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Overview of the Phase Space Formulation of Quantum
Mechanics with Application to Quantum Technologies

Russell P. Rundle* and Mark J. Everitt

The phase-space formulation of quantum mechanics has recently seen
increased use in testing quantum technologies, including methods of
tomography for state verification and device validation. Here, an overview of
quantum mechanics in phase space is presented. The formulation to generate
a generalized phase-space function for any arbitrary quantum system is
shown, such as the Wigner and Weyl functions along with the associated Q
and P functions. Examples of how these different formulations are used in
quantum technologies are provided, with a focus on discrete quantum
systems, qubits in particular. Also provided are some results that, to the
authors’ knowledge, have not been published elsewhere. These results
provide insight into the relation between different representations of phase
space and how the phase-space representation is a powerful tool in
understanding quantum information and quantum technologies.

1. Introduction

The phase-space formulation is just one of many approaches
to consider quantum mechanics, where the well-known
Schrödinger wave function and Heisenberg matrix formula-
tions of quantum mechanics were the first to be devised in
1925. During the same decade, Hermann Weyl realized that the
structure of quantum mechanics closely followed the rules of
group theory; from this realization he presented the, now called,
Weyl transform, that takes a Hamiltonian in phase space and
transforms it into a quantum mechanical operator.[1] It was not
until 1932 that the inverse transform was presented byWigner,[2]
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taking a quantum wavefunction and repre-
senting it in phase space—theWigner func-
tion.
Subsequently, in the 1940s, both

Gronewold[3] and Moyal[4] then devel-
oped Wigner’s phase-space function to fit
around the earlier language Weyl used to
represent quantum mechanics in phase
space. They did this by developing tools to
transform any arbitrary operator into the
phase-space representation. This is done by
taking the expectation value of the so-called
kernel. Further they described the evolu-
tion of quantummechanics in phase space.
This created a complete theory of quantum
mechanics as a statistical theory, as long
as one only wished to consider systems of
position and momentum. The phase-space

representation wasmissing an important aspect of quantumme-
chanics, the representation of finite quantum systems. Using the
language of Weyl, Groenewold, and Moyal, in 1956 Stratonovich
then introduced the representation of discrete quantum systems
into phase-space methods.[5]

This development went largely unnoticed, while the phase-
space formulation of systems of position andmomentum started
to pick up popularity in the quantum optics community, where
additions to the Wigner function were introduced, the Husimi
Q-function[6] and the Glauber-Sudarshan P-function.[7,8] The de-
velopment of the phase-space representation by Glauber in par-
ticular led to important contributions. First the development of
the displacement operator, and then the relation of this displace-
ment operator to the generation of phase-space functions.[9,10]

The above mentioned kernel that maps an arbitrary operator
to phase space was realized then discovered to be a displaced
parity operator, the wording came from Royer,[11] where the Q
and P functions have a similar construction, albeit with a dif-
ferent “parity”. The displaced parity construction is an impor-
tant discovery for much of this review and in the development
of phase-space methods in experimental settings and quantum
technologies in general. However, the displaced parity formal-
ism was not used for discrete quantum systems until more
recently.[12,13]

In the late 1980s, interest in representing qubits, or even qu-
dits, in phase space started to reemerge. In 1987, Feynman[14]

and Wootters[15] both independently constructed a Wigner func-
tion for discrete systems that differs from the earlier construction
from Stratonovich; however, a relation between these construc-
tions will be shown later. Feynman’s work was a writing up of an
earlier, back-of-the-envolope musings about negative probabili-
ties, and only focuses on spin-1/2 systems. Wootters on the other
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hand, was more interested in creating a Wigner function for any
discrete system, where he created a Wigner function based on a
discrete toroidal lattice that holds for dimension d that is a prime
power, due to the underlying Galois field structure.
Since this initial construction of a discrete phase space, there

has been effort to extend this formulation to be useful more
generally (see refs. [16–22] for an overview of this progress). This
also resulted in some key discoveries for finite systems in phase
space, such as considering coupled qubits,[23,24] qudits,[25] and the
link between Wigner function negativity and contextuality.[25–30]

Shortly after Feynman and Wootters presented their find-
ings, Várilly and Gracia-Bondía came across Stratonovich’s early
work and brought it to public attention in 1989.[31] Filling in
some of the earlier gaps and also presenting the coherent-state
construction[32–34] to relate it more closely with Glauber’s earlier
work. This was then followed by further development.[12,13,35–41]

These developments focussed on an SU(2) structure of phase
space, restricting larger Hilbert spaces to the symmetric sub-
space. Alternatively, there has been development in describing
how larger systems in SU(N), although requiring manymore de-
grees of freedom, can fully describe a quantum state. The devel-
opment of SU(N) Wigner functions can be found in refs. [42–46].
As quantum technologies advanced into the twenty-first cen-

tury, direct measurement of phase space became increasingly
more possible and useful. Experiments then utilized the dis-
placed parity formulation to displace a state and make a direct
parity measurement experimentally; for example, the measure-
ment of optical states in QED experiments,[47] and the rotation of
qubit before taking a generalized parity measurement in ref. [48].
More examples of such experiments are given within this review.
In this review, we begin by presenting the formulation of

quasiprobability distribution functions for systems of position
and momentum, where we will then generalize this formulation
for use in any arbitrary system in Section 2. This will provide
an understanding of the general framework needed to under-
stand how to map a given operator to its representation in phase
space, and how such a mapping is bijective and informationally
complete. Following this in Section 3, we will use this gener-
alized formulation to introduce the phase-space formulation of
various finite-dimensional quantum systems. This will include
an in-depth discussion on different representations of qubits in
phase space and howdifferent representations are related; wewill
also present multiple ways one can represent multi-qubit states
in phase space dependent on different group structures. We will
then describe how these methods can be used in practice for use
in quantum technologies in Section 4; where we will translate
some important figures of merit for quantum computation into
the language of phase space, as well discussing the importance of
negative values in the Wigner function. This will be followed by
examples of experiments performed on qubits where the phase
space distributions were directly measured.

2. Formulation of Phase Space

In this section we will lay the groundwork for how one can gener-
ate a phase-space distribution for any arbitrary operator, wherewe
will provide a general framework for any group structure in Sec-
tion 2.3. We will begin with the original formulation in position-
momentum space, within the Heisenberg–Weyl group (HW)

where we will provide the general formula to create any quasi-
probability distribution function and any characteristic function.
This will be followed by looking into the dynamics of such states
and how representing quantummechanics in phase space allows
one to see to what extent one can treat dynamics classically. This
section will end with a general framework and a summery of the
results in ref. [44].

2.1. Systems of Position and Momentum

Wigner’s original formulation was generated in terms of a wave-
function, 𝜓(q), and is in essence the Fourier transform of a corre-
lation function, where for a function defined in terms of position
and momentum

W𝜓 (q, p) = ∫
∞

−∞
𝜓∗
(
q + z

2

)
𝜓
(
q − z

2

)
eipzdz (1)

where we will assume that ℏ = 1. We note that in the original
construction, the Wigner function was presented to describe the
position-momentumphase space formany particles, here we will
restrict the discussion to one concomitant pair of degrees of free-
dom where we will discuss the composite case later in this sec-
tion.
This formulation of the Wigner function was then soon gen-

eralized to apply to any arbitrary operator, A, as an expectation
value of a kernel, Π(𝛼), such that[3,4]

WA(𝛼) = Tr
[
A Π(𝛼)

]
(2)

where we now define the Wigner function in terms of the com-
plex variable 𝛼 = (q + ip)∕

√
2 to fit inline with the quantum op-

tics literature.
The kernel in Equation (2) is fully constructed as a displaced

parity operator

Π(𝛼) = D (𝛼)ΠD †(𝛼) (3)

which consists of the modified parity operator

Π = 2ei𝜋a
†a (4)

which is two-times the standard parity operator, where a and a†

are the annihilation and creation operators, respectively. The sec-
ond component of Equation (3) is the displacement operator

D (𝛼) = exp
(
𝛼a† − 𝛼∗a

)
= e−

1
2
|𝛼|2 e𝛼a† e−𝛼∗a = e

1
2
|𝛼|2 e−𝛼∗a e𝛼a† (5)

The displacement operator displaces any arbitrary state around
phase space and is central to the definition of a coherent
state,[7,33,49] which is generated by displacing the vacuum state,|0⟩, such that
D (𝛼)|0⟩ = |𝛼⟩ (6)

where |𝛼⟩ is an arbitrary coherent state. The coherent states form
an overcomplete basis, where the resolution of identity requires
integration over the full phase space

1
𝜋 ∫

∞

−∞
|𝛼⟩⟨𝛼| d2𝛼 = 𝟙 (7)
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and the overlap between any two coherent states is non-zero,
where

⟨𝛼1|𝛼2⟩ = exp
[1
2

(|𝛼1|2 + |𝛼2|2 − 2𝛼∗1𝛼1
)]

(8)

Note that there is a factor of 2 in Equation (4), and subsequently
in Equation (3), this is chosen for two reasons. First, it aligns
with the formulation of the Wigner function that was introduced
by Glauber when writing it in a displaced parity formalism. But
more importantly, it lines up more nicely with the definition of
theWigner function for discrete systems. Later, we will introduce
a condition that requires the trace of the kernel to be one, which
requires Equation (4) to have the factor of 2 out the front to hold.
The Wigner function is just one of a whole class of potential

quasi-probability distribution functions for quantum systems,
whatmakes it a preferable choice is that the kernel to transform to
the Wigner function is the same as the kernel used to transform
back to the operator, which is not always the case, such that

A = 1
𝜋 ∫

∞

−∞
WA(𝛼)Π(𝛼)d𝛼 (9)

showing that theWigner function is an informationally complete
transformation of any arbitrary operator. Another important ad-
vantage is that themarginals of theWigner function are the prob-
ability distribution of the wavefunction. That is for the Wigner
function of a state 𝜓(q)

|𝜓(q)|2 = ∫
∞

−∞
W(q, p) dp (10)

integrating over all the values of p to produce the probability for
𝜓(q), likewise for 𝜓(p) when integrating over q.
To represent quantum mechanics in phase space, some prop-

erties one would usually desire from a probability distribution
must be sacrificed—hence the prefix “quasi” in quasi-probability
distribution functions. For the Wigner function, this sacrifice is
on positive-definiteness, a more in-depth conversation on the
negativity of the Wigner function will be given in Section 4.2. If
however one does not want to sacrifice a non-negative probability
distribution function, the alternative is to consider the HusimiQ
function,[6] where instead the sacrifice comes in the form of los-
ing the correct marginals.
The Q function is generated in terms of coherent states,

where

QA(𝛼) = ⟨𝛼|A |𝛼⟩ = Tr [A |𝛼⟩⟨𝛼| ] = Tr
[
A
(
D (𝛼)|0⟩⟨0| D †(𝛼)

)]
(11)

where the last form of the Q function can be thought of as an
expectation value of a general coherent state, where instead of
the kernel being a displaced parity operator it is a displacement
of the projection of the vacuum state.
Another drawback to the Q function for some is that trans-

forming back to the operator will require a different kernel, this
is the kernel that transforms an arbitrary operator to theGlauber–
Sudarshan P function.[8,9] Likewise, the kernel to transform back
from the P function to the operator is the kernel for the Q

function—this is the usual definition of the P function

A = ∫
∞

−∞
PA(𝛼) |𝛼⟩⟨𝛼| d𝛼 = ∫

∞

−∞
PA(𝛼)

(
D (𝛼)|0⟩⟨0| D †(𝛼)

)
d𝛼

(12)

where PA(𝛼) is the P function for an arbitrary operator, A. The P
function seems to sacrifice more, as it does not have the correct
marginals and it is not non-negative; in fact coherent states in
the P functions are singular, which may be an attractive analogy
when considering coherent states as so-called “classical stats”, al-
though we must note that coherent states are still fundamentally
quantum. Despite the apparent drawbacks, there have been a set
of key results by the analysis of theP function (see, e.g., ref. [50]—
this will also be discussed further in Section 4.
Apart from the Wigner, Q , and P functions, there are fur-

ther choices of quasi-probability distribution function for quan-
tum systems. In order to completely describe the full range of
possible phase-space functions, including the appropriate ker-
nels to transform both to and from the given function, it is first
necessary to introduce the quantum mechanical characteristic
functions. The characteristic function is a useful tool in math-
ematical analysis, and is the Fourier transform of the probability
distribution function. In the same way, the characteristic func-
tions in quantummechanics are Fourier transforms of the quasi-
probability distribution functions. The Fourier transform of the
Wigner function is also known as the Weyl function and is de-
fined

𝜒
(0)
A (�̃�) = Tr

[
A D (�̃�)

]
(13)

such that

𝜒
(0)
A (�̃�) = 1

𝜋 ∫
∞

−∞
WA(𝛼) exp (𝛼�̃�

∗ − 𝛼∗�̃�) d𝛼, and

WA(𝛼) =
1
𝜋 ∫

∞

−∞
𝜒
(0)
A (�̃�) exp (�̃�𝛼∗ − �̃�∗𝛼) d�̃� (14)

relate the Wigner and Weyl functions.
The superscript in brackets (0) in Equation (13) is a specific

case of the characteristic function, 𝜒 (s)
A (𝛼), for −1 ≤ s ≤ 1; the

Weyl function is just the special case when s = 0. In general, a
quantum characteristic function is defined

𝜒
(s)
A (�̃�) = Tr

[
A D s(�̃�)

]
, where D s(�̃�) = D (�̃�)e

1
2
s|�̃�|2 (15)

Note that when s = 0, D 0(�̃�) is the standard displacement opera-
tor from Equation (5). When s = 0 we say that the displacement
operator is symmetrically, or Weyl, ordered. Alternatively, when
s = −1 or s = 1, the corresponding displacement operators, and
therefore characteristic functions, are anti-normal and normal,
respectively; this can be realized by showing the operators explic-
itly

D −1(�̃�) = e−𝛼
∗a e𝛼a

†
and D 1(�̃�) = e𝛼a

†
e−𝛼

∗a (16)

demonstrating the opposite order of the arguments in the expo-
nents. Note that, like the quasi-probability distribution functions,

Adv. Quantum Technol. 2021, 4, 2100016 2100016 (3 of 29) © 2021 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

the characteristic functions are informationally complete, such
that

A = ∫
∞

−∞
𝜒
(s)
A (�̃�)D

†
−s(�̃�) d�̃� (17)

where the reverse transform kernel is the Hermitian conjugate
of the generalized displacement operator with minus the s value
of the function.
The Q and P functions are then the Fourier transforms of the

anti-normally ordered and normally ordered characteristic func-
tions, respectively, where

Q(𝛼) = 1
𝜋 ∫

∞

−∞
𝜒
(−1)
A (�̃�) exp (�̃�𝛼∗ − �̃�∗𝛼) d�̃�, and

P(𝛼) = 1
𝜋 ∫

∞

−∞
𝜒
(1)
A (�̃�) exp (�̃�𝛼∗ − �̃�∗𝛼) d�̃� (18)

More generally, we can say that they are the normally and anti-
normally quasi-probability distribution, where we can define a
general s-values quasi-probability distribution function

F(s)A (𝛼) =
1
𝜋 ∫

∞

−∞
𝜒
(s)
A (�̃�) exp (�̃�𝛼

∗ − �̃�∗𝛼) d�̃� (19)

which holds for any value of s, generating an array of quasi-
probability distribution functions, however, only s = −1, 0, 1 will
be considered here.
Further, by using the definition of the characteristic function

in Equation (15) and substituting it into Equation (19), we can
see that by bringing the integral inside the trace operation, we
can define the generalized kernel for any quasi-probability dis-
tribution function as the Fourier transform of the displacement
operator

Π(s)(𝛼) = 1
𝜋 ∫

∞

−∞
D (s)(�̃�) exp (�̃�𝛼∗ − �̃�∗𝛼) d�̃� (20)

Note this can alternatively be expressed as weighted integrals of
the displacement operator, see ref. [41], for example.Where a gen-
eral function in HW phase space is defined as

Fs
A(𝛼) = Tr

[
A Π(s)(𝛼)

]
(21)

For the reverse transform, to take a phase-space distribution to
an operator, one can then perform

A = ∫
∞

−∞
F(s)A (𝛼)Π

(−s)(𝛼) d𝛼 (22)

providing the transforms between an arbitrary density operator
and an arbitrary s-valued quasi-probability distribution function.
To complete the picture, all that is needed is a discussion of the
dynamics on quantum systems in phase space.

2.2. Evolution in Phase Space

Dynamics of quantum systems are particularly appealing in the
phase space formulation. To understand why this is the case

we return to classical Hamiltonian physics and understand the
phase space approach in terms of the Wigner function from this
perspective. The classical dynamics of any distribution A for a
given Hamiltonianℋ is given by

dA
dt

= {A,ℋ} + 𝜕A
𝜕t

(23)

where the Poisson bracket

{f, g} =
∑
i

𝜕f
𝜕qi

𝜕g
𝜕pi

−
𝜕f
𝜕pi

𝜕g
𝜕qi

(24)

defines the way that quantities flow in phase space; as the Poisson
bracket is an example of a Lie bracket, the fact that this represents
a specific kind of infinitesimal transform for classical dynamics
is natural. The Poisson bracket thus specifies the way in which
the state of the system transforms incrementally in time for a
given Hamiltonian as a flow in phase space. For example, in a
time increment dt the coordinates

(qi, pi) → (qi + {qi,ℋ}dt, pi + {pi,ℋ}dt) (25)

and we can see how the Hamiltonian defines a “flow” in phase
space (the above picture illustrates this in one-dimension). If we
change the definition of the Poisson bracket, this would result in
different physics and the phase space formulation of quantum
mechanics follows exactly this line of reasoning. In this way, we
will see that in redefining the Poisson bracket, quantummechan-
ics can be seen as a continuous deformation of this underlying
“flow” algebra.
Before proceeding, we first note that if we set A equal to the

probability density function 𝜌(t) then we observe two important
corollaries. The first is that the conservation of probability re-
quires d𝜌

dt
= 0 (so it is a constant, but not necessarily an integral,

of the motion) and the second is that {𝜌,ℋ} can be thought of
as the divergence of the probability current. This is expressed as
in the Liouville “conservation of probability” equation (which has
obvious parallels with the von-Neumann equation for density op-
erators):

𝜕𝜌

𝜕t
= {ℋ, 𝜌} (26)

When Dirac motivated the Heisenberg picture of quantum me-
chanics, he did so by arguing that equations of the above form
and the Lie algebraic structure of the Poisson bracket be both re-
tained; if quantum dynamics is to be defined in terms of some
infinitesimal transform, this is a sensible requirement. Dirac’s
argument then was to introduce other mathematical structures
in which to achieve this end—operators in a vector space.
The alternative we take here is the deformation quantization

approach that leaves all quantities in exactly the same form as
in classical Hamiltonian physics but to introduce quantum phe-
nomena by deforming the phase space directly. In this view, func-
tion multiplication is replaced by a “star” product, such that

lim
ℏ→0

f ⋆ g = fg (27)
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and that we introduce an alternative to the Poisson bracket—
termed the Moyal bracket

{{f, g}} = 1
iℏ

[
f ⋆ g − g ⋆ f

]
(28)

that satisfies the property

{f, g} = lim
ℏ→0

{{f, g}} (29)

This last expression guarantees that any such formulation of
“quantum mechanics” will smoothly reproduce classical dynam-
ics in the limit ℏ→ 0 and for this reason can be viewed as a de-
formation of classical physics. For this reason, we briefly reintro-
duce ℏ in this section for comparison with classical mechanics,
we will then return to ℏ = 1 in the next section. Understanding
the Wigner function as the exact analog of the probability den-
sity function—and as a quantum constant of themotion—means
that the conservation of probability requires dW

dt
= 0: we also note

that {{W,ℋ}} can be thought of as the divergence of this general-
ized probability current. The Louiville equation is then replaced
by the more general equation:

𝜕W
𝜕t

= {{ℋ,W}} (30)

We see that stationary states are then those for which {{ℋ,W}} =
0 which lead to left and right ⋆-genvalue equations that are the
phase space analog of the time-independent Schrödinger equa-
tion (whose solutions will be integrals of themotion as the phase-
space analogue of energy eigenstates). Although this is not a
foundations paper it is worth noting: i) the quantisation of phase
space resolves issues around operator ordering in convectional
quantum mechanics (see Groenewalds theorem, e.g.[3]); ii) that
this approach may be of particular value when looking to unify
quantum mechanics and gravity as time is treated on the same
footing as all other coordinates and the geometric view of intro-
ducing curvature through the metric tensor is perfectly natural
in a phase space formulation.
The star-product is usually written, for canonical position and

momentum, in its differential form as

f ⋆ g = f
N∑
i=1

exp

[
iℏ

( ←

𝜕

𝜕qi

→

𝜕

𝜕pi
−

←

𝜕

𝜕qi

→

𝜕

𝜕pi

)]
g (31)

where the arrows indicate the direction in which the derivative is
to act. Which can be shown to be:

f (q, p) ⋆ g(q, p) = f
(
q + iℏ

2
⃖⃖⃗𝜕p, p −

iℏ
2
⃖⃖⃗𝜕q

)
g(q, p) (32)

= f (q, p)g
(
q − iℏ

2
⃖⃖ ⃖𝜕p, p +

iℏ
2
⃖⃖ ⃖𝜕q

)
(33)

= f
(
q + iℏ

2
⃖⃖⃗𝜕p, p
)
g
(
q − iℏ

2
⃖⃖ ⃖𝜕p, p
)

(34)

= f
(
q, p − iℏ

2
⃖⃖⃗𝜕q

)
g
(
q, p + iℏ

2
⃖⃖ ⃖𝜕q

)
(35)

where (q + iℏ
2
⃖⃖⃗𝜕p) and (p − iℏ

2
⃖⃖⃗𝜕q) are known as the Bopp

operators.[51]

Importantly for our discussion, the star product can also be
written in a convolution-integral form:

f (q, p) ⋆ g(q, p) = 1
𝜋2ℏ2 ∫ dq′dp′dq′′dp′′ f (q + q′, p + p′)

× g(q + q′′, p + p′′) exp
(2i
ℏ

(
q′p′′ − q′′p′

))
. (36)

which has the advantage that it both highlights that quantum ef-
fects are non-local and, from a computational perspective, nu-
merical integration can be less prone to error than differentiation
(although more costly).
We now can use a specific example to a result by Brif and

Mann[36] to connect this form to a more general expression

f (q, p) ⋆ g(q, p) = ∫ dq′dp′dq′′dp′′ f (q′, p′) g(q′′, p′′)

× Tr
[
Π(q, p)Π(q′, p′)Π(q′′, p′′)

]
(37)

where Π(q, p) is the usual displaced parity operator.
To summarise the quantum dynamics of any system or com-

posite of systems is given by

𝜕W
𝜕t

= {{ℋ,W}}

{{W,ℋ}} = 1
iℏ
[W ⋆ℋ −ℋ ⋆W]

W(Ω) ⋆ℋ(Ω) = ∫Ω′′ ∫Ω′
W(Ω′)ℋ(Ω′′)K(Ω′,Ω′′;Ω) dΩ′dΩ′′

(38)

where we see this as an equivalent view to classical mechanics
with a deformation of function multiplication that in the limit
ℏ → 0 will, if the limit exits, reduce these dynamics to classical
physics. This can be viewed as moving from a non-local to local
theory asW(Ω) ⋆ℋ(Ω) → W(Ω)ℋ(Ω) as ℏ→ 0.
We note that owing to the marginals of the Wigner function

producing a positive distribution, one can formulate quantumdy-
namics in terms of the marginal distribution of the shifted and
squeezed quadrature components. Thus producing an alterna-
tive formulation of the quantum evolution.[52]

As a final note the classical dynamics of particles should even
be recoverable in this limit as ℏ→ 0 the Wigner function of, for
example, coherent states tends to Dirac delta functions centered
at one point in phase space 𝜌(qi, pi) =

∏
i 𝛿(qi −Qi, pi − Pi) and

the Liouville equation for point particles will recover that clas-
sical point trajectories in an analogous way to solutions of the
Kontsevich equation used in plasma physics.[53] As Moyal brack-
ets tend to Poisson brackets as ℏ → 0, it is natural to see that the
Kontsevich equation is recoverable in this limit.

2.3. Quantum Mechanics as a Statistical Theory

We will now generalize the discussion of phase space for use for
any group structure. This will include us generalizing important
equations from Section 2.1 and providing the generalization for
the evolution in Equation (38).
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To generalize the formulation of phase-space functions, a suit-
able candidate for the given group structure needs to be chosen
to replace theHeisenberg–Weyl displacement operator.[44] Such a
generalized displacement operator, 𝖣(Ω) then displaces the cor-
responding choice of vacuum state for the given system, |vac⟩,
creating the generalized coherent state in that system[34,49]

|Ω⟩ = 𝖣(Ω)|vac⟩ (39)

For examples of such operators and the generation of generalized
coherent states and the generation of generalized displacement
operators for different systems, see, for example, refs. [34, 42,
54–58]. Note that when generating quasi-probability distribution
functions, any suitable generalized displacement operator can
produce an informationally complete function; however, when
considering just theWeyl characteristic functionmuchmore care
needs to be taken in considering the correct operator,[44,59] since it
is crucial to determine a generalized displacement operator that
generates an informationally complete function, where the in-
verse transform to the operator exists, such that

𝜒
(s)
A (Ω̃) = Tr

[
A 𝖣s(Ω̃)

]
, where A = ∫Ω̃

𝜒
(s)
A (Ω̃)𝖣

†
−s(Ω̃) dΩ̃

(40)

where dΩ̃ is the volume-normalized differential element or Haar
measure for the given system.
Once a generalized displacement operator has been chosen,

the generation of theQ and P functions simply requires the gen-
eralized coherent state from Equation (39), where

QA(Ω) = ⟨Ω|A |Ω⟩ and A = ∫Ω
PA(Ω) |Ω⟩⟨Ω| dΩ (41)

However, the construction of the Wigner function is somewhat
more involved.
To generate theWigner function, we now need to construct the

corresponding generalized parity operator, , to create the kernel
(Ω), yielding the Wigner function

WA(Ω) = Tr
[
A (Ω)

]
(42)

In ref. [5], Stratonovich set out five criteria that such a kernel
needs to fulfil to generate a Wigner function, known as the
Stratonovich-Weyl correspondence. These are, taken and adapted
from ref. [43]:

S-W. 1 Linearity: The mappings WA(Ω) = Tr[A (Ω)] and
A = ∫Ω WA(Ω)(Ω)dΩ exist and are informationally
complete. This means that A can be fully recon-
structed fromWA(Ω) and vice versa.

S-W. 2 Reality: WA(Ω) is always real valued when A is Her-
mitian, therefore (Ω) must be Hermitian. From the
structure of the kernel in Equation (42), this also
means that the generalized parity operator, , must
also be Hermitian.

S-W. 3 Standardization:WA (Ω) is “standardized” so that the
definite integral over all space ∫Ω WA(Ω)dΩ = Tr[A ]
exists and ∫Ω (Ω)dΩ = 𝟙.

S-W. 4 Traciality: The definite integral ∫Ω WA(Ω)WB(Ω)dΩ =
Tr[A B ] exists.

S-W. 5 Covariance:Mathematically, anyWigner function gen-
erated by “rotated” operators (Ω′) (by some unitary
transformation V) must be equivalent to “rotated”
Wigner functions generated from the original opera-
tor ((Ω′) ≡ V(Ω)V†)—that is, if A is invariant un-
der global unitary operations then so isWA(Ω).

Note that from S-W. 1, the transform back to the operator

A = ∫Ω
WA(Ω)(Ω) dΩ (43)

is integrated over the full volume Ω, and dΩ is the volume nor-
malized differential element (see Appendices in ref. [42] or ref.
[44] for more details. Also note that, given the kernel for a sys-
tem, the generalized parity can be recovered by taking

 = (0) (44)

this is a helpful result in future calculations.[12,13,44] We can there-
fore say in general that any quasi-probability distribution func-
tion is defined

F(s)A (Ω) = Tr
[
A (s)(Ω)

]
(45)

where

(s)(Ω) = 𝖣(Ω)(s)𝖣†(Ω) (46)

is the generalized kernel for any s-valued phase-space function.
As is demonstrated from Equation (43), the Wigner function

is an informationally complete representation of the state, that
is, it contains all the same information as the density operator as
one can transform between the two representations without loss
of information. The same can be said of the Q and P functions,
where the operator can be returned from the Q function by inte-
grating over the kernel for the P function, likewise the operator
can be returned by integrating the P function over theQ function
kernel, explicitly

A = ∫Ω
F(s)A (Ω)

(−s)(Ω) dΩ (47)

which is the generalization of Equation (22).
It is now natural to ask whether there is a simple comparison

between the different phase-space functions without first going
to the density operator. Indeed this can be done by way of a gener-
alized Fourier transform.[31,36,44,60] We can simply bypass the cal-
culation of the density operator by substituting Equation (47) for
one value of s into Equation (45) for a different s value, yielding

F(s2)A (Ω′) = Tr
[
∫Ω

F(s1)A (Ω)(−s1)(Ω) dΩ(s2)(Ω′)
]

= ∫Ω
F(s1)A (Ω) Tr

[
(−s1)(Ω)(s2)(Ω′)

]
dΩ

= ∫Ω
F(s1)A (Ω) (Ω′, s2;Ω, s1) dΩ

(48)
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where

 (Ω′, s2;Ω, s1) = Tr
[
(−s1)(Ω)(s2)(Ω′)

]
(49)

is the generalized Fourier operator. This can further be general-
ized to transform between any phase-space function, including
the Weyl function, by substituting in Equation (40) instead.
We can further extend the idea behind this Fourier kernel to

perform a convolution between any two phase-space functions to
create a third function, such that

F(s)AB(Ω) = ∫Ω′ ∫Ω′′
F(s1)A (Ω′)F(s2)B (Ω′′)(Ω′,Ω′′;Ω) dΩ′dΩ′′ (50)

where

(Ω′,Ω′′;Ω) = Tr
[
(s)(Ω)(−s1)(Ω′)(−s2)(Ω′′)

]
(51)

is the convolution kernel. This then provides a generalization of
Equation (31) allowing us to define the evolution of any general
system by [44]

𝜕W𝜌

𝜕t
= −i
[
W𝜌H(Ω) −WH𝜌(Ω)

]
(52)

For specific examples of the application of this equation on dif-
ferent quantum systems, see refs. [15, 31, 36–38, 52, 60–63].
Stratonovich showed in ref. [5] that the kernels can be com-

bined for the individual systems to create a kernel for a compos-
ite system. The procedure to do so is straight-forward, it simply
requires one to take the Kronecker product of the individual sys-
tems

(𝛀) =
n⨂
i=1

i(Ωi) (53)

for n subsystems, where 𝛀 = {Ω1,Ω2,… ,Ωn} and Ωi are the de-
grees of freedom for the individual systems. Similarly i(Ωi) is
the kernel for each individual system. The full composite Wigner
function is then generated by using Equation (53) in Equa-
tion (42).
Transforming back to the operator from the compositeWigner

function requires a simple modification of Equation (43), where
the new volume normalized differential operator is

d𝛀 =
n∏
i=1

dΩi (54)

More details on this construction can be found in ref. [44].
We now have all the ingredients necessary to generate a
quasi-distribution function for any system, or any composition
of individual systems, to represent quantum technologies in
phase space.

3. Phase-Space Formulation of Finite Quantum
Systems

We will now turn our attention to the generation of phase space
functions for finite quantum systems. It will be shown how the

general framework from Section 2.3 can be applied to specific
finite-dimensional quantum systems to represent them in phase
space. Where consideration of such structures is important in
considering the use of phase-space methods in quantum tech-
nologies. As such, we will show the important case of represent-
ing qubits in phase space, providing a link between the two most
well-known formulations of qubits in phase space. This will be
followed by looking at how more general qudits and collections
of qubits can be represented in phase-space in different situa-
tions. Given the phase-space representation of all these systems,
along with the continuous-variable construction for optical quan-
tum systems, we will then be able to consider many approaches
to quantum technologies in phase space.

3.1. Qubits in Phase Space

The most important system to introduce now for use in quan-
tum technologies is the construction of phase-space functions for
qubits. The qubit Wigner function has two main formulations,
there is the original construction by Stratonovich that considers
the qubit over the Bloch sphere, with continuous degrees of free-
dom. The second formulation was generalized by Wootters, and
considers the qubit states on a discrete toroidal lattice, with dis-
crete degrees of freedom.
Both formulations will be considered here, as each has had

important results in understanding the properties of quantum
mechanics in a quantum technology setting. These two formula-
tions are also specific examples of a general formulation of qu-
dits in phase space. It is also interesting to note that the discrete-
lattice qubit Wigner function from Wootters can be considered
a sub-quasi-probability distribution of the continuous-spherical
Wigner function. This relation will be shown later, but this rela-
tion does not hold for general qudit states.
We will also consider the generation of the Q and P functions

for qubits, which are already well-known in the Stratonovich for-
mulation, however to our knowledge does not exist in the dis-
crete case.

3.1.1. The Stratonovich Kernel

Following the steps from Section 2, a suitable generalized dis-
placement operator and generalized parity operator is necessary
for the construction of a Wigner function for qubits. We will start
by considering an appropriate generalized displacement opera-
tor. Since we are now concerned with distributions on the sphere,
the generalized displacement operator is a rotation operator. An
example of the change in geometry and in displacement can be
seen in Figure 1b. A complicating factor in choosing an operator
is that rotation around a sphere isn’t a unique procedure, there
are many ways in which one can perform such an operation. Out
of the options, we highlight two choices that are heavily used in
the appropriate literature and give equivalent results upon rota-
tion of the generalized parity operator. These are

U1
2 (𝜙, 𝜃,Φ) = exp (i𝜙𝜎𝗓 ∕2) exp (i𝜃𝜎𝗒 ∕2) exp (iΦ𝜎𝗓 ∕2),

and R (𝜉) = exp
(
𝜉𝜎+ − 𝜉∗𝜎− ) (55)
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Figure 1. Qubits in phase space. (a) shows the action of the displacement operator on the vacuum state in phase space for the Heisenberg–Weyl
group. When considering qubits, the geometry of the phase space is different, where two geometries can be chosen to represent qubits. (b) shows a
spherical phase space, similar to the Bloch sphere. Instead of the displacement operator in (a), a rotation operator is needed to rotate a state around
the sphere. Alternatively, (c) and (d) show how qubit states can be represented on discrete toroidal lattices. (c) shows how the entries for the discrete
Wigner function and (d) is the discrete phase space for the discrete Weyl function. Examples of the qubit Wigner function for the eigenstates of the
Pauli matrices are shown below, where each state is marked with the ket representation of the state, | ↑⟩ and | ↓⟩ are the eigenstates of 𝜎𝗓, |→⟩
and |←⟩ are the eigenstates of 𝜎𝗑 and |+⟩, and |−⟩ are the eigenstates of 𝜎𝗒 with eigenvalues ±1, respectively. For each of the states, the top row
shows the Wigner function in Stratonovich formalism on a sphere and then the Wootters formalism on a 4 × 4 grid. Four points are highlighted on the
Wigner function generated with the Stratonovich kernel that correspond to the values of the discrete Wootters formulation. Below we show three plots
of the Weyl function, where the we have the real and imaginary values of the continuous Weyl function, respectively. This is followed by the discrete Weyl
function.

which are the standard Euler angles, where we introduce the
general notation UM

N that in this case is set to SU(N), M = 2j,
for the quantum number j. The second operator R (𝜉), where
𝜉 = 𝜃 exp(−i𝜙)∕2 and 𝜎± = (𝜎𝗑 ± i𝜎𝗒 )∕2, is a generalization of
the Heisenberg–Weyl displacement for SU(2), and can be found
in much of the spin-coherent state literature—for example, see
refs. [32, 34]—and can be related to the Euler angles by[44]

R (𝜉) = U1
2 (𝜙, 𝜃,−𝜙) (56)

Although it is much more tempting to have a preference
toward this rotation operator, due to the similarity to the
Heisenberg–Weyl case, this rotation operator generates a Weyl
function that is not informationally complete. For instance

⟨↑| R (𝜉)|↑⟩ = ⟨↓| R (𝜉)|↓⟩ (57)

We therefore need to construct an informationally completeWeyl
function by including all three Euler angles,[44]

𝜒A(�̃�, 𝜃, Φ̃) = Tr
[
A U1

2 (�̃�, 𝜃, Φ̃)
]

(58)

and so we prefer to keep this Φ in the definition of the rotation
operator. Further, keeping all three Euler angles allows us to di-
rectly relate to operations on a quantum computer, where it is
usual to include an arbitrary rotation in terms of Euler angles—
or at least some operation with three degrees of freedom. This is
also the reason we prefer to useU1

2 (𝜙, 𝜃,Φ) over R (𝜉), despite the
latter having the satisfying connection to D (𝛼).
The reason for the requirement of all three angles can be

thought of by considering the Weyl function as giving the expec-
tation value of the rotation operator used. When considering the
rotation operators R (𝜉), the rotation is on P1 rather than the
full SU(2). This means we have rotations restricted to a 2-sphere.
In turn, the rotation operator cannot produce the state 𝜎𝗓, which
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is necessary for discerning its two eigenstates | ↑⟩ and | ↓⟩. This
is the reason for the result in Equation (57).
It is interesting to note that when our goal is to use the Weyl

function to consider the expectation value of different operators,
we can instead consider the Weyl function on a torus, where we
setΦ = 0. It turns out that this restriction is informationally com-
plete and the last degree of freedom is not strictly necessary in
the qubit case, as long as the range is extended to −𝜋 < �̃�, 𝜃 ≤ 𝜋.
However, we will generally choose keep the Φ degree of freedom
to allow the rotation operator to also define the coherent state rep-
resentation on P1, and more importantly to keep this formula-
tion informationally complete for larger Hilbert spaces.
We nowneed to use our choice of rotation operator to rotate the

corresponding generalized parity operator. For the Wigner func-
tion, this is explicitly

Π1
2 =

1
2

(
𝟙 +
√
3𝜎𝗓
)

(59)

where 𝜎𝗓 is the standard Pauli z operator. The appearance of the√
3 in Equation (59) may seem somewhat strange, as is gen-

erally assumed that the generalized parity should simply be 𝜎𝗓,
without the identity or the coefficients. Choosing 𝜎𝗓 as a parity
operator can be found in some works, and has proven useful in
verification protocols, such as in ref. [64], this choice, however,
leads to a function that is not informationally complete, that is,
Equation (43) does not hold. Note also that S-W. 3 implies that
Tr[] = 1, which does not hold for 𝜎𝗓. To generate a generalized
parity that is informationally complete, it is therefore necessary
to follow the Stratonovich–Weyl correspondence S-W. 1–5. For
more detail of how this can be done, see ref. [5] or in the Appendix
of ref. [65]. This yields the Stratonovich qubit Wigner function
kernel

Π1
2(𝜃,𝜙) = U1

2 (𝜙, 𝜃,Φ)Π
1
2U

1
2 (𝜙, 𝜃,Φ)

† (60)

where theΦ degree of freedom gets cancelled out due to the gen-
eralized parity being a diagonal operator, this is the reason behind
the equivalence of the rotation operators in Equation (55) when
rotating the generalized parity operator.
We can then simply return the operator by applying this case

to Equation (47)

A = 1
2𝜋 ∫

2𝜋

0 ∫
𝜋

0
WA(𝜃,𝜙)Π1

2(𝜃,𝜙) sin 𝜃 d𝜃 d𝜙 (61)

If one, on the other hand, insisted on using just the 𝜎𝗓 operator,
creating a phase-space functionWZ

𝜌
(Ω) = Tr[𝜌 U1

2 (Ω)𝜎
𝗓 U1

2 (Ω)
†],

to transform back to the density operator, the identity needs to be
reinserted

𝜌 = 1
2
𝟙 + 1

2𝜋 ∫
2𝜋

0 ∫
𝜋

0
WZ

𝜌
(𝜃,𝜙)𝜎𝗓 (𝜃,𝜙) sin 𝜃 d𝜃 d𝜙 (62)

However, we therefore have to assume that the function is of
a trace-1 operator, and this does not hold for an arbitrary oper-
ator. This result is clearly shown by considering either ref. [5]
or ref. [65] and setting the coefficient of the identity operator to
0. Although this can be useful for examining certain properties
of a quantum state, it is important to bear in mind that it does

not satisfy the Stratonovich–Weyl correspondence. Further, us-
ing the 𝜎𝗓 operator as a parity creates a function similar to the
Weyl function—that is, it is the expectation value of some arbi-
trary operator in phase space. The only problem is the identity
operator is not represented in this distribution like the 𝜎𝗓 opera-
tor not represented in the case of the P1 rotation operator.
Examples of the single-qubit Wigner function for the eigen-

states of the Pauli operators can be seen in Figure 1d, where | ↑⟩
and | ↓⟩ are the eigenstates of 𝜎𝗓 with eigenvalues ±1, respec-
tively. Likewise, |→⟩ and |←⟩ are the eigenstates of 𝜎𝗑 with
eigenvalues ±1 and |+⟩ and |−⟩ are the eigenstates of 𝜎𝗒 with
eigenvalues ±1. To the right of each function that is generated by
the Stratonovich kernel is the same state generated by the Woot-
ters kernel, that will be shown in the following section. More
comparison between the two is therefore to follow. It is imme-
diately clear that when generated with the Stratonovich kernel
on a spherical geometry, the Wigner function is similar to the
more familiar Bloch sphere, where the highest value of the prob-
ability distribution is where the Bloch vector would point. It is
also worth noting that, unlike the Heisenberg–Weyl functions
and further the discrete Wigner functions, every spin coherent
state has a negative region. This is a result of the spherical ge-
ometry and the role of quantum correlations within phase space;
this will be discussed in more detail in Section 4.2.
Alternatively, onemay be interested in constructing theQ or P

function for the qubit, where the generation of the suitable kernel
is just as simple as in the qubit case. Like the Wigner function
generalized parity operator, these too are diagonal operators. The
two can be calculated explicitly as

Π1(−1)
2 = 1

2
(𝟙 + 𝜎𝗓 ) =

(
1 0
0 0

)
,

and Π1(1)
2 = 1

2
(𝟙 + 3𝜎𝗓 ) =

(
2 0
0 −1

)
(63)

for theQ andP function, respectively, where the±1 in the bracket
signifies the value of s for the generalized phase-space function.
These both result in kernels where the Φ degree of freedom also
cancels out when taking a similarity transform with the rotation
operator. The cancellation of the Φ term can therefore mean that
the last Euler angle is not necessary for the calculation of quasi-
probability distribution functions, and one will occasionally see
the kernel generated ignoring this term, for good reason to ex-
clude redundant information. This also lines up nicely with the
toroidal definition of theWeyl function, where we only care about
the first two degrees of freedom in the rotation operator. As we
will soon see, a toroidal geometry is a natural alternative to the
Bloch sphere in considering qubit states.

3.1.2. The Wootters Kernel

The alternative formulation to consider qubits in phase space can
be seen in the framework set out byWootters.[15] In the same year,
Feynman also gave an identical construction of aWigner function
for qubits.[14] Feynman’s construction treated only the qubit case,
whereas in the work by Wootters, the formalism was extended to
any prime-powered dimensional phase space. More importantly,
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in ref. [15] Wootters presented the discrete Wigner function in
the Moyal formalism—the expectation value of a kernel, which
Wootters intuitively names the “phase-point operator”. Despite
this, we will give the formulation of the discrete Wigner function
presented by Feynman, as we feel it provides a different insight
into the problem, and then subsequently relate it to Wootters’s
phase-point operator. Following this, we will show how this for-
mulation can be considered a sub-quasi-probability distribution
of the Stratonovich formulation.
The idea behind Feynman’s formulation was to write down

probability distributions

p++ = 1
2
⟨𝟙 + 𝜎𝗑 + 𝜎𝗒 + 𝜎𝗓 ⟩ , p+− = 1

2
⟨𝟙 − 𝜎𝗑 − 𝜎𝗒 + 𝜎𝗓 ⟩

p−+ = 1
2
⟨𝟙 + 𝜎𝗑 − 𝜎𝗒 − 𝜎𝗓 ⟩ , p−− = 1

2
⟨𝟙 − 𝜎𝗑 + 𝜎𝗒 − 𝜎𝗓 ⟩

(64)

which are the joint probabilities, p±±, of finding the qubit hav-
ing the spin aligned with the ±z and ±x axes, respectively. The
choices of operator and expectation values in Equation (64) were
presented by Feynman without any derivation or motivation; al-
though, as we will see later Wootters uses the same basis, this
choice is not unique, in fact there is no unique choice of a prob-
ability distribution of this form, see refs. [66–68] for examples of
generalizations of these results.
Following the results of Wootters, we can take the expressions

in Equation (64) and turn them into a phase-point operator. We
first introduce two degrees of freedom to span the discrete phase
space, these are z, x ∈ {0, 1} which cover all four phase points.
The phase-point operator is then defined

2(z, x) =
1
2

(
𝟙 + (−1)z 𝜎𝗓 + (−1)x 𝜎𝗑 + (−1)z+x 𝜎𝗒

)
(65)

resulting in the discrete Wigner function for any arbitrary opera-
tor

A(z, x) = Tr
[
A 2(z, x)

]
(66)

where the subscript is dimension d = 2 ford(z, x). We can then
relate the results in Equation (64) by noting that (0, 0) = p++,(0, 1) = p+−,(1, 0) = p−+, and(1, 1) = p−−.
Like the Stratonovich kernel, we can define a generalized dis-

placement operator to both generate a Weyl function and further
to be used to construct the Wootters kernel in terms of a gener-
alized displaced parity operator. The displacement operator for
discrete systems such as this is

2(z, x) = exp
(1
2
i𝜋xz
)
(𝜎𝗑 )x(𝜎𝗓 )z (67)

which, like the SU(2) Wigner function, can be used to generate
a discrete Weyl characteristic function

(z̃, x̃) = Tr
[
A 2(z̃, x̃)

]
(68)

The four values of the discrete displacement operator are simply
the Pauli and identity operators. As such, there is a direct rela-

tionship between the Euler-angle parameterization and toroidal
lattice approach.
Note first that by setting Φ = 0 in the SU(2) case, the rotation

operator defines translations around a torus. This then allows
us to describe the values of the toroidal lattice as points in the
continuous torus generates by the Euler angles. We also need to
note that there can be a difference in phase between elements in
U1

2 (𝜙, 𝜃, 0) and 2(z̃, x̃), therefore, a factor of i may be necessary
to equate the two. However, the complex behavior of characteris-
tic functions is well-known, and it is instead standard practice to
define the characteristic as the absolute value or absolute value
squared, where such practice is commonplace in the signal pro-
cessing community, for example when analyzing the analog of
the Weyl function—the ambiguity function.[69,70]

This allows us to relate the two approaches to a Weyl function
by taking the absolute value squared of each or by adding an extra
phase, where

|(z̃, x̃)|2 = |𝜒A(z̃𝜋∕2, x̃𝜋∕2, 0)|2 (69)

It is also interesting to see the Weyl function as a generalized
autocorrelation function, where for a pure state 𝜒A(𝜙, 𝜃,Φ) =⟨𝜓| U1

2 (𝜙, 𝜃,Φ)|𝜓⟩. We can think of the rotation operator as act-
ing on the ket state and then taking the inner product. It then
makes sense to take the absolute value squared to get a real-
valued autocorrelation function.
Note that in Equation (69), we relate the continuousWeyl func-

tion to the discrete case by setting Φ = 0, this is the simplest
way to reduce to two degrees of freedom for easy calculation and
equivalent results. If, on the other hand, we chose to setΦ = −𝜙,
like we do when equating with the Heisenberg–Weyl case, there
would be no way to produce the 𝜎𝗓 operator, hence the lack of
informational completeness in this slice for the eigenstates of 𝜎𝗓

in Equation (57).
The informational completeness for Equation (68) can be seen

by observing

A = 1
2

∑̃
z,x̃

(z̃, x̃)2(z̃, x̃) (70)

which demonstrates the power of the use of the Weyl function as
a tool for practical purposes in state reconstruction. For example,
the discrete form of the Weyl function has proven to be useful in
verification protocols,[71] where the Weyl function can be used as
a probability distribution for choice ofmeasurement bases. In the
case of stabilizer states,[72] this results in the Weyl function hav-
ing values of 0 over the majority of the distribution and 1 when
the Weyl kernel is the stabilizer for that state. This is simply seen
by noting that a stabilizer state is an eigenstate of a product of
Pauli operators. For a single qubit, this result is simply seen by
noting

|𝜓⟩ = 2(z, x)|𝜓⟩⇒ ⟨𝜓|𝜓⟩ = 1 = ⟨𝜓|2(z, x)|𝜓⟩
= Tr
[
𝜌2(z, x)

]
(71)

The same naturally holds when extending to multiple qubits.
Note, however, that in ref. [71], the Weyl function is normalized
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by a factor of 1∕
√
2n, for n qubits. This is done so the factor of

1∕2 is not needed in Equation (70) and
∑

z̃,x̃ (z̃, x̃)2 = 1.
Having defined an appropriate displacement operator that

generates an informationally complete Weyl characteristic func-
tion, to complete the discrete formulation in terms of a gener-
alized displaced parity operator, it is necessary to generate the
generalized parity operator. The generalized parity is, from Equa-
tion (44), simply

2 = 2(0, 0) =
1
2
(𝟙 + 𝜎𝗓 + 𝜎𝗒 + 𝜎𝗒 ) (72)

and

2(z, x) = 2(z, x)2 †
2(z, x) (73)

is the kernel written in displaced parity form.
Interestingly, the eigenvalues for2 are the same as those for

Π1
2, namely (1 ±

√
3)∕2. This means that the non-diagonal Woot-

ters generalized parity can be diagonalized as

2 = U1
2 (𝜗,𝜑)Π

1
2U

1
2 (𝜗,𝜑)

† (74)

where

𝜗 = arccos 1√
3

and 𝜑 = −𝜋
4

(75)

In fact, like the Weyl function, the full Wootters kernel can be
written in terms of the Stratonovich kernel, where

2(z, x) = Π1
2

(
𝜗 + x𝜋,𝜑 + 2z − x

2
𝜋
)

(76)

Therefore, the Wootters kernel can be considered a subset of
the Stratonovich kernel, and the Wootters qubit Wigner func-
tion is a sub-quasi-distribution function of the Stratonovich qubit
Wigner function.
Note that the four points on the Stratonovich qubit Wigner

function where the Wootters function lies form a tetrahedron
within the Bloch sphere, as can be seen in Figure 1, coincid-
ing with the formulation of symmetric informationally com-
plete projective measurements.[73,74] We can transform between
the Wigner and Weyl functions here by performing the discrete
Fourier transform

(z, x) = 1
2

∑̃
z,x̃

(z̃, x̃) exp (i𝜋[x̃z − xz̃]) (77)

and

(z̃, x̃) = 1
d

∑
z,x

(z, x) exp (−i𝜋[x̃z − xz̃]) (78)

The Fourier transform between the Wigner and Weyl function
can therefore be seen as the transformation between Pauli basis
measurements and symmetric informationally complete projec-
tive measurements.
From Equation (74) and Equation (75), where we consider the

Wootters kernel as a subset of the full Stratonovich kernel, we can
define Q and P functions in discrete phase space. By using the

parity operators from Equation (63), we can define the general
kernel

(s)
2 = U1

2 (𝜗,𝜑)Π
1(s)
2 U1

2 (𝜗,𝜑)
† (79)

that yields

(s)
2 = (s)

2 (0, 0) =
1
2
𝟙 + 3

s
2

2
(𝜎𝗓 + 𝜎𝗒 + 𝜎𝗒 ) (80)

For theQ function, this results in a set of symmetric information-
ally complete positive operator-valued measures.[73] Considering
this in terms of frame theory in quantum measurement,[22,75]

consider this discrete Q function as a frame, where the dual
frame is then the P function kernel, such that

M = (−1)
2 = 1

2
𝟙 + 1

2
√
3
(𝜎𝗓 + 𝜎𝗒 + 𝜎𝗒 ) (81)

M̃ = 3(−1)
2 − 𝟙 = 1

2
𝟙 +
√
3
2
(𝜎𝗓 + 𝜎𝗒 + 𝜎𝗒 ) = (1)

2 (82)

More generally we can transform between any of these kernels
by

(s2)
2 = 3

1
2
(s2−s1)(s1)

2 + 1 − 3
1
2
(s2−s1)

2
𝟙 (83)

By understanding these phase-space functions in these terms,
they can prove to be powerful tools for verification of quantum
states, for example ref. [76] which we will discuss further in Sec-
tion 4.
The relation between the Stratonovich and Wootters formu-

lation of phase-space functions for qubits is a special case that
does not generalize as the dimension increases. This is because
of the difference in geometry between the representations. Fol-
lowing this discussion, we will see two variations in how a qudit
can be represented on a continuous phase space. One representa-
tion keeps the SU(2) group structure and is the natural extension
of the Stratonovich kernel, that was also introduced in his semi-
nal paper.[5] This method creates a discrete Wigner function on a
sphere, where the radius is proportional to the dimension of the
Hilbert space. The second continuous method uses the structure
of SU(d), where d is the dimension of the Hilbert space. Geomet-
rically, this is an oblate spheroid.
TheWootters function, on the other hand, is defined on(d) ×

(d) discrete toroidal lattice, where d is prime. There have been
many formulations to extend this form of the Wigner function
to higher dimensions, the original Wootters formulation was
defined with respect to fields and so the dimensions size was
restricted to primes. Wootter then extended this formulation
with Gibbons et al. to work for dimensions that are powers of
primes.[18] Later work also considered the extension to odd num-
bered dimensions,[16,19,21], and even numbered dimensions.[17]

Given the different choices, we refer the reader to any of these
articles for specifics, or to refs. [21, 22, 77] for more detailed
overview and comparison. Since this construction above the qubit
case is not important to this review, the explicit forms will not
be given.
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3.2. SU(2), Spin-j

We will now show the generalization of continuous phase space
for larger finite systems. Here we begin by staying within the
SU(2) Lie group structure before going on to the SU(N) formula-
tion in Section 3.3. Both cases can be used to consider similar sit-
uations, but also have some subtle differences. The SU(2) formu-
lation requires another variableM = 2j, two times the azimuthal
quantumnumber, that allows us to represent a spin-j qudit where
the dimension of the Hilbert space is d = M + 1.
It can alternatively be used to model an M-qubit state in the

symmetric subspace, and can be used over composite meth-
ods for certain processes, such as single-axis twisting or Tavis-
Cummings interactions.[78–81] These methods can further be
used on states that are not fully symmetric, by taking the ap-
proach fromZeier, Glaser, and colleagues[82–85] amulti-qubit state
can be represented by a collection of SU(2) Wigner functions,
n ≥ M ≥ 0 for n qubits, to show theWigner function for everyM-
valued symmetric-subspace. This leads to many differentWigner
functions as the number of qubits increases.
We begin by considering the general SU(2) rotation operator.

Like with the qubit case, there are many ways of formulating ro-
tations on a sphere. The extension to the two ways given in Equa-
tion (55) are simply

UM
2 (𝜙, 𝜃,Φ) = exp

(
i𝖩M2 (3)𝜙

)
exp
(
i𝜃𝖩M2 (2)

)
exp
(
iΦ𝖩M2 (3)

)
,

and R j(𝜉) = exp
(
𝜉 J+ j − 𝜉∗J− j

)
(84)

where

𝖩M2 (1) = J𝗑 j =
1
2

j∑
m=−j

√
j(j + 1) −m(m + 1)

×
(||j, m⟩ ⟨j, m + 1|| + ||j, m + 1⟩ ⟨j, m|| ) (85)

𝖩M2 (2) = J𝗒 j =
i
2

j∑
m=−j

√
j(j + 1) −m(m + 1)

×
(||j, m⟩ ⟨j, m + 1|| − ||j, m + 1⟩ ⟨j, m|| ) (86)

𝖩M2 (3) = J𝗓 j =
j∑

m=−j
m||j, m⟩ ⟨j, m|| (87)

are the the angular momentum operators, the higher-
dimensional extension of the Pauli operators in SU(2), and
J± j = 𝖩M2 (1) ± i𝖩M2 (2) are the angular momentum raising and
lowering operators. Here we also introduce the generalized
SU(N) operator notation 𝖩MN (i).
The intuition from looking at Rj(𝜉) is that as j → ∞, the

Heisenberg–Weyl displacement operator fromEquation (5) is re-
covered. This result was shown by Arecchi et al. in ref. [32]. The
procedure to show this was also demonstrated in ref. [12], where
first we need a contraction of the operators, where we take

A±
j = cJ± j, A𝗓 = 1

2c2
𝟙 j − 𝖩M2 (3) (88)

such that, when c → 0

lim
c→0

A+
j = a† , lim

c→0
A−

j = a , and lim
c→0

A𝗓 = a† a (89)

The rotation operator therefore becomes

R j(𝜉) = exp
(
𝜉A+ ∕c − 𝜉∗A− ∕c

)
(90)

by setting

lim
c→0

𝜉

c
= 𝛼, lim

c→0

𝜉∗

c
= 𝛼∗ (91)

we yield

lim
c→0

R j(𝜉) = D (𝛼) (92)

A similar treatment can be applied to the Euler angles by not-
ing that 𝖩M2 (2) = i(J+ j − J− j). This leads to the result

lim
c→0

UM
2 (−𝜙,−𝜃,−Φ) =

[
lim
c→0

ei(𝜙+Φ)∕2c
2
]
exp
(
−|𝛼|2) exp (𝛼a† )

× exp (−𝛼∗a ) exp
(
(𝜙 + Φ)a† a

)
(93)

that, when taking Φ = −𝜙 the limit on the right goes to 1, yield-
ing an equivalence to D (𝛼). Further, when applying this to the
vacuum state, we yield

lim
c→0

UM
2 (−𝜙,−𝜃,−Φ)||j, j⟩

=
[
lim
c→0

ei(𝜙+Φ)∕2c
2
]
exp
(
−|𝛼|2) exp (𝛼a† ) exp (−𝛼∗a )

× exp
(
i(𝜙 + Φ)a† a

)|0⟩
=
[
lim
c→0

ei(𝜙+Φ)∕2c
2
]
exp
(
−|𝛼|2) exp (𝛼a† ) exp (−𝛼∗a )

× exp (i𝜙 + iΦ)|0⟩
=
[
lim
c→0

ei(𝜙+Φ)∕2c
2
]
ei𝜙+iΦ−|𝛼|2∕2 ∞∑

n=0

𝛼n√
n!
|n⟩

(94)

equivalent to the coherent state generated by the standard dis-
placement operator, where the 𝜙 and Φ degrees of freedom act
as a global phase and cancel out when we set Φ = −𝜙. Note also
in this result that the limit of the highest weighted spin state is
the vacuum state.
By analogy, the definition of a generalized spin coherent state is

just the highest weight state rotated by a suitable operator. Either
rotation operator will work, however, they may differ by a phase
factor. For simplicity, we define the spin coherent state by

|||(𝜃,𝜙)j⟩ = R j(𝜃,𝜙)||j, j⟩ (95)

This results in the simple definition of the Q and P functions
with respect to the spin coherent states

QA(𝜃,𝜙) =
⟨
(𝜃,𝜙)j

||| A |||(𝜃,𝜙)j⟩ , and
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A = ∫
2𝜋

0 ∫
𝜋

0
PA(𝜃,𝜙)

|||(𝜃,𝜙)j⟩⟨(𝜃,𝜙)j||| sin 𝜃 d𝜃 d𝜙 (96)

where it has been shown in refs. [60, 61] that these two functions
also reach the Heisenberg–Weyl Q and P functions for j → ∞.
The general idea for the infinite limit of these functions is to

imagine a plane tangent to the north pole of the qubit’s sphere. As
the value of j increases, the radius of the sphere correspondingly
increases, coming closer and closer to the tangential plane at the
north pole. At the limit, the sphere completely touches the plane.
This visualization exercise also helps to understand the differ-

ence in Weyl function between SU(2) and the Heisenberg–Weyl
group, where the general SU(2) Weyl function is

𝜒A(�̃�, 𝜃, Φ̃) = Tr
[
A UM

2 (�̃�, 𝜃, Φ̃)
]

(97)

As mentioned in the single qubit case, the general SU(2) Weyl
function requires all three Euler angles. This can be seen in a va-
riety of ways, most importantly it is because when using R j(𝜃,𝜙)
as the kernel, the resulting function for |j, j⟩ and |j,−j⟩ are iden-
tical. Furthermore, any mixed state on the line inside the Bloch
sphere between these two states are also identical. To resolve this,
a third degree of freedom is needed, resulting in the preference
for the Euler angles. This is not a problem for the Heisenberg–
Weyl case as any state on the equator is mapped to infinity, and
only the equivalent of the top hemisphere is considered in the
phase space. It is also worth noting that in the qubit case, the
Weyl function is still informationally complete when Φ = 0, this
is not the case with a general qudit. As we saw when consider-
ing theWootters kernel, there’s a special connection between the
qubit on the sphere and the qubit on a torus, this means that for
theWeyl function, settingΦ = 0, we aremodelling the qubit state
on a continuous torus. However, due to how the 𝔰𝔲(2) algebra
scales as as M increases, the state can no longer be considered
on a torus and the Φ degree of freedom is necessary to generate
an informationally complete function.
Next we need to show how the Wigner function can be gener-

ated. Since the original formulation of the general SU(2) Wigner
function, there have been many variations in how it is presented.
From a harmonic series approach to presenting it as a kernel with
which a group action can be taken. Since all of these representa-
tions are equivalent, we will present how the kernel can be gen-
erated through a multipole expansion.
For this, we need a new set of generators to generalize the Pauli

operators from the qubit case. These are known as the tensor or
Fano multipole operators,[86]

T j
lm =

√
2l + 1
2j + 1

j∑
m′ ,n=−j

Cjn
jm′ ,lm
||j, n⟩ ⟨j, m′|| (98)

whereCjn
jm′ ,lm are Clebsch-Gordan coefficients that couple two rep-

resentations of spin j and l to a total spin j. The kernel can then
be generated from there operators by

ΠM
2 (𝜃,𝜙) =

√
𝜋

M + 1

M∑
l=0

l∑
m=−l

Y∗
lm(𝜃,𝜙)T

M∕2
lm (99)

where Y∗
lm(𝜃,𝜙) are the conjugated spherical harmonics. By fol-

lowing the same procedure from Equation (44), the SU(2) gen-
eralized parity can be derived

ΠM
2 = ΠM

2 (0, 0) =
M∑
l=0

2l + 1
M + 1

j∑
n=−j

Cjn
jn,l0
||j, n⟩ ⟨j, n|| (100)

where we note again that j = M∕2. Note that when taking the
limit j → ∞, this generalized parity operator becomes the parity
operator defined in Equation (4). The derivation and proof of this
can be found in ref. [12]. Resulting in the generalized displaced
parity operator

ΠM
2 (𝜃,𝜙) = UM

2 (𝜙, 𝜃,Φ)Π
M
2 U

M
2 (𝜙, 𝜃,Φ)

† (101)

where since the Φ degrees of freedom cancel out with the di-
agonal generalized parity, the full kernel is equivalent to the
Heisenberg–Weyl kernel from Equation (3) as j → ∞.[12]

More generally, theQ and P functions from Equation (96), and
any s-parameterized quasi-probability distribution function, can
be generated by a simple extension of Equation (99) and Equa-
tion (100), where the general kernel can be calculated[36,60]

ΠM(s)
2 (𝜃,𝜙) =

√
𝜋

M + 1

M∑
l=0
(Cjj

jj,l0)
−s

l∑
m=−l

Y∗
lm(𝜃,𝜙)T

M∕2
lm (102)

where the extra value (Cjj
jj,l0)

−s is 1 when s = 0, returning Equa-
tion (99). The generalized parity for any s-valued function can
then be calculated

ΠM(s)
2 = ΠM(s)

2 (0, 0) =
M∑
l=0

2l + 1
M + 1

(
Cjj
jj,l0

)−s j∑
n=−j

Cjn
jn,l0
||j, n⟩ ⟨j, n|| (103)

which for s = −1 yields

ΠM(−1)
2 = ||j, j⟩ ⟨j, j|| (104)

where, as mentioned earlier, these functions also become their
infinite-dimensional counterparts as j → ∞.[60,61]

From Equation (48), we can then relate and transform between
these different quasi-distribution functions by way of a general-
ized Fourier transform. However, there is an alternative method
by way of spherical convolution.[60] By using the highest-weight
state in the Wigner representation and performing a convolution
using Equation (51), we can transform an s-valued function to
the corresponding (s − 1)-valued function for the same state. For
example, we can transform from the P function to the Wigner
function, and the Wigner function to the Q function by using
this method. Similarly, we can transform from the P function of
a state to the correspondingQ function by using the convolution
with the Q function highest weighted state.

3.3. SU(N)

We now consider an alternative route to treat a general d-level or
multi-qubit quantum system. Like the SU(2) case, an SU(N) rep-
resentation can also be used for a general qudit state, where
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in this case d = N and we only consider M = 1. In order to
represent an n-qubit state, the construction of an SU(2d) ker-
nel is required—it is also possible to take the same approach
as with SU(2) and consider only the symmetric subspace with
an SU(d) representation. Alternatively, the generalized displace-
ments and generalized parities can be mixed and matched to
some extent as was shown in ref. [43], this case will also be con-
sidered here.
Although we provide a formalism to construct these Wigner

functions, the details to actually construct the kernels can prove
to be complicated, there are therefore some open questions for
generalized SU(N) kernels. the first open problem is generaliz-
ing SU(N) for any value of M, effectively creating the analog of
the symmetric subspace forM N-level qudits. However, the pro-
cedure to create the generalized displacement operators for this
case can be found in ref. [42].
The second open problem is the consideration of the hyper-

bolic space of SU(Q, P). A construction of an SU(1, 1) Wigner
function has recently been provided in refs. [87, 88]; however, the
general SU(Q, P) case remains to be solved. Insight into these
cases may lead to some interesting results in ideas relating to
AdS/CFT in a phase space formalism. Note that if one is also in-
terested in some of the more fantastical routes to the unification
of quantummechanics and gravity, in theory a construction of E8
should be possible, however unwieldy the number of degrees of
freedom prove to be. Here we will settle ourselves with providing
the results from the SU(1, 1) phase space construction to close
this section.
The kernel for an SU(N) phase space now requires a specific

generalized displacement and generalized parity. The first step is
to construct the generators of SU(N), which can be represented
by N2 − 1 matrices of size N × N. The method to construct these
can be found in ref. [89]. This results in a set of operators 𝖩1N(i),
where 1 ≤ i ≤ N2 − 1. In fact, only a subset of the generators are
needed to construct the SU(N) Euler angles, these are general-
izations of the 𝜎𝗒 and 𝜎𝗓 operators, which are

𝙹𝗒N(1, a) = 𝖩1N((a − 1)2 + 1) = i(|a⟩⟨1| − |1⟩ ⟨a|) (105)

𝙹𝗓N(a
2 − 1) = 𝖩1N(a

2 − 1)

=
√

2
a(a − 1)

(
a−1∑
i=1
|i⟩⟨i|) −

√
2(a − 1)

a
|a⟩⟨a| (106)

where 2 ≤ a ≤ N. Note that this is a subset of the full set of gen-
erator of 𝔰𝔲(N); N2 − 1 elements are needed to generate 𝔰𝔲(N);
however, just 2(N − 1) elements of the algebra are needed to gen-
erate the generalized Euler angles for SU(N). We also note that
there has been an alternative construction of phase space for
SU(3) where they instead used three dipole and five quadrupole
operators as the generators of the Lie algebra.[90]

Following this, there is a procedure to generate the gener-
alization of the Euler angles for SU(N), that can be found in
refs. [55, 56, 89]. This results in the generalized Euler angles
U1

N(𝝓,𝜽,𝚽), where𝝓 = {𝜙1,… ,𝜙N(N−1)∕2}, 𝜽 = {𝜃1,… , 𝜃N(N−1)∕2}
and 𝚽 = {Φ1,… ,ΦN−1}. This rotation operator can be split up
into two parts, first one dependent on the 𝝓 and 𝜽 degrees of
freedom, ̂1

N(𝝓,𝜽), and the second dependent on the 𝚽 degrees

of freedom, ̂1
N(𝚽), such that

̂1
N(𝝓,𝜽) ≡

∏
N≥a≥2

∏
2≤b≤a

exp
(
i𝙹𝗓N(3)𝜙a−1+k(b)

)
exp
(
i𝙹𝗒N(1, a)𝜃a−1+k(b)

)
(107)

where

k(b) =

{
0, b = N∑N−b

i=1 , b ≠ N
(108)

and

̂1
N(𝚽) ≡

∏
1≤c≤N−1

exp
(
i𝙹𝗓N([c + 1]2)ΦN(N−1)∕2+c

)
(109)

Finally yielding the SU(N) rotation operator

U1
N(𝝓,𝜽,𝚽) = ̂1

N(𝝓,𝜽)̂1
N(𝚽) (110)

Just from this generalization of the Euler angles, many of the
results from the SU(2) case can be extended to SU(N). Most
straight-forward is an informationally complete Weyl character-
istic function that takes the form

𝜒A(�̃�, �̃�, �̃�) = Tr
[
A U1

N(�̃�, �̃�, �̃�)
]

(111)

Note that a discrete alternative can be yielded by constructing all
N2 − 1 generators for SU(N), resulting in

𝜒A(k) = Tr
[
A 𝖩1N(k)

]
(112)

where 0 ≤ k ≤ N2 − 1, 𝖩1N(0) = 𝟙 N and the other 𝖩1N(k) matrices
are the generators of the 𝔰𝔲(N) algebra.
Also from the rotation operator in Equation (110) one can gen-

erate generalized coherent states.[89] Like earlier examples of co-
herent states, SU(N) coherent states are generated by applying
the rotation operator to a suitable analog to the vacuum state. In a
similar procedure SU(N) coherent states can be generated by the|0⟩ 1N state, where we define this state as being the eigenstate of

𝜆N(N
2 − 1) with the lowest eigenvalue, −[2(N − 1)∕N]

1
2 , making

it the lowest-weighted state, resulting in

||(𝝓,𝜽)1N⟩ = U1
N(𝝓,𝜽,𝚽)|0⟩ 1N

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ei(𝜙1+𝜙2+⋯+𝜙N−1) cos(𝜃1) cos(𝜃2)… cos(𝜃N−2) sin(𝜃N−1)
−ei(−𝜙1+𝜙2+⋯+𝜙N−1) sin(𝜃1) cos(𝜃2)… cos(𝜃N−2) sin(𝜃N−1)
−ei(𝜙3+𝜙3+⋯+𝜙N−1) sin(𝜃2) cos(𝜃3)… cos(𝜃N−2) sin(𝜃N−1)

⋮
−ei(𝜙N−2+𝜙N−1) sin(𝜃N−3) cos(𝜃N−2) sin(𝜃N−1)

−ei(𝜙N−1) sin(𝜃N−2) sin(𝜃N−1)
cos(𝜃N−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(113)

ignoring an overall global phase. We note that it is also possible
to set the analog to the vacuum state as the eigenstates of 𝖩1N(3)
with eigenvalue 1, as is the more standard choice for the use of
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SU(2) for qubits. However, given the structure of the genera-
tors for 𝔰𝔲(N), taking the highest-weight state results in much
tidier calculations.
From the construction of a coherent state, the generations of

the Q and P functions are simply

QA(𝝓,𝜽) =
⟨
(𝝓,𝜽)1N

|| A||(𝝓,𝜽)1N⟩ , and

A = ∫𝛀
P(𝝓,𝜽)||(𝝓,𝜽)1N⟩ ⟨(𝝓,𝜽)1N|| d𝛀 (114)

where 𝛀 are the degrees of freedom on SU(N) and d𝛀 in the
volume normalized differential element for SU(N), the construc-
tion of which can be found in ref. [55]. Similarly, the kernel for
the SU(N) Wigner function can be generated with respect to co-
herent states, where [42]

Π1
N(𝝓,𝜽) =

1
N
𝟙 N +

√
N + 1
2

N2−1∑
k=1

⟨
(𝝓,𝜽)1N

|| 𝖩1N(k)||(𝝓,𝜽)1N⟩ 𝖩1N(k)
(115)

By setting the variable to 0, the generalized parity operator for
SU(N) is yielded, where

Π1
N = 1

N

(
𝟙 N −

√
(N − 1)N(N + 1)

2
𝙹Nz (N

2 − 1)

)
(116)

producing an operator constructed by the identity operator and
the diagonal operator from Equation (106), where a = N. Like
the construction of an SU(2) generalized parity operator, the
SU(N) parity is a diagonal operator and commutes with the
̂1
N(𝚽) part of the rotation operator, resulting in the degrees of

freedom cancelling out. The number of degrees of freedom are
further reduced to allow the SU(N) Wigner function to live on
the complex projective space PN−1 with 2(N − 1) degrees of free-
dom. By considering the operators, this can be realized by noting
that each SU(N) generator acts onN SU(2) subspaces of the full
SU(N), where each subspace is acted on by 𝙹Ny (1, a). Since N − 1
elements of the generalized parity operator are the same, with
just the last element differing, it is in effect a weighted identity
operator for the rotations that do not act on the last SU(2) sub-
space. And so, the elements of the rotation operator that have as
the generator 𝙹Ny (1, a) for a < N cancel out, until we reach the
element that rotates around 𝙹Ny (1, N).
Note that if we stay with the fundamental representation of

SU(N) there is a simple transformation between the different
quasi-probability distribution functions. This can be shown by
noting that the generalization of Equation (115) is [42]

Π1(s)
N (𝝓,𝜽) =

1
N
𝟙 N +

(N + 1)
1
2
(1+s)

2

N2+1∑
k=1

⟨
(𝝓,𝜽)1N

|| 𝖩1N(k)||(𝝓,𝜽)1N⟩ 𝖩1N(k) (117)

resulting in the general function

F(s)N,1,𝜌(𝝓,𝜽) =
1
N

+
(N + 1)

1
2
(1+s)

4

×
N2+1∑
k=1

⟨
(𝝓,𝜽)1N

||𝖩1N(k)||(𝝓,𝜽)1N⟩Tr [𝜌𝖩1N(k)] (118)

We can then simply transform between functions by taking

F(s1)N,1,𝜌 (𝝓,𝜽) =
1
N

+ (N + 1)
1
2
(s1−s2)
(
F(s2)N,1,𝜌 (𝝓,𝜽) −

1
N

)
(119)

providing a general formula to consider qudits in SU(N) sim-
ilar to Equation (83) for qubits. Note in the same way as the
qubit case, one can define a set of symmetric informationally
complete measurements from the Q function, this can then be
transformed into its dual by

Π1(1)
N (𝝓,𝜽) = (N + 1)Π1(−1)

N (𝝓,𝜽) − 𝟙 (120)

which corresponds to the transform between an N-dimensional
frame and its dual frame.[22,75]

This all provides a structure for considering qudits in phase
space, alternatively by considering the SU(2) subgroup structure
of SU(N), we can provide a link between the different representa-
tions of multi-qubit states. It also means that we can alternatively
represent multi-qubit states with a hybrid approach of SU(2) and
SU(N) that was introduced in ref. [43] and applied in ref. [48].
From applying the procedure from Equation (53) to generate a
kernel for composite systems, for multi-qubit states we get

Π1
2⊗n (𝜽,𝝓) =

n⨂
i=1

Π1
2(𝜃i,𝜙i)

=

(
n⨂
i=1

U1
2 (𝜙i, 𝜃i,Φi)

)(
n⨂
i=1

Π1
2

)(
n⨂
i=1

U1
2 (𝜙i, 𝜃i,Φi)

)†

= 𝕌n(𝝓,𝜽,𝚽)
(

n⨂
i=1

Π1
2

)
𝕌†
n(𝝓,𝜽,𝚽) (121)

where 𝕌n(𝝓,𝜽,𝚽) is the n-qubit rotation operator.
We can take this new n-qubit rotation operator and apply it to

the SU(N) generalized parity operator to create an alternative
representation of a multi-qubit state in phase space

Π1
2[n] (𝜽,𝝓) = 𝕌n(𝝓,𝜽,𝚽)Π1

N 𝕌†
n(𝝓,𝜽,𝚽) (122)

that also obeys the Stratonovich-Weyl correspondence S-W. 1–5.
Each choice of representing qubit states has its own benefits and
drawbacks. We can immediately see that the benefit of using the
multi-qubit SU(2) rotation operator with the SU(N) generalized
parity operator is the reduced number of degrees of freedom. The
multi-qubit rotation operator results in 2n degrees of freedom,
whereas the SU(N) operator will result in 2(2n − 1) degrees of
freedom for n qubits.
While on the topic of the SU(N) representation of quan-

tum states, it’s also worth noting a slightly different formulation;
SU(P,Q), that has the same number of degrees of freedom as
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SU(P +Q). However, the geometry of SU(P,Q) differs signifi-
cantly from the compact SU(N) geometry, resulting from a dif-
ference in sign between the first P elements and the remaining
Q elements in the metric, yielding a non-compact, hyperbolic
geometry. The case of a generalized SU(P,Q) representation
in phase space is still an open question. However the specific
case of SU(1, 1) has been addressed in a recent paper.[87] The
SU(1, 1) representation of certain quantum systems has proven
to be useful in simplifying some particular problems in quan-
tummechanics. In particular Hamiltonians involving squeezing.
This is because the SU(1, 1) displacement operator is a squeez-
ing operator, resulting in the SU(1, 1) coherent states to actu-
ally be squeezed states. Since the squeezing of quantum states
leads to many important results in quantum technologies, such
as metrology in particular, the use of these phase-space methods
for squeezing can prove to be a useful tool.
The generators of algebra of SU(1, 1) are similar to SU(2) with

a difference in the commutation relations, where

[Kx
M, Ky

M] = −iKz
M, [Ky

M, Kz
M] = iKx

M,

[Kz
M, Kx

M] = iKy
M (123)

The raising and lowering operators are then constructed

K±
M = ±i

(
Kx

M ± Ky
M
)

(124)

that, along with Kz
M, constitutes an alternative basis, where the

generalized displacement operator is

SM(𝜁 ) = exp
(
K+

M𝜁 − K−
M𝜁∗
)

(125)

much like Equation (84), where 𝜁 is the complex squeezing pa-
rameter. The central result from ref. [87] the generalized dis-
placed parity operator for SU(1, 1) is constructed from Equa-
tion (125) and the SU(1, 1) generalized parity (−1)Kz

M , yielding

ΠM
1,1(𝜁 ) = SM(𝜁 ) (−1)Kz

M
S†
M(𝜁 ) (126)

as the kernel for SU(1, 1).
Some of the authors from ref. [87] also looked at the equiv-

alence between SU(2) and SO(3) in phase space. Such analy-
sis could also be used to go between SU(1, 1) and SO(1, 2) in
phase space, or even generalized to SO(1, 3) or higher, to con-
sider relativistic quantummechanics in phase space. There have
been works that have looked at generalizing the Wigner function
for relativistic particles, for instance see refs. [91–94]. Although
the results are interesting and potentially useful, it is beyond the
scope of this paper to discuss them here.

4. Quantum Technologies in Phase Space

Given the mathematical framework, we will now look into how
the representation of quantum systems in phase space can be
used to understand processes in quantum technologies. We will
give some examples of experiments that have taken place to di-
rectly measure the phase-space distribution of quantum states.
This will include both discrete-variable and continuous-variable

systems, as well as the hybridization of the two. We will also
mention ideas that haven’t yet been put into practice, but are
worth discussion.
Before the practical results, we will consider how some impor-

tant metrics, already present in the quantum information com-
munity, can be described within the phase-space formulation.
One metric that is unique to phase-space functions is the pres-
ence of ‘negative probabilities’. Due to the uniqueness and unin-
tuitive nature of such a phenomena, this will receive a full discus-
sion shortly, where wewill discuss what negative values do and do
not say about a quantum state. Before looking at negative volume
of theWigner function as a metric, we will consider other figures
of merit that can be calculated through phase-space methods

4.1. Measures of Quality

There are measures that are widely used when considering the
density matrix or state vector of a quantum state that can be ex-
pressed within the phase-space representation of quantum me-
chanics. In particular, considering theWigner function and a key
property of traciality from S-W. 4, where

Tr [A B ] = ∫Ω
WA(Ω)WB(Ω) dΩ (127)

many similarities naturally fall out. The most natural starting
point is to consider the expectation value of some observable A
with respect to some state 𝜌 such that

⟨A ⟩𝜌 = Tr [𝜌A ] = ∫Ω
W𝜌(Ω)WA(Ω) dΩ (128)

In the case of a qudit in SU(2), we note that the expectation value
of the angular momentum operators can be related to the center
of mass for the corresponding Wigner function, where

⟨
𝖩M2 (i)
⟩
𝜌
=
(2j + 1)

√
j(j + 1)

8𝜋 ∫
2𝜋

0 ∫
𝜋

0
fi(𝜃,𝜙)W𝜌(𝜃,𝜙) sin 𝜃 d𝜃 d𝜙

(129)

where [95]

fi(𝜃,𝜙) = {− sin 𝜃 cos𝜙,− sin 𝜃 sin𝜙, cos 𝜃}, since

W𝖩M2 (i)
(Ω) =

√
j(j + 1)fi(Ω) (130)

where theminus signs and normalization come from our formu-
lation of the Wigner function kernel, which may differ in sign is
following a different convention.
There are further important properties in quantum informa-

tion that utilize the trace of two operators, as such their con-
struction in the phase-space representation are straightforward.
A simple example of this is the purity of a state, which for density
matrices is 𝖯(𝜌) = Tr[𝜌2], can be calculated in phase space by

𝖯[W𝜌(Ω)] = ∫Ω
W𝜌(Ω)2 dΩ (131)
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Next we consider the fidelity of a state 𝜌2 with reference to a target
state 𝜌1, where

𝖥(𝜌1, 𝜌2) = Tr
[√√

𝜌1𝜌2
√
𝜌1

]
2 (132)

We are often interested in comparing an experimentally gener-
ated state 𝜌2 with a pure target state 𝜌1, in which case the fi-
delity reduces to 𝖥(𝜌1, 𝜌2) = Tr[𝜌1𝜌2], whichwhen applied to Equa-
tion (127) we simply yield

𝖥
[
W𝜌1

(Ω),W𝜌2
(Ω)
]
= ∫Ω

W𝜌1
(Ω)W𝜌2

(Ω) dΩ (133)

The phase-space calculation of fidelity leads to an interesting
method of fidelity estimation of measured quantum states. We
will provide the procedure how one can do that here, following
the work on Flammia and Liu.[71]

First, it is important to note that the fidelity can be calculated
using any valid distribution F(Ω), including the Weyl function
and theQ and P functions, so long as we have the corresponding
dual function F̃(Ω) resulting in

𝖥
[
𝜌1, 𝜌2

]
= ∫Ω

F̃𝜌1 (Ω)F𝜌2 (Ω) dΩ (134)

where in this sense the Wigner function is self-dual, and the P
function is the dual to the Q function, and vice versa. One draw-
back from the structure of Equation (134) is that we need to in-
tegrate over the full phase space, however we know from Sec-
tion 3 that only four points in the phase space are required to
produce an informationally complete function. Therefore for n
qubits we require a sum over 2n points in phase space. We can
then calculate fidelity through the sum

𝖥(k) =
∑
k

F𝜌2 (k)F̃𝜌1 (k) (135)

Note that for this to hold, and for later calculations, we also re-
quire the functions to be normalized such that

∑
k(F𝜌1 (k))

2 =∑
k(F̃𝜌1 (k))

2 = 1.
Following ref. [71], we then need to create an estimator for

the fidelity. For this, select any measurement k with probability
Pr(k) = (F̃𝜌1 (k))

2. The estimator is then

X =
F𝜌2 (k)

F̃𝜌1 (k)
, such that E[X ] =

∑
k

(F̃𝜌1 (k))
2
F𝜌2 (k)

F̃𝜌1 (k)
= Tr
[
𝜌1𝜌2
]

(136)

where E[X ] is the expected value of X . When measuring in prac-
tice, calculating the function F𝜌2 (k) perfectly is not possible, and
so we need to make many copies of 𝜌2 and perform sufficient
measurements to assure a given confidence of fidelity. The de-
tails of which can be found in ref. [71].
Here we would like to note that besides being applicable to

any number of qubits, such a procedure can also be used for any
number of qudits, where we can use the 𝔰𝔲(N) algebra to gen-
erate a qudit Weyl function or a set of informationally complete
measurements on the manifold of pure states in SU(N).

Fidelity is a measure of how close a measured state is to some
target state. We may conversely be interested in a distance mea-
sure, that measures how far away (in Hilbert space) a given state
is from some target state. Such a distance measure is known as
the trace distance, where

dT (𝜌1, 𝜌2) =
1
2
‖𝜌1 − 𝜌2‖1 = 1

2
Tr
[√

(𝜌1 − 𝜌2)†(𝜌1 − 𝜌2)
]

(137)

where 1 −
√
𝖥(𝜌1, 𝜌2) ≤ dT (𝜌1, 𝜌2) ≤√1 − 𝖥(𝜌1, 𝜌2).

For a qubit, Equation (137) can instead be expressed in terms
of the Wigner function, where

dT (𝜌1, 𝜌2) =
(
∫Ω

[
W𝜌1

(Ω) −W𝜌2
(Ω)
]2
dΩ
) 1

2

=
(
∫Ω

[
W𝜌1−𝜌2 (Ω)

]2
dΩ
) 1

2

(138)

This can be seen by noting the two states can be expressed as

𝜌1 =
1
2
𝟙 + 1

2

∑
i

ai𝜎
i , 𝜌2 =

1
2
𝟙 + 1

2

∑
i

bi𝜎
i , and so

𝜌1 − 𝜌2 =
1
2

∑
i

(ai − bi)𝜎
i (139)

resulting in the trace distance being

dT (𝜌1, 𝜌2) =
1
4
Tr
⎡⎢⎢⎣
(∑

i

(ai − bi)
2𝟙

) 1
2 ⎤⎥⎥⎦ = 1

2

(∑
i

(ai − bi)
2

) 1
2

(140)

Similarly the Wigner function can be expressed

W𝜌1−𝜌2 (Ω) =
√
3
2

∑
i

(ai − bi)fi(𝜃,𝜙) (141)

from Equation (115) along with the properties in Equation (130).
This results in

∫Ω
[W𝜌1−𝜌2 (Ω)]

2 dΩ = 3
4 ∫Ω

(∑
i,j

(ai − bi)(aj − bj)fi(𝜃,𝜙)fj(𝜃,𝜙)

)
dΩ

= 1
4

∑
i

(ai − bi)
2 (142)

therefore

(
∫Ω
[W𝜌1−𝜌2 (Ω)]

2 dΩ
) 1

2

= 1
2

(∑
i

(ai − bi)
2

) 1
2

= dT (𝜌1, 𝜌2) (143)

Such a procedure can then be generalized to multi-qubit states.
Further, similarly to the calculation of fidelity, we can exchange

the integral over the continuous degrees of freedom by perform-
ing a sum over discrete degrees of freedom.Where the procedure
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can be applied to not only the Wigner function, but the all distri-
butions, albeit with a different normalization out the front.
We also note that alternatively, one can find the Monge dis-

tance with respect to the Q function.[96] This effectively calcu-
lated the distance between the centers of mass of two distribu-
tions. Given the non-negative property of the Q function, it can
be useful in translating procedures performed on classical proba-
bility distributions into quantummechanics. As such, it can also
be used in calculating the Rényi entropy. The Rényi entropy is
defined with respect to the Q function as [97,98]

SR = −∫Ω
Q𝜌(Ω) logQ𝜌(Ω) dΩ (144)

This result was extended to Wigner functions in ref. [99]; how-
ever, this is limited to the Heisenberg–Weyl case. We note here
that in the case of SU(N), one can simply use Equation (119) to
write Equation (144) in terms of the Wigner function.
The above set of equations provide a framework that show

how the phase-space representation of quantum mechanics can
prove a viable alternative to the more traditional density oper-
ator approach. All of the above can also be extended for any
choice of phase-space function, such as the Q , P, and Weyl func-
tions. And where the equations were specifically states for qu-
dit states, general expressions can be found to calculate these
values for SU(N) structures of even continuous-variable sys-
tems. Further to these measures there are other ways in which
phase-space methods have been useful to characterize a quan-
tum state, these are: measures of coherence[100,101]; phase-space
inequalities[102–105]; and the negativity in the Wigner function,
which plays an important role. The manifestation of these nega-
tive values provide nuanced details for each system. A closer look
into negative values will be considered next.

4.2. Negative Probabilities

Negative probabilities have been a subject of interest since the
early days of quantum mechanics. From the observation of neg-
ative values in the Wigner function, Dirac later discussed their
presence along with negative energies in 1942.[106] Dirac stated
that negative probabilities “should not be considered as non-
sense. They are well-defined concepts mathematically, like a neg-
ative of money.” This growing acceptance to the concept of nega-
tive probabilities then lead to a number of other people to take the
concept seriously. A more rigorous exploration was undertaken
two years later by Bartlett.[107]

Later, Groenewold argued that to satisfy other desirable prop-
erties of a quantum-mechanical probability distribution function
in phase space, it is necessary for negative probabilities to exist.[3]

In the 1980s, Feynman then gave a simple argument for the exis-
tence of negative probabilities in constructing a discrete Wigner
function.[14] Put simply, his argument was that negative probabil-
ities are no more nonsense than a negative quantity of anything
(in his example he gave apples), and that the negativity is just one
step in a total sum. The negativity is never considered in isolation.
Similarly, any probability over phase space needs to be aver-

aged over a quadrature, due to the inherent uncertainty of quan-
tum states. When a measurement is made over a quadrature, the

resulting probability is always non-negative. The Wigner func-
tion is unique among different phase-space distributions as it re-
sults in the correct marginals, see Equation (10).
But, what does the negativity actually tell us when it appears in

the Wigner function? It is generally accepted that it is a result of
quantum correlations, or quantum interference. By putting two
coherent states in a superposition, the coherences from the two
states will interfere creating oscillating positive a negative inter-
ference in between, that we interpret as quantum correlations.
This has led to results where the negative volume of a Wigner
distribution was calculated, where

V [W𝜌(Ω)] =
1
2

(
∫Ω

|||W𝜌(Ω)
|||dΩ − 1

)
(145)

which can be seen as an additional measure of quality derived
from the Wigner function. Such a measure can be used for any
continuous distrbution, and even composite systems.[108]

The full story is that this negativity is actually a consequence of
non-Gaussianity, a result that is known asHudson’s theorem.[109]

Consequently negativity does not capture the important quantum
correlations that arise from squeezing, in particular two-mode
squeezing. Which, since the state is a squeezed Gaussian, has no
negative quasi-probabilities. So some care needs to be taken in
using negative volume as a measurement of quantumness, non-
classicality, entanglement and so on. That being said, it does not
mean negativity should not be used, and there have been many
results showing its use.[110–113] It just may be more important to
look at the context in some cases, and look for how correlations
manifest in particular ways.
In the same way, the interpretation of negative values in dis-

crete quantum systems needs some care. Any coherent, single-
qubit state generated by the Stratonovich kernel will exhibit neg-
ative values. The maximum positive value is in the direction that
the Bloch vector is pointing, as we deviate from that point over
phase space, the probability slowly decreases to zero and then
negative, where themaximal negative value is at the point orthog-
onal to the Bloch vector. Because of the term “classical states” for
coherent states, this tends to lead to the confusion that coher-
ent qubits states, such as the standard choice of basis in quan-
tum information | ↑⟩ and | ↓⟩, are classical. This term “classical”
is just a misnomer, a qubit state is fundamentally non-classical,
likewise with any quantum coherent state. By definition, any co-
herent qubit state is quantum; the only non-quantum state that a
qubit can exist in is the fully mixed state. Negativity can therefore
be used as a sign of quantumness, but it is not necessarily a sign
of entanglement.
One could also make the argument that this negativity can be

considered a sign of superposition, as |0⟩ is a superposition of
(|0⟩ + |1⟩ )∕√2 and (|0⟩ − |1⟩ )∕√2, and in fact any pure state for
a qubit is the superposition of two antipodal pure states. In this
way, the negativity is a result of this and the overall symmetry
of qubit states; this really shows the beauty of the Stratonovich
kernel, how it presents the symmetry in coherent qudit states,
where every N-level coherent state is just the SU(N) rotation of
the chosen ground state.
If one decides that this symmetry is not so important and

require that specific spin coherent states are non-negative, then
they can consider the Wootters kernel instead. The main benefit
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Figure 2. Examples of the phase space distribution of the Dicke state |j, j − 1⟩, also known as the W state if considered as the symmetric state of 2j
qubits, from ref. [60]. Note that the J in the figure corresponds to our j in the text. (a) shows the Dicke state for j = 10 where F|W⟩(𝜃,𝜙, s) shows that this
is the s-valued phase-space function for the W state. As with Equation (102) s = 0 corresponds to the Wigner function and s = ±1 refers to the P and
Q functions, respectively. Intermediate values of s have also been taken in between. (b) shows the Wigner function where the value of j increases from
j = 30 up to the limit j → ∞, showing that the W state tends toward the 1-photon Fock state as j → ∞. Reproduced with permission.[60] Copyright 2020,
American Physical Society.

to the Wootters kernel is that the eigenstates of the Pauli ma-
trices all produce non-negative Wigner functions. In fact, if an
octahedron is drawn within the Bloch sphere, where the vertices
are the eigenstates of the Pauli matrices, the discrete Wigner
function for every state that lies on and within this octahedron
is non-negative. These are the so-called magic states,[114] if
a pure state rotates between any of these magic states, then
negativity arises—a result that is made clear by considering
the Wootters kernel as a subset of the Stratonovich kernel.
This gives rise to the literature on the equivalence between
Wigner function negativity and contextuality, and further work
on magic state distillation, proving to be an advantage to choose
the Wootters kernel over the Stratonovich kernel.[25–30,115] The
negativity that arises from using Wootters kernel can further be
summarized by considering the extension of Hudson’s theorem
for finite-dimension systems produced by Gross.[21]

Alternatively, when using the Stratonovich kernel, one could
consider an analog of Hudson’s theorem to apply to the decreas-
ing volume of negativity in the highest weighted state, |j, j⟩, as
j → ∞. At the infinite limit, the state becomes Gaussian and the
Heisenberg–Weyl group is reached—the highest weighted state
is simply the non-negative vacuum state. In the same way, by
choosing the Dicke state with one energy level lower |j, j − 1⟩, as
j → ∞ this slowly transforms into the one-photon Fock state, as
is shown in Figure 2. In Figure 2a, we see the phase-space repre-
sentation of the Dicke state |j, j − 1⟩ where j = 10; this also shows
how the state is represented in phase space for different values
of s, including giving a good demonstration of how negative val-
ues arise for different parameterizations. We then focus on the
Wigner function in Figure 2b, where we can see how this Dicke

state goes to the 1-photon Fock state at the limit j → ∞. Similar
results can also be seen from taking the limit j → ∞ for any Dicke
state, where |j, j − n⟩ → |n⟩, the n-photon Fock state.
4.3. Methods for Optical Systems

Phase-space methods have gained much attention in the optics
community, where there is a large collection of books on quan-
tum optics that include in-depth treatment of phase-space meth-
ods and the application thereof. This will therefore not be a thor-
ough account of the advancements made in quantum optics us-
ing these methods, we will instead just point out some results
we find particularly interesting and will prove useful later in this
section. For anyone who wants to read more deeply into the ap-
plication of phase-space methods in quantum optics, we sug-
gest the following heavily truncated list of books on quantum
optics.[116–120] There have been further, in-depth reviews of the
use of the Wigner function in optical systems[121,122] and in the
use of optical quantum computing.[123,124]

When generating the Wigner function experimentally, there
are many approaches one can take. The two we are interested in
here are first the generation of the density operator and then fol-
lowing Equation (2) to produce theWigner function. The second
is to take direct measurements of points in phase space, by pass-
ing the need to calculate the full density operator. The real power
of measuring quantum systems in phase space comes in realiz-
ing the displaced parity formalism of the kernel. By realizing the
invariance of cyclic permutations of elements within a trace oper-
ation, it is clear that the Wigner function generation can be seen
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as the parity measurement of a displaced state:

W𝜌(𝛼) = Tr
[
𝜌 Π(𝛼)

]
= Tr
[
𝜌 D (𝛼)ΠD †(𝛼)

]
= Tr
[
D †(𝛼)𝜌 D (𝛼)Π

]
= Tr
[
𝜌 (−𝛼)Π

]
(146)

where D (−𝛼) = D †(𝛼), and 𝜌 (𝛼) = D (𝛼)𝜌 D (𝛼)† is the rotated
density operator.
This insight amounts to an experimental procedure of creating

the quantum state, then displacing the state by some value 𝛼 and
then measuring this state. At this point the parity operator can
be applied through classical computation of diagonal elements,
or by following the procedure in ref. [125], one can perform a
parity measurement by coupling the optical state to a two-level
atom, where the two levels act as the ±1 parity values.
Direct measurement of the Weyl function, on the other hand,

has not gained so much attention. Similarly to the measurement
of the Wigner function, this can be executed by coupling to a
qubit, where instead of taking parity measurements, the qubit
is measured in the x and y Pauli basis. Following the procedure
laid out in refs. [126, 127], we start by coupling the optical state,
𝜌f with a qubit in the state |+⟩ = (| ↑⟩ + | ↓⟩ )∕√2, such that
𝜌tot(0) = |+⟩ ⟨+| ⊗ 𝜌f (147)

We then perform the unitary transformation

𝜌tot(�̃�) = 𝖱(�̃�)𝜌tot(0)𝖱
†(�̃�), where

𝖱(�̃�) = exp
(1
2
𝜎𝗓 ⊗

[
a† �̃� − a �̃�∗

])
(148)

note that this is the Pauli z operator with the displacement opera-
tor with a factor of a half. Once the state has been prepared in the
appropriate point in phase space, 𝛼, the qubit is then measured
in either the x or y basis, resulting in

𝜒 (0)
𝜌
(�̃�) = ⟨𝜎𝗑 ⟩ + i⟨𝜎𝗒 ⟩ (149)

where ⟨𝜎𝗑 ⟩ = Tr[𝜎𝗑 𝜌tot(�̃�)] and ⟨𝜎𝗒 ⟩ = Tr[𝜎𝗒 𝜌tot(�̃�)]. We note
that a similar procedure can be performed by coupling a qubit to a
qudit to generate theWeyl characteristic function for qudit states.
Once we have generated the Weyl function, we can use Equa-

tion (19) to perform a simple Fourier transformation to generate
any quasi-probability distribution function. An important part of
the analysis of optical states is the investigation of different trans-
forms of this Weyl characteristic function, in order to reveal cer-
tain quantum effects that are more difficult to see. One such case
where this approach is insightful is when considering two-mode
squeezed states. Such states are Gaussian and so have no nega-
tive values, despite being highly entangled. Generating a charac-
teristic function and then filtering to a quasi-probability can re-
sult in negative values.[128,129] Allowing a phase-space analysis of
such states.[102,130] A similar approach has also been taken for an-
alyzing discrete states.[131] An experimental way to achieve these
results should be possible in combination with an extension of
Equation (149).

4.4. Measuring Qubits in Phase Space

By building on the techniques used to measure phase space for
continuous variable systems, it is possible to visualize discrete
variable systems in phase space. Some early work sought to first
recreate the density operator for the state, before applying the ap-
propriate kernel. One such example of this method was to show
the creation of an atomic Schrödinger cat state in an experiment
using a Rydberg atom with angular momentum j = 25.[132] This
work takes the atom as a large angular momentum space, with a
Hilbert space of dimension 51.
Alternatively, one can measure a multi-qubit state by consid-

ering the collection of symmetric subspaces that the full Hilbert
space is made up of, in a tomography method known as DROPS
(or discrete representation of operators for spin systems).[82–85]

Other methods would rely on taking the j = n∕2 symmetric sub-
space of an n-qubit system, the power of using the DROPS
method is that you get much more information about the state—
including information about antisymmetric states such as the
two-qubit singlet state, which cannot be represented by the j = 1
symmetric subspace. Another benefit of this method is that the
authors have made vast libraries of results available, including
code to generate these functions.[133]

The methods already mentioned rely on the full construction
of the density matrix for the state, requiring full tomography
before a phase-space representation can be constructed. As the
number of qubits increases, this can get exponentially difficult,
we therefore desire methods to represent a quantum state in
phase space that don’t require full density matrix reconstruction.
Our main focus from now on is the Wigner function and to

present results that utilize the displaced parity structure of the
kernel, where we can imitate the Heisenberg–Weyl group result
from Equation (146). By using the framework outlined in Sec-
tion 3, these results can be adapted into whichever phase-space
distribution is preferred, as they are all informationally com-
plete representations of a quantum state. First we will consider
the simplest case of phase-space functions generated by a single
SU(2) kernel construction from Equation (101). This will then be
followed up with utilizing Equation (121) to show how a compo-
sition of single-qubit kernels can be used to measure the phase
space of quantum states directly.
Adapting Equation (146) for use in general SU(2) systems

results in

W𝜌(𝜃,𝜙) = Tr
[
𝜌 ΠM

2 (𝜃,𝜙)
]
= Tr
[
𝜌 UM

2 (𝜙, 𝜃,Φ)Π
M
2 U

M
2 (𝜙, 𝜃,Φ)

†]
= Tr
[
𝜌 (𝜙, 𝜃,Φ)ΠM

2

]
=
⟨
ΠM
2

⟩
𝜌 (𝜙,𝜃,Φ)

(150)

where 𝜌 (𝜙, 𝜃,Φ) = UM
2 (𝜙, 𝜃,Φ)

†𝜌 UM
2 (𝜙, 𝜃,Φ). The procedure is

to rotate the generated state 𝜌 to a desired point in phase space,
creating the state 𝜌 (𝜙, 𝜃,Φ), followed by taking the appropriate
generalized parity measurement for the group structure.
When experimentally measuring phase space the way that

Equation (150) is practically implemented depends onmany fac-
tors, including the system that is being measured and how the
measurement results are collected. This means that practically,
the rotation and generalized parity measurement needs to be put
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Figure 3. Examples of phase-space measurement performed on a single qubit. (a,b) are results and figures from ref. [95], (c,d) are similarly from ref.
[134]. In both cases, the Wigner function for a single-qubit state has been constructed, where (a) and (b) have created an eigenstate of 𝜎𝗒. (a) compares
the results from experimental and theoretical construction. (b) shows the same state as it decoheres, plotting the fidelity over time, with snapshots
of the Wigner function at three points of decoherence. (c) and (d) show an eigenstate of 𝜎𝗑, where similarly (c) shows the theoretical plot for this
state. (d) shows the experimental results of points in phase space. The dots with error bars are the experimental results, where the curves are the
theoretical values, showing good comparison between the experimental and theoretical values. (a,b) Reproduced with permission.[95] Copyright 2019,
AIP Publishing. (c,d) Reproduced with permission.[134] Copyright 2018, American Physical Society.

in the right context. Two examples of this when measuring a sin-
gle qubit can be found in recent works, ref. [134] and ref. [95],
where in ref. [134] the authors measured a two-level caesium
atom, and in ref. [95] authorsmeasure a state produced in a nitro-
gen vacancy center in diamond. In both cases, they first produced
a state in a superposition of the excited and the ground state.
Using Equation (150) by applying pulses to rotate this state by

values of 𝜃 and 𝜙 to given point in phase space. Projective mea-
surements are then taken at each point in phase space, resulting
in the spin projection probabilities pm(𝜃,𝜙) form = ±1∕2. These
projective measurements can be expressed as

p± 1
2
(𝜃,𝜙) = Tr

[
𝜌 U1

2 (𝜃,𝜙)P± 1
2
U1

2 (𝜃,𝜙)
†
]

(151)

where the P± 1
2
are the projectors of the eigenstates of 𝜎𝗓 ∕2 with

eigenvalues ±1∕2, respectively. These can also be thought of as
the diagonal entries of the density matrix 𝜌 (𝜙, 𝜃, 0) from Equa-
tion (150).
The generalized parity is then applied to the spin projection

probabilities by calculating

W(𝜃,𝜙) =
1∕2∑

m=−1∕2
pm(𝜃,𝜙)

[
Π1
2

]
mm

= 1
2

[
1 +
√
3
(
p 1

2
(𝜃,𝜙) − p− 1

2
(𝜃,𝜙)

)] (152)

where [ΠM
2 ]mm is the mth diagonal entry of the generalized par-

ity operator. Note that here we are using the same normalization

of the Wigner function used throughout the text, where as the
results in ref. [134] and ref. [95] differ by a factor of 2𝜋.
Results from the two experiments are shown in Figure 3,

where Figure 3a,b show the results from ref. [95] and Figure 3c,d
are the results from ref. [134]. In ref. [95], they measured 1200
points in phase space, where the values of 𝜃 are separated by
a step size of 𝜋∕60 and the values of 𝜙 have a step size of
𝜋∕10. They also demonstrated the consequence of decoherence
on the Wigner function for this state, Figure 3b shows how the
phase space flattens as the fidelity decreases. Figure 3c,d show
the second experiment. Figure 3c is the theoretical calculation of
the Wigner function. Figure 3d shows the experimental results,
shown as dots with error bars, compared to the theoretical curves;
showing good agreement between experiment and theory.
Like with theWigner function for optical systems, phase-space

methods prove useful for showing the coherence in qubits. How-
ever, for systems of qubits to be useful for the advancement of
quantum technology, it is important to consider multi-qubit sys-
tems. This is where the power of phase-space methods becomes
more apparent.
For a single qubit, full tomography is not that difficult a task,

and requires fewer measurements than measuring all of phase
space. However, when the number of qubits increases, the size
of the Hilbert space increases exponentially, and so measuring
points in phase space becomes more of a viable alternative.
As we have already mentioned, there are twomain approaches

to represent a multi-qubit state. We start with the symmetric
subspace, where we are limited to considering symmetric states
of composite qubits. In many situations, symmetric states are
all that are desired from the output for use in computational
settings or metrology. Examples of such symmetric states are
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coherent states[32–34]; GHZ states[135] or, more generally, atomic
Schrödinger cat states[78]; W states, or Dicke states[80]; and
spin-squeezed states.[78,136,137]

It is therefore important to understand how we can directly
measure the phase space of these larger Hilbert spaces, present-
ing an alternative to traditional tomographical methods. It has
already been noted that the Wootters-kernel Wigner function can
be seen as being a sub-distribution of the Wigner function gen-
erated with the Stratonovich kernel. Since both functions are
informationally complete, this means that by taking four care-
fully chosen points in phase space, the full state can be recon-
structed. In fact, these points don’t need to be the four that map
the Stratonovich kernel to the Wootters kernel, they just need to
be appropriately distributed around the phase space.
Similarly, it is possible to reconstruct the full quantum state,

and therefore the full phase-space distribution, by taking a subset
of phase-point measurements for any value of j. It was shown in
ref. [60] that one can similarly reconstruct the full state by mea-
suring a finite number of points. This can be realized by general-
izing Equation (152) to an SU(2) Hilbert space of any arbitrary
dimension, where

W(𝜃,𝜙) =
j∑

m=−j
pm(𝜃,𝜙)

[
ΠM
2

]
mm

(153)

note here we have restricted discussion to the Wigner function,
but this can easily be generalized to any phase-space function,
see ref. [60] for more details.
By using the result from Equation (99), that the kernel can

be generated from tensor operators and spherical harmonics,
points in the phase space can be redefined in terms of a spher-
ical harmonic expansion, with coefficients clm that correspond
to the spherical harmonic Ylm(𝜃,𝜙). The full phase-space func-
tion can then be reconstructed by calculating clm from theWigner
function at (4j + 2)2 points in phase space,W(𝜃a,𝜙b), where 𝜃a =
a𝜋∕(4j + 2) and 𝜙b = 2b𝜋∕(4j + 2).
Note that the 4j + 2 points are put as a lower bound, and more

points may be necessary given the intricacies of the state and
phase space being measured. However, it is also noted in ref.
[60] that this is just the case by equally distributing the angles
over phase space resulting in bunching at the poles; using other
methods to distribute points over the sphere, such as taking a
Lebedev grid[138–140] may reduce the number of points in phase
space needed for reconstruction. For example, taking the case
where j = 1∕2 would result in 16 points in phase space, where
we know from Equation (76) the full state can be reconstructed
from 4 points in phase space, distributed as a tetrahedron over
the surface of a sphere. It stands to reason that this reduction
in points will scale as we increase j. A method to reduce these
points for specific states was demonstrated in ref. [141]. We add
that since these (4j + 2)2 points in phase space constitute an in-
formationally complete set of measurements, one could then
adapt Equation (135) to calculate the fidelity from these points
in phase space.
Alternatively, to measure systems of multiple qubits, we can

consider a kernel that is the composition of multiple SU(2) ker-
nels from Equation (121). As was shown in Equation (121),
measurement of the phase space for such a composite state
can be performed by local rotations on each qubit and then

taking a generalized parity measurement of the resulting state.
Each qubit then has two degrees of freedom from the local
rotations, this then results in a function that has 2n degrees of
freedom.
In order to make sense out of this many degrees of freedom,

it is necessary to choose certain slices of this high-dimensional
phase space. The most natural choice is to take the equal-angle
slice, this is where the number of degrees of freedom is reduced
to two, (𝜃,𝜙), where we set every 𝜃 equal, such that 𝜃1 = 𝜃2 = ⋯ =
𝜃n = 𝜃. Likewise, we set all the𝜙 degrees of freedom to equal each
other. The reason this is a natural choice is because the result-
ing phase-space function shares similarities with the symmetric
subspace variant. For example a j = n∕2 two-component atomic
Schrödinger cat state is similar to the equal angle slice of an n-
qubit GHZ state, where in both cases the Wigner function has
two coherent states orthogonal to one-another, say at the north
and south pole, with n oscillations around the equator between
the two coherent states. These oscillations are the signature of
quantum correlations arising from superposition in Schrödinger
cat state and entanglement in GHZ states. In fact, there are sim-
ilarities between any symmetric n-qubit state in the equal-angle
slice and the corresponding j = n∕2 function. It’s also worth not-
ing that for an n-qubitQ function for a symmetric state, the equal-
angle slice is indistinguishable to the j = n∕2 Q function for the
comparable state.
The equal-angle slice for the Wigner function was also shown

to be useful in considering the graph-isomorphism problem.[142]

It was shown in ref. [142] that if you produce two graph
states[143,144] from isomorphic graphs, then their equal-angle
slices are equivalent, since taking the equal-angle slice can be
thought of as an analogy of disregarding qubit, and in this
case node, order. It was further shown in ref. [142] that non-
isomorphic graphs have distinguishable equal-angle slices. How-
ever the results get more difficult to analyze as the number of
qubits increase, as the detail in the Wigner function gets more
and more intricate as the size of the Hilbert space increases.
Apart from the equal-angle slice, there are many choices one

may prefer to use, depending on whatever characteristic correla-
tions may arise within the system of interest. And some of these
different choices, along with the equal-angle slice, will be consid-
ered in more detail here.
Starting with the simplest case of a composite system, we will

consider bipartite entanglement between two qubits. Two qubits
famously exhibit entanglement in the well-known maximally en-
tangled Bell states, explicitly

||Φ±
⟩

= 1√
2
(|↑↑⟩ ± |↓↓⟩ ) ||Ψ±

⟩
= 1√

2
(|↑↓⟩ ± |↓↑⟩ ) (154)

where | ↑↑⟩ is shorthand for | ↑⟩ ⊗ | ↑⟩. Apart from the equal-
angle slice, there are other slices one can take to gain an un-
derstanding of the quantum correlations present within the sys-
tem. One such example was shown in ref. [48], where the slice
𝜙1 = 𝜙2 = 0 was taken and the resulting 𝜃1 and 𝜃2 degrees of
freedom were plotted against each other. An example of this slice
for |Φ−⟩ and |Ψ+⟩ from ref. [48] is shown in Figure 4a. Two-
qubit Bell-type entanglement in the Wigner function manifests
in this slice as oscillations between negative and positive quasi-
probabilities in phase space. Figure 4a shows theoretical results

Adv. Quantum Technol. 2021, 4, 2100016 2100016 (22 of 29) © 2021 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 4. Examples of phase-space measurement performed on multi-qubit systems with a composite kernel calculation. (a–c) are results and figures
from ref. [48], and (d–f) are from ref. [64]. In all cases, a composite generalized displaced parity form has been taken to measure the phase space of these
states. (a) shows two two-qubit maximally entangled Bell states, where theoretical plots are shown, followed by simulated and experimental results that
are both from IBM’s qx. (b) and (c) then show results of measuring a five-qubit GHZ state. (b) shows the equatorial slice – equally spaced points
around the equator of the equal-angle slice. (c) shows the full theoretical equal-angle slice with chosen points in phase space measured. (d) and (e) are
Q functions of points in a single-axis twisting evolution, where (d) are theoretical simulations and (e) are the experimental measurement results.
The resultant states are a spin coherent state, a squeezed spin coherent state, followed by five-, four-, three-, and two-component atomic Schrödinger
cat states in order from left to right. The last panel shows the corresponding Wigner function for the five-component atomic Schrödinger cat state.
(f) shows the equivalent to the equatorial slice from (b) onN-qubit GHZ states where the 𝜎𝗓 operator is used as the generalized parity operator. (a)–(c)
Reproduced with permission.[48] Copyright 2016, AIP Publishing. (d)–(f) Reproduced with permission.[64] Copyright 2019, The American Association
for the Advancement of Science.

for what should be measured at 81 points in phase space for
these two states, along with what was actually measured using
IBM’s qx.
There are further ways to view phase space for bipartite entan-

glement, for instance the approach in works such as ref. [145]
consider bipartite entanglement between two states that have
larger Hilbert space, demonstrating the entanglement between
two Bose–Einstein condensates. In ref. [145], the authors consid-
ered the Wigner function of these states by taking a marginal
Wigner function and a conditional Wigner function. The
marginal Wigner function is simply the Wigner function for one
of the states, which can be calculated for either the reduced den-
sity matrix or by integrating out one set of degrees of freedom

W1(Ω1) = Tr
[
𝜌 1 ΠM

2 (Ω1)
]
= ∫Ω2

W(Ω1,Ω2) dΩ2 (155)

where 𝜌 1 = Tr2[𝜌 ] is the reduced density matrix for the first sub-
system.Note that for amaximally entangled Bell states, taking the
marginalWigner function results in a completelymixed state that
has a value of 1∕2 everywhere, see the video in the supplemen-
tary material of ref. [48] for an example of this. The conditional
Wigner function is calculated by projecting a state onto the ba-
sis states of one of the subsystems, more details can be found in
ref. [145].

As the number of qudits increases, the choices of slice be-
comes more difficult, due to the increasing number of degrees
of freedom. In this case, the n-qudits can be represented by n
marginal distributions, however if there is any entanglement
present these become less useful. As a default, the equal-angle
slice is the simplest starting point to getting an idea of the corre-
lations that manifest in phase space.
Examples of the equal-angle slice have been shown to be use-

ful in characterizingmulti-qubit states inmany experimental set-
tings, where there have been examples ranging from three-qubit
states up to 20-qubit multi-component Schrödinger cat states. In
ref. [146], the authors created entangled states of three qubits,
generated by two photonic qubits and a further path-encoded
qubit. Through this method they generated a cluster GHZ state
and a W state.
As we move up to a five-qubit state in Figure 4b and Figure 4c,

we can see there are now five oscillations. When plotting on a
sphere, the variation in the 𝜙 degrees of freedom for 𝜃 = 𝜋∕2 lies
on the equator. This gives rise to the name “equatorial slice”. The
equatorial slice on its own has been plotted in Figure 4b with
both theoretical and experimental results plotted, where there
has been a least-squares best-fit curve plotted for the experimen-
tal data. By looking for these oscillations around the equator, this
test serves as a verification of the generation of GHZ-type entan-
glement. Although there is clearly a lot of noise in the machine,
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the oscillating behavior shows that a considerable about of GHZ-
type entanglement remains in the state.
Figure 4b considers this equatorial slice taking measurement

with the Wigner function parity operator. However, this may not
always be the most desirable choice to look for these oscillations,
since as the number of qubits increases, the amplitude of the
oscillations steadily decreases. Alternatively, one can try different
choices of generalized parity operator, such as in ref. [64] where⨂
𝜎𝗓 was taken, as can be seen in Figure 4f. Experimental results

for taking the equatorial slice using this parity is shown for 10, 12,
14, 16, 17, and 18 qubits in Figure 4f, showing good agreement
between theory and experiment.
We note that the use of the 𝜎𝗓 operator as a parity operator

does not satisfy the Stratonovich–Weyl correspondence, requir-
ing some extra assumptions for informational completeness, see
Equation (62) and the discussion around it. However, if we are
measuring the state of a quantum system it is safe to make the
relevant assumptions—that the operator is trace 1. The kernel
𝜎𝗓 (𝜃,𝜙) = U1

2 (𝜃,𝜙)𝜎
𝗓 U1

2 (𝜃,𝜙)
† can then be considered as a gen-

eralized observable, creating a characteristic function that has a
Hermitian kernel, where the Pauli operators 𝜎𝗑, 𝜎𝗒, and 𝜎𝗓 are
yielded by setting (𝜃,𝜙) = (−𝜋∕2, 0), (𝜃,𝜙) = (−𝜋∕2,−𝜋∕2), and
(𝜃,𝜙) = (0, 0), respectively. This allows a direct comparison to ver-
ification and fidelity estimation protocols, for example, refs. [76,
147] and the fidelity estimation results in Section 4.1.
The experiments from ref. [64] were performed using a

20-qubit machine that generated entangled states by em-
ploying a single-axis twisting Hamiltonian.[78] The single-axis
twisting Hamiltonian also creates different multi-component
Schrödinger cat states throughout evolution before reaching the
bipartite GHZ state. Figure 4d,e shows snapshots of different
points in the evolution in the Q function representation. Show-
ing the Q function for a spin coherent state and a spin squeezed
state, followed by a five-, four-, three-, then two-component
atomic Schrödinger cat state. These figures show the power of the
Q function to demonstrate the presence of spin coherent states,
however it is lacking in the ability to show the level of quantum in-
terferences between states. In the last panel, the authors show the
Wigner function for the five-component Schrödinger cat state,
where the presence of negative values between each spin coher-
ent state demonstrates the presence of quantum interference and
therefore entanglement.

4.5. Hybrid Continuous- Discrete-Variable Quantum Systems

Wenow look intoways tomeasure the phase-space distribution of
states that are hybridizations of continuous- and discrete-variable
systems. Many experiments and processes that consider the state
of qubits also implicitly involve the presence of quantum light.
Likewise, many optical experiments also involve the interaction
with some kind of atom, whether or not artificial. This interac-
tion is the foundation of quantum electrodynamics and circuit
quantum electrodynamics.
Conversely, the continuous-variableWigner function can serve

as the position andmomentum of an atom, so creating a compos-
ite function of discrete a continuous variables may be interpreted
as the atomic state depending on its position and momentum.
This was shown useful to consider in ref. [148] when looking at

the full Wigner function of an atom. By taking this composite
approach there is much insight to be gained, from properties of
light–matter interaction to other phenomena such as spin–orbit
coupling. In this section we will focus on the former application
as it more directly applies to use in quantum technologies.
There are many ways phase-space methods can be used

in discerning correlations that arise in the interaction be-
tween continuous- and discrete-variable systems. Like in Equa-
tion (155) for two qudits, it is usual to simply consider the
marginal functions for each system individually, tracing out ei-
ther the discrete-variable system or the continuous-variable sys-
tem. This is also implicitly the case in measuring the Wigner
function in qubit experiments when using quantum states of
light to manipulate qubits. In theory, the qubit state should not
have any correlations with the optical state, however there will
always be some leakage, interpreted as decoherence in the qubit.
On the other side, it is typical to just consider the optical state

in a light-matter interaction. An important example is the gener-
ation of an optical Schrödinger cat state. In such experiments, it
is normal to entangle light with a two-level atom, by doing this
one can then split the light into the superposition of two coher-
ent states, generating a Schrödinger cat state.[47] At the point of
measurement of the optical state, the goal is to produce separa-
ble atomic and optical states, and therefore minimizing decoher-
ence in theWigner function. Like in the previous case, there may
be some correlations that exist between the qubit and the field,
therefore it may be more desirable to have an idea of the correla-
tions that exist between the two systems.
Different examples of how one can plot such hybrid states are

shown in Figure 5. We present some theoretical methods dis-
played in Figure 5. We will then discuss how some of these meth-
ods have been implemented experimentally and the future pos-
sibilities of measurement of hybrid quantum systems.
We will first give examples of the results when taking the

marginal Wigner functions, calculated

W(𝛼) = 1
4𝜋 ∫

2𝜋

0 ∫
𝜋

0
W(𝛼, 𝜃,𝜙) sin 𝜃 d𝜃d𝜙 (156)

W(𝜃,𝜙) = 1
2𝜋 ∫

∞

−∞
W(𝛼, 𝜃,𝜙) d2𝛼 (157)

For the separable states, |0⟩ | ↑⟩ and |0⟩ | ↓⟩, shown in Fig-
ure 5a,b, the marginal functions are as expected, in both cases
the HWWigner function is the vacuum state and the qubit is in
the | ↑⟩ and | ↓⟩ state, respectively. Figure 5c show the marginal
Wigner functions for the state (|0⟩ | ↓⟩ + |1⟩ | ↑⟩ )∕√2 – a hybrid
analog of a Bell state. As a result, the quantum correlations are
non-local and the marginal Wigner functions are mixed states.
Where the qubit state is maximally mixed, which can be seen in
Figure 5c(ii) with a constant value over the whole distribution.
Note that we have chosen an alternative projection to display

the qubit state. We have used the Lambert azimuthal equal-area
projection,[150] in order to display the qubit completely. It is simi-
lar to a stereographic projection with the north pole in the center,
however the south pole is now projected to a unit circle, rather
than to infinity. The function is then distributed around the disk
to preserve the area—which is an important property when con-
sidering probability distributions. This results in the equator of
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Figure 5. Examples of hybrid continuous and discrete variable systems in phase space. We show various ways to display different states in phase space.
(a) shows different representations of |0⟩ | ↑⟩. Likewise (b) shows different representations of |0⟩ | ↑⟩. The last state, which is shown in (c), is a hybrid
Bell state (|0⟩ | ↓⟩ + |1⟩ | ↑⟩ )∕√2. For each state there are five different plots. In each (i) we show the marginal function for the HW Wigner function,

with colorbar values 𝜂 = 2, similarly in (ii) is the marginal Stratonovich Wigner function for the qubit where the colorbar values are 𝜂 = (1 +
√
3)∕2. We

can see that for the two separable states in (a) and (b) that the two marginal functions are pure states, conversely we see in (c) that the entangled
state produces mixed states in the marginal functions, where the qubit has a uniform value over the distribution. Note that the qubit has been plotted
in a Lambert azimuthal area preserving map, see text for details. In (iii) we have plotted the density matrix for the qubit, where in each entry we show
the HW Wigner function. Similarly in (iv) we have a composition of the discrete Weyl function where in each entry the HW Wigner function has been
plotted, note that this corresponds to taking Pauli measurements of the qubit and then plotting the HW Wigner function, as a result the marginal HW
Wigner function is appears as the identity measurement of the qubit. In both (iii) and (iv) the colorbar values are 𝜂 = 2. Finally in (v) we show a hybrid

representation developed in refs. [148, 149] which have colorbar values 𝜂 = 1 +
√
3.

the sphere existing on the concentric circle with radius 1∕
√
2. For

a more in-depth explanation of this projection for use in phase-
space methods see the text and appendices of ref. [65].
The Lambert azimuthal equal-area projection was also taken

in ref. [81] where the authors also considered marginal Wigner
function for both subsystems. Thework in ref. [81] considered the
Tavis–Cummings interaction[79] between an optical cavity and an
atomic j = 5∕2 state initially in an atomic Schrödinger cat state.
By considering the Wigner functions of both systems, it is then
insightful to visualize the transfer of the Schrödinger cat states
between the two systems. Demonstrating how one can overcome

decoherence in quantum systems by coupling a large atomic state
to an optical mode. However, this lacks the consideration of the
non-local correlations between the two systems, and any entan-
gled state will result in Wigner functions similar to Figure 5c(i)
and (ii).
To get a sense of these non-local correlations a hybridization

approach is needed. One approach has been to hybridize a
density matrix for a qubit with the Wigner function for the field
mode. This results in a 2 × 2 grid, representing the entries of the
qubit density matrix, where on each entry of the density matrix
the corresponding Wigner function for the field mode is shown.
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We can label this Wigner function w(i, j), where i, j ∈ {0, 1},
such that

w(i, j) = Tr
[(|i⟩ ⟨j|| ⊗ Π(𝛼)

)
𝜌
]

(158)

where 𝜌 is the state for the full system. Such an approach re-
veals much more about the non-local correlations between the
two systems, and can be found in works such as refs. [151, 152].
Examples of this approach are shown in Figure 5(iii). Note that
the real value has been taken, which does not make a difference
for the first two states. However, (|0⟩ | ↓⟩ + |1⟩ | ↑⟩ )∕√2 has an
imaginary component on the off-diagonal entries that has been
ignored. Since we’re concerned with eigenstates of 𝜎𝗓, the local
terms are shown in diagonal entries and the non-local correla-
tions can be seen in the off-diagonal entries, which is clearly seen
in Figure 5c(iii). A similar approach was taken in ref. [153] where
one can generate a nonclassicality quasi-probability matrix to ex-
plore.
Alternatively one could take Pauli measurements of the qubit,

and then calculate the HW Wigner function in that basis, the
resulting distribution is shown in Figure 5d and can be consid-
ered as a hybridization of the discreteWeyl function with theHW
Wigner function, where

(z, x, 𝛼) = Tr
[(2(z, x)⊗ Π(𝛼)

)
𝜌
]

(159)

Similarly to the density matrix approach this produces a 2 × 2
grid, where this time the elements correspond to Wigner func-
tion, yielding a joint quasi-probability distribution. For each state,
we take an identity measurement, this is equivalent to taking the
marginal HW Wigner function, where the equivalence can be
considered with Figure 5c(i).
Such a method has gained much interested in practice, where

these exact states were considered in ref. [154], where the au-
thors took measurements in the Pauli basis at different points
in position-momentum phase space. By building up measure-
ment statistics each point in phase space was then represented
by the expectation value of the given Pauli operator at this point
in phase space. Similar results that consider entanglement be-
tween a qubit and a Schrödinger cat states have also shown how
this method is useful for characterizing entanglement.[155,156]

Alternatively we can consider a different method to hybridize
Wigner functions for the two systems. One could hybridize the
Wootters Wigner function with the HW Wigner function in
a similar way to coupling the density matrix, as was done in
ref. [157]. However here we want to consider hybridizing the
Stratonovich–Kernel Wigner function with the the HW Wigner
function.[148,149] At each point �̇� we can plot the Wigner function
for the qubit, producing a lattice of Wigner functions where

W(�̇�, 𝜃,𝜙) = Tr
[(
Π(�̇�)⊗ Π1

2(𝜃,𝜙)
)
𝜌
]

(160)

We can then add transparency to each of the spheres according
to the maximum value of the Wigner function at that point �̇�,
max𝜃,𝜙W(�̇�, 𝜃,𝜙), resulting in an envelope over the distribution.
Examples of this are given in Figure 5a–c(v), where for the sep-
arable states we can see the envelope of the vacuum state. At ev-
ery discrete point in position and momentum phase space we
then see the | ↑⟩ state, in Figure 5a(v), and the | ↓⟩ state in Fig-

ure 5b(v). Like with the Wootters Wigner function, when there
are non-local correlations between the two systems, we see a de-
pendence between the degrees of freedom.Where in Figure 5c(v)
we can see a radial dependence on the state of the qubit.
All these methods provide different snapshots into such cou-

pled systems and in combination build up an understanding
into the of these types of non-local correlations. We also see cer-
tain overlap between different methods of plotting such systems,
which further allows us to get a sense of the overall picture of
coupled quantum systems in phase space.

5. Conclusions and Outlook

In this review, we have explored the phase-space formulation of
quantum mechanics, considering how different systems can be
represented in phase space. Our focus was providing the frame-
work to represent discrete-variable systems in phase space, in
particular the different ways single- and multi-qubit states can
be considered.
We provided the general framework to generate an informa-

tionally complete phase-space distribution from any arbitrary op-
erator, as well as how to transform between any of the phase-
space representations and how the dynamics of quantum sys-
tems can be modelled in phase space. This was followed by ex-
amples of discrete systems in phase space, with a focus on the
construction on qubit and multi-qubit states. We have provided
a link between between the Stratonovich kernel and the Woot-
ters kernel for a qubit state. Given the resulting structure of a
simplex inside a sphere, this provides a path into alternative con-
structions of discrete Wigner function for qudits and symmetric
informationally complete states, where we can consider an N2-
dimensional simplex inside the SU(N) N2 − 1-dimensional sur-
face.
From the construction on Wigner functions for discrete quan-

tum states, we then explored how such distributions can be use-
ful for applications to quantum technologies. Exploring howwell-
knownmetrics in quantum information can bewritten in the lan-
guage of phase space, as well as methods to use them in experi-
mental settings. There are still more metrics than can be trans-
lated into phase space, and perhaps even more that are peculiar
to the phase-space representation, such as the negative volume
of the Wigner function.
We then considered direct measurement of quantum systems

in phase space, beginning with the phase-space reconstruction
with single-qubit states before treating more complicated com-
posite systems.Where we first looked atmulti-qubit states, where
the dimension of the Hilbert space increases as 2N , whereas the
degrees of freedom for a phase-space distribution only scale as
2N for N qubits. Therefore such methods can provide compu-
tational simplifications in larger systems – especially if we are
only interested in finding certain types of correlations within a
larger state.
We then moved onto the current work of hybrid quantum sys-

tems. Although the distributions considered here and simple
single-qubit states these provide an outline into how come can
adapt phase-space methods for composite systems with hetero-
geneous degrees of freedom. We note that there is also some ex-
ploration into how this can be extended to consider multi-qubit
states coupled to a field mode via a Tavis-Cummings coupling in
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ref. [65]. Conversely we can consider three continuous-variable
distributions to each qubit, acting as the position and momen-
tum in three dimensions to each atom, such an approach was
considered in ref. [148] when treating the states of atoms.
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