he
Yo-3Y5+3Y4-Y3 |
31 h?
Yor 2Ys +Ya
42]. "1'?..

bt



Stress ~ 1b./in.2

Tter'n 25[31 Node Fosition .
Humbex L2 3| 2] s 6| 71 8] 9
1 .3x102 000 | 000 | 000 | ©00 j 000 | 000 | 000 | 000 T3
2 .2x10° | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 597 246
3 .2x102 CO0 | 000 {000 | OO0 | OO0 | OCO| 4611 2451 574
4 .1x10% {000 { 000 { 000 | 000 | 0oc | 357 2311 443] 414
5 .13102 0CO | 000 | OO} OO0 | 2751 211 | 345 | 3831 467
6 .1x10% | oo | 000 | 000 | 213|188 272 343 | 381 | 487
T .8x10; COO | 000 | 1641165 | 216 301 3161t 432 433
8 |.8x10% {000l 1271142 174 | 260 | 266| 3711 379 | 499
9 .7x101 03[ 122 141 | 222 2251 325 | 332 | 4361 447
10 L6x10% {179 205 | 188 | 193 | 277 291 | 378 | 400 | 487
11 5x10t 1181 216|165 | 2361 255 | 326 358 | 428 465
15 |.300% [267] 267 203 | 295 | 339 355 | 387 | 425 | 432
20 |.1x0" | 337| 342 353 | 366 | 387 | 408 | 436 | 461 | 482
25 .6:10° | 391 | 395 | 401 | 409 | 422| 437 453 | 473 | 489
30 |.3:00° |426| 428 433] 440 | 447| 458 4681 481 | 493
35 22107 {450 452 | 455 | 459 | 465 | 471 | 479 | 487 | 496
40 1.6x1070 | 466 467 | 469 | 472 | 476] 481 286 | 491 | 497
50 |.1x107 | 485 | 485 | 486 | 487 | 489 491 493 | 469 | 499
60 | .2:107° ) 493 | 493 | 404 | 494 | 495| 496 297 | 498 | 499
70 | .5x2073 | 497 497 | 497 497 | 498 498] 499 | 499 | 500
80 |.1x1073 | 499 499 | 499 | 499 | 2499| 499| 499 | 500 | 500
90 | .2x107% | 499 499 | 499 499 | 500| 500 500 | 500 | 500
100 521072 | 500} 5001 5001 500 | 500| 500| 500 500 | 500
TABIE 1.1

Stress v,s, Humber of
Iterations for k = 0.44

&

53



Ttertn

Stress = 1b,/in,

2

Node Position

% ‘
Number 1 2 3 4 5 6 T 8 9
1 .3x10° | 000 | 000 | 000 | 0co | 000 | coo | ooo | ooo | 821
2 .2x20° | 000 | 000 | 000 | 000 |"000 | 000 | 000 | 674 | 226
3 .3x10° | 000 | 000 | 000 | 000 | 000 | 000 | 554 | 251 | 604
4 .2x10° | 000 | 000 | 000 | 000 | 000 455 | 260 | 476 | 423
5 .2x10° | 0oc 000 | 000 | 000 | 373 | 258 | 380 | 421 | 460
6 | .2x10° | 000 |000| 000 | 306|248 308 | 402 | 379 | 521
T .2x10% " | 000 000 | 252 | 233 { 252 | 373 | 321.| 484 | 415
8 .2x10° | 000 | 207 | 216 210 | 339 | 280 | 437 | 372 | 533
9 1.1x0° | 170|197 | 177 304 | 248| 389 | 340 | 475 | 434
10 1x10° | 318 {151 | 269 | 224 | 342 314 | 429 | 407 | 503
11 .1x20% | 200 {350 | 203 | 299 | 201 | 368 | 381 | 446 | 470
15 .5x107 | 378 | 362 ] 410 | 362 | 444 | 206 | 420 | 128 496
20 '.1}:101 440 14371453 | 446 | 475 | 470 | 503 | 490 | 483
25 | .2x20° | 486|488 | 487 | 476 485 | 487 | 487 | 497 495
30 oBXIO_l 495 14921499 | 500 | 4971 500 | 496 { 501 | 491
35 .2x107% | 500 | 501 | 500 | 501 | 501 501 | 499 | 503 | 500
40 .1x1073 | 502 | 502 | 501 | 501 | 500 500 | 500 | 501 | 299
50 L6207 | 501 | 501 | 501 | 500 | 500 500 | 500 | 500 | 500
60 .6x1072 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500
70 .2x107% | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500
80 .1x10"8 500 | 500 | 500 | 5C0 | 500 | 500! 500 | 500 | 5C0
90 .3x1077 | 500 | 500 | 500 | 500 | 500 500 | 500 | 500 | 500
100 .4z10720 | 500 | 500 { 500 | 500 | 500] 500 | 500 | 500 | 500

TABLE 1.2

Stress v.s. Iumber of

Tterations for kX = 0,3

1
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i}
Stress = 1b,/in.”

Tter'n EE O? ode Position
Number 1 2 3 4 5 6 T 8 9
1 .4x10°  [000 |000 [000 {000 {000 {000 |000 {000 | 858
2 .3x10° (000 |000 000 looo |ooo looo {ooo |737 | 209
3 .4::102 000 |000 [ 000 |000 [000 000|633 (254 | 631
4 | .3m0° looo {ooo |ooo 000 |ooo [543 |282 {507 |428
5 .3x30° | 000 000 {000 {000 466 |297 |413 |453 | 454
6 .3x102 | 000 |000 | 000 [400 [302 {340 [455 | 375 | 554
T .3x10° | o000 Jooo | 343 |30 285 |a42 [322 | 533 | 389
8 .3x10% {000 |295 | 292 |242 418 |287 {497 | 358 | 568
9 - | .2x10% {253 |28 | 210 {389 |264 1453 {241 | 514 | 417
10 .2x10% | 484 {184 357 | 248 (408 [ 330 |459 | 410 | 519
11 J2200° | 416 511 | 236 | 363 {322 | 206 403 | 460 ! 476
15 | .8x10% |499 {457 | 548 |425 | 584 [465 |458 | 424 | 516
20 | .exa0® [543 {528 (563 521 [583 | 528 [594 | 513 | 472
25 .2:20% {579 | 575 { 566 | 510 | 536 | 521 | 510 | 524 | 498
30 -33100 528 [ 511 | 539 541 528 [ 531 {511 | 517 | 497
35 .2}5100. 510 | 514 | 507 | 510 | 506 | 505 {494 | 513 | 497
40 | Jax107) | 498 | 404 | 499 | 490 | 498 | 496 | 505 | 497 | 500
50 | .2x107% | 496 | 496 | 496 | 496 | 494 | 496 | 497 | 498 | 500
60 .1x1072 | 499 | 500 | 500 | 500 | 500 | 499 | 500 | 499 | 502
70 .1x10~4 | 500 | 01| 500 | 500 | 500 | 501 {501 | 500 | 500
80 .2x10™% | 500 | 500 500 | 500 | 500 | 500 | 500 | 500 | 500
90 .4x10_6 500 [ 500 5C0 | 500 [ 500 | 500 | 500 | 5C0 | 500
100 .3x20~8 ! 500 | 500 500 | 500 | 500 | 500 | 500 500 | 500

TABLE 1.3

Stress v,g. Iheration
Mumber for k = 0,2
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Stress - lb./in.2

Iter'n Nodo Position
Number s l2 {3 tals telq s lo
1 .3210° 000 |00o | 000 |0oo {ooo |ooo |oco {ooo {804
2 .2210° | 000 | 000 | 000 000 000 000 |000 | 646 {234
3 .2x16° | 000 |000 | 000 |00 |000 {000 |520 |249 |503
4 .2x10° 000 |000 | 000 {00o |000 {418 |250 {464 {420
5 .2210° {000 {000 | 000 (000 {336 |241 | 367 |407 |462
6 .1x10% | 000 | 000 | 000 270 |225 294 |380 {380 [508
7 .1x10° | 0oc {000 | 217 |207 |239 1345 | 320 |464 | 424
8 .1x10? 000 1175 1187 1197 |308 [275 | 414 [ 375 | 519
9 |.1x0° 140 |167 [164 [2m1 |241 |364 337|460 |440
10 .1x10° | 260 |137 {236 |213 [317 |305 |403 | 405 |497
11 .1x10% | 246 {295 [ 189 274 |278 1352 | 372 |439 | 468
15 .43(101 334 | 325 | 352 337 |400 |386 | 407 (428 | 489
20 |.1xol |400 |401 {414 {416 {439 446 | 474 [479 {484
25 |.4x10° 450 |453 [ 455 |453 [462 |469 | 475 |488 | 493
3 1100|472 472 {476 {479 |480 (485 | 487 | 494 | 496
35 .3x207F 1485 | 486 | 487 |488 {490 |492 | 493 1497 | 499
40 |.9x107 |493 493 | 493 |494 494 |495 |497 [ 498 |49
50 LTx107> 1498 498 | 498 1498 499 [499 | 499 [499 | 500
60 |.5x10™% |499 | 499 | 499 [500 [500 [500 | 500 | 500 | 500
70 47102 |500 | 500 | 500 |500 |500 {500 {500 | 500 | 500
80 .3x1070 | 500 | 500 | 500 1500 [500 |500 | 500 | 500 | 500
90 .2x1071 500 | 500 | 500 {500 {500 |500 | 500 | 500 | 500
100 .1x10"8 500 | 500 | 500 {5C0 [500 [500 | 500 | 500 | 500
TABLE 1.4

- Btress v.s.

k = 0,349

Iteration Ifumber



Axial Displacement

Tter'n

Node Position

Number 1 2 3 4 5 6 7 8 9 10
1 0,0 |0.0 0,0 |0.0 |0.0 |0,0 |0.0 |0.0 0.0 |14.
2 0.0 [ 0.0 |0,0 |0.0 }0.0 0.0 0.0 |0.0 {11. |15.
3 0.0 0,0 10,0 |0.0 |0.0 |0.0 {0,0 |9.2 |13, | 23.
4 0,0 {0.0 |0,0 |0.0 |0.0 |0.0 |7.6 |12, |20. | 27.
5 0.0 10,0 0,0 {0,0 10,0 [6,2 |11. 117. 124. | 32,
6 0.0 0.0 {0,0 {0.0 {5.1 |9.2 {14, |21. |27. | 36.

7 0,0 (0.0 |¢,0 {4,2 [8,1 {12, {19, |24. |32. | 39.
8 0.0 (0,0 |3.4. |7.0 [11. }16, {21, |28, |34, |43.

9 0,0 2.8 |5.1 |9.1 |14, 18, |25. |30. [38. ] 46,
10 0.0 | 5.3 [ 7.8 |12, |16, [22. {27. |34. [41. |49,
11 0.0 14.8 [11. [14. [19. {24. |30 |36. |44. |52,
15 0.0 | 6.3 |12, [29. [25. |33. |39. |46. |54, | 62,
20 0.0 | 7.3 [15. 22, |30. [38. {45. |54. |62. | 70.
25 0,0 | 8.1 [16. |24. |32, |40, 148, [57. |65. | 3.
30 0,0 | 8,3 [16. [25. [33. [41. |50. |58. |66, | 5.
35 0,0 [ 8.3 |17, |25. |33. |42. {50, |58, |67. | 75,
40 0.0 [ 8.4 {17, |25, |33, [42. {50. {58, 16T, | 5.
50 0.0 {8,3 |17. |25. [33. |42, |50 |58, |67. | 75.
60 0,0 |8,3 {17, |25. [33. |42, |50, [58. |67. | 75.
70 0,0 18,3 |17, |25, [33. [42. |50. |58. |67. | 75.
80 0.0 | 8,3 |17, [25. |33, [42. |50. |58, |67. | 75.
90 0,0 (8,3 |17. |25, [33. [42. |50. |58, |67. ]| 15.
100 0.0 |8.3 |17, [25. [33. |42, |50. |58. |67. ]| 75.

TABIE 1.5

Displacement v.s, Iteration

Tumber

k=03

—
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Tenmperaturs - °p

Temperature v,s, Iteration

Jumber

k =0.32

Tter'n Node Pogition
Number 1 2 3 4 5 5 T 8 9
1 000 | ooo | oco | coo | 000 | 000 | coo | oco | 862
2 600 | 000 | 000 | w0 | coo { ooo | ooo | 743 | 139
3 000 | 000 | 000 | 000 | ooco | ooo | 81 | 103 | 776
4 000 | 000 | 000 | 000 | 000 | 552 | 88 | 683 | 195
5 000 | 000 | 000 | ooo | 476 | 76| 601 | 170 | 721
6 | ooo} 000| 000 | 410 | 66| 529 | 149 | 645 | 246
7 000 | 000 | 3841 57| 465 | 130 | 576 | 217 | 634
8 | 000 | 305| 49| 409 | 113 | 515 | 191 | ero | 201
9 263 42 | 359 98 | 459 | 168 | 560 | 250 | 658
10 263 | 315 | 86| 410 | 148 | 506 | 222 | €02 | 307
11 308 | 270 | 365 | 130 | 457 | 198 | 550 | 275 | &40
15 378 | 351 | 420 | 340 | 474 | 347 | 537 | 308 | 616
21 452 | 434 | 480 | 427 | 518 | 433 | 520 | 443 | 542
25 ABB | 474 | 487 | 465 | 500 463 513 | 467 | 524
30 491 | 495 | 488 | 500 | 491 | sc5 | 488 | 509 | 488
35 499 | 497 | 501 | 496 | 502 | 496 1 503 | 496 | %502
40 5C0 | 500 | 500 | 500 [ 499 { 501 | 499 | 501 | 499
50 500 | 500 | 500 500 | 500 | 500 | 500 | 500 | 500 |
60 500 | 500 | 560 | 500 | 500 | 500 | 500 | 500 | 500
80 500 | 500 | 500 | 500 | 500 { 500 | 500 | 500 | 500
1100 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500
TABLE 1.6



Radial Stress - 1b./4in.2

Redins [.219 |.281 [.344 [.506 (W69 [.531 |[.594 [.656 |.719: [.781 |.84% [.906 [.969 |1.03 |1.09
Angle .

245 -26.1 186 | 389 | 535 | 638 | 711 | 764 | 805 1835 | 859 | 879 | 864 | 907 | 917 | 926

7.5 -22 1183 | 383 | 531 | 631 | 703 | 755 | 79h | 824 848 | 866 | 832 { 8o | 904 | 913
12.5 Bz ) 194 1385 | 522 | 612 | €86 | 736 | 773 1 G02 | 824 | &h2 | 857 | 84 878 | 386
17.5 2 1202 |36 | 510 | 590 [ 852 | 709 | 743 { 770 | 790 | 807 | 8z0 | 321 | &u0 | 848
22.5 20 | 212 {378 [ ol | 574 | 632 | 673 | 7ok | 728 pphy L 762 o7k 4 783 1 791 | 795
27.5 41 | 225 {373 | 475 | 545 | 595 | 631 | 659 | 679 | 695 | 708 | 718 | 7256 | 733 | 739
32.5 65 | 239 | 367 | 45l | 512 | 554 | 533 | 06 | 623 | 636 | 616 | 655 | 652 | 668 | 672
3745 91 | 250 | 361 | 430 | 477 | 509 | 532 | 549 | 562 | 572 | 580 | 587 | 592 | 5%6 | 600
hz2.5 119 | 270 | 355 | 106 | 439 | ué2 | W78 | u89 | 498 | 505 | 511 [ 515 | 519 | 521 | 524
Le.5 17 | 286 | 348 [ 381 | 401 | wAh | 423 | k29 | h3h  A37 | who | k2 | hhh | sy hL7
5245 170 | 302 | 341 | 357 | 363 | 267 | 368 | 369 | 370 | 370 | 371 [ 371 | 371 | 371 | 371
575 200 | 317 | 335 1332 | 328 | 32 317 | 313 { 309 [ 306 | 304 | 302 | 30L | 299 | 298
62.5 22 | 331 | 330 {312 | 292 | 280 | 269 | 260 | 253 | 2n8 | 243 | 239 | 236 | 234 231
67.5 206 | 33 {525 [ 293 | 266 | 2uh | 227 | 214 j20h | 196 | 189 | 18 | 179 | 176} 172
72.5 263 | 354 [ 320 {277 | 261 | 233 | 192 | 175 162 | 152 | 144 | 137 | 132 | 127 123
77.5 277 { 362 [ 317 | 265 | 222 (189 | 164 | 145 12130 | 118 | 108 | 101 Gl 89 el
82.5 207 | 367 [ 515 | 256 | 209 | 173 | 145 | 124 | 108 g5 g 76 69 63 53
87.5 292 | 370 | 314 | 252 | 202 | 165 | 136 | 114 g7 83 72 63 56 50 Hl

Stress distribution in a flat plate

havinz a small circuler hole at the centre

TAFLE 3.1

Analytical Solution

T

B oepeen
It
-



having a snz2ll eircular hole ai the centre

Tangential Stress - 1b,/in.”
Podius | .219 1 .281 | J34h |06 |69 10531 |.50h (656 |.719 [.781 .8k 1,906 ].969 11.03 ]1.06
Anele
2.5 =457 1 =71 18 ] i 75} 37 33 29 20 23 21 19 17 15
7.5 ~398 [ -~h7 33 53 60 57 52 48 Wy 41 33 36 Sh 32 30
12.5 -320 1 75 92 g2 83 23 79 75 71 68 66 6 62 60
17.5 -205 700 1301 11 | 139 {130 | 128 | 123 {119 | 115 | 112 | 110 | 107 | 106 | 104
22.5 -59 ] 1591 2011 2051 199 [ 192 | 1836 | 180 [ 176 | 172 | 169 { 166 | 1éh | 162 ] 160
27.5 "116 | 265 | 2086 | 281 | 271 | 262 | 255 | 2u8 | 2u3 {239 | 236 | 233 | 231 | 229 227
32.5 314 | 386 | 381 | 366 ) 352 | 341 | 332 | 325 | 320 | 315 | 312 | 209 | 307 | 305| 303
37.5 528 | 516 | 485 | W59 | Aud | hz7 | W17 | W09 | 403 | 398 | 394 | 391 | 389 | 387 385
h2.5 753 1 6531 594 ) 557 | 533 | 517 | 505 | 496 | 490 | h€5 | WEL | 478 } W75 | W73 471
k7.5 3L | 792 | 70 | 656 | 627 | 608 | 595 | 585 | 576 | 573 [ 569 | 565 | 552 | 550 [ 553
52.5 1206 | 9281 813 ] 754 719 | 698 | 683 | 673 | 665 | 659 | 655 | 652 | 6Lo | fhE | Eul
57.5 2L [2059 ) 915 | ey | 803 | we3 | 967 | 756 | whS | vh2 | 738 1 734 | 731 | 739 727
62.5 1619 (1179 {1002 | 932 | 889 | 862 | 845 | 833 | 825 | 818 | 834 | 810 | 807 | 804 | 2802
67.5 1793 {1285 §1096 {1008 | 961 | 932 1 91k | 901 | 892 | 836 | 881 | 877 | 874t | 871 €69
72.5 1910 11375 11167 (1072 (1021 | 991 | 972 | 959 | Q49 | Q42 | 937 | 933 | 930 | 927 | 925
775 2054 (1hdh [ 1222 (1421 {1666 1037 11017 {1C03 | 993 | 986 | 8L | 977 | 974 | 972 969
82.5 2132 11491 | 1260 [1155 [1100 '2068 [1047 {1033 |1czd {1017 (1011 |1007 {1004 [1001 | G3%
87.5 | 2172 {1515 | 1279 |1172 |1116 [1084 (1063 |1049 [103¢ 1032 [1026 |1022 |1019 [1016 ! 1014
TABLE 3.2
Analytical Solution
Stress distribution in a flat plate




2
Shesr Stress -~ 1lb./in.

Rodius  [.187 |.250 }.312 1.375 |.437 [.500 |.562 }(.625 [.687 |.750 [.812 {.875 [.937 {i.00 ji.06 |1.12
Anzle
0.0 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )
5.0 0 {102 | 116 | 124 | 110 | 106 | 103 | 100 93 97 95 ol 93 93 92 91
10.0 O | 201 | 228 | 224 | 217 | 209 | 203 198 | 294 |190 [188 {185 | 184 (182 | 181 | 180
15.0 0 | 290 | 333 [ 328 | 317 {305 | 255 | 2869 | 283 | 278 |27 {271 | 269 | 267 | 265 | 263
20.0 0 {278 | h28 | h22 | 807 [ 393 | 381 | 371 | 364 | 358 1353 349 | 346 | 343 | 340 | 339
25.0 L0 | B0 | 510 | F03 1 485 | heE | hsh | BL3 L 43h | L26 | h2) (416 | b1z | hog | ko6 | hO3
30.0 0 | 509 | 576 | 568 { 548 | 529 | 513 | 500 | Koo | 482 | 475 |h70 | 466 | h62 | hey | Lsgs
35.0 0 552 | 625 | 617 | 595 | 574 | 557 | 583 | 532 | 523 | 516 | 510 | 505 | 501 | 493 | 495
19.0 0 | 570 | 655 | 646 | 623 | 602 | 584 | 569 | 557 | 548 |41 {535 | 529 | 525 | 522 | 519
45.0 0 | 588 | 666 | 656 | 633 | 611 | 593 | 578 | 566 | 557 549 {543 | 538 | 533 [ 530 | 527
50.0 0 | 579 | 655 | 6u6 | 623 | 602 | 584 | 569 | 557 | 548 | g1 {535 | 529 | 525 | 522 | 519
55,0 0 {552 | 625 | 617 | 548 | 574 | 357 | 543 | 532 | 523 | 516 10 | 505 | 501 | 498 | 4¢%s
£0.0 0 | 509 | 576 [ 563 | 548 | 529 | 513 | 500 | 490 | 482 | 475 |70 | heb | he2 | LB9 | 456
65.0 O | 450 | 510 | 503 | W85 | W8S | &5 | A3 | 430 [ h26e | h2) | 416 ] k12 | 409 | ho6 | h03
70.0 0 [ 378 | 423 | hez | 407 [ 393 {381 | 371 [ 360 | 358 | 353 | 349 | 346 | 343 | 30| 339
5,0 0 | 264 | 333 | 323 | 317 1305 | 296 | 239 | 283 | 278 | 274 | 271 | 262 | 267" 265 | 263
80.0 0 {201 | 228 |22 | 217 [ 209 {203 [ 193 j19h4 190 [188 | 186 | 184 | 182 | 181 | 180
85.0 0 | 102 | 116 | 114 | 110 | 2106 | 103 | 100 98 g7 95 ok 93 3 92 91
90,0 0 0 0 0{ © 0 0 0 0 0 0 0 0 0 0 0
TARLE 3.3
Analytical Solubion

Stress distribution in a flat plate
having a small circular hole at the centre

(83
(0¥}
.



Radial Stress - 1b./in.2
Iiadius 219 [v282 |.34h 406 (U469 [.531 1.59% | 656 |.716 |.781 [.8h4% (906 [.949 [1.03 | 1.09
Angle
2.5 =159 | 85 1329 | 508 | 630 | 725 | 791 | S¥L | 880 | 910 | 934 | 953 | 969 | 932 993
7.5 |-150 9L (331 | 505 {628 | 706 | 781 | 830 | 858 | 897 | 920 | 939 | 955 | 983 | 978
12.5 =131 204 | 333 | 499 | 616 | 700 | 762 | 808 | 84k | 872 { 8ok | 912 | 226 | 939 | oh9
17.5 |-103 | 123 | 337 | 491 | 599 | 677 | 733 | 776 | 809 | &35 | 855 [87L | 885 | 896 | 906
22.5 -G8 | 147 | 3 1480 | 577 | 66 | 697 | 735 | 764 | 787 | 805 820 | 832 | 82| 850
27.5 -25 1176 | 347 67 | 550 | 610 | 653 } 686 | 711 | 730 | 746 1 753 | 788 | 777 | 76k
32.5 23 | 206 | 353 (k52 | 5210 | 569 | 60 | 630 | 650 | 666 | 678 | 683 | 696 | 703 | 709
37.5 75 {20k | 360 | 436 | 488 | 524 | 550 | 570 | 585 | 596 [ €05 | 613 { 619 | 24| 628
42.5 129 | 281 | 367 | heo | hsh | W78 | Lok | 507 | 5%€ | 523 | 529 | 533 | 537 | 540} 543
7.5 18h | 318 | 374 {403 | 420 | w30 | 437 | hme | W6 | Bho | Lis he3 | sk | hs5| h56
52.5 239 | 355 | 381 | 386 {326 | 379 | 30 379 ) 377 | 376 | 3 1373 | 3¢2 ) 3v2} 371
575 291 391 | 388 | 371 | 353 [ 339 | 328 | 319 | 312 | 306 | 301 | 293 | 294 | 292| 290
62.5 | 339 [423 {395 1356 [ 323 | 208 | 278 | 263 | 251 | 282 | 234 | 228 | 223 | 218 215
67.5 A81 | 452 | 400 | 343 | 297 | 262 | 235 | 214 | 198 | 185 | 175 | 166 | 159 [ 153 | 148
72.5 | 417 |[Nhy6 | 405 | 332 | 275 231} 198 [ 173 | 153 | 137 (| 128 | 11k | 106 99 93
77.5 | bbb {495 | 403 | 328 | 258 | 207 | 170 | 141 | 118 | 10G 86 | 6l 56 50
€2.5 | 463 1508 | 411 | 31@ | 206 [ 191 | 150 | 119 ol 75 59 Ly 36 27 20
87.5 h73 | suh | 32 | 315 | 240 ) 183 ) 140 | 108 82 62 | U6 33 22 i3 5

TATLE 3.4

Solution by Dynamlec Relaxation

Stress distribution in a flat plate

having a small circular hols at the centre

. .;,3



Tangential Stress = 1b./in.?

«219 1 .281 1§ .30l Ji69 ] o531 656 | o719 | L8l | W84 ] .906 | .969 | 1.03 [1.09

~703 { =213 | =71 3 17 L0 53 67 82 g9 | 118 | 138 | 160

~A60 | =184 | =49 21 34 56| 68 81 96| 113 { 131 | 150 | 171
12.5 -566 | 123 =5 56 67| &6 971 1101{ 123} 139 | 155 173 { 193
17.5 =428 1 -hé 53 1071 116 31| 107 151 | 1631 177 | 191 208 | 225
22.5 -250 601 140 173 178 1891 196 204 | 214 225 | 2381 252 | 266
27.5 -39 | 189 | 237 2521 253 257 | 262 268 | 275| 284 | 2931 304 | 216
32.5 200 | 328 | 348 34| 337 3351 337 | 3404 34| 3h9 | 3561 2363 371
37.5 h6o | W83 | K67 437 428 19| K18 | K181 hig | hz21 | u2h | h27 { 432
h2.5 723 65| 592 538| 524 507 | 5031 499 | h97| 496 | k95| 495 | 495
&9.5 1003 | &0g | 720 641 ] 621 3971 589 582 | 577 | 572 | 567 | 563 | 559
5245 1280 | 971} 845 “h2t 77 6851 674 | 66h | 655 6h6 | 638 631 | 623
5745 1539 | 1126 | 96k 839 | 808 7691 755 | 7h2 | 730 | 718 | 706 695 | 683
62.5 1778 | 1268 | 1074 928 | &893 gzl 829 | 81| 798| 78k | 7691 7s5h | 739
675 1990 | 1394 | 1172 1006} - 967 9161 896 | 877t 859 | &2 | 8241 805 | 788
2.5 2167 | 1500 | 125! 10721 1030 9731 9511 930 910| 891 | 871 | 850 | 829
77.5 2305 {1582 | 1317 1124 | 1073 1018 | -9%4 | 972 50| 929 | 907 | 835 | &6z
82.5 2100 | 1639 | 1361 1159 | 1112 1049 | 1020 | 1000 | 9771 955 | 932 | 903 | 884
87.5 2h3 | 1667 ] 1383 1176 | 1128 1060 11039 11015 | 991 | 968 | 9uh | 920 | 895

TAPLE

Solution by dynawmic relaxation

Stress distribution in a flat plate

having a sm2ll circular hole at the centre




Shear Stress = 1b./in.2

Redius 137 [.250 [.312 [.375 L4377 [.500 [.562 [.625 1.687 1.750 [.812 [|.875 1.937 [1.00 [1.06 |1.12
Ansle

0.0 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.0 0 | 122 {137 | 134 128 12z2 [ 116 | 112 | 2108 | 104 | 102 98 95 92 S0 87
10.0 0 | 2h0 | 270 | 26" |252 | 200 | 229 | 220 | 213 | 206 [199 {193 | 188 | 182 | 176 | 171
15.0 0 | 352 395 | 386 |368 3;0 335 | 322 | 311 ) 301 | 291 | 282 | 27 | 266 | 258 250
20.0 0 | 52 | 508 | 496 1473 450 {031 [ B14 | hOO | 336 | 37h | 363 | 352 3hz | 232| 321
25.0 0 | 539 {605 | 593 [563 | 537 | 514 | hol | hpé | hel | haé | 433 | W20 | 408 | 395 | 383
30.0 0 {609 | &3 | 668 | €37 | 607 581 558 | 538 | 521 | 50h | 489 | h7s | hE1 | Bhp | 433
35.0 O | 661 | 7h2 | 725 |691 | 659 | 30 | 606 | 584 | 565 | 57 | 531 | 515 | 500 | U85 470
40.0 0 | 692 | 778 | 759 724 | 690 £60 635 | 612 | 592 | 574 56 | 540 | 524 | 5081 4L92
h5.0 O 703 | 790 | 771 | 735 {701 | 671 | éuh | 622 1 601 | 533 | 565 | 5h8 | 532 | 516 500
50.0 0 ] 692 | 778 | 759 [ 724 1690 | 650 [ 635 612 | 592 | 594 | 556 | sNO | 52 | 503 | N9z
55.0 0 | €61 | 7h2 | 725 [ 691 | 659 | €630 | 405 | 584 | 565 | 5h7 | 531 | 515 | 500 1 485 | 470
60.0 0 | 609 | 63h | 668 €37 | 607 { 531 | 553 | 538 | 521 ) 504 | 489 | hys ¢ hEY1 { hh7 | 433
65,0 0 | 539 | 605 | 591 | 563 | 537 | sah [ hol | A | ML | M6 | 433 1 420 | N8 | 3951 383
70.0 O | 452 | 508 | 496 | 473 450 | 431 | A1k | 100 | 385 | 374 | 363 | 352 1 32 | 332 | 321
75.0 0 {352 1395 | 386 {368 |350 {335 {3221 311 | 201 | 291 | 282 | 27 | 266 | 258 250
80.0 0 [ 2u0 | 270 | 260 |'252 |[240 | 229 | 220 | 213 206 199 | 193 | 188 | 182 | 17| 171
35.0 0 | 122 |-137 | 134 1128 |12z [2116 112 | 103 | 104 | 101 93 95 92 90 87
90.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TARLE 3.6
Solution by Dynamic Relaxation
Stress distribution in a flat plate

having a small circular hole al the centre

0NaT



Stress - l'b./in.2

e = 87.5° X = 2.5°
Tang. Radial | Tang. adial
Radius Stress | Stress | Stress | Stress
»219 2490 |- 544 ~765 ~219
.281 1634 566 -239 39
344 1391 449 -86 296
406 1225 342 -30 483
469 1179 259 -4 616
.53l 1129 198 12 711
S .594 | 1093 151 26 | 181
656 1063 116 39. 833
« 119 1037 88 52 874
731 1012 66 68 903
.844 987 49 84 931
.906 963 35 103 951
.969 938 23 123 963
1,03 g9l2 14 144 981
1.09 836 5 168 . 993

TABLE 3.7

Stress distribution in a

flat plate having a snmall

hole, by dynamic relpxation

using Hq. (3.20)
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Distance From Ndee

Jult, By

Add Distance

Fringe | Of Sunport Rin=s Scale Fac- | From Plate
rumber | Diamecter Humber Average | 4 . (.625) | Bage (,125)
1 2 3
1 0.240( 0,220 | 0,220 0,190 0.119 0.244
2 0,400 0,450 | 0.460| 0,436 0.272 0,397
3 N.660} 0,680 0,710 0,634 0,427 0.552
4 0.910¢1 0,920 | 0,960 0,930 0,581 0,706
5 1.170| 1,140 1,200| 1,170 0,731 0.856
6 1.430] 1,390 ) 1,460| 1,428 0,892 1.017
7 1.700| 1.630 | 1.730| 1.688 1,052 1177
O 1.990] 1.920 | 2,020| 1.9175 1.232 1,357
9 2,320) 2,240 | 2,330 2.265 l.432 1.557
10 2,780 2.700 | 2.780| 2,755 1,720 1.845
TADIE 4.1
Fringe order nunmber v.s, distancs
Irom edge of plate — deflection of
a flat circular plate by holographic
interferonctry. Load 55.8 1b.
bistance From Edge ¥alt, By Add Distanc;—
Fringe | Of Suprort Ring Average Scale TFac— | #rom Plate
Number | Diameter Wumber tor {.€25) | mdage (.125)
1 2 3
1 0.150 | 0,100 | 0,070 0.107 0,067 0.192 .
2 0.360} 0,220 ] C.300| 0,306 0.191 0.316
3 0,5751 0,520 | 0.520 ]| 0.539 0.336 0.406l
4 0,780 | 0,725 | 0.725 | 0,744 0.465 0.590
5 0,990 | 0,940 | 0,940 | 0,956 0.598 0,723
6 1,200 1,140 | 1,150 1,162 0.727 0.852
1 1,4101 1,340 1,375 1.375 0,860 0.985
8 1,625 | 1,560} 1,600 | 1.592 0.996 1,121
9 1.830{ 1.770 | 1.820 | 1,320 1,138 1.263
10 2,110 | 2,020 | 2,100 | 2,078 1,298 1.423
11 2,370 | 2,290 | 2,390 | 2,350 1.470 1.595
12 2.725 12,650 2,740 | 2.7C0 1.637 1.312

TABLE 4.2
Icad T2.5 1D,

165,



Nistance ¥rom Kdce

ielt, Ry

Add Distance

Fringe | Of Suprort Rine Scale Fac~| From Plate
Number | Diameter Fumber Average tor (,610) | Bdge {,125)
| 1 2 3
1 0,140 | 0,075 { 6.0751] 0,097 G.059 0,184
2 0.310 | 0.250 | 0,250} 0.270 0,165 0.290
3 0.475 | 0,440 | 0,425} 0,446 0.272 0.379
4 0,650 0,625 0,580} 0,619 0.377 0,502
5 0,820 | ¢,8001 0,750 0,790 0.482 0,607
6 1,000 10,975 0,925| 0,966 0.590 0.715
T 1,175 13,150 | 1,000 1.135 0. 692 0.817
8 1.250 11,3501 1,250 1,317 0.804 0,929
9 1.525 | 1,530 | 1.430] 1.429 0.911 1.036
10 1.710 {1,725 { 1.610| 1.680 1.025 1.150
11 1.910 | 1,920 | 1.800| 1.876 1.143 1,263
12 2,120 | 2,130 | 2,000 2,083 1.270 1.395
13 2.340 | 2,360 | 2.210] 2,300 1.405 1.530
14 2.625 | 2,630 | 2,470 2,500 1.52 1.651
15 3.075 { 3.075 | 2,95 | 3.020 1,850 1.975

ringe order number v,s., distance

TABLE 4.3

from edge of plate ~ deflection of

a flat eircular plate by holographic

interferometry.

Load 89.1 1b,




ringe order nunber v.s, distance

from edge of plate - deflection of

Yistance From Edge Falt, By Add Digtance
Fringe | Of Suvport Ring _ Scale Fac— | I'rom Plate
Number | Diameter Wumber Averaze | 4 o (.625) | Rdge (.125)
1 2 3
1 0,140 | 0,150 | 0.140| 0,143 0.090 0.215
2 0.275 0,280 | 0,300] 0,288 ¢.180 0.305
3 0,410 { 0,440 | 0,440] 0.430 0,269 0,394
4 0.550 | 0,580 [ 0,5801 0,570 0.356 0.481
5  10.690|0.730 [0.730] 0.717 | 0.455 0.580
6 0,820 | 0,875 [ 0.8801 0,857 0.535 0, 660
7 0.960 | 1,040 | 1,020 1.005 0.629 0.754
8 1,100 | 1,175 | 1.170] 1.150 0.718 0.843
9 1.240 11,320 [ 1,310] 1,290 0.806 0.931
10 1.375 | 1.475 | 1.460| 1.440 0,900 1,025
11 1.525 | 1.640 | 1.625] 1.595 0.997 1.122 |
12 1.675 | 1,800 | 1,780 1.752 1,097 1.222
13 1,825 | 1,975 11.950| 1.920 1.200 1.325
14 2,000 | 2,150 | 2.125]| 2,110 1,218 1.443
15 2,175 1 2,340 { 2.310]| 2.305 1.440 1.565
16 2.375 | 2,580 1 2.525| 2.480 1.551 1.676
17 2.650 12,830 12,790| 2.755 1.721 3.846
TABLE 4.4

a Tlat circular plate by holographic

interferonetxy,

Load 106 1%b.
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Distance i'rom ldge Hualt., 3y Add Distance

I'ringe | Of Suoport Ring Averagse | Scale Tac— | ¥rom Bidge OF

Humber | Dianeter Numbor tor {(,625) | Plate (.125)

1 2 3

1 0.075 1 0,070 § 0,075 | 0.073 0.046 0.161
2 0.200 {0,200 0,200 0,200 0,125 0.250
3 0,325 | 0,310 0,340 | 0.325 0,203 0.328
4 0.440 | 0,425} 0,460 | 0,442 0,276 0,401
5 0.560 | 0.54C | 0,590 | 0,564 G,352 0.477
6 0,675 0,660 0,700 0,678 0.424 0.549
T 0,790 | 0,775 | 0.825 | 0.798 0.498 0. 623
8 0.910 1 0,890 | 0,950 | 0,916 0.573 0. 698
9 1,025 [ 1,000 11,075 | 1,033 0, 646 0.771
10 1,150 | 1,125 | 1,200 | 1,158 0.724 0.849
11 1.270 [ 1,240 1,320 | 1.276 0.797 0.922
12 1.3%0 | 1,360 | 1,450 | 1,400 0.875 1.000
13 1.510 { 1.480 | 1,575 | 1.522 0,950 1,075
14 1.640 11,610 [ 1.710 | 1,652 1,032 1.157
15 1.775 {1,740 | 1,850 | 1,755 1,099 1.224
16 1.920 {1.860 | 2,000 | 1.929 1,205 1.330
17 2,060 { 2,010 2,150 | 2,085 1.3%4 1.429
18 2,210 12,1501 2,310 | 2,221 1.390 1.515
19 2,375 | 2.325 | 2,490 | 2,395 1.497 1,622
20 2,600 | 2,525 | 2,700 | 2,605 1,629 1.754
21 3,000 | 2,925 | 3.100 | 3.008 1.870 1.995

TABLE 4,5
Pringse order number v.2., distance
from edge of plate -~ deflection of
a flat circular plate by holographic
interferonetry.
Load 122 1Y,
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Distance From Bdroe Mult. By Add Distance

Fringe| Of Support Ring Averase Scale Fac— | From Tdge Of

Number!| Diameter Wumber | tor (.604) | Plate (.125)

1 2 3

1 0,110 0,080} 0.125] 0,105 0,063 0,188
2 0,225 0,190 0,240 0,218 0.132 0,257
3 0,340 0,300 0,360 | 0,333 (0,201 0.326
4. 0,450 | 0,420 0,460 | 0,444 0,268 0.393
5 0.5701 0.525 ] 0.575 | 0.557 0.336 0.461
6 0,675 | 0.640] 0.680 | 0. 665 0.402 0.527
T 0.790 | 0.750| 0.800| 0.780 0.471 0.596
8 0,910 | 0.875| 0.910} 0.899 0.544 0. 669
9 1,025 | 0.975| 1,020 1,006 0. 607 0.732
10 1.1401 1,1001 1,2251 1,122 0.678 0.803
11 1,260 | 1.210| 1.250 | 1,240 0.749 0.874
12 1,375 1,325 1.350 ] 1,350 0,815 0.940
13 1,490 | 1,450 1,470 ] 1.470 0,338 1.013
14 1,620 1,570 1,590 | 1.593 0,962 1,087
15 1,740 1 1,630} 1,710 1,710 1,032 1,157
16 1.860 11,8201 1,840 1 1,340 1,110 1.235
Y 2,000 | 1,960 1.970 |'1.975 1,192 1.317
18 2,140 2,100 2,116 { 2.118 1,278 1,403
19 2,200 | 2,230 | 2.250 | 2.235 1.360- 1.405
20 2,450 | 2.400 | 2,420 | 2.423 1.462 1,587
21 2.640 | 2,590 | 2,600 | 2,610 1.575 1,700
0o 2.900 | 2.860 | 2.6875 | 2.880 1,737 1.862

¥Fringe order number v.s, distance

from edge of plate - deflection of

TABIE 4.6

a flat circular plate by holographic

interferometry,
Load 140 1b,



Frinre

Distance from mdoe

Of Bupport Ring

ULt , By

Scale Tac-

Add Distance

From Plate

Averace
Fumber { Diameter Number tor (,492) 1 Pdre (,125)
1 2 3

1 0,130 {0,120 0,150| 0.133 0.065 0,190
2 0.260 | 0.230{ 0,270 0.253 0.125 0,250
3 0,390 | 0«360 { 0,400| 0,383 0,188 0.313
4 0.525 | 0,480 | 0,520 0,511 0.252 0.377
5 0.650 | 0,625 ] 0.650| 0,641 0,316 0.441
6 0.775 1 0.740 { 0.780] 0,765 0.377 0.502
T 0.900 | 0.860 | 0.900| 0.880 0.433 0.558
8 1.040 | 0,980 §{ 1.040| 1.020 0.502 0,627
9 1,160 | 1,100 1.150| 1,140 0.561 0.F86
10 1.275 [ 1.240 { 1.280| 1,265 0,623 0,748
1. 1,420 | 1,360 | 1.400| 1,393 0. 687 0.822
12 1.550 | 1.480 ] 1.540| 1.823 0.750 0.475
13 1.675 [ 1.610 ] 1,650 1,645 0,810 0,935
14 1,810 { 1.740 1 1.7801 1,776 - n, 875 1,000
15 1.950 11,860 | 1.,925) 1,912 0,942 1,067
16 2,050 | 2,000 | 2,060 2,080 1.010 1,135
17 2.220 | 2.140 { 2,190]| 2,180 1.072 1.197
18 2,370 | 2,280 ] 2,350 2,330 1.148 1.273
19 2,520 | 2,425 | 2.500| 2,482 1,222 1.347
20 2.610 | 2,575 { 2,640 2,610 1.285 1.400
21 2,830 | 2,750 ] 2.810| 2,800 1.379 1,504
°2 3.025 | 2,025 | 2,975 2,975 1.462 1.587
23 3.220 | 3,125 | 3.200( 3,184 1.560 1. A94
24 3.470 | 3.350 | 3,430 3,420 1,655 1.810

Fringe order number v,s, distance

TABIE 4.7

from edge of plate —~ deflection of

a flat circular plate by holographic

interferometry,

Load 156 1b,
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Deflection — Tnches x 10°

Radius Distance From Bottom Surface - Incheg
0.0000| 0,0625 | 0,1250 | 0,1875 | 0.2500 | 0.3125
0,067 | 0.000 | 0.0155] 0.0252{ 0,0234 | 0.0253 | 0,0166
0,200 | 1,053 | 1,065 | 1,071 | 1.071 |3.065 | 1.054
0,333 [ 2.110 | 2.125 | 2,132 [ 2,132 | 2,125 | 2,111
0,467 | 3.177 | 3.194 | 3,203 | 3,203 | 3.194 | 3.177
0,600 | 4.243 | 4.264 | 4,274 | 4.2T4 | 4.264 | 4,243
0.733 | 5.300 | 5.324 | 5.337 | 5.337 | 5.325 | 5.300
0,867 | 6,337 | 6,365 6,330 | 6,380 | 6,366 | 6.337
1.000 | T.342 | 7.375 7.392 | 7.392 | 7.375 | T.342
1,133 | 8.301 | 8.340 | 8.359 | 8.359 | 8.340 | 6.302
1,267 1 9,199 | 9,244 | 9.266 | 9.266 | 9.244 | 9,199
1,400 { 10,01 | 10,07 [ 10,09 | 10,09 | 10.07 | 10,02
1.533 | 20,71 § 10.77 | 10.81 | 20,82 | 10,81 | 10.77
1,667 | 11,21 | 12,27 { 11.30 § 11,31 | 11.28 | 11,22
1,800 | 11.54 | 11.60 | 11.63 { 11,63 | 11.60 | 11.54
1.933 | 12.70 | 11,76 | 11.79 | 11,79 [ 11.76 | 11.70

TABLE 4.8
Deflection of a flat cirecular
rlate by dynanic relaxation,
Load 55.8 1b,
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Radial Stress - 1b/in2

Radius Distance Fron Dottom Surface — Tnchug

Inches | 0.000 | 0.031 | 0.063 | 0.156 | 0.219 | ©0.281 | 0.313
0.067 [-5.0 [-4.0 [-1.9 0.2 2.3 | 4.5 5.6
0,200 | 21,6 | 20.5 | 7.6 |-1.6 |-9.2 |-15.6 [-19.,5
0.333 | 53,1 | 42,4 | 20,9 [-0.4 [-20,9 |-40.6 |-50.7
0.467 84.5 67.6 34.1 0.0 |-33,8 |-67.0 -83.7
0,600 | 119.5 | 95.3 | 48.3 | 0.0 |-48.2 |-95.7 [-119.5
0.733 159,0 1 127.,3 64.1 ~0,1 -64.3 1-127,5 | -159.5
0,867 ?03,5 { 162,8 | 81,9 |-0.,3 -82.5 | -163.4 [-204.0
1,000 | 254,0 { 203.6 | 102.2 |-0.6 |-103.5 | -204.7 [-256.2
1,133 | 314,0 | 250,7 | 126.1 |-1.4 |-128.5 | -253.3 1-316.0
1.267 338,01 311,2 | 154.,8 |-3.4 ~-159,9  =311,7 | =386.0 .
1,400 | 486,0 | 289.2 | 190,9 |-7.0 |-202,4 {-385.5 |-481.0
1.532 | 605.0 | 483.8 | 240.2 | 10.1 [-229.1 [ -514.5 |-¢42.0
1,667 | 619,0 |495.4 | 243.8 |-3.1  [-248.2 | -485.0 | ~-606.0
1.800 AL6,0 | 493,23 | 245,3 |-1.3 245,17 | -487.5 | -609.0
1,933 | €14.0 | 292.0 | 245.8 } 0.1 |-244.8 | —489.0 | ~611.0

TABLE 4.9

Radial stress distribution

in a fiat circular plaie by

¢ynamic relaxation,

Load 55.8 1b,

[
-]

i



Tangential Stress — 1b/in

2

Radius Distarce From Bottom Surface — Inches

Inches | 0,000 | 0,031 | 0.094 | 0,156 0.219| 0,261 1 0,313
0.067 71,0 | 136,81 65,6 | =3,9. ~73.,3 | -144.2 } -179,0
0,200 210,0 | 167.9 | 82.9 0.1 -31,9 | -164,1 | =205,5
0,333 236,5 | 189,2 | 94.7 1,1 -92.4 | -186.3 | =233,0
0.467 265,5 § 212.5 | 106.6 ] 1.3 ~103.9 | ~209.8 | -262.0
0.600 | 297.5 | 236,0 | 119.3 | 1.4 | =116.5 | =235.1 | ~294.0 |
0.733 331.5 | 265.7 | 133.2 | 1.6 ~130,0 | =262.5 | -327.5
0,867 370.0 | 296.,0 §{ 148,3 | 1.8 “144.7 | ~292.4 | -365.0
1,000 411,01 392,2 | 164.9 | 2.1 [-160.7 |-325,0 | ~406.0
1.133 A57.5 | 366,0 | 183,2 | 2.6 ~178,1 | =3A0.8 | =450.0
1,267 507.5 | 406,5 | 203.3 | 3.1 -196.9 [ =399.5 | -499.5
1,400 562,5 | 450,3 | 223,9 | 2,2 ~218,3 | -440,2 | =550,0
1.533 610,0 | 489.6 | 237.3 | -10,8 | -263,9 | =534.0 | =667.5
1,667 616,0 | 454.0 | 243.7 | =3.9 ~248,5 1 -486,6 | -607.9
1..800 615,01 492.7 | 245.5 10,8, | -245.3 | -488,1 | ~610,0
1.933 | 615.0 | 492.0 | 245.8 | 0.1 | —244.8 | -489,0 | -611.0 |

TABLE 4.10

Tanzential stress distributinn

in a flat circwlar plate by

dynanic relaxation,
Load 55-8 1b.
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| Axial Stress - 1b/in2
Radius Distance From Bobttom Surlface
Tnches | 0,031 | 0,094 | 0,156 | 0.219 | 0,281
0,067 | =%.5 | -27.1 | ~16.6 | =6.5 0.0
0.200 0,0 -0.,9 -1,2 -0,7 0,0
0,133 0,0 0.3 0.3 0.2 0.0
0,467 0.0 0.1 0.2 0.1 0.0
0. 600 0.0 0.0 0.0 0.0 0.0
0.733 0.0 0.0 0.0 0,0 0.0
0.867 0.0 0.0 0.0 0.0 0.0
1.000 | 0.0 0.0 0.1 0.0 0.0
1,133 0.0 0.2 0.3 0,2 0,0
1.267 0.0 0.3 0.3 0.3 0.0
1.400 0.0 -2.8 -5.9 ~5. 6 0.0
1.532 0.0 23,6 | =59,8 | =103.2| -143,0
1,667 | 0.0 ~3,7 -3.0 ~1.5 0.0
1,800 0.0 0.5 0.7 0.6 0.0
1.933 0.0 0.7 | 1.1 0.8 0.0
TABLE 4.11

Aiial stress distribution

in a flat circular plate

by dynamic relaxation,

Load 55.8 1D,
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Radial Disvlacement -~ Tnches xI0

6

Radius Distance From Pottom Surface -~ Inches

Inches| 0,000 0.031 0.094 | 0,156 | 0.219 | 0,231 0.313%
0,000 | 11,89 9,509 4,771 ] 0,082 |~4.597 | =9.301 | =11,62
0,133 | 12.09 9, 664 2,831 0.084 [-4.715 | -9.524 | -11.90
0,267 | 12,25 9.797 4,907 | 0,059 |~4,7084 1-9,664 | -12.09
0.400 | 12.32 | 9.861 | 4.941 | 0.063 {-4.814 [=9.732 | -12.15
0,533 { 12,29 49,844 4,932 | 0.065 |~1,002 | -9.714 | -12,11
0,667 | 12.15 9.736 4,877 | 0,067 [-4,743 {~9.¢03 | ~12,00
0,800 | 11,90 9,524 | 4,769 | 0.069 |-4.631 | ~-9.386 | ~12.72
0.933 | 11.50 3.195 4,003 | 0.073 j~4.457 | -9.049 | -11.30
1,067 | 10.90 8.728 4368 1 C.079 =4,211 | =8.571 | -10.71
1.200 | 10.11 8,006 4,052 | 0,089 |=3.877 [~7.925 | -2.900
1.333 | 9.060 Te252 3.634 | 0,109 [-3.427 |-T7.071 | -8.340
1,467 | 7.650 6.121 3,079 | 0,135 |-2.825 [ =5,942 | ~7,420
1.600 | 5.71H 4,620 2,205 | =0,008 [-2.295 | ,554 | <R.690
1.733 | 3.840 3.073 1.530 |-0,007 |-1.532 [~3,044 | =3,800
1.867 1 1.918 1,534 0,766 | ~0,001 |[~-0,764 [ -1.525 | ~1.905
2.000 0.000

0.000 0,0C0 0,000 | 0,000 | 0,000 | 0,000

TABLE 4.12
In-plane displacements in a flat
circular plate by dynamic relaxation,
Load 55.8 1b,
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Deflection - Inches xlO5

Radius Distance freom Bottom Surface -~ Inches

Inches | 0,000 0,063 0.125 0.138 0.250 0.313
0.067 0,000 0.044 0,071 0,080 0.071 0.044
0.200 2.949 2.982 2.999 2,999 2.984 2.952
0.333 5,912 5.953 5.973 5,937 5,953 5.913
0.467 8.628 8.947 8,972 | 8,972 8,948 8,899
0,600 11,89 | 11.94 11,97 11,97 11.94 11.89
0.733 14,35 14,92 14,95 14,95 14.92 14,85
0,367 17,75 17.83 17,87 17,87 17.83 | 17.75
1,000 20,75 20, 66 20.71 20,71 20, 66 20,57
1.133 23.26 23,36 23.42 23,42 23.36 23,26
1,267 25.71 25,90 25.96 25.96 25.90 25,71
1,400 28,05 28,20 -23.27 28,28 28,21 23,06
1.533 30,00 30,17 30,27 30,31 30,20 30.18
1,667 31,41 31,58 31, &7 31.67 31.59 31,42
1,800 32.33 1 32.50 32,59 32,58 32,50 32,33
1.933 32.78 32,96 33.04 33.04 32,95 32,78

Defleection of 2 flat circular

plate by dynonmiec relaxation,

TABLE 4,13

Load 156 1b,

1720,



]
Radial Stress - 1b/in”

Radius Distance From Bottom Surface -~ Inches

Inches 0,000 0.031 | 0.094 | 0,156{ 0.219| 0.z01 0,313
0,067 | =14 ~11 -5 1 7 13 16
0.200 73 58 21 5" -26 ~-44 -55
0.333 1483 118 58 -1 ~59 =1id -143
0.467 236 189 95 0 -5 ~187 -234
0, 600 335 268 135 0 ~135 ~268 =335
0.733 A45 356 179 0 -180 =357 —44 6
0,867 570 456 229 -1 -231 -458 572
1,000 713 570 286 -2 ~2G0 =570 ~716
1.133 861 705 353 -~/ =3/0 ~709 ~386
1,267 1089 872 434 ~10 448 -873 ~-1090
1,400 1362 | 1090 534 =20 ~RGT =1079 | ~1350
1.533 1692 1355 673 28 ~54.). 1441 | <1800
1, 667 1732 1387 663 -9 ~GA5 1358 | -1695
1,800 1728 1382 (37 -4 ~688 -1366 | ~1708
1.9233 17720 1377 £33 0 ~35584 ~13700 § =171

TABLE 4,14

Aadial stress distribution

in a rlat circular plate by

dynamic relaxation,
Load 156 1b,
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)
Tancentinl Stress -~ 1b/in“

Tangential stress distribution

in a flat cireular plate by

dynamic relaxation.
Load 156 1b.

Radius Diatarce From Bottom Surface - Inches
Tnches | 0,000 0,031 0,094 1 0,156 0,219 | 0,201 0.213
0,067 AT9 283 184 -1 —~205 404 ~504
0.200 | €00 470 232 0 = |=e20 -459 574
0.333 | 663 530 265 3 ~2RQ 502 ~652
0,467 | 743 595 298 4 -2al ~587 ~734
0,600 | 833 666 334 4 ~326 | ~f38 | -f23
(0,733 |920 | 744 | 373 4 361 | <135 | 918
0,867 |1035 329 415 5 A OF 819 ~1022
1,000 |1180 922 A62 6 450 =910 ~1137
1,133 1270 1025 513 T ~4.99 ~1010 | <1261
1,267 | 1420 1138 = 69 9 ~552 ~1119 | =1397
1,400 1578 1261 627 6 -611 ~1233 | 1842
1.533 1715 1371 A6n -20) w739 -1495 -1869
1.667 1730 1384 633 -11 596 -1363 | ~1705
1.800 | 1725 1380 533 -2 637 ~1367 | -1707
1,933 | 1720 1377 683 0 -605 ~1370 | <1710
TABLE 4.15
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2
Axial Stress = 1b/i‘r1"

Axial stress distribution

in a flat ecircular plate by

dynaniec relaxation

Load 156 1b,

Radius Distance from Bottom Surfaoce ~ Inches
Inches 0,031} 0.094; 0,156 1 0.219 | 0.281
0.067 | =96.7 | ~76.0 |-46,6 }|-18.3 0.0
0,200 0,1 -2.7 -3.1 -2,0. 0,0
0.333 -0,1 0.7 0.9 0,4 0.0
0,467 0,0 0.3 0.4 0,2 0.1
0. 600 0,0 0.1 0.2 0,1 0.1
0.733 0.1 Dol ~0.1 -0,1 0,1
0,867 ~0.1 0,0 -0,1 -0,3 0.0
1,600 0,0 0.2 0.2 0,0 0.1
1,133 0,0 0.4 0.6 0.5 0.0
1.267 -0,1 0,8 0.9 0.8 0,1
1,400 0.2 -1.6 -1A,4 1-15,5 =3,1
1,533 0.0 ~85.6 |=167.2 |-288.4 }-399.3
1.667 0.2 ~10,3 [-22.2 ~2l.2 |-0,1
1,800 | -0,1 1.9 2.1 2,0 0.0
1.933 ~0,6 1.8 2,9 2.6 0.2
TABIE 4.16
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Radial Displacement - Inchen x106

tadive Distance From Bottom Surface -~ Inches

0.000 0,021 0,094 | 0,156 | 0,219 | 0,281 0,313
0.000 | 33,20 26, 62 13,36 | 0,209 | -12,37 | -26.04 | =32.50
0.133 | 33.80 27.06 13,53 | 0.149 | -13.,20 | =26,64 | =33.,30
0.267 | 34.2% 27.43 13,74 | 0.166 | ~13.39 [=-27.06 [ =33.80
0.400 | 34.45 27,61 13,83 | 0,176 |-13,48 |=27.25 | =34.10
0.533 | 34.40 27.56 13.81 | 0,181 | =13.45 | =27,20 | ~34,00
0.667 | 34,10 | 27.26 13,65 | 0,186 §-13,28 | -26.89 | -33,62
0.800 | 33.35 26,67 13.35 | 0,193 | -12,97 | -26,28 | ~32.90
0.933 | 32.i8 25475 12,89 | 0,203 | -12.48 | -25.24 | ~31.,70
1.067 | 30,55 P4 .44 12,23 | 0,220 | =11.79 | =24.00 | =30.00
1,200 | 28.35 22,67 11.34 | 0,247 | =10,86 | ~22,19 | ~27.70
1,333 | 25.40 20,31 10,18 | 0,303 | =9,598 [-10,80 | -24.7%
1.467 | 21.42 17.14 8.623 | 0,376 |-7.911 |~-16.64 | =-20.30
1,600 | 16,18 12.94 6,427 | 0,014 | ~6.428 | ~12,76 | ~15.95
1.733 | 10.75 3, 50T 4,283 | -0,020 | =4,29) | =8.527 | -10,68
1,887 | 5.370 4,256 2,144 | -0,004 | =2.141 | ~4.271 | —5.340
2,000 | 0.000 0.000 0,000 | 0,000 | C,000 ] 0,000 0.000

TABLE  4.17

In-plane displacenents in a

flat circular plate by

dynanic relaxation,
Load 156 1b,
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Dig- Deflection — Inches x 10°

tance

from Load — Pounds

8868.°Y | w5.8] 72.5] 89.1]106.0) 120.0] 140.0] 156.0
0,067 | 0,516 0,670 0,823 0,980} 1.127 ] 1.294 | 1.447
0,200 | 1,551 ] 2,005 | 2.477 | 2.947 | 3,391 | 3,892 | 4,337
0.333 | 2,596 3,373 | 3.735 | 4,932 | 5,477 | 6.514 | 7.2%0
0,467 | 3.643 ) 4,734 | 5,818 6,921 | 7,966 | 9.141 | 10,19
0,600 [ 4,603 6,085 7,478 8,807 110,24 | 11,751 13,00
0.733 1 5.707| 7.415 | 9.113 | 10.84 12,48 14.32 1 15,96
0,867 6,704 | 3,710 110,701 12,73 | 14,66 16,82 18,74
1,000 | 7.661 19,954 12,23 14,55 | 16,75 | 19,22 | 21,42
1,133 | 8.564 | 11,13 | 13.67| 16.27 | 18.72 | 21,49 | 23,94
1,267 [9,396112,214 15,00 17.85 | 20,54 | 23.57 | 26.27
1,400 110,13 13,171 16,18 19.25 | 22,161 25,42 | 28,33
1,533 | 10,751 13,96 | 17.16 | 20,42 | 23,50 | 26,96 | 30.05
1,667 |11.21 114,87 117.90 21,30 | 24,51 ( 28,131 31,34
1.800 | 11,521 14,97 18,39 | 21.88 | 25,18 | 28,90 | 32,20
1,933 (11,67 (25,17 118,64 (22,17 | 25,52 | 29,29 | 32,63

TABLE 4,18
Deflection of a flat circular
plate — Analytical Solution



Radial and tangential strcos

Dis~- Stress - lb./in.d
tance Fadial Stress | Tanrential Stress
i;§2 of Load Tmad
plate 55,8 | 156 55,8 | 156
0,067 12,5 1 35.1 191 R34
0.200 | 38,9 | 109 215 | 602
0.333 67.4 | 189 241 675
O, 467 98,6 | 276 269 753
[0.600 | 133 | 372 300 | 838
0.733 171 478 332 92
0.867 214 600 368 1029
1,000 264 738 407 1140
1,133 323 002 A50 1260
1.267 395 1103 500 1390
1,400 488 1364 546 1530
1,533 582 1626 502 1626
1,067 5852 1626 582 1626
1.800 582 1626 | 582 1626
1.933 582 1626 582 1626
TABLE 4,19

in a flat circular plate

Analytical Solubtion

-

1\‘)').



136,

Bottom Half of Plate . Top Half of Plate
Fringe Heasured | Gealed | Corrected | lleasured | Scaled' | Corrected
Tlumber | Radius Radius | Deflection | Radius Radius | Deflection
Inches Inches Inch x lO4 Inches Inches Inch x 104
1l .450 1.350 -2.143 .520 1.536 1,965
2 .550 1,650 -2,018 . 640 1.891 -1.840
3 . 675 2,025 -1.893 .800 2,364 -1.715
4 .340 2.520 ~1,768 «950 2.807 -1,590
5 975 2,925 ~1.643 1,110 3,280 =1.4€5
6 1,120 3.360 | -1.518 1.260 3.723 | =1.340
7 1,250 3.750 -1.393 1,400 4,136 -1,215
8 - 1,320 4,170 ~1.268 1,550 4.580 ~1.090
-9 1,530 4.590 -1.143 1.890 4.993 0,965
10 1,600 4,980 -1.01.8 1.830 5.407 —0.840
11 1.790 ‘5370 -0, 893 1.900 5,850 -0.715
12 1.930 5.790 -0.768 2.140 6,323 -0,590
13 2,070 6,210 0,643 12,320 6,855 0,465
4 - 2.220 6.660__ 0,518 2.470 T.300 | «0,340
15 2,360 7.080 -0, 2393 2.63C T1.77C -0.215
16 2.520 7.560 ~0.268 2.790 8,243 -0.0%0
17 2. 680 8,040 ~0.143 2.970 8.775 0.035
18 2.850 8.550 -0.018 3,100 9.307 0.1€0
19 3,020 " 9,060 0.107 3.300 9,750 0,285
20 3,190 2.570 0.232 - - -
TABILE 5.1

Holographioc Solution
Load 309 Lb,

Deflection Along Radius O-A



157,

Dottom Ialf of Plate

Top Half of Plate

Pringe | licasured | Sealed |[Corrected |licasured | Scaled Corrected

Hunber Radius Radius Deflection | Radius Radius Deflection

Inches Inches Tuch x 1O4 Inches Inches Inch x 104
1 450 1.358 -2.987 .520 1.560 -2,737
2 550 1,660 -2.862 L 600 1.800 .1 -2.612
3 . 630 1,902 =2.737 . 700 2,100 2,487
4 .70 2.143 ~2,612 .330 2.490 -2,362
5 .820 2.475 ~2.487 . 940 2.820 ~2.237
6 .936 2,807 2,362 1,060 3.180 -2,112
7 1.040 3,139 -2,537 1.150 3.450 ~1.,987
'8 1.140 3.441 ~2,112 1.260 3,780 -1,862
9 1,124 3.743 ~1.987 1,370 C 4,110 ~1.737
10 1.340 4,045 -1.862 1.470 4.410 -1.612
11. 1.420 4.286 ~1.737 1.570 4.710 -1.487
[ 12 1.520 4.588 | -1.612 1. 670 5,010 | ~1.362
13 1,610 4,860 -1.487 1.780 5.340 -1.237
14 1,700 5,132 ~-1.362 1.880 5. 640 -1.112
15 1,300 5,433 ~1.237 1.980 5.940 -0, 9067
16 1,960 5,735 ~1,112 2.090 6.270 -0,862
17 2,000 6.037 -0,987 2,200 6. 600 =0.737
18 2,100 6,339 -0,862 2.320 6.960 -0,612
19 2,210 6. 641 -0.7317 2,430 7,290 -0,487
20 2,310 6.973 0,612 24540 1. 620 -0,362
21 2.240 7.595 -0.487 2,650 71.950 ~-0.237
22 2.530 7.637 -0.362 2.750 8.250 0,112
23 2,640 T.969 -0.237 2.80 | 8.670 0.013
24 2,750 8.301 =0.112 3,000 9.000 0.138
25 2,870 €, 663 0.013 3.140 9,420 0.263
26 2.9%0 9,026 0,138 3,250 2.750 0,383

27 3,110 9,388 0.263 - - -
28 3,230 9,750 0.388 - - -
TABLE 5.2

Holographic Solution

Load 412 Lb,

Deflection Along Radius O-A




-
Deflection x 107 - Tnches

adius Soelutioen Ifo, 1 Gdolution wo, 2 scolution o, 3
Inches 309 1b. 412 1h. 309 1. 412 1%, 412 1b,
045 | =3l.00 | =450 206,65 | =35,57 235, 01
L.5T5 | =30.59 | —40.70 ~25,40 | =33.57 -33,98
2,205 —~20,05 ~308,74 -23,93 -31,01 -32,13

=35.9

-22,00

—24., 35

~32.47

e e

-265,01

4,095 =21.37 ~25,50 =17.26 ~23.01 -23,49
4725 ~16.,00 -4, 29 <14, 09 -19,59 -10,20
5.355 14,00 ~12,93 ~12.11 -146,15 ~16,43
5.905 | =11.79 | -15.72 a.56 | <2075 | -12.04
G, 615 -3, 69 ~-11,59 -T7,07 ~0,43 ~9.55
T.245 -5.70 —7.60 .65 =6,20 -6,27
7.875 -2.01 -3.75 -2,29 -3.06 -3,09
3,505 0,00 0,00 0,00 0,00 0,00
9,135 2,71 3,62 2,22 2,96 - 2,08

PABLE 5.3

Flame Plate Defloeclbion Along
Line 0 - A
Dynamic Relaxation Seoluticns

Fechanical Load

o

>



VDeflection x —104

-~ Inches
Hadius Line
Inches 0 - A 0 -0 0 -C 0 -D 0 -8
<345 97,81 97.35 97.91 97.97 93,03
1,575 96458 96,05 96,83 96,97 97.10
2,205 94,69 85.03 95.58 05.72 95.94
2,835 | 9L.3 92,256 | 93,59 | = -
3.465 S.22 U3, 31 90.43 - -
4.085 vl.h4 63,08 6,12 - -
4.725 [4e51 76.51 CO.53 - -
54355 66,33 63.54 13.41 - -
5.905 56,94 52024 64,36 - -
6,615 46,59 48,41 52,71 53.78 53.10
T.245 | 35.56 | 36,71 | 33.99 | 39.70 [ 40.00
T.575 24,08 24, 66 25,75 26,16 26,78
5,505 12,20 12,43 12,50 12,94 13.31
2.135 0.00 0,00 0,00 0,00 0,00

TABLE 5.4

Deflection of Flame Plate

Under Thernsl Load

Dynamic Relaxaticn Solution
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"RADTIAL STRESS ON LAYER Kk =1 o
THERMAL LOAD . . . . . .

0. 0, 0.

o e
2869. 37210,

s, =90,

45130 k220,

6458. 7 6h29,
14274, 7652,

10364, 6825,

Mrer. 5486,

14005, 4408,

16601, 3330,

C 43t

2723,

. <5741,
2165,

0 ) 0. . %19189.  8én.
~874. 473, 18407, =786,

4R9. =207, LAA3S4, T

913 L =639 B vt

o=9SO. 706,

-8318,

 %-10924,

~10386.
-8751.

' ~5596,
~1391,

TABLE 5'S
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.. ___ . RAPIA STRESS ON LAYER Kk =2
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0 ) 0. 0. 24, =342, .

0 ) o,
0. 0.
B S P,
0. 0
) 0. ~2088.
- 0o. 'qujoff
0 ~547. -

] . =1987,
0. 3730, ~3133,
0. 4804, - =3788,
0. -5128, ~264L
o, ~h265, -2426
oL 2077,
_ 5458, 4686,
-~325&, 5438
B & KX P 4563,

0.

0.3



0.
0.

SHEAR STRESS TRz OM LAYER K

COMBINED LOADS

I R R

0 ] [ 0.
0. . 0. 0,
Ov_ o O

o, 0
N M
L0 O
O P T,
I PR 0
B

TABLE

S.49

=1 _ .

R



R N
A
“ég 101,
-123 63,
,,,,,, 0.
0.
.,70-
0.
.. .
e O
) 0. o
-53 .
=428,
~1054
-75%, )

0,

- SHEAR STRESS TRZ ON LAYER
COMBINED LOADS .

0. 0.
R P

304, 104,

o otvo. 83

g
-415,

=694,

=0200

0.



o ~ SHEAR STRESS TRz ON tAYER K= 3 R
. ... COMBINED LOADS . .. . .0 .
R P 0. 0. L PR ]
o, 0 0. 0 0. T T e, o
Lo ASL . 420, 230, 269, 273 0.
=22, 460, 689, " 82, 347 b .
0. ) 0. 1718, 463, &3, 0.
R Y _1839., 570, . 130 0
N 1860, . 590, ] 183, 0
I P ST e, 1671, 549, %80, 0
0. Do 1061, 365, 136,
~ 0. e, 62. 191, 66.
0. 0. ) 777, -1 ~53,
-268. =330, m1314. o 496, =299
=553 - T 751, — w1349, o ~797. »415
-1949", ~1066, Cwh402, =122, -40%1,

TABLE 5.51

2"

|
LI I

L



o
-
I T

. .. SHEAR STRESS TRz ON LAYER K _
. COMBINED LOADS ___

) - 304
e
O
0.
0.
m124.

Ke4o

TABLE S:53

09, i
- _65.

433,
 -h94,
~466,
0.



TABLE 5-

"~ SHEAR STRESS TRz ON LAYER K= 5 - o
.. COMBINED LOADS . e -
0 0. B P O P
0. 0. S0 B PO
B DU PO . ) 0.
B P 0. R
0. 0 o0 el T, T
0. N B 0.0,
0 0. 0.0 0. .
0. 0 oL 0. 0.
9, . B 0. N 0,
0. G o 000 0.
Q. 0. B O P
0. 0. 0. 0.
0. * 0T T T 0. T R S
0. 0. 0 0. i
0. R ) 0. 0. i a.



' SHEAR STRESS3 "7ZTi.'f._O}!‘_—i'L_A\_’ER"’:I.(_:_#' "

. ... . .. __ COMBINED LOADS . . '
0. * 0. 0. 0. 0. .

0 0. o, .0, ] 0. 0
0 0. 0. 0. 0. . 0
0. Y e P 0, 0.

0 0 ) 0. 0 o 0.
0. 0. 0. ) 0. 0
0. 0. o oo 0. S0,
0 B S PO - PO 0
0 o T Y P 0.
0 o.TT T T 0.

TABLE 5.55



SHEAR STRESS 7TzT OM LAYER K =2
COMBINED LOADS

o 96, ~129. Taq27. B _
0. kb, 44, =113, -100, R

0 ] R R P -1 E T T . 0.
o. . o, 0. ~236. =145, 0.
’ 0. ) 0. T T e216. ~156, 0,
O e T T L ¥4 ) 176, 0,
o o o, T T T T ~199, ) n240. 0

"~ TABLE 556



SHEAR STRESS

0.

R

. e
o,
B P

TABLE

g.

| TZT_ON_LAYER K =
. COMBINED. .LoADS . .

57

3
L
of ST PO

. ,

=299, 0.

“hs7,
~129,
116,
287,

1500,



~ SHEAR STRESS

. 4o,
i 35,

o TZT. ON
e . . COMBINED LOADS

298, ;
4?7. .

R -
257,

TARLE 5.58

A
] 0. o

o
-

ez



SHEAR STRESS 72T ON LAYER K =5 -
. . COMBINED LOADS . i
0. 0, 0, R P
0. 0. I P P
e L Lo 0 0. 0.
. ) 0. b 0 L0
0. 0. O R S S
B T [ P 0. ... L 0. 0.
0.
0, .
O
0.
B P
0. )
o

0, i S0 N
0. b o

0. 0 el
L P PR
N O PR 0.

TABLE 5:59

0. 0
- 0.
0.
,,,,,,, 0.



CFORTAAN NOOY.6. GOANON
MAGTER STMDILE TCNSION MEMNER
DIMENSTON &X(0)Y,UD(Y1I),U{10)
READ(1,1001E, R, DOLX
WRITE(D,100%8,R0,DELX
READ(E,10%9INELT, DK
WRITEC?,19%ynm | 7,DK
€ CALCULATE AONSTANTS
Pe800,. N
DRXGDELT/NFLY /RO
DxabELr/nay
DYmy, =N/
D2=1,4nK/2, L
D3ap1/n2 , o
DimDRYX /DD
DSmEwhy .
C CALCULATE IHITIAI CONDITINNS
Iee0
po 1 1et,0
SX(1)=n,
1 CONTINUE
- DO 2 !l‘a.|10
Ud(1)mn,
veryen o
2 CONTINIE ‘ e
C CALCULATE vELACTTV e
200 ITmlTed
TE(1,Fa’4y83 vn % N
TRCL, 6n 10N C)auUn(lyeD3e? wnha(Pag)(Tal))
TE(Y, FO A0 (1 YaU(TIYaUD(tYwDELYT
IRCL.FA Y0%4n o 3 .
UDCIYIZagD LI enTa(SX (1) m8X{Tul) uDi
UCTYali¢Tyelnery«DELTY
Y CoNTINOE
C CALCULATE QTRFKSS
0 4 tat,Q
SXIT)aeX {1 anS+ (UD(T*1)Y=UD(1))
& CONTINUE A
C CALCULATE HNFRGY
SuMSQan
Df) 5 1!1:10
SUMSOee IMSAsn(TY*UDLY)Y
5 CONTINIIE
WRITE(2,10%) 17 SUMRQ, S
AURITE(2, 10450
IFCIY.Fu 10h0YARYOP
GO YO 200 '
100 FORMAT(REND &)
10% FORMAT(2F1?.4) .
103 FORMAT (1%, 13,512, 4,2X,10F7,0)
104 FORUMAT(1AX,10F1D,2)
END



(LS RN

*FORTRAN HY17.G.40000H
HASTER HEAT CONDUCTYION
DIMENSTON TCOY,UC10)
—_ . TEaS00
U PELXm. 5D
- DKu, 34
. CELY® A0
WRITE(2,100)NELX.DPLY,DK
C1=DELT/NELY
D2eDELY/(1.+nK/2,)/DBLX
DIa(1.=DK/2 .07 (1. .+D%/2.)
C CALCULATE INITIAL CONDITIONS
Lo 10 1a1,9
T(1)=0_0
10 CONTINUE
. UetI)m0 . 0
— 11 CONTINUE
Iv=0
200 I1TwITeq
C CALCULATE U
DO 1 181,10
IF(1.,EQ.1)40 YO 9
IF(I.EQ.100UCIYRU(L)*D3+2 wD2s(TE=T(I=%))
IfFCLI.EQ.10)G0 TO 1
UCI) U I Y wD3en2a¢T{LY=T(1=1))
o 1 CONTIHUE
e . € CALCULATE TEMPERATURE
R DO 2 Iunl,?
e e TCIIBTCIY N1 aCUCT 1 dm(T))
L 2 CONTIHUE
S o WRITE(2.,101¥17,7
e TRCITLLT.I00GO YO 200

sTop
w2100 FORMAT(3R12.4)
e . 101 FORMAT(1X,15,3X.9E7. 0)
S END

_ . _ BND OF SEGMENT. LENGTH 270, NAME HEATCONDUCTION




t

FORTRAN COMPILATION BY #XFAS MK 4D

“FORTRAN N118.,G. GOADON .

300

NO TRACE

DATE

21/11/6% TIug

MASTER PLATE WITH HOLE POLAR COORDINATES
DIMENSION SR¢19,19),STC19,19),TRT(19,163,Ud(19,19),vD{(19,19),

CALL ITIME(NY)Y

NRn19

NT=19Q

Bz ,30E08

Pr=, 300

ROm , 7RYE~3

DELR=®.06425

DELTHR3 ,16159/36.0
WRITE(Z2,100)%,PR,RD,DELR,DELTH
Sx=1000,
READ(1,108)DK,DELT
CONTINUE
WRITE(2,108)nY,DELY
DYim(Y ., =DK/2.0/¢1.+DK/2.)
D2mDELY/RO/{(1.+40K/2.)
DIaD2/DELR

D4mD2 /DELTH
DS=DELT*E/{1 «pR«PR)
D6mOS/HELR
D7uDS/DELTH

DBmDSwpR

POusDB/BELR
D10aDA/DELTH
OPVImDELTY*E/ (1 .¢0R) /2.
D12=D11/DELR
D13aD14/DELTH

T C INITIAL CONDITIONS

- C CALCULATE VELOCITIES

1

"N1T=100

ITal

DO 1 JH1|NT
DO 1 I=1,NR
Up(l,J4)y=0,
Vo{l,JY=0.
SR(1,J)a0,
ST(1,Jy20,
TRY(1,4220,
S1(1.,J)a0,

S $2(1,d)80.

THAX(1,J)=0,
CONTINUE

~ R00 ITeITed

JFCI,LE.3)00 TO 2

DO 2 JB1.NT
PO 2 lai,NR

IFCJ,EQ.NTIGO YO 2
REDELR#(I=1)
THETA=DELTH* (J=1)+DGLTH/2,

CTFCLLEQ.HRYPRSGH* (COBCTHETA) ) an2

181¢19,49),82¢19,19), THAX(19,99) ,PHI(13,19)

-2
.

13/08/0



1F¢I.EQ.HRYOE, 5o(3, 08T (2=1,J)=0T( 2, J))
IFCILEQ.NRYUNCE  J)auUD(l J)wDY=2,#D3aSR(1el,J)o2,4PwDY
1+(TRTC,J+N)=TRT(I,I))0DA/R
1¢{p=0)wD2/R
IFCIL,EQ.NRIGO TO 2
TF(I.EQ.4)Qm8T (1, J =5+ (8T (1+1,J)=S5T(1,4))
IPCIL EQ.AYUDCT,J)mUD(T,JYwnl1e2 #D3wga(], )=Q/RwD2
IF(1.EQ.4)Y80 YO 2
UR(L,dYaud(r,J ) wDi+n3e{SRIT,J)=SR(T=9,.4))
16D4w (TRT(L,Je4Y=TRT(I DI/ R4D2w (SR, Jy+SR(I=1,J)
1«8T(1,0)=ST( (11, J))/Z /R
2 CONTINUE
DO 3 Jel,NT
DO 3 1a1,NR
IF(J,EQ.1.0R.J.EQ,NT.OR, 1, 2Q_KNRYGO TO 3
IFC1.LE.3)60 TO 3%
RuDELR«(1=1)+DELR/2. N
VOCL,d)evD (i, J)«n1eDba(ST(1,))=5T(L,d=1))/1
1403 % (TRY (141, J3=TRTCI,J)) D24 (TRY (L1, J)eTRT(L,J)) /R
I ConTINUE
SUMSQmQ,
00 7 =1,
00 7 1at., NR o
SUMSOmgUMSG+UN(T ,J)»UDLT . JY+vD (], J)-vo'z.J)
7 CONTINUE
€ CALCULATE STHESSES
DO 4 Jat,NT
PO 4 1al1,NR
"RwDELRe(I=1)+PELR/2,
IFCI.EQ.NR.OR. J EQ,NT)G0 TO 4
IFCI.L2.3)60 TO 4
o sn(x.J)nentl JY+DEe(UD(T+4,J3aUDCT,U))
o 14D8eCUDCT+1,0)eUDCT )Y/ 2, /R+DIO*(VDCL,Je1)=VDCL,J) fa
_ & CONTINUH
D0 5 Jaf,nT
B0 5 Jai,HR
RubElrRe{l=1)eDBLA/2.
_ SsF(1,EQ.NR,OR_J.EQ._NTIG0 TO S
I, Le.3)60 v0 8
STCI Y8 T{L, d)+D8e(UDCI+Y, U UL, 0))/2./R
CTADTAYDL )=V (T U/ RABORCUD (TSt d)-UDCT Y
5 CONTYINUE
DO & Jal,HTY
DO 6 lal,NR
CIRCI,LR.4060 YO 6
_IF(J.EQ.1.0R.J.EQ. NTIGO TO 6
CTHETASDELTHR(Ja1)
~IF(1,.EQ. NR)TQT(l.J)ﬂ-SK*SIN(THETA)ﬁCOS(THE?A)
TE¢IL,EQ.NRYGO TO & ) o
REDELRe(I=1) ,
TRATCT,4)aYRTCL,J)+D130lUD(T, ))=UD(T i1}/
C1eD120(yD(I I WVD(Int,J))
1=D11e(yd(L,J)avD(1md,J0))/72. /R
6 COHTINUE S
HRITE(2,102)17,5UH3Q,SR(5,5),5T(5,9), Tn?tS 5y '
IFCIT.LY.NITYGO TO 200 .
NITsHIT#400 o
WRITE(2,104) o o
 MRITE(2,107)8Rm _ o -
CWRITE(2,103) e "




100

102.

104
105
106
107
108
113

WRIYE(2,107)aY
WRITE(2,108)
WRITE(2,107)rny

IFCIT.LT.500)G60 10 200

CALL ITIME(H2)
ITIM=N2=-N1
HRITE(2,113)1TIM
STOP
FORMAT(SE12.4)

FORMATC1X,15,.3%,E12.4,3F12.2)
STRESS 1N RADIAL DIRZETION,/)
STAESS IN TANGENTIAL DIRECTION./)

FORMAT(/ /7,204
FORMATC(///4+3%M
FORMAY (/77,154
FORMAT(1X,13F7.0)
FORMAT (2E12.4)
FORMAT(4X,7H TIME
END

END OF SEGMENT, LENGTYH

SHYAR STRRSS,/?

110D

1163, NAME PLATEWITHHOLEPOLARCCORDINAYES




MASYER FLAYT DLATE BENDING
DIMENSTION SR(14,6).,5T(16.,6),S2(14:6),TRZ(Y4:6Y,
1URCE16,45),ub16,6),U(96,6),W(16,6)
RRAD(Y,.100)D
WR1TEt2.,100p
FRADC(T1,100) 01
WRITE(2.,4900) 01
OELR®, 17333
DRL2a,N5250
DELYS, 2500NE~4
Dvrw 010
D¥pa, 01)
CuamMat? SENS
CMpu=14 ,SFO4
Ron 78B3Ew=3
Riw,78TFa3
Nem16
Myemb
Dim(1,=DKR/2 )/(1.+D¥R/2 )
D2a(i,=DK2/2 )/(9,4DK2/2.)
DYXeDELT/RR/(Y.4DKR/Z,)
Dsubd3/DELR
" DSabd3I/DFELY
CAmDFLT/RA/(Y,4DK2/2,)
D706/ DELR
DAaDA&/DEL?
PO (CLAMG2 «CMU)#DELT
DeOODO/DELR
D1180y/0EL2
. bY2oCLAMeDRLY
b13=2D12/DELR
 D14mDY2/DELZ
D1SaCMyedELT
D14aD15/DELR
L D17=0406/DEL?
. C INITIAL CONDITIONS
Jre0
NrT=100
PO 1 Xml, N7
Cn %1 tml,NR
V¢T,KYa0, 0
Wer,K¥m( 0
Unelya0.0
“”’“;K)-’o.o
Spel,Kya0,0
ST(I.+K)a0.,0
S2tl.kH=0.0 -
Ta2¢(l,xX)m0,



1 CONTINUE
200 JTrulvTe
SuKnsas0 . 0
bneaed_
wneqad, 0
C CALCULATE VFLORTYY AND DISPLACEMENT IN RADIAL DIRECTION
11T y) 2 K“1JNZ
bn 2 I=%,NR
IFrC1,FQ 1367 Yo 2
Ie(K,FQ.N2)YGN TO 2
RebFLRa (=41
Tl BEQ.NOYIUDCL, k) mUDC(T KYaD = 2 e«SR(I=1,¢)wDbe2,nblwp
1o (3, #8T (=1, K)uST(I=?,K))/2,/R*DX+«P/R#D3
Ie(I1.EQ.NRYGO YO 3
UN(T 80200 CT,KYeDY Db« SRET,KYaSR{]=1,K))
14nE % (TRZ(T K4ty =TRZC(CI X)) +nTa(BR(I,K)+SR(T=1,KYY/2.7n
T»n3e(ST(Y KresT(2=1,K))/2, /R
Y U, KY RIS auD (Y, KY*DELT
Unse=unsasunct,Ky«undl,K)
2 CANTINUFR
C CALCU(IATE AXTAL VELOCITY AND DISPLACEMENT
D & K=, N7
IFC1,. 20 _NRYAD TO &
RapDFLR«(I=9Y+DELR/2.
1e(l,EQ. 15 AND.K,E0.1)00 TO 4
IS¢ EQ. 4. AND K. EQ . N2YWDCT ,KYaWb(l,K) D2
122 #DBwsZ(1 . Ke1)42,*21+D3
IFCI,PQ. 4. AND_K.EQ.N2)GO TO §
IrCK . EQ.TyuntT, K)“UD(I;K)*D(*? -uZ(I.K)*Da
17¢K.2Q.1)80 70 §
TRCK, EQ. NZYADCT, K)=aWD(T KIwD2m2,#D8%82¢(1,Ka1)
TRE(K,BQ.HNZIGO YO S
WACT, KY2UDCL, KYwDZeD7+{TRZ(I+1,K)=TRZ().,¥))

¢

. 1onBe(82(T K)wG2 (1, K~1))+DEw(TRZ(4Y, K)eTRZ(I,K))/2,./R

5 W, YD, KYaUD(T K)eDELTY
. WDSOSHDSA+HDLY K)o D (D ,K)
4 CONTIKUE
. SUMSGayDsas+Hnsgn
€ CALCULATE RADIAL STRESS
PO & Kmi,NZ
Do 6 1si.NR
Ir¢1,EQ.NR.OR.K.EQ.N2)C0 TO 6
"RapELRe(l=t)eppLR/2,
SREI,K)asR(T,KY+D10w(UD( e, )=UD(], K))
Tep12w(UDCT e, KYUDCT,KII/2./R
1409460l WDCT,Ke1)YD(I,K))
6 CONTINUE



- _ € CALCULATE HOOP STRRSS . .. . ..
Do 7?7 Kel,NZ
o 7 Yei,NR
IFCI,EQ.NR,OR K.GQ,N2)YG0 TO 7
ReDELR«(I-1)engLR/2,
STLI KI=ST (T, KY+DOwCUDCL+Y ,KYeUDCT K)Y /2. /R
14 13aUDCI*Y, ) mUDCT K eD14n{WDCT K*S)=WDCT,K))
7 CoNTINUE
€ CALCULATE SHEAR STRESS
OO B ¥n,N7
Dﬂ 8 !'10NR
Ie(l1.FR.1.0R.1,.EQ . . HR.OR. ¥ . FQ. 1,0 K.EQ.N2)G0 TO 8
Taz (!, K)aTR2¢1,K)+D17#(UNCT, KY=UDC(T, K=1))
14n162 (WD KYaWD(I=1,%))
o 8 CoNTINUE
€ CALCUIATFE AXIAL STRESS
Do 9 Kei,N2Z
Co 9 tud,HR
TRCI.EQ . NR,OR K.EQ.N2YG0 TO ¢
RapELR* (1«1 )enELR/2.
S K)=82¢ 1, KY«D i3RI+, x)=UD(].X))
Tent2etun(rer . K)eUd(1 K)I/2, /0
1401 1% (WD(T, Re1)=UDIT,KY)
O CONTINUE
Y WRITTE?2, 101 1Y, SUMS2,URSQ,WUDSO /(P 1) oSS 1)/ 8TC(R 1), TR2(5,Y)
TOLECITeNITI2NN, 10,10
£0 NIT=ENIT+10N
WRITE(?,102"
WRITELZ,Y10)8R
WRITELZ. 1063
WRITEC(Z?,110)5Y
WaiTEC(2.1N4)
WRITE(Z,410V82
WOTTF(2.,408)
WeITE(Z2,110 TRy
WarTEt2, 1062
HRITE(2,108 U
_ NRITE(2,407
L HRITE(Z2.408)u
L IBCIT.EQ.2000)8TOP
oo . G0 10 200
i Y00 FORMATI(EYIZ2. M
e 10% BORMATCIB,PE12.4)
. A0% FonMAYTC(//,1%H RAGIAL STRESS,//)
e .. 0% FopMAT(//.20M TANGENTIAL STRESS,//)
P04 FORMAY(//,15H AXTAL STRERS,//)
105 FORMAT(//.15H SHEAR STRESS,//)
106 FraMAT(//7.27H RADIAL DISDLACEMENT./ /Y
107 FoaMAY(/ /.2 H AXTAL DISPLACEMENT /)
108 FARMATY(YX.0F12. 4)
110 FORMAY(IX,14F7.1)
END

END OF oEGMENT, LENGTH 1269, NAME FLATPLAYEBRENDING



[ERP N

MARBTER FLAME PLATE DRBENDING SIMPLE HOLE
DIMENSTION SR(E15,5,4),87(15,5,.6),92¢15,5,4),
1TRT(16,6,5)Y,TR2C164+6:5Y,T2T(16,6.5),
TURLY6,5,4) . Yn(15.,6,4)Y,UD(15,5,58),
TWTE,5)
CALL ITIME (NT)
NRa1b
NTmé
NZa5S
pKra,0N3A
DKT=m, 0038
DKr=a 00348
DELAR=E, 530 ‘
DELTH=Z 14130/20.0 b
DEL2=,.375
CLAMRY? . 3ENS
CMU=11,.5704
AlLm &5F-5
RRw,732E~T7
RTe , 732Ew=l
RAn,?732E=3
WRITE(2.100)LAN.CMU.RR,ART.,RA,AL
READCY ,118YUFLT
50% CONTIHUE
WRITF{2,1TJ1)NDKR,DKT,NK?,PELR,DELTH,DELZ,DELT
WARS . 14159/4 0wS,25+4100.0
PEMA/(4.28+) ,5#DFLR*DELRY
bim¢1,=DKR/2 Y/ (1. .+DKR/ 2.}
D2m (1. =DKT/2.0/C1, ¢DpKT/2.)
P3m (Y. =DK2/2. )/, K272 )
~ - . DLmDELT/RR/(1,«pKR/2.)
- DSaDL/NELR
. D6EDL/DELTH
D?alb4/NEL?Z
D3sDELT/RT/(1.+DKT/2.)
POuDA/DELR
D10=D8/DELTH
D11=D8/DELY
DI12=NELT/RA/ (Y, +DKZ/2 )
DA3abdi2/NDEIR
D14wDI2/DELTH
Di5aD12/DEr2
DIAm(CLAM+2, -CMU)-DFLT
D1?aD14/DFIR
D18aD14A/NELTH
D10=D14/DEL 2
D2ORCLAMRDERLY
B218P20/NFLR
D2PeD20/DELTH
De3ad20/NELL
D24LalMU*DELT
N28uN24/DE1R
D2&aD24/DELTH . . e
DE7al26/DEVT . e e
€ TNITIAL CONDITIONS - - e
Mat - -
CIE(MIZ0,.39.34
30 COMTINUE



no 4 Kal,Nr=1
PO 1-Jal,NT=1
o 1 lal,Nn=-4
SRC€1.J.KYED D
ET(I.J,K320.0
8Z{1.JK¥xd .0
1 CONTINUG
DO 2 Kmi.N¥
PO 2 JmiNT
nag 2 I'1!Nﬂ
TAT(L oK) U,
TRZ2(T,J,K)=m0,
T2T(Ll, ) K=y,
? COMTINUE
DG 22 K=1.N2
Do 22 J=10UT—1
RO 22 I1=1,Ni=1
UDCE+J KV =0,
W(r.,Jd)an g
22 CONTINUE
DG 23 K=1,NZ2=1
DO t.:‘; |’=1 ONT-1
Do 23 1=E1.NR
HDCT oo kYRD,
’3 CONTINUE
DO'Q‘ Kx1-M2-1
Bo 24 J=1,.uMT
o ly] ?4 I““r“pﬂ1
VO(l.,Jd.KIR],
24 COMNYTHUE
I1Tal
NITaS500
60 TO 3¢
31 CONTINUE
REWIND 3
READL(3IYSH
READ(3YST
READ(3YS?
REAB{3YTRT .
READ(3NT2? - .
READ(3YT2T
- READ(3UD
READ(3YVD
READC3IYWD
READ(3)W
REAG{3NITY .
READ(IYNITY
REUIND 3 '
32 CONTINUE
200 I1TelTe
SuHsg=i, :
up§qmld, - - -
vosan0, :
wpsa=l .
£ CALSULATE VELOCITY IN RADIAL DIRECTION
b & Kel.N7=4
o & Jesl,.NT=1
DO & 1m1.Nn Ceme
IFCI.EQ.1060 TQ 4 .
TFC¢T.LR.I0 _AND, L. .BE, 6. AND . J.LE, 2)50 10 [
REDELRe (1= 1)
1FC1.EQ.2)G60 TO .45
IF(I.EQ.11 . AND.J.LE . 2)G0 TO 45



IRCTI.EG . NRYGO TO 46
IF(I.EQ.5.A0N, J, LE,2YG0 TO 44
UGDCT e e KYUDCT L), K eDl4DS# (SR, 4, K)nSR(T=t,J,K))
e DERLTRTCI . Vet k) =TRTC(L . JWE)Y/RED7#(TRZ(T I ke mTRZ(T0d, X))
14+DLe SR, ), K)aSR{Imt, J, )= (ST J, K)+ET(] 1.4, K)))IZ /R
6O TO 44
L5 UD(TJd KYRBUDIT, ) K)aD1e2, «D5«85R(T,J,K)
1-.5*(3¢*QT(IIJ")-ST(I+1OJ'K)).DAIR
GO TO 44
46 UDCL R EUD T, 0 KYwD1=2,#D5»8R(1~1,4,K)
1= 5w(3 «8T(1=1,),K)aS8T(1=2,J,K))eDé/0
L& UDSamUDSQ«UD(T,J K)wUDC(T KD
& CONTUNUE
€ CAILGULATE VELOOITY IN TANGENTIAL DIRECTION
DO A Kml.N2~4
DO 6 Jal.NT
DO & I=l . NG=1
I1F(J.EQ.1,N0R . J,EQ,NTYGOD *TO o
IF(1.EQ.%Y60 TO 64
JFCL.LE A0 AND T .GE,S,AND,.J.EQ,2)60 TO 6
RapEiRx(T«4)eDFLR/2,
TFCI.LE. A2 AND.I.GE,S.AND.J.EQ,3)6N TO 67
VODCT e d o KYSVDCT ) KYwD2aDOwTRY(T+1,0,K)=TRTCY,d.,K))
14010 (STCT,J 38T (L, el ,KIX/Ra0M 1w {T27(1 :J,Ke1)mTPT(1,J,K})}
Te«DR*(TRT(TIT,J,K)+TRT(1, ), K}V/R
60 1D 46
A7 VDLTJKYad ] ) .K}aD2¢2 *D10OwST(l,J,X)/R
66 VDSURVDSNVD(I,J,K)wyD(lL.J,K)
6 CONTTNUE
o ,AILULATE VELOCITY IN AXIAL DIRECTICN
nO 3 Kal, N7
DO 8 JeT.NT=1
b0 8 Imi.Nn=4
IF(1.EQ.1YG0 YO 8
TF(L.LR.,10 _AND, 1, GE S AND.I.LE,23G0 TO 8
SFCL.EQ.14 AND. K. EQ. NZYGO TU 8
Y RCTLEQ 2 ANDL KL EQ MYUDCT e K)mUDY,J K)eDR+2,eD150(82¢1,), )l
CIGC(L.EQ.2,AND K, EQ,1YG0 TO 88
Iv (e . B0 1UDLl,,d, KdaWn{T,J . KYnDT+2, 2202 ,J,K)nD1S
T1F(K.EN.1)G60 TO B8
TFCK.EQ.NZVWWIN{Y S+ K)WWUNC(T, 0, K)nD3=2,0682(1,J,K=9)0D45
1F¢(KX.EQ.N2YGD TO 89
ARhELR® (1=t)aDBLR/2, :
uD(lOJ!K}xUD(IOJOK)*03‘013*(TRZ(I+1!JlK)'TRZ(!OJ!K’)
TRt (P ZT T Y+, Y =T2T (L o RY)/REDISW(SZ(Y U K)wE2¢F,Jsk=4))
. 1042« (TR?7(1+1,J,K}I*TRZ(L,J.K))/2./R
... g0 TO 8¢ . _.
- RA W(l,domull, J)+UD(IoJ,K)*OELT
AC WDSARUWDSORUDLT, g, K)aUDLT,J.K)
8 CONTINUE
SUMSQEUDSALVNSA«UWDSEG
€ CALCULATE NORMalL STRESSES
no 10 Ksd , 2=
DO 10 JGQrNT'1
po 10 1ot HR-1 .
IR{I.EQ. 126V TO 10
TFCT.LR,10 AND,T1.GE.S.AND,J.LE, 2080 TO 50
RERDELRA(TI~1)43ELR/ 2.
C CALCULATE RpADTAL STRFSS
SR(L - RY)BEALL . 4, K)+017t(UD(I¢1-JoK)-UD(!:J:K>)
14020 (UDCTe ,d,K)4URLT U KIY/2. /R
14022w{VNCT Ul Ed=VD(I J.K)I/ReD2Fa{WD(],J Ke1)mUDLT,J4sK))
¢ FALLULATF TANGENTIAL STRESS



ZH0,

ST(IJJ'K!EST‘I9J0K3*021*(UD(I¢1'JDK)'UDCIOJOK))

1‘013*("9(1-J¢1-K)“VD‘!oJrK‘)’Q*D?S*(UD(!:JvK*1)'UD(IrJ!K))

P+Dlos (UD(Te1,J,)UD{L,u.K))/2./1

€ PALCHLATE AXTAL GTRESS

SZCLsJoRISKRZ(L I KISDRIW(UD(T Y, J,KI=UDCT,J,K))

14D20«C(UDITY.J,KY$UD(T, U, KY)/2,/R

14022* (UDLT et s KI=VD(TILJ KI)/R*DIPW(UWD(T, J Kot )aWD(Tsds K))

19 CONTINUE
C CAYCULATE SdFAR STRESS ON RZ PLANE TRT

DU 16 JaY,NT

p0 16 1=1,NR

1F(!.EQ,.2)GY TO 16

IFET.EN.Y .00 T EO NR OR.JD.FO.VY . DR.J.EQ . NT.OR. K BO.NZYGO TO 14
TFCT . LR.AY AMDLL.GE, S5, AND.J.LE.Z)GO TO 14

PApELRe(T=4)

TRYC(T B0 TRT{T s K)D26wUD(T W K)mUD(L,d=1,K))/0
TaDRLw(UDET G KYSVOLT=, ), KD/, /RAD25w{VD(T I KI=VD(L =t 0, K))

14 CONTINUE
£ CALCULAYR QHFAR QTRESS TR?

DO 1R «=i,NZ

NG 18 =1, NT

DO 13 “1!NR

IF(I.EQ.2)60 TO 14

IFCL.EQ.V,0R, I, EQ.NR.OR. K. FQ. Y, OR XK. EQ,N2.0R.J.EQ.NTYGO TD 18
TFEL LR.YY AND, T GE. S AND.J,LE.2)GO TO 18

TRZ(1 /3 oK) mTR2CEJeK)4D272(UDCT e K)mUDC(TsdrK=1))

14D25=(uDCT,J,K)=uwD(I=1,.,K))

18 CONTINUE
C CAILCULATE v2ZT¥

no 20 K=1.KZ

po 20 S=1.NT

no 23 t=1,NR

TF(1.EQ. 1,60 T0 20 - -

IF(K.EQ.%.0R.K, EO NZI.OR.I.FQ.NR.OR.J.EQ,1.,0R.J.EQ.NT)GO TO 20
TFCT.LE %0 AND. 1 GE 5. AND.J.LE.3)GO YO 20

RAapELR# (1l 1)¢DELR/2

T2Y (e d v K)aTPTLL J el Y4D272 (VDL d s K)ayYD(T, 0, Kmt))

14026 (WDCL,J, K)=WwD(l,J=1,K})/R

20 CONTINUE : -

WRITA(Z,102)1T,5UMSQ,UDSAQ,VDRG,WDEGQ, W(2,2),5R(5,4,1),

- 15T(5r6-1\-42(9.4p1);TRT(5-A.1)

21

TFCITAHNITI20N, 21,21
NITYuN]T+600 .
WREITE(2,%43)
WRITE(2,415)8R

- WRITE(2,104)

WRITE(?,1158)8T

WRITE(2,105)

WRITE(Z2,118)a2

WRITE(2,104)

WREITE(2,118)TRT

WRITFE(2,107)

WRITE(2,%1R)TR?

WRITE(2,108)

WRTTE(2,118)72T

WRITE(2,111)

WRITE(2,918)u D .-

REWIND & L . o
WRITE(4)SR . _
VRITECADST : L e
WRITEC(L) G2 e — . .



100
101
102
103
104
108§
108
107
108
111
118
114
118
14¢

WRITELL)TARY
WRITE(L)TRY
WRITE(LITZY
WRITECL)UD
WRITEC(LOVD
WAITE(4)UD
WRITE(L) W
WRITEC(LITT
WRTITEC(LINIY
REWIND 4

CALL ITIME (NDY
ITIHMRND =NY
WRITE(?,119)17T1IM
§TOD
FORMATCIXN,E6EN2 . 4.
EQRMAT(7ZF12.3)

/3

EORMAT(IS5,2X.9€12. )

FOauAT(/ /). 144
FORMATL/ /200
FORWATC(///.1584
FORMATI(///,2%H
FORMAT(///.19H
EORMAT(///,2%4
ROQMAT(/ /.24
FORMAT(IX.QFE12.4)
FORMAT{ELZ 4 ]
FORMAT(IX.QE1Z2.4)
FORHAT(//,2%.7H
END

RADTAL STRESS./)
TANGFNTTAL STRESS., /)
AXTAL STRESS./)

SHEAR STRESS R-THETAR,/)
SHEAR STRESS R~Z,/)
SHEAR STRESS 2-THETA,/)
AXTAL DISPLACEMENT, /)

TIME ,14)

NT» LENGTH 2510, NAMZE  FRLAMEPLATERENDINGSIMPLEMOLE

nea
Yoy



HASTPR FLAME PLATE TCHMDPERATURE
C ODIMENSTION Y(45,5,4).8n¢15,8,4),U¢14,.8,4), V(15 Br6) W15
1TRURCIS) ,TR(15,10)
- NRaY A

. NTa§d
 N?a§
C TA=0,0

8.8,

THad O
e C READC1,105)yTRUS
e~ . _NRITE(2:108)TRUS
o ... DEa_.050
PELAm, &% L
DELTHRE 14150/20.0
 DEL?R. 3759
_ CREAR(YL1N3yDELY
URITE(Z2,100)NDELR,DELTH,DFLY, DK DELT
- ew30 , EQO
AlLm A5F=5%
prRe .3
_ Tscu-E-A|/¢1 -2,%PR)
... bim(1.=DR/P, )I(1.¢DKIZ.)
. D2uDELT/DELRI(Y.EDKI2))
e e D3P RLY/BEILTH/ (Y L 4DKI2 D)
____ D4mOBRLY/NENZ/C(Y,4DK/2.)
oo DSoDBLY/NELR .
__D6GBOBELT/NELTH .
e DPoDBLY/DEBLZ
LG INTTIAL COMODITIONS L ,
..... o RALLITIMBeNYY . L
—ee %m0,
n:rrﬂoo e —
I BGA_ KB Np=t
T B R T ST 2T .
UG 1 0 TS -1 PR T L) R . .
S 4 4 U X3 11 N«
L q coMTINUE R ) _ o ~ )
D0 2 Kol,Hy= 4 o R s o
L ,nn 2 Jei, Nr=ty ) o o
e DO E !m1v'l°'1
e~ . SR(!4dsKNEO, 0 .
@ CONYINUE - et . T
.. DO 3 Kmi,N?=q e e e
.. DO 3 Jsi, T o .
... b0 % Iml.N® _ B _ . o R
e UCLed el .
. _3 QONYYNUE e .
e DO & KateNY=Y . - e .
DO_& Jmi.NTY - o = e o




nn 4 Iol,No=1
V(!.J.V’)sl).

4 CONTINUE
Hho % Kul,.KY
NN 85 Jal.NTY=1
NO 5 1wl .4p=1
U(!oJ|K)50

§ CONTIHNIE

200 1TalTet
€ CAICULATF U

DO A K.1 -N,""
NG & Jal ., Nt~
ng 4 l1at , No
RENF{Re(T=1)
IFECE.EN. Y60 TO A

TRCE . EN. 20 0(T o K)BUCT, 0, K)*D 42, #0eh2e(T(],Jrk)=TW)

IF(1.EQ.2)R0 TO &

TECT . EQ.NRYUCT, S X)al(T,0,E)«h14?, aReD24(TR=T(1=,.0,K))

IF(1.EQ.NRYGD TO 4

TFCY.LE.T0 AND_.1.GE & _ANND. .

LLEL 2¥G0 Y 6

TFCYT.EN.1Y AND,J.LE 2060 TN A&
YFCL . ER. S AND J.LE.2YG0 TO A7

GO TOH A

a0 0o A

A6 UL S ) mULLL I KIRDIenPene? #T (1,0, K)

A7 UL KYRY L, I KYeD1 DD eR#T(1=1,],K)

A BONTINUE

n_&ﬁ PALCULA“F v

. hO Y Ket , Ny=d

o nn 7 et ,ue

__po 7 :-1.nu-«
T Tgeqli.ea.nTyGn YO 7
-_-~n““h,“IF(f EQ.1)80 TQ 7

o e YECLLLELA0 AND L, DL GE. 5 ANDLJLLE 2)G0 YO 7

__hapflRe(t- ~1)DELR/ 2.
LYEgs.ne.1)60 Yo 77
TECT, LE,A0 ANL.T . OE. S _AND.

R LG Y0 ?

) ? COMTINIE
-CWCAlCULh?E W

b0 8 Ket,M7

L. D0 8 Juld ., lr=4

- _'50,3 IE1OND"1

o .. RuBRLRe(T=4)+DRLR/2,

CTECK.EQ.NZYGD TO B

JED.3)80 70 77
_w“___71 Ve dy k)ﬂVfI;JrK)*D1¢D§*(T(IoJ K}=T(1,.

PP VLR edK)RV T, JKYEDY42, D3eTIL 40K /R

8 UCT e d kI, KYaD 1N eRa(T (Ll 0, X)=Y(1=1,d,K)3

g ,K3)/0 _



——

e

1FC1.EN.1)60 TO 3 L
TIF¢T.LE, Y0 _AnD, T, GB B8 AND _ J.LE. 2330 T0 8
TS{, JYRCTRUGCL) =280 Y/ (Re(¢.788=DBLTHY)
T (DELTH =Y 4DRELTH/ 2, ) w0 _ L
IFEK. B 1MU(LJ E)RUCL, . K aDT1e2 . #DLoR*ET(I,J KY=TR(T Y)Y
. TF(K,.EQ. 1)60 TO A , )
A1 WL 3, Ksvel, ), KYeD1anbeRe(T(Y d,X)=T(Y,0,K=1))
B CONTINUE
. BO 10 ¥31,NZe1
. DO 10 UmA,NT=1
. b0 10 12%,NRw1
CTF{I.EN.YIRO TO 10
AubPRLRe(Y=4)eDELR/2,
TFCL,LEYD AND, T . OE.S_AND_J.LE_2YGN YO 10
19 T o )oT(L, 3 ) K)eD5e(UCTI 41/ K)=tICT ,dsKY)/R
S Y LI IGAS N A I SRS AN S R W
1+407%{U(l . KatY=W (], 2, K)})/D
10 CONTINUE
: WRITR(Z2,101)1T,T7¢12.7,1)
TFCIT=NIT)I2UN,9,9
9 NITuNIT+1dD
WRITE(2,194)
WRITE(Z2,102)~
IFCIT RO 30060 T0 300
... 60 T0 7200
A0 N0 12 K31, NZw1
o DO 12 JR1,NTe1
Do 12 !31rNR"1
. 8RS RYEY(TY UL ) eTSC
4?7 CONTINUE
_REWIND 4
. uRtTR(L)SR
e _REMIND &
e CALL ITIME(N2)
o NTIMEHZ=NT1 e
C__WRITF(2,301)INYIM
—ee. 8T0OPR )
100 BOAMAT(1Y,5C47 . 4)
104 FORMAT(IX,15,.5X,E12.4)
. 402 PORMAT(IX,1587.1)
~.. 103 FORMATC(EY2.4&) S
V0L EORMATL/ /7 ,%64u TEMPERATURRB,/ /)
108 EQeMAT(ISES.N)
TN EORMATC//,AH TIHE ,110)
CEND .

LENGTH 4203, NAME FLAMEPLATFTEMPERATURE




MASTER FLAME PLATE THERMAL STRESS
- BIMENSYON QR(15:5:6)¢S7(‘5|5-4)99!(15:504)0
ITRTC16,6.5Y,TRI{16046:5),T2T(16.,6,5)y,
TUDC(1A,5,4).VD(15,6.,4) . WD(15,5,8),
TW{158.5)

CALL TTIME (N1)

NRE16&

HTuo

NZa$s

pDKne 0037

KT . 0037

pK?e . 0037
- DELRA, 3D

NELTHRZ, 14450/20.,0

DELZm, 378

CLAMRT? . 3ENS

LMYl SFEJA

AlLu 65R=%

RAn . 732E~3

RTa,732E-3

RAB,732E=3

WRITF(2,100)CLAM. CMU, RR,RT,RA,AL

READCYT J116YDELT

WRITE(2,101) KR, OKT ,DKZ,NFLR,DELTH,DELZ,CELT

pag 0

pia(l.=DKR/2 Y/ (Y, +pKR/2.)

peul{l,=DKT/2.3/(1,+DKT/2.)

D3ndl,=DK¥/2.3/C1,+nK2/2.)
DLmDELT/RR/I (Y, #DKR/2.)

: ~~~-DSuDk!DEIR -

--DOBDA/DELTH - ]
-DP?ebD4L/NELY - e

,f,-DﬂwDELT/RTI(1 +DKT12 )

G

——-DPabRA/DELR - . .
- DI10mDBIDELTH . .
biteh8/pRLY -
D1?uDFLT!PA!t1 *oxzfz )

w—~--~D13uu1?/ncm e
- 0148D12/NELTH
D1%eD12/0EL 7

-—D166(CLAM+2.*CMU)*DELT oo

-DAPaDI&/DELR -

- DIBwDIS/DELTH -
N19adi4&/NE) 2 -
D20 LAMSDELT - . -
529D2N/DELR -

0225D20/DELTH. - — o o L

523uD20/DELZ - - - -
D24UCMUwDELT -
N28%an24/NDELR - -
D24nD24/DELTH
n27an2L/nEl1 2

INITIAL COHDIT!ONS - e e e e e

Maq e e — e e e rr a  —a e e e e e
IFfN}SﬂpSO 31 e UV e

IO CONTINUE . e e el

REWIND 3
READ(3YSA

REWIND 3 R e

WRITEC2,A18) QR oo o oo o o oo -




D3 1 Kal,Ny=4
Do 4 Jol,HNT=4
D0 1 lal,Na=1 . .. . ‘ -
ST(I.J K)SGR(¢TI,4,K) :
S2¢1+J KYBRRLI,J KD
1 COMTINUE .
- p0 2 Kel.N72 -
nd 2 Jel.NT
00 2 Ial,NR
TRT(1 ,J,K)m),
TRZ(I!J'K)IU-
T2, 4, ¥,
7 CONTIRUE
BN 22 yet, N/
DD 22 J=1¢NT-1
DO 27 1R1,NR=Y
WhD(l.J.K¥=3d,
U(I:J)H0,0
272 CONTINUE
P 23 =21 .2
nY 23 Ja1,NTa1
DO 2% T=1,MR
uncl.Jex¥al,
2% CONTINHE
D0 24 Kz, N2
hO 24 =T my
DO 24 Im) , Na=1
UD(T.J,K¥s0,
24 CONVIHUE
1Twd)
NETeGOD
60 TH 32
31 CONTINUE
REWIND 3
READ(3)YSR. : .
READIIIST - - .
READC3YS? - -
READ{ZYTRT. R
-~ READ(3YTR? -
READEIYTY e
READ(SYUD - e
READ(IIVE. S e
READIIYWD _
READ(IIN- - G e
READC(ZYIT .
READ(IINTT
REWIND 3
12 CONTTINUE
- P00 1TmiYed
. o sUMsRad - et mmm e e o e
-, uUbsamy, ‘
vpgand .
Wwosgnag, : :
0 CALCULATE VELOCITY IN RADIAL DYRECTION




N
AN

[
-

Bo 4 ‘W1vN,"1

DO & Joul,Hred

DO “» Iu'}oNn

IFCILEQ.1G0 TO &

IF(I.LF.10 AND.].GE,6.ANDM.J,LE,2360 TO 4

RuDFILRe(T=4)

1F(I.EQ.2)60 TO 45

TFCT.EQ.11 AND.J.LE 2060 T0 45

IF¢I L EQR.NRYGO TO 46

YRLL.FQ.S5,AND,J.LE.2)G0 TO 46

UDCT+d o KYRUDCTL  J K aD1eDS*(SR{T,JIK)I=SR{T=1,0,K)) .
T4DAR(TRTCI 441, KISTRT(L, 1, KIVY/R*D7u(TR2(T, 2/, Ke1)aTRZ(1,J,K))
1404w (SRUL,J/KYSSR(I=1,0,)a(ST(]1,J,K)eST(1=1,J,K)))/2./R

G0 10 44 .

45 UD(L.Jd,KISUDCL,J,KIxDYel, #D5%SR(Y,J.,K)
1o 50 (3 *»8T(I, J.KI=ST(141,J,K))eD4/R
GO TO 44
HWé UDCT ) RYRUDLT oK) uDiw? wDSugn(T«t,d,¥)
T 5a(3 3T ([al, . K)=ST(I=2,J,K))0D4/R
44 UIDSQAURSR+UDCT  Jd-KIaUBDLT, ), )
4 CONTINUE
£ CALCULATE VELOcITY IN TANGENTIAL DIRECTION

DO o Kal.,Ny=i

DO 4 Jwl,NT

DO o Isi.NR~1

1F¢0 EOQ.1 0R.J.EQ,NTIGO TO &

IF(T.EQ.1IGO TO &

TE¢I.LE. 1O AND,1.GEB. 5. AND.J,BQ,2)G0 T0 6

RaNDELR«{1=1)+DELR/2,

TFEI. LR .10 AND,. T GE_ S . ANN,J.FQ.3)680 TO 47

VOLT-JoKY3UDLET 3 K)D20DQ @l TRT(I*1.J, KY=TRT(T,J,K))
1¢D010m(8TCL, 0, K)=AT (L, dot , KY)/ReDI 1@ (T2T(1,J ,Ke4)=T2T(1,+J,K})

1408w (TRAT(I41,J¢KISTRT(I,4,K))/R

GO TO 46

67 VDL e KXBVDLTL,Jd K)eD2e2, wD10%8T(1,J.K)/R
66 VDSUmYDRSA+VDLT J.K)eVD(T,J:K)

- & CONTINUE e

C CALCULATE VEILOCITY lN ﬁXIAI DIRECTION

DO 8 Km1.N7

no A Jﬂ1r”7“1

DO 4 lul,.NRp=q.

- IFCI.EQ.1¥Y60 T0-8 - -
e TRLELLELYO L AND, laGE 5 AND J LE 2)G0 Y0 8
' IFCTI.REQ. 45 AND . K.EQ,.NZ3GO T0 8

IF(K.EQ.AOWD(T .y KD=uD(1,0,.K)uD3¢2,4D18482(1,J,K)=2,0p0D1S
IF¢K.FQ,1360 TO 89

IFCK.EQ.NZIUD{T JK)aUWB(T,3,K)uD3~2.482(T1+J,K=4)aD4S

IF(X . EQ.NZYGO TO B8 :

REDELR«{I=1)+DELR/2,

UDC(T-J e KVBUDCT+J - KInDI4D 13w (TRZ(1¢7,4,K)=TR2(], JrK))
1#014*(TZT(10J*1; IeTIT(L .S K)Y/REDA56(82(L, Joﬁ)'ﬁZ‘I;JOK 1)
14D12#(TRZ{T44 . 4, K)TR7LT, I, KVDI/2, /ﬂ

60 TO A9 ‘ e e

RR Wt ,Jd)aylt, J\+UD(1vdrK)*nELT e e e e e
B WDSAEJRSA+~WDCL e KIwUD(I,J,K} - R - e e
8 CONTINUE . . . o
gU“bQ“UDQJ#VDQQ*UDSQ S .. . I
C CALCULAYE HORMAL STRESSES - e e e o



PR

D0 0 Bt el e e e e e
no 10 138% 8T wT e e e - N
PO 10 ta1,NR=1
1F(I.EQR.1)Y60 TO 10
TECT.LE. 3D  AND. I GE, 5, ANND.J.LE. 23080 T0 10 = -
RanELRw{(T=1)+DELR/Z,
" CALCULATE RADIAL STRESS .
SR{I,J.KYZQR?T, 4. K1+D1?«¢un<!¢1.J K} uo(r:J,K)a
10200 UDCTet s d ) UDCTL Y KYY /2. /R
14022#(UDCE,Ja1,K)= VD(I.J.K1>/nan23w<un<! JoKelyaWp(l,JoK))
CALGULATF TANGFRATIAL STRESS
QTC( J KYZETEL, J KIaD21wUDCTI41,J,K3mUDCT,d,K))
TeD1dw (VD] ,del1, K)eVDLL,J K))/R4D23a(WD{I,J . Ket)aWD(1l,JsK))
14D A (DT, J. XV eUNLT, ), K))/2. 70
€ CALCULATRE AXTAL STRESS
Q2¢1,J /,KVYRRZIT, J, KI+D24wtUDCT+t,J,K)=UD(T,J,K))
16020% (UB T, J,K)eUDLT, 0, K})/2./0
14022% (VD] ,Jat1,K)=VD(L,) ,K))Y/R4DIQw(WD(T,J,Ke1)aWD(Y,J KD
10 CONTINUE
£ PALCULATF SHEAR QTRESS ON @7 PLANE TRT
: DO 16 K=31.N2
D0 14 4mi,NT
N0 1A Ix1,4R
1FCL.HQ.2Y60 TO 16
IF¢]. EQ.1,0R.J.EQ.NR.OR.J.EQ.1.0R,J.EQ.NT,OR, K. EQ.N2)GD TO 14
- - TFCT.LR.11 AND.I.GE.S_AND.J.LE.3)GO *0 14
: - RANELA#(1=1)
COTRT(Yrh KD @TRT (L, J e KIED28#(UNLT I K)=UDL(Y, U1 K)Y/ R
1uDRew (VDIT ., KI*VD{I=l,JeK))/2./R+D28¢(VD(T,Jok)ImVD(LI=1,J,¥))
164 CONTINUE
¢ CALCULATE SHFAR STRESS THa?
DO 1R k21,472 -
DO 18 U=, NT -
pO 1R t=a1,NR -
IF¢T.EQ.2)YG0 70 18
IF¢T EQ.1.0R.1.EO.NR,OR.K.2Q.1.0R.K,EQ.NZ,0R,J,.BQ . NTYGO TO 48
IFCT,LF.1Y1 AND,1.GE,S5,AND.J,LE . 2060 710 18
TRZ(T, 4, K)0TRZ(1,JrKYeR274(UD(Y,J K)aUDCT,d K=1))
14025« (WD(I.J, K)-uo(r 1-J-K))
1R .CONTINHE - - - - p—
6 CALCULATE 127 ..o .
S -D0 20 W24 ,47 - .
DO 20 JMILNT - e e
DO 20 fEs1,NR - - .-
TF¢I.EQ.1)60 10 20
TF(N EA.Y,0R K EQ. HZ.0R,T.PQ . NR.OR.J.2Q.4,0R,J.2Q.NTIGO YO 20
CIFCILLR.10,AND.T.QE, S AND.J.LE.3)G0 1O 20
RaprElLAas{lm=t)apELR/E,
TZTC(L o d e KDaT2T L] d s K)aD270(VD(T,J i K)mVD(T JsK=9))
14D26w{ND(1,J.K)=UD(l,J=1,K))/R
20 CONTINUE
WRITE(2,432)17,5UMEQ,UnSO,VDSQ, uose.u(2.3>.sa(s.& 1),
T8TL5,401Y,82¢5,4.1),T2T(S,4,%) . : - -
TRCIT=-NITY200,24,21 .
21 NITaNlT+5400
WAtTE(2,19%)
WRTTF(2,118)8R : : :
WRITR(2,104) — - T
WRITE(2,115)8T o e i
WRITF(2,40%) : B : .
WRITF(2,118)82 USROS
WRITE(2,104) : - e = B -
WRITE(?2,%18)TRT : -
WRITE(Z,107) S - :
WRITE(Z2,118)TR7 S : -
WRITE(2,108) : e - S
MRITREC2 11 48) T2 o o et e e e e o L
WRTITE(2,144) - - - 4 e e

=

]




WRITF(2,118)y
REWIND 4
WRITE(L)SR
WRTTF(L)ST
WRITE(4LISZ
WRTTE(L)TRY
WRITFR(4)TA
WRITELAYT2Y
WRITF (4210
WRITF(4IVD
WRHITE(L)WD
WRITE{LIV
WRITF{ADTT
WRITEF(LINTT
REWIND 4
GALL TTIME (n2)
[T1itaN2=N1
WRYTF(2,11Q)T1TTIM
sTnp
190 FOaNATeIXN,AEY2,.4.,/)
101 FORMAT(7F12,3) N
102 SOQ-JATfIS;?X.QE12.3)
103 BORHATL/ )/ 1641 RADIAL STRESS, /)Y
104 EQRMAT{/!) .20 TANGENTTAL STRESS,/)
108 FURHATC(///,154 AKTAL STRESS., /)
04 EBHODMATL] ) 2TH SHEAR] STRESS RuTHETA,/)
107 FORNACC/) G SHEAR STRESS 8=72./)
SOR FORNAT(/// .27 SHEAR STRESS Z~THETA./)
119 FORMATL/// .24 AXTAL DISALACEMENT, )
198 EORMATLIX,0E47 4
116 FOAUMATI(EN2 . &)
118 FORMATCIY,9E12 . 4)
219 FORMAT(//+2X.7H  TIME ,IA)
END S

+ LENGTR 2476, NAME FLAMEPLATETHERMALSTRESS



~¢~~—-HAST€R FIAHE PLATF COMBINED q"i'FiESS ELA”TIC FOUHDATION

~=-- DIMENSTON SR¢15,5,8),87¢15.5,4),82015,5,4),
ATRT(18,6.3), TRZ<16 6+3),T27(1646,5),
TUD(16,5.,4),VD(15,644),WD(15,5,5),

AMCIS,5) P BPU1S,8) o e

CALL ITINME (N1} - e e
NRw16 oo
NTaé - S
; HZal
.- - DKnm, 04
- DKT= .04
. - DKym. 04
cme o FMB30,E06
- WRITE(2,120)EM -
DELRE, 430
DELTH®3 ,1455¢/20.0
DEL2m.375
CLAMRY? ,3E06
- CMUw11 S5ECA
~ALu,656«5
. . RRa, 732E-3
e RTH, T22E=3
e - RAR,732E=3
s e WRITR(2,100)CLAN. CHU,RR,RT,RA AL
= READCT L V16YDELT
- B0% CONTINUF
WRITEC2,101)DKR,DXT,DKZ.DELR,.DELTH, DELZ:DELT
Pa-1500
mm__"ua1=(1.-nkalz Y/(1. *D®R/2 )
co e DERL  WPKT/2 YT EDKTIZ )
— Y T A NI T T YIS IR T Y TP IR
cm . DOHBDELT/RR/ (1, ¢DKR/2.)
- DS aDA/DELR
v e m . DOBMDA/DELTH
i D7aD4/BEL2
_N_H__nlgaauugr/n71<1 +nlea )
RS — L T T TN
,ﬁ__w_n_o10308!DELfH
mee -— D14@DB/DFLY .
e - D1 2ADELT/RA/ (V. ¥DKZ/2.)
e D1BaDI2/DELR -
ce - DYABDI2/DELTH
,H__m__m.n15-n1?InFLz : -
- DY GBCCLAN® D, aCMU)#DELT : :
s DY PRDVG/DELR : : Ce o

e -DYBRDASIDELTH - e e

e ——-DAGEDIG/DELZ . - -

e e D20WCLAMSDELY o
- D24 MD20/DELR o - e
e - D228D20/DELTH - .
v D2ZAN20/DELZ

e D2ABCHURPELT - oo e e
5288024/ DELR e
e DR GAD G DEL THr o m oo e e e e e

e D2PBDRASDELZ  cimm e e
SC-INITIAL. COHDITIOMS-ﬁ_,,._u e

e~ TF(#)30,30,34 - — e
. -30- COMTINUE o e

REWIND 3
REABC(3I)SR

RSN Y TT] § 7 W S — S - U



e DO Y KBA NP1 :
N 70 S TR - % B T A NV
S Yo RO R - % S VY. Y. [ U e
e §TULpd s KIBSRCT A K)o --
—rm—— s 2L P KIBER e K)o e -
- -1 CONTINUE e
- - 00 2 Kal.N?
- - b0 2 Joi.NT
-~ - DO 2 let,NR -
—— e = TRT(T4d e K3,
e TRZLT oK) 00
e e TEXTL L d s KD al),
e @ CONTTHUE
- DC 22 Kat.NZ
s e 0 22 JBY1 G NTe1
s e D0 22 181 R
s e = WD d e KYSED, -
e WY, J )80 0 '
com e 2@ CONTY TNUE
S -00 23 K=s1.NZ=1
e - DO 23 Jm1,NTed
e -DO 23 1mA, MR
R 1L TR WIS S F 1118
-~ 23 CONTINUE
e = DO 26 KmYoNZ2at
—ei— DO 24 Jm1NT
e DO 24 Im1,NR-1
v YD Ed s KIBO, - - |
b CONTINUE - —om o o o o
e ALl e
S TS X 1Y Y1 Y'; PR .
o e GO T0- %32 o
e G QT T NUYE -
i BB END - 3 e
~RBAD Y SR e e
e READ(IIST - o -
e READL3IST — e
cerereee—— - AD (Y TRT — - o e e L
—— e BEADL3ITAZ - — e - -
————READL I VAT - e R
READE3IUD T
e READCIIVD
e READAZIMD o —
e READLII M -
e e BEADCBY BT o e
e CREADAZINET e e e
[ RE”!ND ! - —— e e e a er et e & e
SR b G oF » B U5 + 1 7 U L
RS § 316111 3 §777]  S—— T
T+ X T - 3 O 1 T O O
———— -1} Y- 7YY 9 ) e e e e e
SR Y 1 +'¥ - ¥« - ¥ o O U L.
—— -y pagel, e e e e e .
DEUUUTIPRIN ¥ ¥, % -+ ¥ ¥ ¢ P e e e e e e e e
~0- CALCULATG-VELOCIYY-1H. RAD!AL D!RQCTIOH .- -
PR o Y o T W - - B P L O U S
-DO- & - Jat . HNy=q — e
e DO - 1B NR e
e £ 8 TN -I- T B X T+ T R -
cmee - DRCL L LTL 10, AND, l GE.6.AND.J.LLE, 2)80 TO 6
--------- Rentlfe(l=1) . g — ———————

S 1F(1.6Q.2)60-70. 45— . ... S

e R Q1 AND L 4 LB 2) 80 -T045 T



1F(I.EQ.MRYGO TO 4O
IFCL.EQ.5.AND.J,LE,.2)G08 TO 46
S UDCLad KIBUDCT s s KD e DSulSRIT VI WIKI»SROTI=,0,))
-1#06*‘TQT‘!tJ*1oK)‘TH7(!rJDK)}/R*D?Q<TRZ‘IlJfK*i)-TnZ‘!lJvK,’
DLW (SROT, I KISSR{IwT I KD (STCI,J KISST(I=1,J,K))3/2./R
-60 T0- 44 -
-5 UDCEd e RIUDLT, J.K)*D1¢2 iDSiSR(IoJ K>
1= B3 #8T(I,J,K)=8TC(Le1,.J.K))aDé/R
60 T0 44
L& UDCT.J.Kd=UDel,J,K)#D122 wD5«48R(1=1,4,%X)
Tm R (I RS T L=, YIS TLIm2, 8, X)) %D4A/R
&4 DbgQalpSo«UDet, K)o UDCIJ . K)
— & CONTINUE
C CALCULATE VELORITY IN TANGRNTIAL DIRECTION
_ DO £ Knl1.N2=-14
DO & Jml,HT
DO 6 lal,NR-1
e 1TRCSLEQLNLOH.JLEQLNTIGO 1O S
e -TRCLLEQVY60 TO A
e PRELCLELA0AND, I GE, 8. AND.J . FQ.2YGO TO 6
- RWDELR#(I~i)¢DELR/2.
1F¢Y,LE.Y0 . AMD. L. GE.5.AND.J.EQ.3YG0 YO 67
VDCL, J, K¥RYD(T, J K)aD24D9W(TRY (121, J ) K)=TRT{(YJ,K))
-1#010*(9Tf!.J.K)-ST(!rJ-1.K))fR4D11~(TZT(I,J.K¢1)-17T(!-Joki)
S AeDBwC(TRATC(I+1,J s K)*TRT(T,2¥))/R
e GO TD 46 ‘ -
—_— - 67 VB(I.Jd, K)BVD(I JoNI»D2e2, 20 10es8T(1,J,.K)/R
. 66 VOBQRVYBSAAVD(Y,J KIRVD(1,J,K)
- - -6 CONTINUE
€- CALCULATE VELOCITYY IN AXIAL DIRECTION
------------- pO- 8. Kel N2
SU—. Y, Y W T L L L
e e DO B Y AT S NR=Y
i e §ECLL Q160 TO 8
e FFCL L LBLA0,AND T GE.S.AND U, LE,2)G0 TO 8
v YR 2 BQ YA AND KL EQ, DIWDIL I KIBWUDCTL,J oK) 2D3e2, v D180B82(01,J,%)
—_—— PR EQ. 44 AND K, EQ, 1030 TO 8

G PRI EQ A5 AND KL BQ. IUD T, S LK RUD (L, ) K eD342, w013 08201, ,K)

S — IRTI.EQ.15 AND,K.EQ.1330 TO 8
——— 1P ¢ Q.15 AND LK, Q. N2Y60 TO S
— T AT PR YT Y NI - S PN 'S T T KL -015-tsz£1.4 KYep)
—————JF¢K,BQ.1)G0- TO -BY.
e FRCUL L0 ) LG T 0, 03B (T s ) mmid (T, 0) 2FH
e TR e Y LELOLOYER(T,J)u0.0
e - TECK L COLHIIMDCT o) o B)0UD LT, J, KIaD3=2,¢82(1,,K=1)2D145
- 442 JWER(] L J)WDS S
IF(K.BQ.N2)GO-70 88 - -

e e - RAPELR®{ T=mi 3o DELR/ 2,
e e WD KIBUD T s KIWDTA D1 (TR, ) KD TRZ(T 1 KY)
- R S DR LR (P2 LY o A ) WT 2T U KY) JRDISWIB2CT ) KI=S2L(T00Km1))
cme e —— 14D (TR2CT+1 o K)*TR2(I, J KD /2, /a
e 30 TO-BY- -

-88 W(T,J)au(], J)4ND(I;J-K)*nELT

80 uoso-unso¢unei.a K)aUD(!.J-K)




B CGNTINHE - Coe
_ SUMSG!UD€G+VDSQ¢RDEQ
g CALCULATE NORMAL STRESSES
DO 10 K=1,HZe1
00 10 J=1,NT=1
po 10 1=1,NR=1
“IF(L1.EQ.YIG0O TO 10
tFCL. LB Y0 AND, T, GE S, AND.J.LE.2)G0 10 10
RIDELRW(I=1)+DELR/2,
¢. CALCULATE RADTAL STRESS
SREL,JeKISSRET VI KISDITHlUD(TI®Y oo KImUD(T S,K))
A4D200 DT+, d K+ UDLE U, KYI/2./R
14D230(VO(,Je1,K)=VD(T,4, K))IR*D?S*(UD(I.J.K+1) «WbD(I,sJdeK))
-C-CALCHLATE TANGENTIAL STRESS
BT L od o R)BRT(T 3 K)#D21%(UD{]+Y, JnK)'UD(IrJ;K))
T+DYBM (VDT et KY=VDIL,d.KY)/ReD2Fa (WD, J Ke1)=WDCT J X))
14016+ (UGCT&Y, X2 #UDCT .. KI)/2,/R
-8 CALCULATE AXIAL STRESS
S2(1.J ,RIBE2LI s KI+D214(UDCI*G, ) K)=UDLTJ,K})
14020« (DT, 4, K)eUNn{T , J,KY¥)/2. /R
140220 (VD LI K)=VD(T,J,KY)/RADIGw(UD(T, J K1 YuWDlL,JsK))
10 CONTIMUE
C CALCULATE SHEAR STRESS ON RZ PLANE TART
- - DO TH- KTV N2
~wmw—ww»DG 16 J=1,NT
—- D0 16 I31,HR
e -1 RL] L EQ.2)G0 TO 16
-------—--A~--—-—-—!FC! EQ.1T.0R.1.EQ.HR.O0_ ). PQ.1,00.J,FQ.NT,OR, %X . BO.N2)YGD 70 16
~IRCL LB VY AND, L. GE,S. AND J.LE.3)YGO TO 14 '
e - REDELReLT=4) -
m—— TRT(I!J!K)MTRTflrJvK)#DZé*(UD(! JeRY=UD(1,J)=1,))/R
—~—~~"~1-“2&*(V0t1 4 K)+vD(!-1:J.K))I2 IR*D28a (VDT doK)mvD(T=t,d,1))
— 8- COMTINUYE. - - - : .
—C-CALCULATE -SHR AR QTRESS TQZ
=30 —18 . K8y, NZ - - o
e DO BB LT e
e DO~ 8- 18T, NR e
———1F(}EQ.2)60-TO- 18 L
e IF(1LEQ.1L,OR. I . EQ.HR,OR. K. EQ 1 OR K.RQ, uz OR.J ., 8Q, NT)&O 10 18
mmreme e R LRV YT VANDL T LGE, S ANDL.JLLE,L2)GD TO 18
- CTR2(I PG mTRAZ T v d o KD aB2?20(UBIT )i K)alUD(T,dKo4))
- 140?5*(untr JoK)alWD{1=1,4.X))
e 18 CONTINUE : )
€~ CALCULATE P27 — — o : e
,_"m__mnpo.ao BBy oN2 o e U e
e DO 20 4=V ,NT - : : - :
oo == DO 20 1BYLHR - - e e e e e
s A~~m*4!F{l EQ 1360 TO 20 e e i e




SRR

mmwn—lFtr EQ. 1 GR K. EG Nz oa I EQ NR OR J EQ 1.0R,J.EQ.HTYED TO 20
SPECLLLEL10 AND, LGRS AND. L LE.3)GO O 20
~R=nELRa(l~1)4DELR/2. .

- TZTCY A RDETITLL W K)¢DZ7*(VD(I J.K)-VD‘!.J.K-1))
— . 1aD2Ax(UWDLT I K)=UDLT, M=, K32 /R
- 20 CONTINUE. -
WRITF(2, 102)IT.SUMSQ.UDSQ VDSQ,WDSQ,W(2,3),.50(5,4,1%),
MG TCS b 1Y 82¢5,44%) s TRT(E,4.:%)
1FCLT=NITY200,2%.21
29 NITaNIT+50N
URITE(Z,103)
WRITE(2,1158)2R
e HRITE(Z.104)
- WRITE(2,018)8T.
. WRITE(2,108)
. WRITE(Z2,118)%72
WRITE(2,104)
WRETE{(2,11R)TRY
e - WRITEC(2,107)
-WRITEC2,11R)TYR2
URITE(Z2,10R)
WRITEC(2.118)T2"Y
WRITE(2,111)
HRITE(2?2,118)y
- REWIND 4
e~ WRITE(L )RR
. WRITE(AL)ST
.- WRITE(A)SZ
- . WRITE(4)TRT
~- - - WURITE(4)TRY
- - WRITE{ATZY
e ——-WRITE(LIUD.
- v WRITECAIVD
e HRITR(LIUWD
e WRITELLIU
Cee . HRITELL)TT
Do WRITE(AINLY
. - WRITEL(L)ED e
- REUWIND -4 -
wrrne e - WRITEC2,422)
— - ~WRITE(2,115) 8P
CALL ITIME (N2 C-
e TTTHBNZ=NY C e :
cmmee— WRITE(2,YIDIITIN - o
e - STOR. R
- — 100 FODMAT(1X:651? 4 I)
- 401 FORMAT(?RIZ2.3) -
- 102 FORMAY(I5,2X.9812,3) -
— 4103 CORHATL/// 16N NADIAL STRESS., /)
-4 04 -FORMATC///,20H - TANGENTTAL STRESS,/) s : :
— - -408 FORMAT(///.15H . AXIAL STRESS./) : e e
~-406 BFOWMAT(///,23H SHEAR STRESS n=-THATA, /) :
- — 407 FORMATC///.19H . - SHEBAR -STRESS Awl:/) .
-~ 408 FORMAT(///,2%H - SHEAR STRESS E-THETA,I)
——— 441 FORMAT/ 1 204 #XIALwD!SDLAGEHENT.I)
______ 145 BOaMAT(1Y,0E42,4) - — e
- %14 EORMAT(E1Z2.4) e : ce -
—-*w*ﬁa EFORMAT(IX,QEN2.4) - o - R
440 FORMATL// 42X, 7H Tzna_.:6> T e e
-*?0 FORHMAT(2X A PHFOUNDATION MOBULuan.E12 6) :
129 FPORMAT(2X, 23HUENGINE FIRING PRESSURER,E12.4)

© 122 PORMAT(//+2X,Y9HFOUNDATINN PRESSURE,//)

e e CND-___,..- e e e — e i ———— s e e e e n rm—— i et o e






