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Abstract 

A novel application of semi-parametric Generalized 

Additive Models (GAMs) was developed to forecast 

elevated indoor temperatures. GAM models were 

compared to AutoRegressive models with eXogenous 

inputs (ARX) and validated against monitored data from 

two case study dwellings, located near to Loughborough 

in the UK, during the 2013 heatwave. Input variables were 

selected using backward stepwise regressions based on 

minimisation of the Akaike Information Criterion (AIC) 

and Mean Absolute Error (MAE), for the ARX and GAM 

models respectively. Comparison of the models showed 

that GAMs are capable of slightly improving the 

forecasting accuracy, but only at short horizons (3-6 hours 

ahead).  

Introduction 

Overheating in residential buildings is increasingly 

acknowledged as an emerging global health risk (NHBC, 

2012; ZCH, 2016; Lomas and Porritt, 2017). Climate 

change projections indicate that the world’s most 

populated regions will experience more frequent and 

intense heatwave periods over the coming decades (Meehl 

and Tebaldi, 2004; IPCC, 2014). The likelihood of events 

such as the 2003 heat wave (which was responsible for 

over 30,000 premature deaths across Europe (De Bono et 

al., 2004) recurring is projected to increase 100-fold by 

2050 (Stott et al., 2004).  

Understanding how individual buildings are likely to 

respond to extreme climatic events in the future is critical 

to mitigating their potentially life-threatening impacts. 

The complexity of this problem originates in the unique 

time-varying nature of the thermal behaviour of any given 

building, which is influenced both by its physical 

characteristics and the unique way in which it is occupied 

and operated.  

Fully parametrised Dynamic Thermal Simulation (DTS) 

models have been widely used to assess current and future 

overheating risks (Porritt et al., 2012; McLeod et al., 

2013; Mavrogianni et al., 2017; Symonds et al., 2017), 

however, the results of such studies often reveal a 

significant gap (De Wilde, 2014) between the empirically 

measured and modelled overheating performance of 

dwellings (Mantesi et al., 2017). This ‘modelling-gap’ has 

led some researchers to question the applicability of using 

white-box DTS models for forecasting overheating 

(Lomas and Porritt, 2017). In contrast, the availability of 

data from large monitoring studies (Beizaee et al., 2013; 

Lomas and Kane, 2013; Firth et al., 2016; Mavrogianni et 

al., 2017; Symonds et al., 2017; Buswell et al., 2018) 

offers the potential to develop empirical models of 

existing buildings which are capable of making 

predictions based on the data alone (i.e. machine learning) 

(Foucquier et al., 2013). In statistical black-box models 

(Amara et al., 2015), the time-varying responses of the 

building fabric, ventilation, etc., are all embedded in the 

past internal temperature data, obviating the need to make 

assumptions relating to the building’s thermo-physical 

characteristics. Such models could be usefully deployed 

to provide tailored information to occupants (or their 

carers) and/or facilities managers of the impending risks 

of overheating in specific spaces, and potentially advise 

them on the level of preventative action needed to 

mitigate heat-related risks (Gustin et al., 2018). 

In a previous study, the present authors (Gustin et al., 

2018) have shown that linear AutoRegressive models with 

eXogenous inputs (ARX) can forecast indoor temperatures 

during heatwaves up to 72 hours in advance, with 

reasonable accuracy. However, it was postulated that the 

accuracy of such models might be improved by adopting 

non-linear models. 

Several studies (Mechaqrane and Zouak, 2004; Thomas 

and Soleimani-Mohseni, 2007; Mustafaraj et al., 2011) 

have shown that non-linear Artificial Neural Networks 

(ANNs) such as Non-linear ARX (NARX) models 

outperform linear ARX models for forecasting indoor 

temperatures. Some researchers (Mechaqrane and Zouak, 

2004; Mustafaraj et al., 2011) have posited that the higher 

forecasting accuracy of NARX models is attributable to 

their ability to capture the non-linear relationships that 

govern indoor temperatures. In contrast, Thomas and 

Soleimani-Mohseni (2007), showed that the differences 

between non-linear NARX and linear ARX models were 

minimal and Ferracuti et al. (2017) observed more 

accurate predictions with linear ARX models, both in 

summer and in winter. Whether or not non-linear models 

are a better choice than linear models, appears to depend 

on several factors, including: the period of testing, the 

structure of the models, and forecasting horizon. ANNs 

are also inherently limited by their lack of interpretability 

(Foucquier et al., 2013), which has been referred to as “the 

Achilles’ heel of deep neural networks” (Zhang and Zhu, 

2018). 
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In contrast to ANNs, semi-parametric models, also known 

as Generalized Additive Models (GAMs), offer 

transparent interpretability of their results (Larsen, 2015) 

and for some problems, e.g. short-term forecasting of 

electricity demand (Fan and Hyndman, 2012), they have 

significantly outperformed ANNs. Because semi-

parametric additive models allow non-linear and non-

parametric terms to be included within the regression 

framework, they can readily capture complex non-linear 

relationships (Fan and Hyndman, 2012). 

The monitored data set 

To stress-test the predictive and generalisation 

capabilities of a model for overheating forecasting, it is 

important that it is tested and validated during a period in 

which external temperatures exceed those experienced 

during the training period. For this purpose, two rooms 

from two dwellings, located near to the town of 

Loughborough in the English Midlands (and monitored as 

part of the LEEDR Smart Home dataset (Buswell et al., 

2018) were selected. These rooms were chosen because 

of the completeness of the data, their markedly different 

temperature response profiles during the 2013 heatwave1. 

This UK-wide heatwave reached a peak temperature of 

33.5°C and lasted from 3 to 23 July 2013 (Met Office, 

2013), making it the second warmest July recorded in the 

UK, since 1910, in terms of both the mean and mean daily 

maximum temperatures (Met Office, 2018b). 

To capture the most pronounced overheating, the internal 

temperatures (Tint) were logged at one-minute intervals, in 

the upstairs bedrooms. The weather data, consisting of the 

external air temperatures (Text) and Global Horizontal 

solar Irradiance (GHI), was recorded at the nearby Sutton 

Bonington meteorological station at hourly intervals. To 

achieve a compatible timestep, the data that was recorded 

in the dwellings was down-sampled by averaging the sub-

hourly values to obtain hourly mean values (centred on 

each hour). 

Outdoor air temperatures during spring and early summer 

2013 were considerably below average. The external air 

temperature started to rise on the 3rd of July, resulting in a 

continuous hot spell that lasted until thunderstorms on the 

22nd and 23rd of July broke the heatwave. During this 

extended hot spell, the indoor temperatures (recorded in 

the bedrooms) were noticeably elevated in both dwellings 

on 6-7 and 13-19 July. Although indoor temperatures in 

the two dwellings were very similar on some days, 

dwelling A warmed up considerably less than dwelling B 

on most days, with the most pronounced temperature 

difference (of 6.9°C) occurring on the 8th July. 

Methods 

In previous work (Gustin et al., 2018), overheating was 

forecasted using ARX models based on the lagged effects 

                                                           
1 According to the UK Met Office, based on the World Meteorological 

Organization definition, a heatwave is defined as, “A marked unusual 
hot weather (Max, Min and daily average) over a region persisting at 

least two consecutive days during the hot period of the year based on 

local climatological conditions, with thermal conditions recorded above 
given thresholds” (WMO, 2016; Met Office, 2018a). 

of the internal temperature (Tint), external air temperature 

(Text) and Global Horizontal solar Irradiance (GHI). Here, 

additional predictor variables were considered for 

inclusion in both the newly developed GAMs and ARX 

models alongside those adopted in the previous study. 

These new additional variables were chosen based on 

inputs adopted by Fan and Hyndman (2010; 2012) and 

included: hour of the day (H), indoor temperature at the 

same time on the previous day (Tint (t - 24)), minimum 

and maximum indoor temperatures in the past 24 hours 

(Tint
 -  and Tint

+ ), and the 24-hour means of the indoor 

temperature (T̅int (24h)), outdoor temperatures, (T̅ext (24h)) 

and Global Horizontal solar Irradiance (GHI̅̅ ̅̅ ̅̅
(24h)). These 

additional inputs were iteratively recalculated at every 

time step. 

In GAMs the relationships between the dependent 

(output) and independent (input) and variables are 

represented by two-dimensional smooth functions2. The 

only exception is the hour of the day, which was modelled 

as a cyclic cubic regression spline, which is a smooth 

function with a constrained relationship at either extreme 

(i.e. the first and last hours of the day, 00 and 23, adopt 

the same value). The hour of the day cannot be discretised 

as a single variable in a linear ARX model, because the 

relationship would be fixed as a constant for every hour. 

To perform the forecasts at a specific time-step (t) and 

forecasting horizon (h), the models are first fitted on the 

training data, a process which estimates the relationships 

(parametric for the ARX model and semi-parametric for 

the GAM) between the independent and dependent 

variables.  

The general equation of the ARX model can be written in 

the form shown in equation (1).  

T
int (t + h) = c + ∑ p

Φ,i 
T

int (t + h - i)  + 

n

i=1

 (1) 

 p
Φ,24 Tint (t + h - 24) +    

 ∑ pα,j  Text (t + h - j) 

n

j=0

+  

 p
β,j

 GHI  (t + h - j) +  

   p- T
int(24h)

 -  + p+ T
int(24h) 

+
+   p

μ,1
T̅int(24h)+ 

 p
μ,2

 T̅ext(24h) + p
μ,3

 GHI̅̅ ̅̅ ̅
(24h)+ e (t + h) 

where:   

Tint (t + h) 

forecasted hourly internal temperature 

at the time step t for the forecasting 

horizon h (°C) 

t hourly time step (h) 

2 Non-parametric functions, are those where the shape of predictor 

variables (i.e. relationships between dependent and independent 
variables) are entirely determined by the data (Larsen, 2015). 
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h 
forecasting horizon, hourly time steps 

(h = 1, … , 72) (h) 

c intercept (°C) 

n 

maximum lag (previous n time steps) 

of the input variables that are being 

considered in the model  

i 

lag count (1-5) for autoregressive 

inputs (i.e. previous time steps of the 

output varaible) 

j 

lag count (0-5) for exogenous inputs, 

where count 0 is weather data at the 

forecasted time step 

T
int (t + h - i) 

observed or forecasted hourly internal 

air temperature at lag i before the 

forecasting horizon h (°C) 

p
Φ,i

 parametric coefficients of the lagged 

(previous n) Tint 

T
int (t + h - 24) 

observed or forecasted hourly internal 

air temperature 24 hours before the 

forecasting horizon h (°C) 

p
Φ,24

 parametric coeff. of the Tint on the 

previous day at the same hour (t-24) 

T
ext (t + h - j) 

observed or forecasted hourly external 

air temperature at lag j before the 

forecasting horizon h (°C) 

p
α,j

 parametric coefficients of the lagged 

(previous n) Text 

GHI  (t + h - j) 

observed or forecasted Global 

Horizontal Irradiance at lag j before 

the forecasting horizon h (W/m2) 

p
β,j

 parametric coefficients of the lagged 

(previous n) GHI 

Tint(24h)
 -  

minimum internal air temperature in 

the past 24 hours (°C) 

p- 
parametric coefficient of the 

minimum Tint in the past 24 hours 

Tint(24h)
 +  

maximum internal air temperature in 

the past 24 hours (°C) 

p+ 
parametric coefficient of the 

maximum Tint in the past 24 hours 

T̅int(24h) 
mean internal air temperature in the 

past 24 hours (°C) 

T̅ext(24h) 
mean external air temperature in the 

past 24 hours (°C) 

GHI̅̅ ̅̅ ̅
(24h) 

mean Global Horizontal Irradiance in 

the past 24 hours (W/m2) 

pμ,1 , p
μ,2

 , 

p
μ,3

 

parametric coefficients of the mean 

values in the past 24 hours of Tint, Text 

and GHI respectively 

e (t + h) 

forecasting error: hourly difference 

between the forecasted and observed 

temperatures at the time step t (°C) 

The general equation of the GAM can be written in the 

form shown in equation (2).  

g ( T
int

(t + h) ) = c + ∑ sΦ,i Tint (t + h - i) 

n

i=1

+  (2) 

 sΦ,24 Tint (t + h - 24) + 

 ∑ sα,j  Text (t + h - j) 

n

j=0

+  

 sβ,j GHI  (t + h - j) + 

 s- Tint(24h)
 -  + s+ Tint(24h) 

+
+ sμ,1T̅int(24h) + 

 sμ,2 T̅ext(24h) + sμ,3 GHI̅̅ ̅̅ ̅̅
(24h)+  

 scc H (t + h) + e (t + h) 

where:  

g 
gaussian (default) link function for 

GAM models 

T
int

(t + h) 

forecasted hourly internal 

temperature at the time step t for the 

forecasting horizon h (°C) 

t hourly time step (h) 

h 
forecasting horizon in hourly time 

steps (h = 1, … , 72) (h) 

c intercept (°C) 

n 

maximum lag (previous n time 

steps) of the input variables that are 

being considered in the model  

i 

lag count (1-5) for autoregressive 

inputs (i.e. previous time steps of 

the output variable) 

j 

lag count (0-5) for exogenous 

inputs, where count 0 is weather 

data at the forecasted time step 

T
int (t + h - i) 

observed or forecasted hourly 

internal air temperature at lag i 

before the forecasting horizon h (°C) 

sΦ,i 
smooth functions of the lagged 

(previous n) Tint 

T
int (t + h - 24) 

observed or forecasted hourly 

internal air temperature 24 hours 

before the forecasting horizon h (°C) 

sΦ,24 
smooth function of the Tint on the 

previous day at the same hour (t-24) 

T
ext (t + h - j) 

observed or forecasted hourly 

external air temperature at lag j 

before the forecasting horizon h (°C) 

sα,j 
smooth functions of the lagged 

(previous n) Text 

GHI  (t + h - j) 

observed or forecasted Global 

Horizontal Irradiance at lag j before 

the forecasting horizon h (W/m2) 

sβ,j 
smooth functions of the lagged 

(previous n) GHI 

Tint(24h)
 -  

minimum internal air temperature in 

the past 24 hours (°C) 
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s- 
smooth function of the minimum 

Tint in the past 24 hours 

Tint(24h)
+  

maximum internal air temperature in 

the past 24 hours (°C) 

s+ 
smooth function of the maximum 

Tint in the past 24 hours 

T̅int(24h) 
mean internal air temperature in the 

past 24 hours (°C) 

T̅ext(24h) 
mean external air temperature in the 

past 24 hours (°C) 

GHI̅̅ ̅̅ ̅̅
(24h) 

mean Global Horizontal Irradiance 

in the past 24 hours (W/m2) 

sμ,1 , sμ,2 , sμ,3 
smooth functions of the mean values 

in the past 24 hours of Tint, Text and 

GHI respectively 

H Hour of the day (00-23) 

scc  
cyclic penalized cubic regression 

spline smooth function of H 

e (t + h) 

forecasting error: hourly difference 

between the forecasted and observed 

temperatures at the time step t (°C) 

To constrain the complexity of the models and thus the 

computational time, which is considerably longer for 

GAM than ARX models, the maximum lag (n), of the 

AutoRegressive (Tint) and eXogenous inputs (Text and 

GHI) was limited. As in previous work (Hyndman and 

Fan, 2010; Gustin et al., 2018), temperature variables 

(used as exogenous inputs) were set to a maximum lag n 

of 5 previous time steps.  

For one-step-ahead forecasts, the models require only the 

observed past internal temperatures (Tint) as 

autoregressive inputs, while for multi-step-ahead 

forecasts, the model adopts partially (when 1 < h ≤ n) or 

exclusively (when h > n) the forecasted internal 

temperature estimates (generated at previous time steps). 

Similarly, with exogenous inputs, one-step-ahead 

forecasts require only the observed past weather data (Text 

and GHI) and the forecasted weather data for that specific 

time step (t+1). For multi-step-ahead forecasts, the model 

adopts the forecasted weather data partially (when 1 < h ≤ 

n) or exclusively (when h > n).  

The developed models were coded in R (R Core Team, 

2017) and the GAMs were implemented using the ‘Mixed 

GAM Computation Vehicle with Automatic Smoothness 

Estimation’ (‘mgcv’) package (Wood, 2011; Wood, 

2018b). 

The accuracy of a forecasting model can only be 

evaluated based on how well it performs in relation to 

‘new’ data (Hyndman and Athanasopoulos, 2018), and 

not in comparison to the ‘past’ data to which it was 

exposed during the training period. In this study, the 

initial training period spans from the 13th April 2013 to 

the 30th June at 23:00, during which there was a marked 

increase in the external air temperature and the heating 

was turned off. The forecasting period then starts 

immediately after this, on the 1st July at 00:00 (initial 

forecasting origin). However, due to the 72-h forecasting 

window, it is not possible to evaluate the forecasting 

accuracy for the first three days, from 1st July at 00:00 to 

3rd July at 23:00 for all forecasting horizons (h). The 

forecasting accuracy was evaluated at different 

forecasting horizons (h = 1, 2, 3, 4, 5, 6, 12, 24, 36, 48, 

60, 72), using the Mean Absolute Error (MAE).  

Rolling origin forecasts (i.e. sliding training and 

forecasting windows) were performed from the 1st July at 

00:00 to 26th July at 23:00. However, because of the 

constraints imposed by using a 72-h forecasting window 

(as the longest forecasting horizon) a full comparison of 

the forecasting accuracy between the various forecasting 

horizons is only possible during the 19-day period from 

4th July at 00:00 to 22nd July at 23:00, when complete 

forecasts are available for each forecasting horizon (h). 

For the identification of the optimal linear ARX model, as 

in the previous study (Gustin et al., 2018), model selection 

was based on the minimisation of the Akaike Information 

Criterion (AIC). However, the consideration of additional 

input variables compared to the previous study (Gustin et 

al., 2018) leads to an increase in the number of viable 

model combinations from 131,072 (Gustin et al., 2018) to 

8.4 million and 16.8 million for the ARX model and GAM 

respectively. This exponential increase in model 

combinations would render the testing of every possible 

combination computationally excessive. Therefore, to 

converge quickly on a near-optimal model, a backward 

stepwise regression (Hyndman and Athanasopoulos, 

2018) selection procedure was adopted. 

For the linear ARX model, the model selection algorithm 

begins by including all of the considered input variables 

in the calculation of the AIC. The algorithm then excludes 

one variable at a time, re-computing the AIC after each 

exclusion. The excluded parameter that decreases the AIC 

value the most is then permanently removed, and the 

improved model adopted as a reference for further 

parameter exclusions. The selection algorithm continues 

removing input variables iteratively until no further 

decrease in the AIC is observed, after which the final 

reference model is selected. This model selection 

procedure defines the structure of the model and is 

performed only once during the initial training period.  

Model identification is more challenging for GAMs, due 

to their more complex structures. According to Wood 

(2018a), automatic model selection procedures for 

complex models that consider all of the possible inputs 

are often unsuccessful. Since the selection procedure 

(described above) based on the minimisation of the AIC 

did not show satisfactory results, a backward stepwise 

regression, based on minimisation of the out-of-sample 

predictive accuracy (as defined by the MAE) was 

adopted. This approach was demonstrated by Fan and 

Hyndman (Fan and Hyndman, 2012) to provide good 

results, for semi-parametric model selection. During this 

selection process, only the first part of the training period 

of the linear ARX model (75% of the data spanning from 

13 April 2013 at 00:00 to 11 June 2013 at 23:00) was used 

to fit the models and the remaining 19 days (25% of the 
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data spanning from 12 June 2013 at 00:00 to 30 June 2013 

at 23:00) were used to test the forecasting accuracy, as 

part of the backward stepwise selection process. As for 

the ARX models, the model selection procedure is 

performed only once during the initial training period. 

In ‘real-world’ applications such a model would require 

forecasted weather data from one or more (Gustin et al., 

2017) nearby meteorological station(s) as an input. Since 

the uncertainty of weather forecasts increases in 

proportion to the length of the forecasting horizon, their 

reliability several days ahead (particularly in a maritime 

climate) is questionable (Gustin et al., 2017); as a result, 

forecasting overheating risks at periods well beyond the 

forecasting origin is unlikely to be reliable. According to 

the UK Met Office, short-range (1-3 days ahead) weather 

forecasts, use data that is updated several times per day 

and are considered to be extremely accurate (Met Office, 

2016). On the other hand, medium-range (3-10 days 

ahead) weather forecasts provide only a general synopsis 

on a day-to-day basis. For this reason, the developed 

models were constrained to forecasting indoor 

temperatures up to 72 hours (3-days) ahead. As in the 

previous study (Gustin et al., 2018), multi-step-ahead 

forecasts were performed by adopting a recursive strategy 

based on a rolling forecasting origin (i.e. utilising a sliding 

training and forecasting windows). This means that after 

each forecast, the model’s training window moves 

forward by one time-step (i.e. 1 hour), before recalibrating 

the relationships of the previously selected predictors and 

then recalculating the subsequent forecasts. The model 

automatically stops forecasting when the sliding 

forecasting window (of 1-72 hours) reaches the end of the 

validation period. Once rolling origin forecasts have been 

completed for the entire validation period, it is then 

possible to assess the forecasting accuracy. 

Results 

To automatically select near-optimal models, backward 

stepwise regressions, based on the minimisation of the 

AIC and MAE were adopted for the ARX and GAM 

models respectively. During the model identification 

process, a number of the inputs (including Tint , Text , 

and/or GHI) were discarded from both the GAM and 

ARX models at some of the previous time steps. The 

internal temperature that was recorded at the same time 

on the previous day (Tint (t-24)), as well as the  minimum 

and maximum internal temperature in the past 24 hours 

(Tint(24h) 
 - and  Tint(24h)

+ ), and the mean GHI in the past 24h 

( GHI̅̅ ̅̅ ̅̅
(24h)) were selected in 3 out of the 4 models. 

Conversely, terms describing the mean internal and 

external temperatures in the past 24h ( T̅int(24h) and  

T̅ext(24h)) were never selected. Although the hour of the 

day (H) was included in the GAM models as a non-linear 

smooth function it was omitted by the selection algorithm 

for dwelling B.  

Examining the fitting of the GAM provides a useful 

means of understanding how optimal relationships are 

attributed to the various variables. It is evident from this 

analysis that the autoregressed variables of Tint assume the 

most dominant weights, and the nearer they are 

temporally located to the value that is being forecasted, 

the higher their weighting. Moreover, the final result is 

the sum of positive and negative effects, which in the 

ARX models is always linear, whereas in the semi-

parametric GAM models might be non-linear. The 

exogenous inputs have considerably lower weights than 

the autoregressed variables and therefore act as a tuning 

effect on the predicted dependent variable.  

The forecasts suggest that GAMs are capable of 

producing more accurate forecasts (Table 1) for h ≤ 6h; 

whilst for h = 12h, the forecasting accuracy of the two 

models is very similar; however when h ≥ 24h, the ARX 

models achieved consistently better predictions. 

Whereas there is a comparable forecasting accuracy 

between the GAM and ARX models for h ≤ 12h, for 

dwelling B, a localised disruption in the GAM forecast 

occurred on the 7th of July (Fig. 1). This is because when 

forecasting temperatures close to or above the maximum 

temperatures experienced during the training period some 

of the predictor variables contain estimates of the 

relationships which encompass a significant uncertainty. 

Therefore, until the model has been exposed to such hot 

conditions, the out of range values predicted by these 

terms remain highly uncertain. The recursive strategy 

used by GAMs for multi-step-ahead forecasts means that 

such errors compound exponentially. Thus, whilst the 

local over-prediction (seen in Fig. 1 on 7 July), is not 

unduly pronounced at short forecasting horizons (h ≤ 6) it 

degenerates quickly as the forecasting horizon (h) 

increases (Table 1). This local disruption is evident in the 

MAE for h ≥ 24h (Table 1). For the ARX model, the errors 

are much smaller thereby avoiding the local disruptions 

that were observed with the GAM (Fig. 1). This is because 

ARX models only incorporate linear relationships, using 

the same regression coefficients, throughout the whole 

range of temperatures. 

Table 1: Forecasting accuracy of GAM vs. ARX models 

in two dwellings during the 2013 heatwave. 

Forecasting 

horizon h 

(hours) 

Dwelling A Dwelling B 

ARX GAM ARX GAM 

MAE 

(°C) 

MAE 

(°C) 

MAE 

(°C) 

MAE 

(°C) 

1 0.13 0.13 0.12 0.10 

2 0.25 0.24 0.21 0.18 

3 0.35 0.33 0.28 0.24 

4 0.44 0.41 0.33 0.29 

5 0.50 0.48 0.37 0.33 

6 0.57 0.54 0.41 0.37 

12 0.81 0.78 0.59 0.53 

24 0.92 0.98 0.79 0.99 

36 0.92 1.03 0.88 2.23 

48 0.93 1.06 0.94 5.76 

60 0.94 1.11 0.98 17.51 

72 0.95 1.21 1.01 59.33 
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Figure 1: Dwelling B: observed - Tint(t) vs. predicted - Tint(t+h) hourly internal temperatures with hourly forecasting 

errors - e(t+h) and 95% prediction intervals (grey band) for 12h forecasting horizons (h) with ARX (a) and GAM (b). 
 

Following the first warm period, the non-linear 

relationships in the GAMs are recalculated, and as a 

result, the error in subsequent forecasts of impending high 

indoor temperatures are greatly reduced (Fig. 1). 

However, in terms of reliability in a ‘real-world’ 

application, it is concerning that a non-linear model might 

fail temporarily when rapidly approaching a considerably 

warmer period for the first time. 

Discussion 

The results demonstrate that the inclusion of substantially 

more input variables to the ARX models than in the 

authors’ previous study (Gustin et al., 2018) did not 

improve their accuracy at shorter forecasting horizons. 

For example, the 6h forecasts produced MAEs of 0.57 and 

0.41°C for dwellings A and B respectively (Table 1) 

compared to MAEs of 0.21, 0.51 and 0.55°C in (Gustin et 

al., 2018). Over longer forecasting horizons, such as 72h, 

ARX models produced an MAE of 0.95 and 1.01°C, for 

dwellings A and B respectively which is higher than the 

MAEs of 0.49, 0.63 and 0.69°C recorded in the previous 

study (Gustin et al., 2018). However, the lower 

forecasting accuracy, reported here, should not be 

attributed to poorer model performance but rather to the 

extended period over which it was evaluated. In the 

previous study (Gustin et al., 2018), the forecasting 

accuracy was computed for only one week of data where 

the day of, and the day after the two-day heatwave 

produced the largest forecasting errors.  The intensive and 

long-lasting nature of the 2013 heatwave used in this 

study enabled errors to be computed over a 19-day period, 

during which there were several pronounced drops in the 

outdoor and indoor temperatures. The mean zonal indoor 

temperatures were also approximately 6.5°C (dwelling A) 

and 7.3°C (dwelling B) above the corresponding indoor 

temperatures during the initial training period. 

Considering these forecasting challenges, the ARX model 

can be considered to have performed well with good 

generalisation ability.  

In the absence of previous results from the literature, the 

forecasting accuracy of the semi-parametric GAMs can be 

best assessed by comparison with the forecasts of the 

linear ARX models. The GAMs produced statistically 

better forecasts than the ARX models (at the 90% level) 

for horizons up to 6h ahead (with MAEs of 0.54 and 

________________________________________________________________________________________________ 

________________________________________________________________________________________________ 
Proceedings of the 16th IBPSA Conference 
Rome, Italy, Sept. 2-4, 2019

 
4248

 

 
  



0.37°C for dwellings A and B respectively at 6h, Table 1). 

For forecasting horizons beyond 12h, the GAMs were not 

significantly better than ARX models. Moreover, the 

GAMs were vulnerable to disruptions when rapidly 

approaching a considerably warmer period for the first 

time, rendering them highly unstable, and difficult to 

control at longer forecasting horizons. While training the 

models on historical data from past heatwaves (if 

available) could potentially obviate this issue, any 

changes to the building fabric or occupancy in the interim 

would invalidate the previously established relationships 

embedded in the model. Considering these factors, linear 

ARX models appear to be a more reliable choice in the 

context of overheating forecasting. When computational 

time is considered, ARX models are also favoured due to 

their minimal fitting times. In contrast, GAMs require 

much longer to fit the models, an issue which increases 

exponentially with the number of predictor variables. For 

forecasts at shorter time horizons, however, when 

computational time is less relevant, the potentially higher 

forecasting accuracy of GAMs might be advantageous.  

The forecasting accuracies presented in this study are in 

line with previous studies involving the prediction of 

internal temperatures; although most previous research 

has focused on offices with mechanical cooling and with 

higher data resolutions. Mustafaraj et al. (2011) observed 

MAEs of 0.27-0.38°C  for an ARX model predicting 1.5h 

ahead; cf. MAEs of 0.25 and 0.21°C for dwellings A and 

B at h=2 (Table 1). Forecasts by Mustafaraj et al. using a 

NARX model (Mustafaraj et al., 2011) were considerably 

better, with MAEs of 0.23-0.27°C at 2h ahead, which is 

very close to the MAEs achieved with the GAMs for h=2, 

0.24°C and 0.18°C for dwellings A and B (Table 1). 

However, these results must be viewed in relation to the 

validation data used to test the models. Notably, the 

forecasts performed here took place in free-running 

dwellings with considerably higher indoor temperature 

variability than that observed in the study by Mustafaraj 

et al. (2011). 

Conclusions 

The ability of linear ARX models and semi-parametric 

GAMs to forecast indoor temperatures over the intense 

and long-lasting UK heatwave of 2013 was investigated 

using hourly data from two bedrooms, in two houses, 

located near to the town of Loughborough in the UK 

Midlands. A backward stepwise regression based on 

minimisation of the AIC (for ARX models) and MAE (for 

GAMs) was adopted for the model selection process. 

Recursive multi-step-ahead forecasts were produced by 

both the models using a rolling forecasting origin for the 

entire duration of the heatwave. Forecasts were made for 

time horizons of 1-6, 12, 24, 36, 48, 60 and 72 hours 

ahead, including the 95% prediction intervals, to provide 

a credible interval for the forecasted temperatures. The 

accuracy of the predictions was evaluated using the MAE 

to assess out-of-sample accuracy.  

Comparisons between the ARX models and GAMs 

showed that although the GAMs were capable of slightly 

improved forecasting accuracy, the improvements were 

only statistically significant up to 3-6 hours ahead. For 

longer forecasting horizons, ARX models provided an 

accuracy that was either equal to, or greater than the 

GAMs, with an MAE (up to 72 hours ahead) that was 

typically below 1°C for the entire heatwave. Considering 

the potential uncertainty associated with the non-linear 

GAMs relationships when exposed to higher temperature 

ranges for the first time, the subsequent risk of instability 

at longer forecasting horizons, higher computational time 

requirements, lower accuracy at longer forecasting 

horizons and marginal improvement of the predictive 

accuracy at shorter horizons; the adoption of such models 

appears unjustified for forecasting elevated internal 

temperatures in free-running buildings. 

Overall this work suggests that more complex non-linear 

models do not necessarily produce better forecasts and 

that particular attention should be given to the use of 

GAMs when predicting out-of-range. By definition, there 

will always be limited data at the lower and upper ranges 

of the independent variables, which engenders increasing 

uncertainty when forecasting beyond the ranges for which 

the models were originally trained, with errors that are 

likely to amplify at longer forecasting horizons.  

Future work will involve longitudinal testing of the 

prototyped forecasting models using larger datasets to 

quantify the reliability of predictions for different room, 

dwelling and household configurations across a wide 

range of geo-social contexts. 
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