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Chapter 1 

Introduction 

1,1 A BrIef Introduction to Solid Modelling 

The basic idea of solid modelling is to represent solids using a computer in 

such a way that the solid can be 

(i) visualised - usually on a screen but possibly plotted on paper 

(ii) interrogated - intersects with other solids and surfaces need to be 

found, normals calculated, etc. 

(iii) modified 

(iv) manufactured - tool paths of CNC machines or robotics control need to 

be calculated. 

It is common to build up a solid by the use of Boolean operations (union, 

intersection or difference) on primitive solids. Such a solid modeller will have 

several different primitives (for example sphere, cuboid, cone, torus, etc.) and 

each time one of these primitives is specified it will be given certain parameters to 

uniquely define it, for example a sphere is uniquely defined by its position in 

space and its radius. 

Any model must be amenable to interrogation. Many calculations need to 

be made for the model to be displayed, manufactured by NC machines or 

combined with other solids to form more complex bodies. These include ;-

(i) The normal to the surface, which is needed for numerous operations 

including ray tracing (for displaying the model), calculating NC machine offsets, 

determining silhouette curves, shading and hidden surface removal. 

(11) The intersection of a line with the model is similarly important in ray 

tracing and display calculations and is also needed in Boolean operations with 

other solids since a vertex of the new solid will be formed where the edge of a 

solid meets the surface of the model. 

(iii) The curves of intersection of the model with a plane (or more complex 

surface) need to be calculated to work out the edges of the solid formed by a 

Boolean operation on the model with some other solid bounded by the surface. 
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1.2 Alms of the Prolect 

The basic aim of this project is to investigate the mathematics of helical 

surfaces to determine if it is possible to incorporate helices in a solid modeller. It 

Is thought that one area where helices may be useful is in the modelling of coil 

springs. 
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Chapter 2 

Defining a Helix 

Unless otherwise stated all helices referred to are assumed to have a 
• 

circular cross-section and be right handed. The extension to left handed helices is 

trivial. 

For reference the parametric equation of a right handed helical line is 

r (t) = [r c~s t ] 
rSlnt 

kt 

and that of a left handed helical line is 

[(t) = r cos t 

- r sin t 

kt 

2.1 Parametric Equation of Surface 

Consider a circle of radius r2 in the xz plane whose centre is a distance r1 

(where r1 > r2 ) from the z axis. Rotating this circle about the z axis and 

simultaneously applying a translation in the z direction generates the helical 

surface. 
-- ------- --------------------

z 

x 

------- -- --I-::-:::--==--==---==-===:!'!=:====:-=--:i . - ----- ~ - -- ------- - --
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The circle is defined parametrically by 

B..D r1 + r2 cos IiJ 

o 

Applying the matrix transformations for the sweep along the path of a right handed 

helical line gives the surface of the helix as 

B.... (rl + r2 cos IiJ ) cose 

(r1 + r2 cos 1iJ) sine 

r2 sin IiJ + ke 

( 1 ) 

where 0 S IiJ S 21t and, for a helix given by n rotations of the circle about the z axis, 

os e S2n1t. 

2.2 Cartesian Equation of the Surface 

From ( 1) above we have ;­

x .. (rl + r2 cos IiJ ) cos e 

y.. (rl + r2 cos IiJ ) sin e 
z.. r2 sin IiJ + k e 

__________________ (2) 

-----------------(3) 

-----------------(4) 

The cartesian equation of the surface is found by eliminating the 

parameters e and IiJ from these three equations. 

=> 

Squaring equations ( 2 ) and ( 3 ) and adding them gives 

x2 + y2 = (rl +r2 cos 1iJ)2 

cos IiJ .. ± ( x2 + y2 )"'- - r1 -----------------(5) 

r2 

If we take the negative root then, since r 1 > r 2, we would have cos IiJ < -1. 

Thus we only take the positive root in (5). 

Hence cos IiJ - (x2 + y2 ) .... - r1 
_________________ (6) 
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and so 

sin IiI = ± 

taking the positive root for 0 ~ IiI ~ 7t and the negative root for 7t ~ IiI ~ 27t 

sin IiI = ± 1 [2rl (x2 + y2 )'", + ri - r1
2 - x2 - y2,r~ ---- (7) 

r2 

Dividing (3) by ( 2 ) gives 

y - tane 

x 

and from (4) 

9=z-r2 sinlil 

k 

thus 

x k 

Now, substituting for sin IiI from ( 7 ) gives 

=> 

y _ tan z± ~rl (x2 + y2 )":J. + ri - r1
2 _ x2 -y2]"'" 

x k 

y - x tan z ± [2r 1 (X2 + y2 ) ~ 

k 

which appears to be the equation of the surface of a helix. Unfortunately this is not 

the case. 

It can be seen that if a point (xl' y l' Zl) satisfies equation (8) then the 

point (-X,. -Yl' zl) will also satisfy it. This shows that ( 8 ) does not give the 

equation for the surface of a helix but the equation for the surface of a double 

helix. This, of course, means that when dealing with a helix it is not possible to 
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deal solely with the cartesian equation of the surface. 

Additional complications arise because of the ± in the definition. The helix 

is, in effect, made up of two surfaces, namely 

y-xtan Z+[2r1(xl! + '1)"'- + ri - r1
2 - x2 -y2f ..... o (9) 

k 

corresponding to 7t ~ tiJ ~ 27t , and 

y - x tan Z - [2r,< xl! + 'I )"7. + ri 
k 

corresponding to 0 ~ tiJ ~ 7t. 
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Chapter 3 

Interrogating the Helix 

3,1 Calculation of the Normal to a Helix 

3.1.1 Parametric Representation 

The standard method of finding the normal to a parametric surface Is to 

partially differentiate the parametric equation of the surface with respect to each 

of the parameters and then work out the cross product of the partial derivatives. 

These partial derivatives are easily calculated for the helix. 

The surface of the helix is given by 

~.. (r1 + r2 COS" ) cos e 

(rl + r2 COS" ) sin e 

r2 sin" + k9 

so (l~ .. - (r1 + r2 cos,,) sine 

(lS (rl + r2 COS" ) cose 

k 

and (l~ - - r2 sin" cos e 

(l" - r2 sin" sin e 

and so n .. (llii x (llii is given by 
(le -a" 

n .. r2 COS" cos e (rl + r2 cos " ) + k r2 sin" sin e 

r2 COS" sin e (rl + r2 COS" ) - k r2 sin" cos 9 

r2 sin" (r1 + r2 COS" ) 

3.1.2 Using the Cartesian Equation of the Surface 

---(11 ) 

For a surface with cartesian equation f (x. y. z) = 0 the surface normal 
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direction is given by the vector «()f /Ox. ()f /iJy. ()f IdZ). 

Differentiation of the equation of the surface yields :-

()f - - tan Z ± [2rl (x2 + f ) .... + rl - r12 - x2 -ft'" 
dX k 

-~sed!({Z±[2rl(x2 + f )' .... + rl - r12 - x2 -f ]""'}/k) 

k 

.£2rdx2 + f )'''l.+ rl - rl - x2 -f (12. [xrdx2 + f )1-,._2x] 

()f .. 1 -.: sed! ( {Z± [ 2r1 (x
2 + f ) .... + r22 - r1

2 - x2 - f ],'Z.Vk) 

dY k 

.£2rdx2 + f )''''-+ rl - r1
2 - x2 -f r2.[yr1 (x2 + f t2._2y] 

()f .. - x sed! ( {Z± [ 2rd x2 + f )1-2.+ rl - r12 - x2 - f J"l>/k) 

dZ 

Obviously it is much more difficult to calculate the normal using the 

cartesian equation than using the parametric form of the surface. 

3.2 Closest Approach of a Plane to a Helix 

The closest approach of a plane to a helix occurs when the vector 12. - ~ 

has a minimal value. When this happens ( R - j;! ) is perpendicular to both the 
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plane and the surface of the helix. If n and m are the normal vectors to the plane 

and helix respectively then we get the following equations 

(12-~nxn .. 0 

and (l2-g)xm.O 

We also have the equation of the plane to be satisfied by 12 

This gives us seven simultaneous equations for the five unknowns Pl' P2' P3' e 

and fiJ. Although this is theoretically soluble it turns out that the equations are 

excessively complicated and it would be far better to avoid having to solve such 

equations altogether. 

3.3 BoundIng Box of a Helix 

Bounding boxes are boxes, usually cuboid, that enclose solids and are 

used to give a rough indication of the boundaries of the solid to assist in the 

detection of intersections and interference. 

In order to find the bounding box of a helix it is necessaryto calculate the 

closest approach of several planes to the helix. As we have seen this is very 

difficult to do and best avoided. However, a bounding box can be constructed 

around the helix by using the fact that a helix is bounded by a cylinder. 

For a helix given parametrically by 

~ = (rl + r2 cos fiJ) cose O:S; fiJ :s; 21t, o:s; e :s; 2n1t 

(rl + r2 cos fiJ ) sin e 
r2 sin fiJ + k9 

the helix is contained inside the cylinder 

{(x, y, z): X2 +y2:s; (rl +r2)2, -r2 :s;z :S;2kn1t + r2 } 

and lies outside the cylinder 

---(12) 

{ (x, y, z) : x2 + y2 < ( rl - r2)2 } ---------( 13) 
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Where the bounding box of a cylinder is required it makes more sense to deduce 

the bounding cylinder from ( 12 ) and then work out the bounding box of this 

bounding cylinder. This is much simpler and in most cases would give either an 

identical answer or a very similar answer. 

3.4 Finding the Parameters of a Point on a Helix 

Given a point on a helix it is important to be able to find the parameters 

corresponding to that point. The following technique can be used to 

(i) find the parameters of a point on a helix, or 

(ii) given a point in space, determine whether or not the point is on the 

helix, finding the parameters if and only if the point is on the helix. 

The location of a pont on the surface of a helix is determined by two 

parameters, e and 0. 0 is used to determine a point on the (circular) 

cross-section of the helix and e is used to give the angle of rotation of that 

section around the axis of the helix. The determination of parameters is made 

Slightly more complicated by the fact that e may vary over a range of more than 

21t, but in practice this does not present any insurmountable problems. 

The problem is broken down into the following steps ;-

1. Find e . If e cannot be found then the point is not on the 

helix. 

2. If e is found then try to find 0. If 0 cannot be found then the 

point is not on the helix. 

3,4.1 Anding e 
Let 11.." (xl ' x2 ' x3 ) be the co·ordinates of a point (not necessarily on 

the helix). As an initial guess for e work out e 1 such that O:s; e 1 :s; 21t, and 

cos e 1 .. Xl / (x1
2 + xi ).... , sin e 1 '" x2 /( x1

2 + ~2 t .. 
(see diagram) y 

x 

10 



, . .. , 
I 

, I 

TherE) are now three cases to ~consider::------~---

1. If ke1 -r2sx3~kel +r2 thenthisisthecorrectvalueof 9. 

2. If x3 > k81 + r2 then as a next guess try e 2 = e 1 + 27t and 

continue increasing the guesses at e by 27t until either 

(a) kS, - r2 ~ x3 ~ ke, + r2 ,in which case 9, is the correct value 

of e 
or (b) k 6 '.1 + r2 < X3 < ke, - r2 ,in which case no correct value of 

can be found and the point is not on the helix. 

3. If X3 < k61 - r2 then as a next guess try e 2 = e 1 - 27t and 

continue decreasing the guesses at e by 27t until either 

(a) kS, - r2 ~ x3 ~ ke, + r2 ,in which case e, is the correct value 

of e 
or (b) kS, +r2<x3<k9,.1 -r2 ,inwhichcasenocorrectvalueof 

can be found and the point is not on the helix. 

3.4.2 Finding 0 

Given that e has now been found it still remains to find 0. We know from 

equation ( 6 ) earlier that 

--------- (14) 

r2 

and also X3 = r2 sin 0 + ke 

11 



Hence 

sin" 0: X3 - k9 

r2 

( 15) 

If ( 14) and (15) are consistent then they give us ". To be consistent they must 

satisfy 

I.e. .. 1 

0:> 

If the equations are consistent then the point is on the helix and " is found from 

equations ( 14 ) and ( 15). If the equations are not consistent then the point is not 

on the helix. 

3.5 IntersectlQn between a Line and a Helix 

3.5.1 Using Cartesian Equation of the Surface 

Consider the parametric equation of a line in vector form 

r-~+ A1 .. (Sl +)..t1 • S2+)...l:!. S3+)'.13 ) 

and the cartesian equations of the surface of a double helix 

---(16 ) 

and 

y-xtan z+[2r1 (x2 + y2 )''L + rl - r12 - x2 -y21!.<,. .. 0---( 17a) 

k 

y-xtan z- [2r1 (X2 + y2 i"J.+ rl - r12 - x2 -y2 ]'/~ =0---( 17b) 

k 

To find the points of intersection of a line and a helix substitute ( 16 ) into ( 17a ) 

and ( 17b). This gives the two equations 

(S2 +). t2 ) - (Sl +). t1 ) tan ( {S3 + ). ~ + [2r1( A + )"B + ),,2 C " + rl - r12 

- A - AB - >,.2 C]'''"} / k) = 0 ( 18a) 

12 



and 

(S2 + )..f:!) -(Sl + Atl ) tan ({S3 + >-.t3 - [2rl (A+ )..B+ )...2C )' .... + ri - rl 
-A-AB- >..2Cl"t.} /k) =0 (18b) 

where A .. S12 + si ' B = 2 ( sl tl + S2 f:!) and C .. t12 + f:!2 . 

These two equations must both be solved to give all the points of intersection 

between a line and a double helix. When all the roots of ( 18a ) and ( 18b ) have 

been found then these roots must be checked to see which are intersections of 

the line with the "phantom" helix. This can be done by trying to find the 

parameters, 13 and e ,of the point on the helical surface. If these parameters 

can be found then the point is on the "real" helix, if not then the point is on the 

"phantom" helix. 

A program was written to calculate the intersection between a line and a 

helix and is discussed in the next chapter. 

3.5.2 Using the Parametric EQyation of the SYrface 

The parametric form of a line is given in ( 16 ) and that of the helix in ( 1 ). 

Where the line intersects the helix the equations ( 1 ) and ( 16 ) are equal. Thus 

we get:-

Sl+.>-tl = (rl +r2cos13)cos6 

S2 + A f:! .. (rl + r2 cos 13 ) sin e 
------(19) 

------(20) 

S3+>-.1a" r2sin13 +ke -------- (21 ) 

Hence we need to solve this set of three simultaneous equations in three 

unknowns. Given k, rl ' r2 ' sl ' S2 ' S3 ' tl ' f:! ,t3 we have to find )..., e and 13. 

3.6 Intersection between a Plane and a Helix 

3.6.1 Special Cases 

There are two special cases to consider :-

(a) When the plane contains the axis of the helix 

13 
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spring. 

In this case the curves of intersection are circles. 

(b) z = constant plane. 

This plane intersection may be needed to work out the end faces of a coil 

From the parametric equation of the helix 

§. = (r1 + r2 cos a) cos e 0 ~ a ~ 2lt, 0 ~ e ~ 2nlt 

(r1 + r2 cos a) sin e 
r2 sina + ke 

Putting z = constant (c, say) , we get 

r2 sina + ke = c 

=> e = c - r2 sin a 

k 

and , substituting this expression for e in the equation of the surface we find that 

the curve of intersection is given parametrically by 

x(~)= (r1 + r2 cosa) cos c- r2 sina O~a :>;2lt 

k 

y«(,l\) = (r1 + r2 cosa) sin co r2 sin 0 

k 

3.6.2 General Case 

The implicit form of the equation of a plane ( in vector notation) is 

Sl.n+d=O (22) 

Where Si is the position vector of a point on the plane and n is the normal 

14 



to the plane. 

The intersection of this plane with the helix 

~.. (r1 + r2 COS" ) cos e 
(r1 + r2 COS" ) sin e 

r2sin" + k6 

is obtained by substituting ~ for ..a in ( 22 ) and solving the resulting equation. So, 

substituting .:! into ( 22 ) we get 

n1 (r1+ r2 cos,,)cos9 +n2 (r1+ r2cos,,)sine +n3 (r2sin" + ke) +d .. O 

(23 ) 

For any given value of e ,equation ( 23 ) is of the form 

K1 (r1 + r2 COS" ) + ~ sin" + K3 .. 0 

or 

K4 + Ks COS" + ~ sin" .. 0 ---------( 24) 

This equation in " can be solved by using the substitution 

t-tan"/2 

Then by using a range of values of e in ( 23 ) , equation ( 24 ) will give a series 

of points which can be interpolated to give the curve of intersection. 

A program was written to calculate the intersection of a plane and a helix 

using the above method and is discussed in the next chapter. 

3.7 Intersection of a Helix with a General Quadrlc Surface 

The implicit equation of a general quadric surface is 

A x2 + B y2 + C z2 + 20 xy + 2E yz + 2F xz + 2G x + 2H Y + 2J z + K .. 0 - ( 25 ) 

It is possible to find the curve of intersection of a helix with a general quadric 

surface by using a technique similar to that for finding the curve of intersection of 

a helix with a general plane. By substituting 

x.. (r1 + r2 COS" ) cos e 

y- (r1 + r2 cos " ) sine 

Z= r2sin" + ke 

into ( 25 ) , the following equation is obtained :-

15 



A (r12 + 2 r1 r2 COS" + r2
2 cos2" ) cos2 e 

+ B (r12 + 2 r1 r2 COS" +r2
2 cos2" ) sin2 9 

+C(k2e 2 +2kr28sin"+f22sin2,,) 

+20(r12+2r1 r2cos" +r2
2 cos2,,)sine cose 

+2E(r1 r2sin" +r2
2 COS" sin" +kr1e +kEl r2cos,,) sine 

+ 2F (r1 r2 sin" + r2 2 COS" sin" + kr19 + k9 r2 COS" ) cos e 

+2G (r1 + r2 cos,,) cose 

+2H (r1 + r2 cos,,) sine 

+ 2J (r2 sin" + k9) 

+K=O 

or, on re-arranging 

cos2" (A r2
2 cos29 + B r2

2 sin2 e + 20 r2
2 sine cose ) 

+sin2" (Cr22) 

+ sin" COS" (2E r2
2 sin e + 2F r2 2 cos S ) 

+ COS" (2A r1 r2cos2 e + 2B r1 r2sin2e + 40 r1 r2sine cos e 
+2Er2k6sinS +2Fr2kecos9 +2Gr2 cos9 +2Hr2sinS) 

+sln,,(Cr2k9+2Er1r2sine +2Fr1r2cos9 +2Jr2 ) 

+( Ar1
2 cos29 +Br1

2 sin2S +Ck2 9 2 +20r1
2 sin 9 cos 9 

+2Er1kesine +2Fr1k9cosS +2Gr1cose +2Hr1sin6 

+2Jk9 +K) .. 0 

which, for any given e is of the form 

L cos2 " + M sin2 " + N sin" cos " + P cos " + Q sin" + R .. 0 

As before, this can be solved by a substitution of t = tan "/2. In this case a 

quartic equation results, so for each e there are four possible points of 

intersection. Again, the problem can be solved for a range of values of e and the 

resulting points Interpolated to give the curve of intersection. 

16 



Chapter 4 

Two Computer Programs to Calculate Intersections 

Two computer programs were written to see if in practice the intersections 

between a helix and a plane or a line could be worked out. 

4.1 Program to Calculate the Intersection Between a LIne and a Helix 

The program uses the cartesian equations of the surface of a double helix 

and the parametric equation of a line to find the points of intersection. This . 
approach was selected to avoid having to solve simultaneous equations. The 

main advantage appeared to be that by solving equations in Just one variable, 

lambda, it would be much easier to ensure that lill intersections between the line 

and the helix were found. This is very important. However this approach does 

have its drawbacks, chiefly ;-

(i) In order to check whether a point is on the surface, two complicated 

functions must be evaluated. 

(ii) After finding the points on the line that satisfy the cartesian equations of 

the helix, they must all be rechecked to determine which are on the "phantom" 

helix. It would be much better to have an approach that did not generate these 

"phantom" intersections at all. 

(iii) This very roundabout way of calculating points of intersection leads to 

an enormous and very cumbersome program containing many procedures and 

functions. This greater complexity increases the chances of "bugs" creeping in, 

and indeed, the program as presented here does not work as there was not 

sufficient time to finish debugging it. 

Two possible alternative approaches are ;-

(i) As it is relatively easy to find the intersect of a helix with a plane, first find 

the curve of intersection of the helix with a plane containing the line. Then 

intersect the line with the resulting curve of intersection. 

(if) The procedure get_parameters (see Appendix ) may be slightly 

modified so that if it tries to find the parameters of a point not on the helix it will 

determine whether the point is inside or outside the helix. This can be done by 

calculating the values of cos2 0 and sin2 0 from equations ( 14 ) and ( 15 ) in 
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section 3.4.2. If these values sum to a value greater than 1 then the point Is 

outside the helix. Successive points on the line can be checked to see where the 

line crosses from outside the helix to inside. Once the position of the root 

is approximately known it should be found quite quickly. A listing of the program 

and documentation for the program are given in Appendix 1. 

4.2 Program to Calculate the Intersection Between a plane and a 

Helix 

This program finds the intersect by solving equation ( 23 ) from section 

3.6.2. This equation is :-

n1 (r1 + r2 cos" )cose +n2 (rl + r2 cos,,) sine +n3 (r2 sin" + ke) +d-O 

and so, re-arranging :-

r2 (nl cose + n2 sine) COS" + n3 r2 sin" + n1 r1 cose + n2 r1 sine + kn3 e + d .. 0 

(26 ) 

Let t - tan "/2, then COS" .. ( 1 - t2 ), sin" .. 2t and substitute into ( 26 ). 

(1+t2) (1+t2) 

Hence 

r2 (n1 cose+n2sine) (1-t2) + n3 r22t+ n1 r1 cose+ n2r1 sine + kn36 +d-O 

(1+t2) (1+t2) 

=> ( 1 - t2) r2 ( n1 cose + n2 sin e) + 2n3 r2 t 

+ ( 1 + t2) (n1 r1 cose + n2 r1 sine + kn3e + d) .. 0 

'"> t2 {( r1 - r2) (nl cose + n2 sine) + kn3e + d} + t{ 2n3 r2} 

+{ (r1 +r2)(n1 cos 9 +n2sine)+kn3e +d} .. O 

This is simply a quadratic in t. For a given value of e it can be solved. Hence t, 

and SO" can be found. Putting kl .. n1 cose + n2 sine, ~ .. kn36 + d ,we get 

t2 { ( r1 - r2) kl + ~} + t { 2n3 r2 } + { ( r1 +r2 ) kl + ~} .. 0 ( 27 ) 

which has roots 

t= -n3 f2± (ni rl -{ (rl - r2) kl +~}{ (rl +r2) kl + ~}) -----( 28) 

(rl-r2)k,+~ 

Let the roots to ( 27 ) be tl and t2 . COS" and sin" can be worked out for each of 

tl and ~ and these values substituted into the parametric equation of the helix to 

18 



give the points of intersection. 

The following cases should be noted :­

.ill.J1. ~ complex for a given e 
This indicates that theplane does not intersect the helix for that value of e. 

illl.J1.~ 
This occurs when 

n32 ri -{( r1 - r2 ) kl + ~}{ (rl +(2) kl + ~} .. 0 

and indicates that for that value of a the plane just touches the helix. 

iliiU1....aruU~ real and distinct 

In this case the plane cuts the helix at two distinct points for that value of e. 

(iv) { ( rl..:..!el1s1~} .. 0 for some e 
When this occurs (27) reduces to 

t{2n3r2}+{(r1 +(2)k1 +~}-O 

=> t .. - {( r1 +(2) kl + ~} 

{2n3 r2 } 

_________ (29) 

This gives one root. The other root is, roughly speaking, at t .. 00. Since 

t .. tan "/2 this means that ,,/ 2 .. 'It / 2 , 3'lt / 2 , 5'lt / 2 , ... 

.. > " .. 'It, 3'lt, 5'lt, ... 

But in this case 0 S; " S; 2'lt, and so we must have" .. 'It as the missing 

root. So one value of " is worked out from equation ( 29 ) and the other 

value is " .. 'It. 

A listing of the program and documentation for the program appear In 

Appendix 2. 
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ChapterS 

Future Work and Conclusions 

5.1 Future Work 

It is obvious that there remains a lot of work to be done on this subject, 

and many areas must be the subject of future research before a modeller can 

include a helix amongst its primitives. These areas must include :-

1. The intersection of a helix with more general curves. Provided that the 

curves are described parametrically the approach used for intersecting a 

helix with a straight line could be generalised to cover other curves. 

2. The intersection of a helix with a general plane or quadric surface can 

only be solved in terms of points rather than curves. If some method could 

be found to determine the actual curves of intersection (as opposed to 

calculating points on the curves and then interpolating the points) this 

would be a big step forward. 

3. The methods so far used to solve line/helix intersections are very much 

"brute force" approaches. These are inefficient and some alternative 

method of finding the solutions to the equations should be sought. 

5.2 Conclusions 

It Is safe to say that where helices are concerned nothing is simple. 

Indeed compared with the other primitives commonly used In solid modellers 

they are very complicated. While nothing was found to suggest that it would be 

impossible to incorporate the modelling of helices in a CAD system it was readily 

seen that the greater complexity of the equations describing helices means that 

more computing time would be needed to solve them and thus lead to a slower 

modeller. 

Much more work remains to be done on the mathematics of helical 

surfaces and any system modelling them would, initially at least, have to be 

implemented in a limited form. 



Appendix 1 

Program to Calculate the Intersection Between a Line and a Helix 

All the procedures in this program use the following Ada packages ;­

pafec_base_types 

pafec_standard_types 

pafecJnUo 

pafec_double_io 

texUo 

pafec_maths 

The programs were written in Ada ( ANSII MIL-STD 1815A) and run on 

Apollo DN3000 and DN4000 workstations. 

The following procedures were used In the program ;-

A1,1 Procedure line Intersect helix 

1. Purpose 

To calculate points of Intersection between a straight line and a helix. 

2. Keywords 

Line, helix, Intersection, bounding cylinder. 

3. Language 

Ada. ANSI/ MIL - STD 1815A 

The following data types are declared ;­

three_vec is array(1 .. 3) of double. 

four_vec is array(1..4) of double. 

4. Descriotion 

Line_intersect_helix calls the procedures geUlne and geChelix_implicit 

to read In data specifying a line and a helix. The line Is checked to see If It is 

vertical, and if it is vertical the procedure check_for _Intersection_vertical Is called 

to see If an intersection is possible. If an Intersection is possible then procedure 



calculate_intersection_vertical works out the points of Intersection. 

If the line is not vertical then procedure intersect_bounding_cylinder is 

called. This works out if the line cuts the bounding cylinders, and if it does 

intersect the bounding cylinders it calculates the points of intersection, whether it 

cuts both inner and outer cylinders, whether it cuts just the outer cylinder or 

whether it Just touches the outer cylinder. The sections of the line in between the 

outer and inner bounding cylinders of the helix are then checked to see if and 

where they intersect the helix itself. 

5. parameters 

None. 

6, Error Indicators 

None. 

7. Auxiliary Routines 

LineJntersect_helix calls the following routines :­

geUine 

8. Accuracy 

geChelixJmpllcit 

check_foUntersection_vertical 

calculate_intersection_ vertical 

intersect_bounding_cylinder 

check-point 

check_lambda_in _range 

All arithmetic is carried out in double precision. 

Al.2 prQcedure get line 

1. PYlJ,lOse 

Accepts user input uniquely specifying a line. 

2. Keywords 

Point, direction 



3. Langyage 

Ada. ANSI/ MIL - STD 1815A 

4. Description 

The line Is specified by two vectors. One giving a point on the line and the 

other giving the direction of the line. 

mode ~ description 

5. Parameters 

parameter 

s out three_vec pOSition vector of a point on the 

line. 

t out three_vec direction vector of line. 

6. Error Indicators 

None. 

7. Ayxl!lary Roytines 

None. 

8. Accuracy 

All variables are In double precision. 

Al,3 procedyre get helix Implicit 

1. Pyr:pose 

Accepts user Input uniquely specifying an infinitely long helix. 

2. Keywords 

Major radius, minor radius, pitch. 

3, Langyage 

Ada. ANSI/ MIL - STD 1815A 

4. Description 

The helix Is specified by its major and minor radii and its pitch. 



5. Parameters 

parameter 

major_radius 

minor_radius 

pitch 

6. Error Indicators 

None. , 

7. Auxiliary Rgutjnj;!s 

None. 

8. Accyracy 

mgsjj;! lYP!:! 
out double 

out double 

out double 

All variables in double precision. 

sjescrlptlon 

major radius of helix. 

minor radius of helix. 

pitch of helix divided by 2n. 

A1,4 Procedure check for Intersection yertlcal 

1. pyrpgse 

Checks to see if a given vertical line intersects with a helix. 

2. Keywords 

Major radius, minor radius, intersection. 

3. Language 

Ada. ANSI/ MIL - STD 1815A 

4. Description 

The position vector of one point on the line, ~ is passed to the routine 

along with the major and minor radii of the helix. If the line lies between 

the bounding cylinders of the helix the logical flag intersection..POssible 

returns the value true. 

5. parameters 

parameter 

s 
mgsjj;! lYP!:! 
in three_vec 

sjescriptjon 

position vector of a point on the 

vertical line. 



major_radius 

minor_radius 

in 

in 

intersection-possible out 

6. Error Indicators 

None. 

Z. Auxiliary Routines 

None. 

8. Accuracy 

double 

double 

boolean 

All variables In double precision. 

major radius of helix. 

minor radius of helix. 

returns true if the, line lies 

between the bounding cylinders 

of the helix. 

M,5 Procedure calculate Intersection vertical 

1. purpose 

Calculates points of intersection between a vertical line and a helix. 

2. Keywords 

Major radius, minor radius, theta, phi, pitch. 

3. Language 

Ada. ANSII MIL - STD 1815A 

4. Descdption 

The procedure first calculates one value of the helical parameter theta 

where the line intersects the helix. The position vector of a point on the line, 

§. , is passed over by the calling routine. The x and y co-ordinates of the 

points of intersection are known, in this case they are the x and y 

components of the vector §,. So we can deduce a value for theta where an' 

intersection occurs, say 1 ' with 0 ~ 1 ~ 21t. Furthermore we can 

deduce cos " from equation ( 6). This gives two possible values for" in the 

interval [0, 21t] and these two values of " give the two points of intersection. 

All the other points of intersection occur at the same" values and at theta 



values of 

5. parameters 

parameter 

s 

1 ± 211:, 

major_radius 

minor_radius 

pitch 

6. Error Indicators 

None. 

7. Auxiliary Rgutjnl!s 

None. 

8. Accuracy 

1 ± 411:, etc. 

mgs;ll! nu s;ll!scriptign 

in three_vec position vector of a point on the 

vertical line. 

in double major radius of helix. 

in double minor radius of helix. 

in double pitch of helix divided by 211:. 

All arithmetic is carried out in double precision. 

Al,6 procedyre Intersect boyndlng cylinder 

1. pU[p<>Sl! 

Calculates points of intersection (if any) between a line and the bounding 

cylinders of a helix. 

2. JWywgrs;ls 

Inner cylinder, outer cylinder. 

3. Language 

Ada. ANSI I MIL - STD 1815A 

4. Ol!scrjptjgn 

The procedure works by substituting the parametric equation of a line into 

the implicit equation of the cylinders and solving the resulting equations in 

lambda (the parameter of the line). The procedure first checks whether or 

not the line intersects the outer cylinder. There are three possible results :-

1. The line does not intersect the cylinder. In this case the logical flag 

Intersection",possible is set to false. 



2. The line is tangential to the cylinder. In this case the logical flag 

poinUntersection is set to true and the root is calculated and stored as 

lambda(1). 

3. The line Intersects the cylinder at two distinct pOints. In this case the 

larger of the two roots is stored as lambda(1) and the smaller as lambda(2). 

The procedure then checks to see if the line Intersects the inner cylinder as 

well. If the line intersects the inner cylinder then the logical flag 

intersect_Inner_cyl is set to true and the roots are calculated and stored as 

lambda(3) and lambda(4). 

~, ~a[llmmllll! 

parammer mQg~ 

s In 

t in 

major_radius In 

minor_radius in 

poinUntersection out 

intersectlonJ)ossible out 

Intersect_inner_cyl 

lambda 

6, Error Ingicatoll! 

None. 

7, Auxiliary RQytinlls 

None. 

8. Accuracy 

out 

out 

iYWl 
three_vec 

three_vec 

double 

double 

boolean 

boo lean 

boolean 

four_vec 

description 

position vector of a point on the 

vertical line. 

direction vector of line 

major radius of helix. 

minor radius of helix. 

retums true if line is tangential to 

outer cylinder. 

retums true if line intersects outer 

cylinder. 

returns true If the line Intersects 

the Inner cylinder. 

returns the values of lambda 

where the line intersects the 

cylinders. 

All arithmetic Is carried out In double precision. 



Al,I procedure check point 

1. Purpose 

Checks whether a given point is on the surface of the helix. 

2. Kevwords 

line, helix. 

3, Language 

Ada. ANSII MIL, STD 1815A 

4. Descrjption 

Check",point uses the procedure get,Jlarameters to determine if the point Is 

on the helix. If the point is on the helix, the co-ordinates of the point are 

printed out. 

6. parameters 

parameter 

s 

major_radius 

minor_radius 

pitch 

lambda 

6. Error Ingicators 
I 
None. 

7, Auxiliary Routines 

mQg~ 

In 

In 

In 

In 

in 

~ gescriptjon 

three_vec position vector of a point on the 

line. 

double major radius of helix. 

double minor radius of helix. 

double pitch of helix divided by 21t. 

double value of the parameter of the line 

corresponding to the point to be 

checked. 

Check",point calls the procedure get,Jlarameters. 



8. Accuracy 

All arithmetic Is carried out In double precision. 

A1.8 Procedure get parameters 

1. pyrpose 

To determine if a given point Is on the helix and, if it is, determine the values 

of the helical parameters, theta and phi, corresponding to the point. 

2. Keywords 

theta, phi, point, helix. 

3. Language 

Ada. ANSII MIL - STD 1815A 

4. Description 

The procedure first calls procedure try_and _find_theta. If theta cannot be 

found then the point Is not on the helix. If theta Is found then procedure 

try_and_find"phlls called. If phi cannot be found then the point Is not on 

the helix. If the point is not on the helix then this Is signalled to the calling 

routine by a logical flag, otherwise the values of theta and phi are passed 

back to the calling routine. For more Information see section 3.4 of this 

report. 

§. PsU5UD!;ll!;l[§ 

parameter ms2tfli ~ gii!~S;[igligD 

x In three_vec position vector of point for which 

parameters are to be 

determined. 

major_radius In double major radius of helix. 

minor_radius In double minor radius of helix. 

pitch in double pitch of helix divided by 21t. 

point_not_on_helix out boolean returns true if the point is not on 

the helix. 

theta in out double parameter of helical surface. 

phi In out double parameter of helical surface. 



6. Error Indicators 

None. 

Z. Auxiliary Routines 

Get_parameters calls the procedures try_and_flnd_theta and 

try-and_find""phi. 

8. Accyracy 

All variables are in double precision. 

M,g procedure try and find theta 

1. Pyrpose 

To calculate the value of the helical parameter theta for a given point. 

2. Keywords 

theta, point, helix, pitch, major radius, minor radius. 

3. Langyage 

Ada. ANSII MIL - STD 1815A 

4. Description 

For a detailed description of the method of operation of this procedure see 

section 3.4.1 of this report. 

5. parameters 

parameter 

x 

pitch 

minor_radius 

theta 

theta_found 

mode ~ 

In three_vec 

In 

in 

double 

double 

in out double 

in out boo lean 

description 

position vector of point for which 

the parameter theta is to be 

determined. 

pitch of helix divided by 2n. 

minor radius of helix. 

parameter of helical surface. 

returns true if theta is found. 



6. Error Indicators 

None. 

7. Auxiliary Routines 

None. 

8, Accyracy 

All arithmetic is in double precision. 

Al.l0 procedure tIY and find phi 

1. pyrpose 

To calculate the value of the helical parameter phi for a given point. 

2. Keywords 

theta, phi, point, helix, major radius, minor radius. 

3, Langyage 

Ada. ANSII MIL· STD 1815A 

4. Description 

For a detailed description of the method of operation of this procedure see 

section 3.4.2 of this report. 

5. parameters 

parameter 

x 

theta 

major_radius 

minor_radius 

pitch 

phi 

mode ~ description 

in three_vec pOSition vector of point for which 

in double 

in double 

in double 

in double 

out double 

the parameter phi is to be 

determined. 

parameter of helical surface. 

major radius of helix. 

minor radius of helix. 

pitch of helix divided by 2lt. 

parameter of helical surface. 



phUound 

6. Error Indicators 

None. 

7. Auxiliary Routines 

None. 

8. Accyracy 

out boo lean 

All arithmetic is in double precision. 

returns true If phi is found. 

A1,11 Procedure check lambda In range 

1. purpose 

To determine the points of intersection of a line with a helix. 

2. Keywords 

lambda, root, solution, intersection, discontinuity. 

3. Language 

Ada. ANSI/ MIL - STD 1815A 

4. pescriptlon 

For a section of line between two given points, a series of points on the line 

are substituted Into the cartesian equations of the surface of the helix. The 

values given by this are stored in the arrays f1 and f2. These values are 

then checked to see where sign changes occur. A sign change means one 

of two things, either 

1. There Is an Intersection between the two points 

or 2. The equation has a discontinuity between the two pOints. 

The possibility of a discontinuity arises because of the tan term in the 

equation. 

5. parameters 

parameter 

lower_limit 

mode ~ 

in double 

description 

lower value of parameter of line, 

lambda, corresponding to one 



uppeUimit 

s 

t 

major_radius 

minor_radius 

pitch 

6. Error Indicators 

None. 

7. Auxiliary Roytlnes 

in 

in 

In 

in 

In 

In 

end point of the line segment 

being checked for intersections. 

double upper value of parameter of line, 

corresponding to the other end of 

the line segment. 

three_vec poSition vector of a point on the 

line. 

three_vec direction vector of the line. 

double major radius of helix. 

double minor radius of helix. 

double pitch of helix divided by 2lt. 

Check_lambda_ln_range calls the procedure getJ)arameters and the 

functions line_helix1 and line_helix2. 

8. Accuracy 

All arithmetic Is In double precision. 

A1 ,12 Function line hellx1 

1. Pyrpose 

To help determine if a given point lies on the surface of a helix by checking 

whether it satisfies one of the cartesian equations of the surface. 

2. Keywords 

None. 

3, Langyage 

Ada. ANSI / MIL - STD 1815A 

4. Description 

The co-ordinates of the point to be checked are substituted Into one of the 



cartesian equations of the surface. If the value given by the function Is zero then 

the point Is on the surface of the double helix. For more details see section 3.5.1 

of this report. 

Q, P5l[Slmm!;'!~ 

parammer 

lambda 

s 

t 

major_radius 

minor_radius 

pitch 

2, EIIQ[ lodi~ato~ 
None. 

7. Ayxiliary RQutiOl!s 

None. 

8, Accuracy 

mQdl! ~ 

In double 

In three_vec 

In three_vec 

In double 

In double 

in double 

All arithmetic is in double precision. 

Al.12 Function line hellx2 

1. pyr:pose 

descriptiQn 

value of the parameter of the line 

corresponding to the point to be 

checked. 

position vector of a point on the 

line. 

direction vector of the line. 

major radius of helix. 

minor radius of helix. 

pitch of helix divided by 27t. 

To help determine if a given point lies on the surface of a helix by checking 

whether it satisfies one of the cartesian equations of the surface. 

2. lWyw()[(is 

None. 

3, Laogyag!;'! 

Ada. ANSII MIL - STD 1815A 



4. Description 

The co-ordinates of the point to be checked are substituted into one of the 

cartesian equations of the surface. If the value given by the function is zero then 

the point is on the surface of the double helix. For more details see section 3.5.1 

of this report. 

5. Parameters 

parameter 

lambda 

s 

t 

major_radius 

minor_radius 

pitch 

6. Error Indicators 

None. 

7. Auxiliary Routines 

None. 

8. Accuracy 

mode llm description 

in double value of the parameter of the line 

corresponding to the point to be 

checked. 

in 

in 

in 

in 

in 

three_vec position vector of a point on the 

line. 

three_vec direction vector of the line. 

double major radius of helix. 

double minor radius of helix. 

double pitch of helix divided by 2n. 

All arithmetic is in double preCision. 
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-~------.---'-----------. ----------------------------~---=== 
I'll th pafecJ>aslI_types 
with .pafec_"tal'ldard_types 
with pafec.JntJo ' 

usa p.fecj>ase_types 
usa paf'ec_standard_typas 
use pafacJntJo 

:~ ~~ =~:)-~ouble.J.o, usa pafac_double.).o 
use taxt..io 

d.~th paf'ltc...JI'aths • usa pa1'acJU.ths 

d procedure line.J.nter~actJ'leU)( is 

~i~ -''-~f.~e:)''"';':;1 - :; type· three_vac r is array(l 3) 01' double o < ,~YPII "o~r_vec is array(1 .) 91' double 

- • ' three_vac: 
t three_vac 

, lambda four_vac 
.. ajar _rad1 ... 8 double 
,ninol" _".diu. double 
pi teh double 
interaltction..,possible bool •• n 
point..intersact:i.on boolo!l,an 
interaect.J.nne~_cYl boole.n 

procedure gat.).in. • , 
begin 

~ • ~ putt-type 11'1 co-ordinates 01' first point on 
~'getes(l». sst(s(2», gete.(3», 

, new_line, 
1'1'\ ! ~,pute-type in dl.rection vector- 0' line =>"); 
V'" ., getet(l», llet(t(2», get(t(a»;. 

t" " ne",_line. 

-', end getJ!ne 

" procedure getJlelb(_fmpHcit 

.. , " , , 
0-, bo,l" , 

" 

(lIlajor Ja.diulo 
sioo .. _r-adius 
pitch • 

0
, '~"", putC"major radlus of helix"), new_lt"e, 

: ( '" get{.ajor-_radlus), 
l ,,'~" put.{"minor radius of helix"'; new,..line, 

';\ get(sloor- radius), • 
" 'put("type -in pitch 0' the helix =>"); ne"'Jine, 

.,J .. gat(pitch). 

: .,nd get-t'elix_i .. plici t ; 

s 

double 
double 
double 

p"OC~dur. check_fo .. Jnt.ersectlon_vertical 
lIIajQr _r~dlUS 
sinor Jadlu .. 

" 

i ntarsec t1 on..,pQssibl. 

" dQubl .. 

b .. gin 

in th .... _v.c 
in dQubl .. 
in double 

out boolean 

------ -------------------------------
_jor _!'adius - .. loor Jadius ) "'. 2 then 

do:..b1e 
ar .. ay{l. 
double 
dOUble 
dOUble 
array(l. 
double 

2) Qf radian 

2) of double 

doublet aC05( cos_th .. ta ) ); 

»0 

thr ... _vec 
double 
double 
double 

""' ( sqr-t( sell "'. 2 .. s(2) "'.2 , - s.jor Jadius , I sino .. _ .. adius , 

.t.(l) .. lIIinor_radius '" sin(phi{l» 

.1.(2) :E"lJIino .. _radius '" sin(phl(2» 
I:_step "double(t",o..,pi) '" pitch; 

+ pi tch '" theta 
+ pitch a theta 

) Is 

Infinite number of .. oots b .. t",een (infinite) strsight line and (infinite) h.lix ") ; newJine ; 
All inter-,,"ctions occur at x ""). putt s(l) ). putC" • y " ") , putt s(2) ) , ne",_line, 
One set of root.s is at r" "', put ( .1.(1) ) , put CR plus or- minus "), put C .I._step) ; n .... Jin •• 
The other- set of roots is at .1.= "); PUt ( .1.(2) ) ; put (" plus or- sinus "); put ( z_st .. p ) , new_line 

end calcul.teJnt.rsect1on_vertlcal , , 
procedure inters .. c:..bQund1ng_cylinder 

( 

dascrill_outer-_cyl 
dascrl .. _inner _cyl 
a. b, c 

begin 

double 
double 
double 

( . , 
lIajor -.radlu" 
lIIioor _rad1us. 
point_inte .... ection 
i nte rs .. c tion..,possible 
intersect_inner _cyl 
lambda"" , 

In 
I" 

'" '" 

th ... e_vec 
three_vec 
double' 
double 
boolean 
boolean 
boolean 
four-_vec ) Is 

--.initialise the logical flags and calculate a 1aw valuas that wUl be useful in future calculat10ns 

" 

, 
t. 

.,.::-



-- ---~-~- ----- '-- ~--------- ----
_ intDrsect_inner _cyl "tals.; 

inten;ectionJlossible -: true, 
point_intersection a f.l$1I • 

, •• " .. U) •• 2 .. s(2) •• 2 • 
, b "$(1)" tell + _(2) ,.. t(2) 

• c "t(l).* 2 + t(2) •• 2 • 

now check to SDe whether the Une intersllcta the outer boundlng cylinder of the halil( 

d.lIcri .. ~utllr:"cYl :"' b ,.. b - c • .. - ( ... Jor .radius ..... inor -,"adiu. ) •• 2 ) 

Only'ona point .,lIed be checked 

-, 

array(l •• ;s) 
three.vllc 
boolee ... 
double 
double 

ph. 

boolean 
boolean 

double 

of doubh 

( . 
pitch 

'n 'n 'n 'n 'n 'n 

.. inor .radius 
theta 
theta.found 

cos.theta 
ain.theta 
point_not.on.helbc =~!:n '. 
begin 

thata.found = 1 ... 1s •• 
POl.nt..not..onJlelilC .= 1alse ; 

thr.8."ac 
thrlle.VtlO 
double 
double 
dOUble 
doubh 

in out 

is 

dOUble 

in thrall.vllc 
in dOUble 
1n double 
in 01,1 t 'doubl. 
in out bool •• n 

I cos_theta .= >«1) I sqrt{IC(1)*IC(1) + x(2}*x(2», 
5in_theta = x(2) I sqrt(x(l)*x(l) + x(2)*x{2». 
11 sin_theta < 0 0 then 

theta doublet two-pl - ... cos( c05_theta ) ) I 

.lse 
theta .= doubl.C acos( t:05_thet.a ) ). 

e!'ld 11; 

• theta 
.aJar _radiu5 
.1oor _redlus 
pi tch 
phi 

'n 'n 'n 'n 'n 

three_vec 
dOUble 
double 
double 
double 

out double 

)1a 

) " 

,'.' 
" , , 
; ,., 

" 

" 

" f ,',} 

, ' , , ' 
, ~,..' 

, I, 
" 

'::." . " , , 

': .. ' , 



------ -- --'-~ ------------- -- --~---.---

cos...,phi 
ain...,phi 
distance_fro",-surf ace 
point,JIot_on.J1.elix 

bagin 

double 
double 
double 
booi •• n 

out boolean J ,. 

cos..phi ( sqrt( x(1) .* 2 + x(2) **2 ) - lIIajor~Nldius ) I 1II1nor_,adlu •• 

'ainJ)hi :" ( x(3) ~ pitch. theta I .. 11'10,. Jadlus ; 

i1 1 0 - cos.,phi •• 2 - sin"phi *. 2 < 0 0 than 

true, 

distal'\ee.fro..surface .= abaCaqrt(l 0 - cos.,phi lO. 2 - s1.n.,phi •• 2 ) • 
If di.tanc .... fl"OII\ ... surf.cD <= 1 Oe·e then 

phi_found • true~ 
it sln.&'hl < 0 0 then 

ph' z doubleC t ... o..,pl - acos(co • ...phl». 

else 

ph' :" doubl.,(acos(coSJ)hi»; 

end i1. 

end 11, 

begin 

t.het.a_1ound :" 1alse • 
phi_'1ound .'" 1alse ~ 
point._not._on...)lel1x s: 1alse • 
try_and_1ind_t.het.a ( x, pitch, 

11 theteJound " 1alse t.hen 

" t.rue .. 

else 

Alinor _radius, theta. theta_1ound ) • 

~--------------------~~-~--=-~---~.----~~--~------------
pointJlOt.on.....nalix ;= true 

and If; 

end i1. 

and "et"parametars 

begj.n 

'10r countv.,. in 1. <5 loop 
x(countva,.) '" s(cOl'"tV{lr} + 

IIInd loop. 
la .. bda * tCcountvar) ; 

) -
getJ).rametersc. x ... ajorJ.dius ... J.norJedius .. pitch .. point_not..,pn..be11x. theU. pn1 1 .. 

1'1 po1nt.-"ot_onJ'lelbc " trve then 

puttM line touches heUx et. one point Co-ordl.nates .lira => M) (; new-.lina • 
10r count in 1 .3 loop 

pUt(x(c:ountll .. put(- ") .. 

el'ld loop 

else 

putC M 
NO intersaction M) • new_line 

eM i,f. 
end chack..,point 

proeedure check..lambda..in_range lower_lhlit 
upper _U .. l t 

• • ... jor _r.dius 
minor _r.dius 
pitch 

" " " " " " " 
" f2 

• 
_rr.,v(l. SO) 01 double 
.rr.yU. SO) 01 dOUble 
double 

b 
o 
Illlllbda 
laMbda1 
lambda2 
lambda.step 
root 
batter ..9uesa 
no.of .roots 
dlscontinuit)' 

double 
double 
double 
double 
double 
double 
double 
dotlbla 
int .= 0 
boolean ." 1alse 

double 
double 
three_vee 
three_vec 
double 
double 
double 

• thr •• ~v.c ;. 
solutions 
intersection 
polntJlOt.on.halix 
theta 
ph' 

1unction lina_helilcl (la .. bda 

• 

erray{int rallge 1 .300) 01 double 
boolean .: 1alse 
bool.,an 
double 
double 

.. 



• 
b 

, 
II\&jor _r .. dlus , 
lIinor _radius 
pitch 

three.vae 
double 
double 
double ) return double h~ 

c 

'"" 

doubla 
doubla 
double 
double 

begin 

a' = .(1) "'''' 2 + s(2) _'" 2 , 
b = 2 0 _ (s(l) '" tell + .(2) 
e = t(1) "'. 2 + t(2) .- 2 • 

.t(2». 

} fun = .(2) + I_bda - t(2) • ( s(1) + l_bd •• t(l) ) , . 
raturn fun; 

tan(radian( r.(3) + la",bda .. t(3) + SClrt( .inor .",adi ... 15 
+ 2 0 • m.jor .r.di ..... sqrt( a + lambda _ b + e _ 

•• 2 • a - major .radius _'" 2 - lalllbda*b - e '" l_bd •• _ 2 
hllbda •• 2 ) ) I ,hteh ) ); 

~ end l1na...,heUxl 

• • 

• , 
major_radius 

- .inor _radius 
pitch 

do ... ble 
thrfla.vac 
thraa_vac 
do ... bla 
doubla 
doubla ) return double is 

c 

'"" 

double 
double 
double 
doubla 

a .= 15(1) •• 2 + s(2) ** 2: , 
b 2 0 '" (s(l) '" tell + s(2) 

t(1) *'" 2 + t(2) "'''' 2 , c .' 
'" t(2) ) ; 

'"" hmbda '" t(2) - ( s(1) + lambda. tell ) = 15(2) + 
• 

ret ... rn f ... n ; 

tan(radian( s(3) + lalllbda '" t(3) - sqrt( minor_radius .* 2 - a - major_radius "'''' 2 • 
.+ 2: o. aajor_radius '" sqrt( a + la .. bda '" b + c '" lambda.* 2) ) I pitch) ). 

end l1neJielil(2 

proeedura getJ>.r ... eters x 

theta_found 
phi_found 

cos_t.heta 
sl.n_theta 
point_not.on_heUx 

begin 

Dajor .radiu. 
lIl.nor .r.dius 
pitch 
point_not.on.hellx ,,,. .. 
ph' 

boo11'1an 
boo!ean 

double 
double 
boolean 

x 
pi teh 
IIlnor _radius 
theta 
theta_fo ... nd 

theta_found .= false; 
point.not_onJisUx "false, 

'" '" '" '" 
in out 

'" 0"' 

'" '" '" in out 

'" 

cos.theta = x(1) I sqrt(.x(1)*X(l) + x(2)*1«2». 
sin_theta "1«2) I sqrt(x(l)*x(l) + 1«2)"'1«2». 
if aln_theta < 00 than 

t.heta = doubla( t"oJ>i - acos( cos.thata ) " 
alsa 

theta =: double( aeos( cos_theta) ,. 
end 11, 

three_vec 
doubla 
double 
double 
boolean 
doubla 
double 

three_vec 
double 
double 
double 
boolean 

) 10 

) ,. 

if ( ( x(3) - p:i.tch_theta >= -lIinor.radius ) and ( x(3) - pitch*theta <= .. lnor_radiu. ) ) then 

thet.-_found = true • 

els11 1«3) - pitch-thata > -Dinor.radius then 

loo, 
exit whan ( poJ.nt.not.on_heUx = true, or theta_found = true) • 
theta .= thata + double(twoJli) ; 
if ( ( x(3) - pitch><theta >= - .. inoI"Jadius and (x(3)· pitch*thata < .. lJIinor_r.-diu .. ) ) then 

theta_found .= tnle • 
elsif ( ( 1<(3) • pitch*theta > -lIinor_radius - dOUblo(twoJ>i) _ pitch 

and ( x(3) - pitch-theta < - .. inor _radius ) ) then 
point-"ot_on_haUI< = tl"u •• 

end if; 
and loop; 

.lae 
loo, 

el(it when ( point._not_on_heUI< = true) 01" theta.found = true) • 
theta = theta - double(t"o.,.pi) , 
if ( ( x(3) - pitch"'theta >" -minor_radius and ( x(3) - pitch*theta <= lIinor.radlu" ) ) t.hsn 

theta_found = t.rue ; 
abJ.f ( ( 1«3) - pitch><theta > .inor_radlu .. ) 

and ( x(3) - p!tch*th.ta < double(tw0J>i) .. pitch· .inor_radius ) ) then 
p01nt-"ot.on.heUx .= true. 

end lf, 
end loop, 

end if ; 

end tl"Y_and.find_theta 

pl"oeedure try.and_find.,.phi I< 
theta 

cosJ>hi 
sinJ>hi 
distance.frolll.surfaca 
point.l'IOt_on.h.llx 

begin 

major .r.-dius 
m1nor _radius 
pitch 
ph, 
phi.found 

1 double 
double 
double 
boolean 

pOintJ1Ot_onJieUI( = false, 

in three.vec 
in double 
in dOUble 
in double 
in double 

out. double 
out boole.-n ) h 



co~....phi .: sqrt( x(l) ··2 + x(2) .*2 ) - 1I0jor_radius ) /lIIinorJadius • 

x(3) - pitch. theta 

now to cheek toIhether or not the pOint 
is aetuolly on the helix 

/ IIinor _radius : 

i1 1 0 - cos-phl .* 2 - sin-phi ** 2 < 0 0 then 

" true, 

e1seo 

dlstance_from_lIurfaee := ab.(sqrtO 0 - c:os-phi ". 2 - lIin-phi •• 2 » 
if distane._froM_$Urfac. <: 1.0111-8 then 

phJ,_found .: true, 
if sin-phi < 0 0 then 

.. doublet two-pi - ocos(eos-phi». 

el.1II 

ph' double(aeos(eos-ph1}) , 

end if, 

, 
pol n t.JlO t_on_helix 

end if, 

end 1f. 

begin 

theta_found = fal •• ; 
phi_found .1: fals" ; 

" true, 

pointJlOt_onjlelix .: fols. ; 
" try_and_find_theta ( x, pitch, 

'~if theta_found .. false then 

, point .JlOt_onjlellx .. tl"\llll 

end if, 

IIInd if • 

• := sO) •• 2 + .(2) _. 2 , 
b = 2 0 • ( 11(1) • t(l) + 11(2) * t(2) ) • 
c := tU} ** 2 + t(2) •• 2 , 
lambda'>tep ,,( upper_limit - 10werJ.i.it ) / 49.0 • 

for count in 1 50 loop 

,lambda "lower_limit + laOllbda_step • double ( count - 1 ) , 
fl(count) "bne_helix1( lambdo. s. t. lIIajor _radiuII, lIIinor _radius. 
f2(count) "l1neJlel1x2( lllmbdo. s. t. major_radius. IIlnor _rodius, 

and loop. 

for count in 1 •• 49 loop 

if fl(eount) - fl(count+1) < 0.0 then 

pitch) 
pitch) 

therlll hos been. sign change. Could be either. root or • di$Continuity 
-- Use 1lne.r intlllrpolaticm to gilt a better 9UIIIIIS for the pOllsibl. root 

laCllbd01 ." low.r_limit. + laCllbda..atep * doublet count. -1 ) , 
10Qlbda2 ." IOfllbda1 + lambda_lItep ; 
intersection "f.llle. 
discontinuity := f",lll. ; 

loop 
exit when discontinuity = true or intersection = true. 
better _9uells :" l..-belal - ( 1 ... bda2 _ lafllbdal ) .. 

line_helixl (lambdol, s, t, lIojor _r.dius, lIIinor _radius, pitch) / 
(line_helixl (laJllbda2. a. t, lIIojor_rodiulI, lIIinor_r.d1us, pitch) _ 
Une_helixl (lambda1, a, t., lIIajor_radius, 1II1nor_rodius. pitch) ) 

if line_helix1 (betterJiuess, a o t, mojor_radlus, IIIlnor_rodius, pitch) 
:I 11ne_heUx1 (lUlbda1, s. t. _jor_radlus, .inor_rodiulI, piteh ) < 0 0 then 

lombda2 ;z bett"r_gueslI ; 

"lse 

10ll'lbd01 :" bet ter -"uess, 

end if ; 

if obs( line_helixl (better_guess, s, t •• "jor _radiUS,' .inor _radiUS,' pitch) ) <" 1 0.-8 then 

no_of_roots "no_of_roota + 1 ; 
solutions(no_of_roots) ." better_guass , 
intersection "true-, 

elsif abs(line_he}ix1 (bett.r~ess. a. t, .ajor_radius, .inor_r"d1ua, pitch) ) ) 10 0 then 

discontinuity z true, 

-·-·"--r .. 



root -;: lower_lll1it + l .. mbda __ top • double( 
1'\O_01_roots .;: 1'IO_01_root. +1 ; 
solutlons(no_o1_roots) .;: root; 

end 11 

and 11 

1 end loop 

10r count in 1_ 49 10QP 

, if 12(count) ., f2(cQunt+l) < 0 0 than 

count) 

there has been a sign chango CQuld bo either a root or a discontinu1ty 
-- Usa Unear 1nterpolat10n to get .. batter guess for the possible root 

h.mbdal z 1Q .... er_1hdt .. 1uobda __ tep • doub1a( 
hmbda2 ;: lambdal .. lambda_step 
intersection :;: false, 
discontinuity .z 1al ... ; 

l~. 

count -1 ) ; 

el<it IoIhen discontl.nuity s true or intersectiQn z truo , 
better ~ue.s ;: lambdal - ( 1ambda2 -...l ... bdal ) • 

11ne_he111<2 (lambdal, .0 t ... ajor_radiua, .inor_radius, pl.tch ) I 
(::'ine_heliK2 (hmbd .. 2. a o t. m .. jor_r .. diua, Illnor_r .. diua, pitch) _ 

U .... _heliI<2 elambd .. l, ., to IIIajor_radius, .. inar_radiua, pitch) 

if 11ne_he111<2 (better-S!uess, s, t, mAjor.radius, Dinor_radius, pltch ) 
., 11naJielil<2 (1ambd .. l, s, t, major.rAdius, ainor.radl.us, pltch ) < 0 0 then 

alsa 

laalbdal ;: b .. tter Jluess; 

end if , 

no_of_roots ·z no.01_roots .. 1 ; 
aolutions(no_01_root:s.) ;: better -Sluess ; 
intersaction ;: true • 

elsi1 abs(lineJielix2 (betterJluI!I:s.s, s, t, lIIajorJadlua, .inorJad!us, pl.tch ) ) :> 100 than 

dbcontil'lUity true; 

~nd 11 

and loop 

a1511 12(count) • 12(co..nt .. 1) ;: 0.0 than 

if .t2(count) fI: 0 0 then 

root :;: 10war.J.hdt + lambda_step" double( 
nQ.Q1_root ... no.of.rQots "1 • 
solutlons(/'Io.of.roots) ,s root. 

rClOt :;: lower.limit .. l .. mbda.step • double( 
nQ.01.roots -;: no.of.roots +1 , 
501utlon5Cno.Qf.roots) .'" root.; 

end 11 

e/'ld 11' 

end lQop 

put C- No intersection -h ne ... ..line , 

alse 

for count In 1.,1\O.01.roots loop 

lambda ;: solutions(cQunt) ; 
fol' countvar in 1. 3 1000 

eQunt - 1 ) • 

eount 

x(countvar) :;: aCcountvar) .. lambda'" tCcountvar) ; 
end loop, 
get..,parameters C 1<, "ajar .radius, Dinar .radiu5, pitch, point.not.on_ha1il<, theta, phi 

11 point_not.onJ-al1l< " 1alae tnen 

put (~Co-ordlnates of intersection ~), nelol.llne, 
put (xCl», put (- -,. put (x(2», put (~ -), put 
put C- lambda;: .), put(lambda); na ... ..line 
put (" theta,. "). put(theta); na .... .J,in. 
put e" phi s -), putephl). ne .... .!ina , 

end if 

end loop 

and 11 , 

putC" Oata acc.pted -), now.line , 

eX(3». put C" .) . 
) , 

-- cheCk to see IoIhothar the line is vertlcal ( 1.a. parallel to the al<1s of the helil< ). in ..,hich 
~- case It will not intersect the bounding qlindar of the hellX but 1t may intersect the halil< • 

i1 ( t(1) •• 2 + t(2) •• 2 ) 1:: 0 0 than 

chack.for .intersection_v.rtical ( S. lIIajor _r .. d~us, Minor_radius. intersaction..,possl.ble 

11 Intersactlon..,possible ~ tn.re then J 

else 

putC" No 1ntersection -), 

--, 
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intar-sactJnner _cyl, lambda) • 

if intersection"possible = "1.111.11 ths" 

, putC" Ho intersection -); 

else 

it point_lntarsllction = true than 

~ c;heck...,POint ( So t. _jar_radius, ainor_r.adius, pitch, lambda(l) ) • 

alslI 

c:hack_lalJlbda_in_range ( 1 .. bda(2). 1 •• bd.(4). So 
chack_lambda_in,J"angll ( bmbda(3), lallbdaU). So 

elslI 

and if 

IInd 11 

end if 

end if • 
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Appendix 2 

Program to Calculate the Intersection Between a Plane and a Helix 

This program uses the following Ada packages :­

pafec_base_types 

pafec_standard_types 

pafec-'nUo 

pafec_double_lo 

texUo 

pafec_maths 

The program was written in Ada ( ANSII MIL-STD 1815A) and run on 

Apollo DN3000 and DN4000 workstations. 

1. Name of Procedure 

plane_helix-parametrlc 

2. purpose 

To calculate pOints of intersection between a plane and a helix. The 

points may then be interpolated to give the curves of intersection. 

3. Keywords 

helix, theta. 

4. Language 

Ada. ANSI/ MIL - STD 1815A 

5, Description 

This procedure reads in data specifying a plane and a helix. The helix is 

specified by its major and minor radii, pitch, and the number of coils in the helix. 

The plane is specified by the direction of its normal and the perpendicular 

distance from the plane to the origin. The procedure calculates the intersection 

by the method detailed in section 3.6, that is, for each value of theta it solves an 

equation in phi to find two points of intersection. For more details see sections 

3.6 and 4.2. 



6. Parameters 

None. 

Z. Error Indicators 

None. 

8. Auxiliary Routines 

None. 

9. Accuracy 

AI! arithmetic Is carried out in double precision. 



"......_----

o 

o 

o 

o 

o 

o 
o 

begin 
putt-type in co-ordinates 01 direction vector of normal to plal'l. =>-); 
9at(n(J», get(n(2». g8t(I'I(3»; new_line, 
putt-perpendicular dl.stanca frOM plane to origin ( d ) ">~h l'IewJina, 
gatCd) I 
put(-•• jor radius of hel:l.x·); newJina. 
gat(major _n.dlus). 
put{-lIinor r ... diue of helix-). new_line, 
get(mil'lor _radIus); 
PUtt-pitch factor ( k ) =>-). new_line; 
get(pitch). 
put(-l'II,Imber of' rot.hons of' section around helical clu'Itr. I1n. '")-), newJine; 
gat(nua); 
putt-theta varies between 0 0 and -); put(2 0 • doubla(pi) • nUIII) , new_line, 
pute-type in steplangth of theta ... ariaUon-); new_line 
get(tl'lata_step) • 
theta =00. 

-- aolve quadratic equation in t = tan( phi/2) Check for no real root. or a 
-- double root 

while doubl.(theta) < 2 0 " dovble(pl.) • nUll loop 

kl .= 1'1(1) "coa(thet.) - n(2) • ain(thet.). 
k2 = n(3) • pitch. double(thot.) .. d. 
dbcrirn "lIIinor .radius .'" 2 • n(3) •• 2 

- ( (lI.jor _r.dius - Minor _r.dlus) '" k1 .. k2) • « .. ajor _r.dlus .... inor _r.dius) • kl .. k2 )~ 

first check tor cOlIIPlex roots 

11 discri. < O.~ then 

nllw_line .putC-no 1"'11.1 roots tor theta -). pI,It(double(thet.». 

now cheCk tor • double root 

elsU dJ.sCI"'lM " 0 0 than 

if ( _jor _r.dius - Minor_radius) '"' kl .. k2 0.0 then 

s(l) .= (fllajor.radlUs. - ainor.udius ) '" cos(theta), 
s(2) ." -( lII.jor_r.dlua - Minor_r.dlus) '"' ain(thet.). 
s(3) t. pitch'" double(theta), 

--- --------------- -------~.------ -.------.----~-,---- ._- .. _-------- ----~---....----' 

else 

t(1) 
s(1) .= 
a(2} 

( -minor .radius '" n(3» I « lIIajor .r.dius - lIIinor .radius ) • kl .. k2 ); 
(lIIajorJadius" lIinorJadius.( 1 0 - t(l) • tell ) I ( 1 0" t(l) • t(l) ) ) • cos(theta); 
- ( .. ajor_radius .. Minor.r.dius • ( 1 () - t(l) '" t(l) ) I ( 1 0 .. to) • t(1) ) ) .. sin(theta), 
20'" t(1) .. IIIltlOr.r.dius I (1.0 .. tCl) • t(l} ) .. pitch'" doo.Ible(theta). _ s(3) .= 

'end if. 

put(s(1» ; putC- ") .put(s(2» .putC" ") ,put(s(3» ,ne ... J.ine ; -------------------------------------------------------------------------------------
-- two distinct roots. Check for ona root .t intlnity. 

if ( _jor .radius - .inor .r.dius ) '" kl .. k2 " 0 0 then 
put( - roots for thet. = -). put( double( theta», ne .... lina. 
s(1) ,. ( _jor.r.dlua - Minor_radius) .. cos(thet.); 
s(2) ." -( •• jor.r.dius - 1I1nor.r.diua ) .. ain(thet.), 
a(3) "pitch _ double(thet.), 
flew.line. 
put(S(I» ,put(" ") ,pl,It(s(2» ,putC" ") ,put.(s(3» ,new_line 

0000 the other root, WhICh ia the root ot the linaar equ.tion forllled by putting the 
leading coefficient of the qu.dr.tic equ.l to zero 

t(l) ,,- ( ( /IIajor.radius" lIinor.r.diua ) • kl .. k2 ) I ( 2.0 • minor.radius • n(3) ), 
s(1) ,,( _jorj.dlus .. lIulor_r.dius "'( 1 0 - tU) '" t(l) ) I ( 10'" tU) '" t(1) ) ) _ cos(theta). 
s(2) ,. ~ (/IIajClr.rsdlus" Dinor.r.dius '" ( 1 0- - t(1) '" t(l) ) I ( 107 t(1) '" t(1) ) ) .. sin(thet.). 
s(3) "2.0'" tU) " Slloor.r.dius I (1.0" t(l) '" t(1) ) .. pitch'" doubl.(theta). 

two distinct. tinl te roots 

els. 

to) ,,( -( lIIioor.r.diu. '" n(3) 
t(2) .S ( .( .door .r.dlus '" n(3) 
n.wJine. 
putt-roots tor that. = R). 

tor i in 1. 2 loop 

.. sqrt(dlscI"'iAl) ) I ( ( m.jor .r.dius - Alioor _radius 
- aqrt(dlScria) ) I ( ( SI.jor .radius - Sllnor .r.dius 

pu t(double( theta» 

*k1"k2). 
_kl"k2). 

s(1) ,,( •• jor.r.dius .. SllrlOr.r.dius *C 10- t(i) • t(i) ) I ( 10" t(i). t(l) ) ) • cos(theoh), 
s(2) .= - ( Slajor _r.dius .. IIIlnor _r.dius '" ( 1 0 - tU) '" t(O ) I ( 1 0 .. t(i) _ t(l) ) ) '" sin(theta), 
s(3) = 2 0 • t{i) • 1"'2 I (1.0" t(i) - t(1) ) .. pitch'" dOllble(thet.), 
put(a(l)) .putC- ") ,put(s(2» ,put(- -) ,put(s(3» ,new.line 

end loop. 

end if. 

end if, 

thetA = thet~ .. thet •• step 

end loop, 
ne .... line; 

I end pl.ne_helix...P.r .... trlc. 



Appendix 3 

Suggested Reading 

The following books are suitable background reading :-

"Computational Geometry for Design and Manufacture" by I. D. Faux and M. J. 

Pratt (Ellis Horwood, 1979 ) 

"Geometric Modelling" by M. E. Mortensen (John Wiley & Sons, 1985 ) 

"Geometry of Spatial Forms" by P. C. Gasson (Ellis Horwood, 1983) 


