
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

The modelling of helices

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

Loughborough University of Technology

LICENCE

CC BY-NC 4.0

REPOSITORY RECORD

East, Martin. 2021. “The Modelling of Helices”. Loughborough University.
https://doi.org/10.26174/thesis.lboro.14884011.v1.

https://lboro.figshare.com/

The Modelling of Helices

by

Martin East

A Master's project report submitted in partial fulfilment of the requirements for

the award of MSc. in Computer Integrated Engineering of the Loughborough

University of Technology, September 1988.

i • ~J • ,.

Academic Supervisor: H. W. ~. English, BSc, PhD,

-.. Loughborough University of Technology.

Industrial Supervisor : F. N. Rigby, BSc, PhD,

Pafec Ltd.

Copyright : Martin East 1988.

Acknowledgements

I am very grateful for the help and support I have had from many people

throughout the last year. Without their assistance I would probably not have been

able to complete the course. I would particularly like to thank the following (in no

particular order) :-

Dr. Neil Rigby and Dr. Y. T. Lee of Pafec Ltd., Dr. Alan Ball, Dr. Howard

English, my friends and fellow students, Hercules, and my family, without

whom none of this would have been possible.

Contents :-

Chapter 1 : Introduction

1.1 A Brief Introduction to Solid Modelling

1.2 Aims of Project

Chapter 2: Defining a Helix

2.1 Parametric Equation of Surface

2.2 Cartesian Equation of Surface

Chapter 3: Interrogating the Helix

3.1 Calculation of the Normal to a Helix

3.1.1 Parametric Representation

3.1.2 Using the Cartesian Equation of the Surface

1

2

3

4

7

3.2 Closest Approach of a Plane to a Helix 8

3.3 Bounding Box of a Helix 9

3.4 Finding the Parameters of a Point on a Helix 10

3.4.1 Finding e
3.4.2 Finding"

3.5 Intersection Between a Line and a Helix

3.5.1 Using Cartesian Equation of the Surface

3.5.2 Using the Parametric Equation of the Surface

3.6 Intersection Between a Plane and a Helix

3.6.1 Special Cases

3.6.2 General Case

12

13

3.7 Intersection of a Helix with a General Quadric 15

Surface

Cpapter 4: Two Computer Programs to Calculate Intersections

4.1 Program to Calculate the Intersection Between 17

a Line and a Helix

4.2 Program to Calculate the Intersection Between 18

a Plane and a Helix

Chapter 5: Future Work and Conclusion

5.1 Future Work

5.2 Conclusion

Appendix 1 : Program to Calculate the Intersection Between

a Line and a Helix

Appendix 2: Program to Calculate the Intersection Between

a Plane and a Helix

Appendix 3: Suggested Reading

20

20

Chapter 1

Introduction

1,1 A BrIef Introduction to Solid Modelling

The basic idea of solid modelling is to represent solids using a computer in

such a way that the solid can be

(i) visualised - usually on a screen but possibly plotted on paper

(ii) interrogated - intersects with other solids and surfaces need to be

found, normals calculated, etc.

(iii) modified

(iv) manufactured - tool paths of CNC machines or robotics control need to

be calculated.

It is common to build up a solid by the use of Boolean operations (union,

intersection or difference) on primitive solids. Such a solid modeller will have

several different primitives (for example sphere, cuboid, cone, torus, etc.) and

each time one of these primitives is specified it will be given certain parameters to

uniquely define it, for example a sphere is uniquely defined by its position in

space and its radius.

Any model must be amenable to interrogation. Many calculations need to

be made for the model to be displayed, manufactured by NC machines or

combined with other solids to form more complex bodies. These include ;-

(i) The normal to the surface, which is needed for numerous operations

including ray tracing (for displaying the model), calculating NC machine offsets,

determining silhouette curves, shading and hidden surface removal.

(11) The intersection of a line with the model is similarly important in ray

tracing and display calculations and is also needed in Boolean operations with

other solids since a vertex of the new solid will be formed where the edge of a

solid meets the surface of the model.

(iii) The curves of intersection of the model with a plane (or more complex

surface) need to be calculated to work out the edges of the solid formed by a

Boolean operation on the model with some other solid bounded by the surface.

1

1.2 Alms of the Prolect

The basic aim of this project is to investigate the mathematics of helical

surfaces to determine if it is possible to incorporate helices in a solid modeller. It

Is thought that one area where helices may be useful is in the modelling of coil

springs.

2

Chapter 2

Defining a Helix

Unless otherwise stated all helices referred to are assumed to have a
•

circular cross-section and be right handed. The extension to left handed helices is

trivial.

For reference the parametric equation of a right handed helical line is

r (t) = [r c~s t]
rSlnt

kt

and that of a left handed helical line is

[(t) = r cos t

- r sin t

kt

2.1 Parametric Equation of Surface

Consider a circle of radius r2 in the xz plane whose centre is a distance r1

(where r1 > r2) from the z axis. Rotating this circle about the z axis and

simultaneously applying a translation in the z direction generates the helical

surface.
-- ------- --------------------

z

x

------- -- --I-::-:::--==--==---==-===:!'!=:====:-=--:i . - ----- ~ - -- ------- - --
3

The circle is defined parametrically by

B..D r1 + r2 cos IiJ

o

Applying the matrix transformations for the sweep along the path of a right handed

helical line gives the surface of the helix as

B.... (rl + r2 cos IiJ) cose

(r1 + r2 cos 1iJ) sine

r2 sin IiJ + ke

(1)

where 0 S IiJ S 21t and, for a helix given by n rotations of the circle about the z axis,

os e S2n1t.

2.2 Cartesian Equation of the Surface

From (1) above we have ;­

x .. (rl + r2 cos IiJ) cos e

y.. (rl + r2 cos IiJ) sin e
z.. r2 sin IiJ + k e

__________________ (2)

-----------------(3)

-----------------(4)

The cartesian equation of the surface is found by eliminating the

parameters e and IiJ from these three equations.

=>

Squaring equations (2) and (3) and adding them gives

x2 + y2 = (rl +r2 cos 1iJ)2

cos IiJ .. ± (x2 + y2)"'- - r1 -----------------(5)

r2

If we take the negative root then, since r 1 > r 2, we would have cos IiJ < -1.

Thus we only take the positive root in (5).

Hence cos IiJ - (x2 + y2) - r1
_________________ (6)

4

Chapter 2

Defining a Helix

Unless otherwise stated all helices referred to are assumed to have a

circular cross-section and be right handed. The extension to left handed helices is

trivial.

For reference the parametric equation of a right handed helical line Is

r(t)= [rc~stl
rSlnt

kt

and that of a left handed helical line is

r(t) = [rcost]
- r sin t

kt

2,1 Parametric Equation of Surface

Consider a circle of radius r2 in the xz plane whose centre is a distance r1

(where r1 > r2) from the z axis. Rotating this circle about the z axis and

simultaneously applying a translation in the z direction generates the helical

surface.
---~~-~~r~------------ --~--- -- ------- --

z

x

--------~======~'-~======~--~----------------I 3

and so

sin IiI = ±

taking the positive root for 0 ~ IiI ~ 7t and the negative root for 7t ~ IiI ~ 27t

sin IiI = ± 1 [2rl (x2 + y2)'", + ri - r1
2 - x2 - y2,r~ ---- (7)

r2

Dividing (3) by (2) gives

y - tane

x

and from (4)

9=z-r2 sinlil

k

thus

x k

Now, substituting for sin IiI from (7) gives

=>

y _ tan z± ~rl (x2 + y2)":J. + ri - r1
2 _ x2 -y2]"'"

x k

y - x tan z ± [2r 1 (X2 + y2) ~

k

which appears to be the equation of the surface of a helix. Unfortunately this is not

the case.

It can be seen that if a point (xl' y l' Zl) satisfies equation (8) then the

point (-X,. -Yl' zl) will also satisfy it. This shows that (8) does not give the

equation for the surface of a helix but the equation for the surface of a double

helix. This, of course, means that when dealing with a helix it is not possible to

5

deal solely with the cartesian equation of the surface.

Additional complications arise because of the ± in the definition. The helix

is, in effect, made up of two surfaces, namely

y-xtan Z+[2r1(xl! + '1)"'- + ri - r1
2 - x2 -y2f o (9)

k

corresponding to 7t ~ tiJ ~ 27t , and

y - x tan Z - [2r,< xl! + 'I)"7. + ri
k

corresponding to 0 ~ tiJ ~ 7t.

6

Chapter 3

Interrogating the Helix

3,1 Calculation of the Normal to a Helix

3.1.1 Parametric Representation

The standard method of finding the normal to a parametric surface Is to

partially differentiate the parametric equation of the surface with respect to each

of the parameters and then work out the cross product of the partial derivatives.

These partial derivatives are easily calculated for the helix.

The surface of the helix is given by

~.. (r1 + r2 COS") cos e

(rl + r2 COS") sin e

r2 sin" + k9

so (l~ .. - (r1 + r2 cos,,) sine

(lS (rl + r2 COS") cose

k

and (l~ - - r2 sin" cos e

(l" - r2 sin" sin e

and so n .. (llii x (llii is given by
(le -a"

n .. r2 COS" cos e (rl + r2 cos ") + k r2 sin" sin e

r2 COS" sin e (rl + r2 COS") - k r2 sin" cos 9

r2 sin" (r1 + r2 COS")

3.1.2 Using the Cartesian Equation of the Surface

---(11)

For a surface with cartesian equation f (x. y. z) = 0 the surface normal

7

direction is given by the vector «()f /Ox. ()f /iJy. ()f IdZ).

Differentiation of the equation of the surface yields :-

()f - - tan Z ± [2rl (x2 + f) + rl - r12 - x2 -ft'"
dX k

-~sed!({Z±[2rl(x2 + f)' + rl - r12 - x2 -f]""'}/k)

k

.£2rdx2 + f)'''l.+ rl - rl - x2 -f (12. [xrdx2 + f)1-,._2x]

()f .. 1 -.: sed! ({Z± [2r1 (x
2 + f) + r22 - r1

2 - x2 - f],'Z.Vk)

dY k

.£2rdx2 + f)''''-+ rl - r1
2 - x2 -f r2.[yr1 (x2 + f t2._2y]

()f .. - x sed! ({Z± [2rd x2 + f)1-2.+ rl - r12 - x2 - f J"l>/k)

dZ

Obviously it is much more difficult to calculate the normal using the

cartesian equation than using the parametric form of the surface.

3.2 Closest Approach of a Plane to a Helix

The closest approach of a plane to a helix occurs when the vector 12. - ~

has a minimal value. When this happens (R - j;!) is perpendicular to both the

8

plane and the surface of the helix. If n and m are the normal vectors to the plane

and helix respectively then we get the following equations

(12-~nxn .. 0

and (l2-g)xm.O

We also have the equation of the plane to be satisfied by 12

This gives us seven simultaneous equations for the five unknowns Pl' P2' P3' e

and fiJ. Although this is theoretically soluble it turns out that the equations are

excessively complicated and it would be far better to avoid having to solve such

equations altogether.

3.3 BoundIng Box of a Helix

Bounding boxes are boxes, usually cuboid, that enclose solids and are

used to give a rough indication of the boundaries of the solid to assist in the

detection of intersections and interference.

In order to find the bounding box of a helix it is necessaryto calculate the

closest approach of several planes to the helix. As we have seen this is very

difficult to do and best avoided. However, a bounding box can be constructed

around the helix by using the fact that a helix is bounded by a cylinder.

For a helix given parametrically by

~ = (rl + r2 cos fiJ) cose O:S; fiJ :s; 21t, o:s; e :s; 2n1t

(rl + r2 cos fiJ) sin e
r2 sin fiJ + k9

the helix is contained inside the cylinder

{(x, y, z): X2 +y2:s; (rl +r2)2, -r2 :s;z :S;2kn1t + r2 }

and lies outside the cylinder

---(12)

{ (x, y, z) : x2 + y2 < (rl - r2)2 } ---------(13)

9

Where the bounding box of a cylinder is required it makes more sense to deduce

the bounding cylinder from (12) and then work out the bounding box of this

bounding cylinder. This is much simpler and in most cases would give either an

identical answer or a very similar answer.

3.4 Finding the Parameters of a Point on a Helix

Given a point on a helix it is important to be able to find the parameters

corresponding to that point. The following technique can be used to

(i) find the parameters of a point on a helix, or

(ii) given a point in space, determine whether or not the point is on the

helix, finding the parameters if and only if the point is on the helix.

The location of a pont on the surface of a helix is determined by two

parameters, e and 0. 0 is used to determine a point on the (circular)

cross-section of the helix and e is used to give the angle of rotation of that

section around the axis of the helix. The determination of parameters is made

Slightly more complicated by the fact that e may vary over a range of more than

21t, but in practice this does not present any insurmountable problems.

The problem is broken down into the following steps ;-

1. Find e . If e cannot be found then the point is not on the

helix.

2. If e is found then try to find 0. If 0 cannot be found then the

point is not on the helix.

3,4.1 Anding e
Let 11.." (xl ' x2 ' x3) be the co·ordinates of a point (not necessarily on

the helix). As an initial guess for e work out e 1 such that O:s; e 1 :s; 21t, and

cos e 1 .. Xl / (x1
2 + xi).... , sin e 1 '" x2 /(x1

2 + ~2 t ..
(see diagram) y

x

10

, . .. ,
I

, I

TherE) are now three cases to ~consider::------~---

1. If ke1 -r2sx3~kel +r2 thenthisisthecorrectvalueof 9.

2. If x3 > k81 + r2 then as a next guess try e 2 = e 1 + 27t and

continue increasing the guesses at e by 27t until either

(a) kS, - r2 ~ x3 ~ ke, + r2 ,in which case 9, is the correct value

of e
or (b) k 6 '.1 + r2 < X3 < ke, - r2 ,in which case no correct value of

can be found and the point is not on the helix.

3. If X3 < k61 - r2 then as a next guess try e 2 = e 1 - 27t and

continue decreasing the guesses at e by 27t until either

(a) kS, - r2 ~ x3 ~ ke, + r2 ,in which case e, is the correct value

of e
or (b) kS, +r2<x3<k9,.1 -r2 ,inwhichcasenocorrectvalueof

can be found and the point is not on the helix.

3.4.2 Finding 0

Given that e has now been found it still remains to find 0. We know from

equation (6) earlier that

--------- (14)

r2

and also X3 = r2 sin 0 + ke

11

Hence

sin" 0: X3 - k9

r2

(15)

If (14) and (15) are consistent then they give us ". To be consistent they must

satisfy

I.e. .. 1

0:>

If the equations are consistent then the point is on the helix and " is found from

equations (14) and (15). If the equations are not consistent then the point is not

on the helix.

3.5 IntersectlQn between a Line and a Helix

3.5.1 Using Cartesian Equation of the Surface

Consider the parametric equation of a line in vector form

r-~+ A1 .. (Sl +)..t1 • S2+)...l:!. S3+)'.13)

and the cartesian equations of the surface of a double helix

---(16)

and

y-xtan z+[2r1 (x2 + y2)''L + rl - r12 - x2 -y21!.<,. .. 0---(17a)

k

y-xtan z- [2r1 (X2 + y2 i"J.+ rl - r12 - x2 -y2]'/~ =0---(17b)

k

To find the points of intersection of a line and a helix substitute (16) into (17a)

and (17b). This gives the two equations

(S2 +). t2) - (Sl +). t1) tan ({S3 +). ~ + [2r1(A +)"B +),,2 C " + rl - r12

- A - AB - >,.2 C]'''"} / k) = 0 (18a)

12

and

(S2 +)..f:!) -(Sl + Atl) tan ({S3 + >-.t3 - [2rl (A+)..B+)...2C)' + ri - rl
-A-AB- >..2Cl"t.} /k) =0 (18b)

where A .. S12 + si ' B = 2 (sl tl + S2 f:!) and C .. t12 + f:!2 .

These two equations must both be solved to give all the points of intersection

between a line and a double helix. When all the roots of (18a) and (18b) have

been found then these roots must be checked to see which are intersections of

the line with the "phantom" helix. This can be done by trying to find the

parameters, 13 and e ,of the point on the helical surface. If these parameters

can be found then the point is on the "real" helix, if not then the point is on the

"phantom" helix.

A program was written to calculate the intersection between a line and a

helix and is discussed in the next chapter.

3.5.2 Using the Parametric EQyation of the SYrface

The parametric form of a line is given in (16) and that of the helix in (1).

Where the line intersects the helix the equations (1) and (16) are equal. Thus

we get:-

Sl+.>-tl = (rl +r2cos13)cos6

S2 + A f:! .. (rl + r2 cos 13) sin e
------(19)

------(20)

S3+>-.1a" r2sin13 +ke -------- (21)

Hence we need to solve this set of three simultaneous equations in three

unknowns. Given k, rl ' r2 ' sl ' S2 ' S3 ' tl ' f:! ,t3 we have to find)..., e and 13.

3.6 Intersection between a Plane and a Helix

3.6.1 Special Cases

There are two special cases to consider :-

(a) When the plane contains the axis of the helix

13

, ' , "

, ,f • '

, , '

I .' ',,'.~

, ~ ;'" I

\' ,:",
• <' ,,,

.: ~ ~' , '. ~ I' , ' ,
, ' ,~ ,

:,! ~ ~:~:'
, ,~ - , .:

L_'_ _ _____ ,,_____ ____ ___ ____ _ __ _____ _ __ _

spring.

In this case the curves of intersection are circles.

(b) z = constant plane.

This plane intersection may be needed to work out the end faces of a coil

From the parametric equation of the helix

§. = (r1 + r2 cos a) cos e 0 ~ a ~ 2lt, 0 ~ e ~ 2nlt

(r1 + r2 cos a) sin e
r2 sina + ke

Putting z = constant (c, say) , we get

r2 sina + ke = c

=> e = c - r2 sin a

k

and , substituting this expression for e in the equation of the surface we find that

the curve of intersection is given parametrically by

x(~)= (r1 + r2 cosa) cos c- r2 sina O~a :>;2lt

k

y«(,l\) = (r1 + r2 cosa) sin co r2 sin 0

k

3.6.2 General Case

The implicit form of the equation of a plane (in vector notation) is

Sl.n+d=O (22)

Where Si is the position vector of a point on the plane and n is the normal

14

to the plane.

The intersection of this plane with the helix

~.. (r1 + r2 COS") cos e
(r1 + r2 COS") sin e

r2sin" + k6

is obtained by substituting ~ for ..a in (22) and solving the resulting equation. So,

substituting .:! into (22) we get

n1 (r1+ r2 cos,,)cos9 +n2 (r1+ r2cos,,)sine +n3 (r2sin" + ke) +d .. O

(23)

For any given value of e ,equation (23) is of the form

K1 (r1 + r2 COS") + ~ sin" + K3 .. 0

or

K4 + Ks COS" + ~ sin" .. 0 ---------(24)

This equation in " can be solved by using the substitution

t-tan"/2

Then by using a range of values of e in (23) , equation (24) will give a series

of points which can be interpolated to give the curve of intersection.

A program was written to calculate the intersection of a plane and a helix

using the above method and is discussed in the next chapter.

3.7 Intersection of a Helix with a General Quadrlc Surface

The implicit equation of a general quadric surface is

A x2 + B y2 + C z2 + 20 xy + 2E yz + 2F xz + 2G x + 2H Y + 2J z + K .. 0 - (25)

It is possible to find the curve of intersection of a helix with a general quadric

surface by using a technique similar to that for finding the curve of intersection of

a helix with a general plane. By substituting

x.. (r1 + r2 COS") cos e

y- (r1 + r2 cos ") sine

Z= r2sin" + ke

into (25) , the following equation is obtained :-

15

A (r12 + 2 r1 r2 COS" + r2
2 cos2") cos2 e

+ B (r12 + 2 r1 r2 COS" +r2
2 cos2") sin2 9

+C(k2e 2 +2kr28sin"+f22sin2,,)

+20(r12+2r1 r2cos" +r2
2 cos2,,)sine cose

+2E(r1 r2sin" +r2
2 COS" sin" +kr1e +kEl r2cos,,) sine

+ 2F (r1 r2 sin" + r2 2 COS" sin" + kr19 + k9 r2 COS") cos e

+2G (r1 + r2 cos,,) cose

+2H (r1 + r2 cos,,) sine

+ 2J (r2 sin" + k9)

+K=O

or, on re-arranging

cos2" (A r2
2 cos29 + B r2

2 sin2 e + 20 r2
2 sine cose)

+sin2" (Cr22)

+ sin" COS" (2E r2
2 sin e + 2F r2 2 cos S)

+ COS" (2A r1 r2cos2 e + 2B r1 r2sin2e + 40 r1 r2sine cos e
+2Er2k6sinS +2Fr2kecos9 +2Gr2 cos9 +2Hr2sinS)

+sln,,(Cr2k9+2Er1r2sine +2Fr1r2cos9 +2Jr2)

+(Ar1
2 cos29 +Br1

2 sin2S +Ck2 9 2 +20r1
2 sin 9 cos 9

+2Er1kesine +2Fr1k9cosS +2Gr1cose +2Hr1sin6

+2Jk9 +K) .. 0

which, for any given e is of the form

L cos2 " + M sin2 " + N sin" cos " + P cos " + Q sin" + R .. 0

As before, this can be solved by a substitution of t = tan "/2. In this case a

quartic equation results, so for each e there are four possible points of

intersection. Again, the problem can be solved for a range of values of e and the

resulting points Interpolated to give the curve of intersection.

16

Chapter 4

Two Computer Programs to Calculate Intersections

Two computer programs were written to see if in practice the intersections

between a helix and a plane or a line could be worked out.

4.1 Program to Calculate the Intersection Between a LIne and a Helix

The program uses the cartesian equations of the surface of a double helix

and the parametric equation of a line to find the points of intersection. This .
approach was selected to avoid having to solve simultaneous equations. The

main advantage appeared to be that by solving equations in Just one variable,

lambda, it would be much easier to ensure that lill intersections between the line

and the helix were found. This is very important. However this approach does

have its drawbacks, chiefly ;-

(i) In order to check whether a point is on the surface, two complicated

functions must be evaluated.

(ii) After finding the points on the line that satisfy the cartesian equations of

the helix, they must all be rechecked to determine which are on the "phantom"

helix. It would be much better to have an approach that did not generate these

"phantom" intersections at all.

(iii) This very roundabout way of calculating points of intersection leads to

an enormous and very cumbersome program containing many procedures and

functions. This greater complexity increases the chances of "bugs" creeping in,

and indeed, the program as presented here does not work as there was not

sufficient time to finish debugging it.

Two possible alternative approaches are ;-

(i) As it is relatively easy to find the intersect of a helix with a plane, first find

the curve of intersection of the helix with a plane containing the line. Then

intersect the line with the resulting curve of intersection.

(if) The procedure get_parameters (see Appendix) may be slightly

modified so that if it tries to find the parameters of a point not on the helix it will

determine whether the point is inside or outside the helix. This can be done by

calculating the values of cos2 0 and sin2 0 from equations (14) and (15) in

17

section 3.4.2. If these values sum to a value greater than 1 then the point Is

outside the helix. Successive points on the line can be checked to see where the

line crosses from outside the helix to inside. Once the position of the root

is approximately known it should be found quite quickly. A listing of the program

and documentation for the program are given in Appendix 1.

4.2 Program to Calculate the Intersection Between a plane and a

Helix

This program finds the intersect by solving equation (23) from section

3.6.2. This equation is :-

n1 (r1 + r2 cos")cose +n2 (rl + r2 cos,,) sine +n3 (r2 sin" + ke) +d-O

and so, re-arranging :-

r2 (nl cose + n2 sine) COS" + n3 r2 sin" + n1 r1 cose + n2 r1 sine + kn3 e + d .. 0

(26)

Let t - tan "/2, then COS" .. (1 - t2), sin" .. 2t and substitute into (26).

(1+t2) (1+t2)

Hence

r2 (n1 cose+n2sine) (1-t2) + n3 r22t+ n1 r1 cose+ n2r1 sine + kn36 +d-O

(1+t2) (1+t2)

=> (1 - t2) r2 (n1 cose + n2 sin e) + 2n3 r2 t

+ (1 + t2) (n1 r1 cose + n2 r1 sine + kn3e + d) .. 0

'"> t2 {(r1 - r2) (nl cose + n2 sine) + kn3e + d} + t{ 2n3 r2}

+{ (r1 +r2)(n1 cos 9 +n2sine)+kn3e +d} .. O

This is simply a quadratic in t. For a given value of e it can be solved. Hence t,

and SO" can be found. Putting kl .. n1 cose + n2 sine, ~ .. kn36 + d ,we get

t2 { (r1 - r2) kl + ~} + t { 2n3 r2 } + { (r1 +r2) kl + ~} .. 0 (27)

which has roots

t= -n3 f2± (ni rl -{ (rl - r2) kl +~}{ (rl +r2) kl + ~}) -----(28)

(rl-r2)k,+~

Let the roots to (27) be tl and t2 . COS" and sin" can be worked out for each of

tl and ~ and these values substituted into the parametric equation of the helix to

18

give the points of intersection.

The following cases should be noted :­

.ill.J1. ~ complex for a given e
This indicates that theplane does not intersect the helix for that value of e.

illl.J1.~
This occurs when

n32 ri -{(r1 - r2) kl + ~}{ (rl +(2) kl + ~} .. 0

and indicates that for that value of a the plane just touches the helix.

iliiU1....aruU~ real and distinct

In this case the plane cuts the helix at two distinct points for that value of e.

(iv) { (rl..:..!el1s1~} .. 0 for some e
When this occurs (27) reduces to

t{2n3r2}+{(r1 +(2)k1 +~}-O

=> t .. - {(r1 +(2) kl + ~}

{2n3 r2 }

_________ (29)

This gives one root. The other root is, roughly speaking, at t .. 00. Since

t .. tan "/2 this means that ,,/ 2 .. 'It / 2 , 3'lt / 2 , 5'lt / 2 , ...

.. > " .. 'It, 3'lt, 5'lt, ...

But in this case 0 S; " S; 2'lt, and so we must have" .. 'It as the missing

root. So one value of " is worked out from equation (29) and the other

value is " .. 'It.

A listing of the program and documentation for the program appear In

Appendix 2.

19

ChapterS

Future Work and Conclusions

5.1 Future Work

It is obvious that there remains a lot of work to be done on this subject,

and many areas must be the subject of future research before a modeller can

include a helix amongst its primitives. These areas must include :-

1. The intersection of a helix with more general curves. Provided that the

curves are described parametrically the approach used for intersecting a

helix with a straight line could be generalised to cover other curves.

2. The intersection of a helix with a general plane or quadric surface can

only be solved in terms of points rather than curves. If some method could

be found to determine the actual curves of intersection (as opposed to

calculating points on the curves and then interpolating the points) this

would be a big step forward.

3. The methods so far used to solve line/helix intersections are very much

"brute force" approaches. These are inefficient and some alternative

method of finding the solutions to the equations should be sought.

5.2 Conclusions

It Is safe to say that where helices are concerned nothing is simple.

Indeed compared with the other primitives commonly used In solid modellers

they are very complicated. While nothing was found to suggest that it would be

impossible to incorporate the modelling of helices in a CAD system it was readily

seen that the greater complexity of the equations describing helices means that

more computing time would be needed to solve them and thus lead to a slower

modeller.

Much more work remains to be done on the mathematics of helical

surfaces and any system modelling them would, initially at least, have to be

implemented in a limited form.

Appendix 1

Program to Calculate the Intersection Between a Line and a Helix

All the procedures in this program use the following Ada packages ;­

pafec_base_types

pafec_standard_types

pafecJnUo

pafec_double_io

texUo

pafec_maths

The programs were written in Ada (ANSII MIL-STD 1815A) and run on

Apollo DN3000 and DN4000 workstations.

The following procedures were used In the program ;-

A1,1 Procedure line Intersect helix

1. Purpose

To calculate points of Intersection between a straight line and a helix.

2. Keywords

Line, helix, Intersection, bounding cylinder.

3. Language

Ada. ANSI/ MIL - STD 1815A

The following data types are declared ;­

three_vec is array(1 .. 3) of double.

four_vec is array(1..4) of double.

4. Descriotion

Line_intersect_helix calls the procedures geUlne and geChelix_implicit

to read In data specifying a line and a helix. The line Is checked to see If It is

vertical, and if it is vertical the procedure check_for _Intersection_vertical Is called

to see If an intersection is possible. If an Intersection is possible then procedure

calculate_intersection_vertical works out the points of Intersection.

If the line is not vertical then procedure intersect_bounding_cylinder is

called. This works out if the line cuts the bounding cylinders, and if it does

intersect the bounding cylinders it calculates the points of intersection, whether it

cuts both inner and outer cylinders, whether it cuts just the outer cylinder or

whether it Just touches the outer cylinder. The sections of the line in between the

outer and inner bounding cylinders of the helix are then checked to see if and

where they intersect the helix itself.

5. parameters

None.

6, Error Indicators

None.

7. Auxiliary Routines

LineJntersect_helix calls the following routines :­

geUine

8. Accuracy

geChelixJmpllcit

check_foUntersection_vertical

calculate_intersection_ vertical

intersect_bounding_cylinder

check-point

check_lambda_in _range

All arithmetic is carried out in double precision.

Al.2 prQcedure get line

1. PYlJ,lOse

Accepts user input uniquely specifying a line.

2. Keywords

Point, direction

3. Langyage

Ada. ANSI/ MIL - STD 1815A

4. Description

The line Is specified by two vectors. One giving a point on the line and the

other giving the direction of the line.

mode ~ description

5. Parameters

parameter

s out three_vec pOSition vector of a point on the

line.

t out three_vec direction vector of line.

6. Error Indicators

None.

7. Ayxl!lary Roytines

None.

8. Accuracy

All variables are In double precision.

Al,3 procedyre get helix Implicit

1. Pyr:pose

Accepts user Input uniquely specifying an infinitely long helix.

2. Keywords

Major radius, minor radius, pitch.

3, Langyage

Ada. ANSI/ MIL - STD 1815A

4. Description

The helix Is specified by its major and minor radii and its pitch.

5. Parameters

parameter

major_radius

minor_radius

pitch

6. Error Indicators

None. ,

7. Auxiliary Rgutjnj;!s

None.

8. Accyracy

mgsjj;! lYP!:!
out double

out double

out double

All variables in double precision.

sjescrlptlon

major radius of helix.

minor radius of helix.

pitch of helix divided by 2n.

A1,4 Procedure check for Intersection yertlcal

1. pyrpgse

Checks to see if a given vertical line intersects with a helix.

2. Keywords

Major radius, minor radius, intersection.

3. Language

Ada. ANSI/ MIL - STD 1815A

4. Description

The position vector of one point on the line, ~ is passed to the routine

along with the major and minor radii of the helix. If the line lies between

the bounding cylinders of the helix the logical flag intersection..POssible

returns the value true.

5. parameters

parameter

s
mgsjj;! lYP!:!
in three_vec

sjescriptjon

position vector of a point on the

vertical line.

major_radius

minor_radius

in

in

intersection-possible out

6. Error Indicators

None.

Z. Auxiliary Routines

None.

8. Accuracy

double

double

boolean

All variables In double precision.

major radius of helix.

minor radius of helix.

returns true if the, line lies

between the bounding cylinders

of the helix.

M,5 Procedure calculate Intersection vertical

1. purpose

Calculates points of intersection between a vertical line and a helix.

2. Keywords

Major radius, minor radius, theta, phi, pitch.

3. Language

Ada. ANSII MIL - STD 1815A

4. Descdption

The procedure first calculates one value of the helical parameter theta

where the line intersects the helix. The position vector of a point on the line,

§. , is passed over by the calling routine. The x and y co-ordinates of the

points of intersection are known, in this case they are the x and y

components of the vector §,. So we can deduce a value for theta where an'

intersection occurs, say 1 ' with 0 ~ 1 ~ 21t. Furthermore we can

deduce cos " from equation (6). This gives two possible values for" in the

interval [0, 21t] and these two values of " give the two points of intersection.

All the other points of intersection occur at the same" values and at theta

values of

5. parameters

parameter

s

1 ± 211:,

major_radius

minor_radius

pitch

6. Error Indicators

None.

7. Auxiliary Rgutjnl!s

None.

8. Accuracy

1 ± 411:, etc.

mgs;ll! nu s;ll!scriptign

in three_vec position vector of a point on the

vertical line.

in double major radius of helix.

in double minor radius of helix.

in double pitch of helix divided by 211:.

All arithmetic is carried out in double precision.

Al,6 procedyre Intersect boyndlng cylinder

1. pU[p<>Sl!

Calculates points of intersection (if any) between a line and the bounding

cylinders of a helix.

2. JWywgrs;ls

Inner cylinder, outer cylinder.

3. Language

Ada. ANSI I MIL - STD 1815A

4. Ol!scrjptjgn

The procedure works by substituting the parametric equation of a line into

the implicit equation of the cylinders and solving the resulting equations in

lambda (the parameter of the line). The procedure first checks whether or

not the line intersects the outer cylinder. There are three possible results :-

1. The line does not intersect the cylinder. In this case the logical flag

Intersection",possible is set to false.

2. The line is tangential to the cylinder. In this case the logical flag

poinUntersection is set to true and the root is calculated and stored as

lambda(1).

3. The line Intersects the cylinder at two distinct pOints. In this case the

larger of the two roots is stored as lambda(1) and the smaller as lambda(2).

The procedure then checks to see if the line Intersects the inner cylinder as

well. If the line intersects the inner cylinder then the logical flag

intersect_Inner_cyl is set to true and the roots are calculated and stored as

lambda(3) and lambda(4).

~, ~a[llmmllll!

parammer mQg~

s In

t in

major_radius In

minor_radius in

poinUntersection out

intersectlonJ)ossible out

Intersect_inner_cyl

lambda

6, Error Ingicatoll!

None.

7, Auxiliary RQytinlls

None.

8. Accuracy

out

out

iYWl
three_vec

three_vec

double

double

boolean

boo lean

boolean

four_vec

description

position vector of a point on the

vertical line.

direction vector of line

major radius of helix.

minor radius of helix.

retums true if line is tangential to

outer cylinder.

retums true if line intersects outer

cylinder.

returns true If the line Intersects

the Inner cylinder.

returns the values of lambda

where the line intersects the

cylinders.

All arithmetic Is carried out In double precision.

Al,I procedure check point

1. Purpose

Checks whether a given point is on the surface of the helix.

2. Kevwords

line, helix.

3, Language

Ada. ANSII MIL, STD 1815A

4. Descrjption

Check",point uses the procedure get,Jlarameters to determine if the point Is

on the helix. If the point is on the helix, the co-ordinates of the point are

printed out.

6. parameters

parameter

s

major_radius

minor_radius

pitch

lambda

6. Error Ingicators
I
None.

7, Auxiliary Routines

mQg~

In

In

In

In

in

~ gescriptjon

three_vec position vector of a point on the

line.

double major radius of helix.

double minor radius of helix.

double pitch of helix divided by 21t.

double value of the parameter of the line

corresponding to the point to be

checked.

Check",point calls the procedure get,Jlarameters.

8. Accuracy

All arithmetic Is carried out In double precision.

A1.8 Procedure get parameters

1. pyrpose

To determine if a given point Is on the helix and, if it is, determine the values

of the helical parameters, theta and phi, corresponding to the point.

2. Keywords

theta, phi, point, helix.

3. Language

Ada. ANSII MIL - STD 1815A

4. Description

The procedure first calls procedure try_and _find_theta. If theta cannot be

found then the point Is not on the helix. If theta Is found then procedure

try_and_find"phlls called. If phi cannot be found then the point Is not on

the helix. If the point is not on the helix then this Is signalled to the calling

routine by a logical flag, otherwise the values of theta and phi are passed

back to the calling routine. For more Information see section 3.4 of this

report.

§. PsU5UD!;ll!;l[§

parameter ms2tfli ~ gii!~S;[igligD

x In three_vec position vector of point for which

parameters are to be

determined.

major_radius In double major radius of helix.

minor_radius In double minor radius of helix.

pitch in double pitch of helix divided by 21t.

point_not_on_helix out boolean returns true if the point is not on

the helix.

theta in out double parameter of helical surface.

phi In out double parameter of helical surface.

6. Error Indicators

None.

Z. Auxiliary Routines

Get_parameters calls the procedures try_and_flnd_theta and

try-and_find""phi.

8. Accyracy

All variables are in double precision.

M,g procedure try and find theta

1. Pyrpose

To calculate the value of the helical parameter theta for a given point.

2. Keywords

theta, point, helix, pitch, major radius, minor radius.

3. Langyage

Ada. ANSII MIL - STD 1815A

4. Description

For a detailed description of the method of operation of this procedure see

section 3.4.1 of this report.

5. parameters

parameter

x

pitch

minor_radius

theta

theta_found

mode ~

In three_vec

In

in

double

double

in out double

in out boo lean

description

position vector of point for which

the parameter theta is to be

determined.

pitch of helix divided by 2n.

minor radius of helix.

parameter of helical surface.

returns true if theta is found.

6. Error Indicators

None.

7. Auxiliary Routines

None.

8, Accyracy

All arithmetic is in double precision.

Al.l0 procedure tIY and find phi

1. pyrpose

To calculate the value of the helical parameter phi for a given point.

2. Keywords

theta, phi, point, helix, major radius, minor radius.

3, Langyage

Ada. ANSII MIL· STD 1815A

4. Description

For a detailed description of the method of operation of this procedure see

section 3.4.2 of this report.

5. parameters

parameter

x

theta

major_radius

minor_radius

pitch

phi

mode ~ description

in three_vec pOSition vector of point for which

in double

in double

in double

in double

out double

the parameter phi is to be

determined.

parameter of helical surface.

major radius of helix.

minor radius of helix.

pitch of helix divided by 2lt.

parameter of helical surface.

phUound

6. Error Indicators

None.

7. Auxiliary Routines

None.

8. Accyracy

out boo lean

All arithmetic is in double precision.

returns true If phi is found.

A1,11 Procedure check lambda In range

1. purpose

To determine the points of intersection of a line with a helix.

2. Keywords

lambda, root, solution, intersection, discontinuity.

3. Language

Ada. ANSI/ MIL - STD 1815A

4. pescriptlon

For a section of line between two given points, a series of points on the line

are substituted Into the cartesian equations of the surface of the helix. The

values given by this are stored in the arrays f1 and f2. These values are

then checked to see where sign changes occur. A sign change means one

of two things, either

1. There Is an Intersection between the two points

or 2. The equation has a discontinuity between the two pOints.

The possibility of a discontinuity arises because of the tan term in the

equation.

5. parameters

parameter

lower_limit

mode ~

in double

description

lower value of parameter of line,

lambda, corresponding to one

uppeUimit

s

t

major_radius

minor_radius

pitch

6. Error Indicators

None.

7. Auxiliary Roytlnes

in

in

In

in

In

In

end point of the line segment

being checked for intersections.

double upper value of parameter of line,

corresponding to the other end of

the line segment.

three_vec poSition vector of a point on the

line.

three_vec direction vector of the line.

double major radius of helix.

double minor radius of helix.

double pitch of helix divided by 2lt.

Check_lambda_ln_range calls the procedure getJ)arameters and the

functions line_helix1 and line_helix2.

8. Accuracy

All arithmetic Is In double precision.

A1 ,12 Function line hellx1

1. Pyrpose

To help determine if a given point lies on the surface of a helix by checking

whether it satisfies one of the cartesian equations of the surface.

2. Keywords

None.

3, Langyage

Ada. ANSI / MIL - STD 1815A

4. Description

The co-ordinates of the point to be checked are substituted Into one of the

cartesian equations of the surface. If the value given by the function Is zero then

the point Is on the surface of the double helix. For more details see section 3.5.1

of this report.

Q, P5l[Slmm!;'!~

parammer

lambda

s

t

major_radius

minor_radius

pitch

2, EIIQ[lodi~ato~
None.

7. Ayxiliary RQutiOl!s

None.

8, Accuracy

mQdl! ~

In double

In three_vec

In three_vec

In double

In double

in double

All arithmetic is in double precision.

Al.12 Function line hellx2

1. pyr:pose

descriptiQn

value of the parameter of the line

corresponding to the point to be

checked.

position vector of a point on the

line.

direction vector of the line.

major radius of helix.

minor radius of helix.

pitch of helix divided by 27t.

To help determine if a given point lies on the surface of a helix by checking

whether it satisfies one of the cartesian equations of the surface.

2. lWyw()[(is

None.

3, Laogyag!;'!

Ada. ANSII MIL - STD 1815A

4. Description

The co-ordinates of the point to be checked are substituted into one of the

cartesian equations of the surface. If the value given by the function is zero then

the point is on the surface of the double helix. For more details see section 3.5.1

of this report.

5. Parameters

parameter

lambda

s

t

major_radius

minor_radius

pitch

6. Error Indicators

None.

7. Auxiliary Routines

None.

8. Accuracy

mode llm description

in double value of the parameter of the line

corresponding to the point to be

checked.

in

in

in

in

in

three_vec position vector of a point on the

line.

three_vec direction vector of the line.

double major radius of helix.

double minor radius of helix.

double pitch of helix divided by 2n.

All arithmetic is in double preCision.

I
.\
.,

STOR-A-FILE IMAGING LID

DOCUMENTS

Date 12102/08

OF POOR
ORIGINAL

HARD
COpy

Authonsed bY' Sirnon Cockbtll

.
• ,

Issue 2 Page 1 oft

ii lR hard copy, thiS page IS UNCONTROLLED .nd only valid on date of issue 16-May-08

11

-~------.---'-----------. ----------------------------~---===
I'll th pafecJ>aslI_types
with .pafec_"tal'ldard_types
with pafec.JntJo '

usa p.fecj>ase_types
usa paf'ec_standard_typas
use pafacJntJo

:~ ~~ =~:)-~ouble.J.o, usa pafac_double.).o
use taxt..io

d.~th paf'ltc...JI'aths • usa pa1'acJU.ths

d procedure line.J.nter~actJ'leU)(is

~i~ -''-~f.~e:)''"';':;1 - :; type· three_vac r is array(l 3) 01' double o < ,~YPII "o~r_vec is array(1 .) 91' double

- • ' three_vac:
t three_vac

, lambda four_vac
.. ajar _rad1 ... 8 double
,ninol" _".diu. double
pi teh double
interaltction..,possible bool •• n
point..intersact:i.on boolo!l,an
interaect.J.nne~_cYl boole.n

procedure gat.).in. • ,
begin

~ • ~ putt-type 11'1 co-ordinates 01' first point on
~'getes(l». sst(s(2», gete.(3»,

, new_line,
1'1'\ ! ~,pute-type in dl.rection vector- 0' line =>");
V'" ., getet(l», llet(t(2», get(t(a»;.

t" " ne",_line.

-', end getJ!ne

" procedure getJlelb(_fmpHcit

.. , " , ,
0-, bo,l" ,

"

(lIlajor Ja.diulo
sioo .. _r-adius
pitch •

0
, '~"", putC"major radlus of helix"), new_lt"e,

: ('" get{.ajor-_radlus),
l ,,'~" put.{"minor radius of helix"'; new,..line,

';\ get(sloor- radius), •
" 'put("type -in pitch 0' the helix =>"); ne"'Jine,

.,J .. gat(pitch).

: .,nd get-t'elix_i .. plici t ;

s

double
double
double

p"OC~dur. check_fo .. Jnt.ersectlon_vertical
lIIajQr _r~dlUS
sinor Jadlu ..

"

i ntarsec t1 on..,pQssibl.

" dQubl ..

b .. gin

in th _v.c
in dQubl ..
in double

out boolean

------ -------------------------------
_jor _!'adius - .. loor Jadius) "'. 2 then

do:..b1e
ar .. ay{l.
double
dOUble
dOUble
array(l.
double

2) Qf radian

2) of double

doublet aC05(cos_th .. ta));

»0

thr ... _vec
double
double
double

""' (sqr-t(sell "'. 2 .. s(2) "'.2 , - s.jor Jadius , I sino .. _ .. adius ,

.t.(l) .. lIIinor_radius '" sin(phi{l»

.1.(2) :E"lJIino .. _radius '" sin(phl(2»
I:_step "double(t",o..,pi) '" pitch;

+ pi tch '" theta
+ pitch a theta

) Is

Infinite number of .. oots b .. t",een (infinite) strsight line and (infinite) h.lix ") ; newJine ;
All inter-,,"ctions occur at x ""). putt s(l)). putC" • y " ") , putt s(2)) , ne",_line,
One set of root.s is at r" "', put (.1.(1)) , put CR plus or- minus "), put C .I._step) ; n Jin ••
The other- set of roots is at .1.= "); PUt (.1.(2)) ; put (" plus or- sinus "); put (z_st .. p) , new_line

end calcul.teJnt.rsect1on_vertlcal , ,
procedure inters .. c:..bQund1ng_cylinder

(

dascrill_outer-_cyl
dascrl .. _inner _cyl
a. b, c

begin

double
double
double

(. ,
lIajor -.radlu"
lIIioor _rad1us.
point_inte ection
i nte rs .. c tion..,possible
intersect_inner _cyl
lambda"" ,

In
I"

'" '"

th ... e_vec
three_vec
double'
double
boolean
boolean
boolean
four-_vec) Is

--.initialise the logical flags and calculate a 1aw valuas that wUl be useful in future calculat10ns

"

,
t.

.,.::-

-- ---~-~- ----- '-- ~--------- ----
_ intDrsect_inner _cyl "tals.;

inten;ectionJlossible -: true,
point_intersection a f.l$1I •

, •• " .. U) •• 2 .. s(2) •• 2 •
, b "$(1)" tell + _(2) ,.. t(2)

• c "t(l).* 2 + t(2) •• 2 •

now check to SDe whether the Une intersllcta the outer boundlng cylinder of the halil(

d.lIcri .. ~utllr:"cYl :"' b ,.. b - c • .. - (... Jor .radius inor -,"adiu.) •• 2)

Only'ona point .,lIed be checked

-,

array(l •• ;s)
three.vllc
boolee ...
double
double

ph.

boolean
boolean

double

of doubh

(.
pitch

'n 'n 'n 'n 'n 'n

.. inor .radius
theta
theta.found

cos.theta
ain.theta
point_not.on.helbc =~!:n '.
begin

thata.found = 1 ... 1s ••
POl.nt..not..onJlelilC .= 1alse ;

thr.8."ac
thrlle.VtlO
double
double
dOUble
doubh

in out

is

dOUble

in thrall.vllc
in dOUble
1n double
in 01,1 t 'doubl.
in out bool •• n

I cos_theta .= >«1) I sqrt{IC(1)*IC(1) + x(2}*x(2»,
5in_theta = x(2) I sqrt(x(l)*x(l) + x(2)*x{2».
11 sin_theta < 0 0 then

theta doublet two-pl - ... cos(c05_theta)) I

.lse
theta .= doubl.C acos(t:05_thet.a)).

e!'ld 11;

• theta
.aJar _radiu5
.1oor _redlus
pi tch
phi

'n 'n 'n 'n 'n

three_vec
dOUble
double
double
double

out double

)1a

) "

,'.'
" , ,
; ,.,

"

"

" f ,',}

, ' , , '
, ~,..'

, I,
"

'::." . " , ,

': .. ' ,

------ -- --'-~ ------------- -- --~---.---

cos...,phi
ain...,phi
distance_fro",-surf ace
point,JIot_on.J1.elix

bagin

double
double
double
booi •• n

out boolean J ,.

cos..phi (sqrt(x(1) .* 2 + x(2) **2) - lIIajor~Nldius) I 1II1nor_,adlu ••

'ainJ)hi :" (x(3) ~ pitch. theta I .. 11'10,. Jadlus ;

i1 1 0 - cos.,phi •• 2 - sin"phi *. 2 < 0 0 than

true,

distal'\ee.fro..surface .= abaCaqrt(l 0 - cos.,phi lO. 2 - s1.n.,phi •• 2) •
If di.tanc fl"OII\ ... surf.cD <= 1 Oe·e then

phi_found • true~
it sln.&'hl < 0 0 then

ph' z doubleC t ... o..,pl - acos(co • ...phl».

else

ph' :" doubl.,(acos(coSJ)hi»;

end i1.

end 11,

begin

t.het.a_1ound :" 1alse •
phi_'1ound .'" 1alse ~
point._not._on...)lel1x s: 1alse •
try_and_1ind_t.het.a (x, pitch,

11 theteJound " 1alse t.hen

" t.rue ..

else

Alinor _radius, theta. theta_1ound) •

~--------------------~~-~--=-~---~.----~~--~------------
pointJlOt.on.....nalix ;= true

and If;

end i1.

and "et"parametars

begj.n

'10r countv.,. in 1. <5 loop
x(countva,.) '" s(cOl'"tV{lr} +

IIInd loop.
la .. bda * tCcountvar) ;

) -
getJ).rametersc. x ... ajorJ.dius ... J.norJedius .. pitch .. point_not..,pn..be11x. theU. pn1 1 ..

1'1 po1nt.-"ot_onJ'lelbc " trve then

puttM line touches heUx et. one point Co-ordl.nates .lira => M) (; new-.lina •
10r count in 1 .3 loop

pUt(x(c:ountll .. put(- ") ..

el'ld loop

else

putC M
NO intersaction M) • new_line

eM i,f.
end chack..,point

proeedure check..lambda..in_range lower_lhlit
upper _U .. l t

• • ... jor _r.dius
minor _r.dius
pitch

" " " " " " "
" f2

•
_rr.,v(l. SO) 01 double
.rr.yU. SO) 01 dOUble
double

b
o
Illlllbda
laMbda1
lambda2
lambda.step
root
batter ..9uesa
no.of .roots
dlscontinuit)'

double
double
double
double
double
double
double
dotlbla
int .= 0
boolean ." 1alse

double
double
three_vee
three_vec
double
double
double

• thr •• ~v.c ;.
solutions
intersection
polntJlOt.on.halix
theta
ph'

1unction lina_helilcl (la .. bda

•

erray{int rallge 1 .300) 01 double
boolean .: 1alse
bool.,an
double
double

..

•
b

,
II\&jor _r .. dlus ,
lIinor _radius
pitch

three.vae
double
double
double) return double h~

c

'""

doubla
doubla
double
double

begin

a' = .(1) "'''' 2 + s(2) _'" 2 ,
b = 2 0 _ (s(l) '" tell + .(2)
e = t(1) "'. 2 + t(2) .- 2 •

.t(2».

} fun = .(2) + I_bda - t(2) • (s(1) + l_bd •• t(l)) , .
raturn fun;

tan(radian(r.(3) + la",bda .. t(3) + SClrt(.inor .",adi ... 15
+ 2 0 • m.jor .r.di sqrt(a + lambda _ b + e _

•• 2 • a - major .radius _'" 2 - lalllbda*b - e '" l_bd •• _ 2
hllbda •• 2)) I ,hteh));

~ end l1na...,heUxl

• •

• ,
major_radius

- .inor _radius
pitch

do ... ble
thrfla.vac
thraa_vac
do ... bla
doubla
doubla) return double is

c

'""

double
double
double
doubla

a .= 15(1) •• 2 + s(2) ** 2: ,
b 2 0 '" (s(l) '" tell + s(2)

t(1) *'" 2 + t(2) "'''' 2 , c .'
'" t(2)) ;

'"" hmbda '" t(2) - (s(1) + lambda. tell) = 15(2) +
•

ret ... rn f ... n ;

tan(radian(s(3) + lalllbda '" t(3) - sqrt(minor_radius .* 2 - a - major_radius "'''' 2 •
.+ 2: o. aajor_radius '" sqrt(a + la .. bda '" b + c '" lambda.* 2)) I pitch)).

end l1neJielil(2

proeedura getJ>.r ... eters x

theta_found
phi_found

cos_t.heta
sl.n_theta
point_not.on_heUx

begin

Dajor .radiu.
lIl.nor .r.dius
pitch
point_not.on.hellx ,,,. ..
ph'

boo11'1an
boo!ean

double
double
boolean

x
pi teh
IIlnor _radius
theta
theta_fo ... nd

theta_found .= false;
point.not_onJisUx "false,

'" '" '" '"
in out

'" 0"'

'" '" '" in out

'"

cos.theta = x(1) I sqrt(.x(1)*X(l) + x(2)*1«2».
sin_theta "1«2) I sqrt(x(l)*x(l) + 1«2)"'1«2».
if aln_theta < 00 than

t.heta = doubla(t"oJ>i - acos(cos.thata) "
alsa

theta =: double(aeos(cos_theta) ,.
end 11,

three_vec
doubla
double
double
boolean
doubla
double

three_vec
double
double
double
boolean

) 10

) ,.

if ((x(3) - p:i.tch_theta >= -lIinor.radius) and (x(3) - pitch*theta <= .. lnor_radiu.)) then

thet.-_found = true •

els11 1«3) - pitch-thata > -Dinor.radius then

loo,
exit whan (poJ.nt.not.on_heUx = true, or theta_found = true) •
theta .= thata + double(twoJli) ;
if ((x(3) - pitch><theta >= - .. inoI"Jadius and (x(3)· pitch*thata < .. lJIinor_r.-diu ..)) then

theta_found .= tnle •
elsif ((1<(3) • pitch*theta > -lIinor_radius - dOUblo(twoJ>i) _ pitch

and (x(3) - pitch-theta < - .. inor _radius)) then
point-"ot_on_haUI< = tl"u ••

end if;
and loop;

.lae
loo,

el(it when (point._not_on_heUI< = true) 01" theta.found = true) •
theta = theta - double(t"o.,.pi) ,
if ((x(3) - pitch"'theta >" -minor_radius and (x(3) - pitch*theta <= lIinor.radlu")) t.hsn

theta_found = t.rue ;
abJ.f ((1«3) - pitch><theta > .inor_radlu ..)

and (x(3) - p!tch*th.ta < double(tw0J>i) .. pitch· .inor_radius)) then
p01nt-"ot.on.heUx .= true.

end lf,
end loop,

end if ;

end tl"Y_and.find_theta

pl"oeedure try.and_find.,.phi I<
theta

cosJ>hi
sinJ>hi
distance.frolll.surfaca
point.l'IOt_on.h.llx

begin

major .r.-dius
m1nor _radius
pitch
ph,
phi.found

1 double
double
double
boolean

pOintJ1Ot_onJieUI(= false,

in three.vec
in double
in dOUble
in double
in double

out. double
out boole.-n) h

co~....phi .: sqrt(x(l) ··2 + x(2) .*2) - 1I0jor_radius) /lIIinorJadius •

x(3) - pitch. theta

now to cheek toIhether or not the pOint
is aetuolly on the helix

/ IIinor _radius :

i1 1 0 - cos-phl .* 2 - sin-phi ** 2 < 0 0 then

" true,

e1seo

dlstance_from_lIurfaee := ab.(sqrtO 0 - c:os-phi ". 2 - lIin-phi •• 2 »
if distane._froM_$Urfac. <: 1.0111-8 then

phJ,_found .: true,
if sin-phi < 0 0 then

.. doublet two-pi - ocos(eos-phi».

el.1II

ph' double(aeos(eos-ph1}) ,

end if,

,
pol n t.JlO t_on_helix

end if,

end 1f.

begin

theta_found = fal •• ;
phi_found .1: fals" ;

" true,

pointJlOt_onjlelix .: fols. ;
" try_and_find_theta (x, pitch,

'~if theta_found .. false then

, point .JlOt_onjlellx .. tl"\llll

end if,

IIInd if •

• := sO) •• 2 + .(2) _. 2 ,
b = 2 0 • (11(1) • t(l) + 11(2) * t(2)) •
c := tU} ** 2 + t(2) •• 2 ,
lambda'>tep ,,(upper_limit - 10werJ.i.it) / 49.0 •

for count in 1 50 loop

,lambda "lower_limit + laOllbda_step • double (count - 1) ,
fl(count) "bne_helix1(lambdo. s. t. lIIajor _radiuII, lIIinor _radius.
f2(count) "l1neJlel1x2(lllmbdo. s. t. major_radius. IIlnor _rodius,

and loop.

for count in 1 •• 49 loop

if fl(eount) - fl(count+1) < 0.0 then

pitch)
pitch)

therlll hos been. sign change. Could be either. root or • di$Continuity
-- Use 1lne.r intlllrpolaticm to gilt a better 9UIIIIIS for the pOllsibl. root

laCllbd01 ." low.r_limit. + laCllbda..atep * doublet count. -1) ,
10Qlbda2 ." IOfllbda1 + lambda_lItep ;
intersection "f.llle.
discontinuity := f",lll. ;

loop
exit when discontinuity = true or intersection = true.
better _9uells :" l..-belal - (1 ... bda2 _ lafllbdal) ..

line_helixl (lambdol, s, t, lIojor _r.dius, lIIinor _radius, pitch) /
(line_helixl (laJllbda2. a. t, lIIojor_rodiulI, lIIinor_r.d1us, pitch) _
Une_helixl (lambda1, a, t., lIIajor_radius, 1II1nor_rodius. pitch))

if line_helix1 (betterJiuess, a o t, mojor_radlus, IIIlnor_rodius, pitch)
:I 11ne_heUx1 (lUlbda1, s. t. _jor_radlus, .inor_rodiulI, piteh) < 0 0 then

lombda2 ;z bett"r_gueslI ;

"lse

10ll'lbd01 :" bet ter -"uess,

end if ;

if obs(line_helixl (better_guess, s, t •• "jor _radiUS,' .inor _radiUS,' pitch)) <" 1 0.-8 then

no_of_roots "no_of_roota + 1 ;
solutions(no_of_roots) ." better_guass ,
intersection "true-,

elsif abs(line_he}ix1 (bett.r~ess. a. t, .ajor_radius, .inor_r"d1ua, pitch))) 10 0 then

discontinuity z true,

-·-·"--r ..

root -;: lower_lll1it + l .. mbda __ top • double(
1'\O_01_roots .;: 1'IO_01_root. +1 ;
solutlons(no_o1_roots) .;: root;

end 11

and 11

1 end loop

10r count in 1_ 49 10QP

, if 12(count) ., f2(cQunt+l) < 0 0 than

count)

there has been a sign chango CQuld bo either a root or a discontinu1ty
-- Usa Unear 1nterpolat10n to get .. batter guess for the possible root

h.mbdal z 1Q er_1hdt .. 1uobda __ tep • doub1a(
hmbda2 ;: lambdal .. lambda_step
intersection :;: false,
discontinuity .z 1al ... ;

l~.

count -1) ;

el<it IoIhen discontl.nuity s true or intersectiQn z truo ,
better ~ue.s ;: lambdal - (1ambda2 -...l ... bdal) •

11ne_he111<2 (lambdal, .0 t ... ajor_radiua, .inor_radius, pl.tch) I
(::'ine_heliK2 (hmbd .. 2. a o t. m .. jor_r .. diua, Illnor_r .. diua, pitch) _

U _heliI<2 elambd .. l, ., to IIIajor_radius, .. inar_radiua, pitch)

if 11ne_he111<2 (better-S!uess, s, t, mAjor.radius, Dinor_radius, pltch)
., 11naJielil<2 (1ambd .. l, s, t, major.rAdius, ainor.radl.us, pltch) < 0 0 then

alsa

laalbdal ;: b .. tter Jluess;

end if ,

no_of_roots ·z no.01_roots .. 1 ;
aolutions(no_01_root:s.) ;: better -Sluess ;
intersaction ;: true •

elsi1 abs(lineJielix2 (betterJluI!I:s.s, s, t, lIIajorJadlua, .inorJad!us, pl.tch)) :> 100 than

dbcontil'lUity true;

~nd 11

and loop

a1511 12(count) • 12(co..nt .. 1) ;: 0.0 than

if .t2(count) fI: 0 0 then

root :;: 10war.J.hdt + lambda_step" double(
nQ.Q1_root ... no.of.rQots "1 •
solutlons(/'Io.of.roots) ,s root.

rClOt :;: lower.limit .. l .. mbda.step • double(
nQ.01.roots -;: no.of.roots +1 ,
501utlon5Cno.Qf.roots) .'" root.;

end 11

e/'ld 11'

end lQop

put C- No intersection -h neline ,

alse

for count In 1.,1\O.01.roots loop

lambda ;: solutions(cQunt) ;
fol' countvar in 1. 3 1000

eQunt - 1) •

eount

x(countvar) :;: aCcountvar) .. lambda'" tCcountvar) ;
end loop,
get..,parameters C 1<, "ajar .radius, Dinar .radiu5, pitch, point.not.on_ha1il<, theta, phi

11 point_not.onJ-al1l< " 1alae tnen

put (~Co-ordlnates of intersection ~), nelol.llne,
put (xCl», put (- -,. put (x(2», put (~ -), put
put C- lambda;: .), put(lambda); naline
put (" theta,. "). put(theta); naJ,in.
put e" phi s -), putephl). ne!ina ,

end if

end loop

and 11 ,

putC" Oata acc.pted -), now.line ,

eX(3». put C" .) .
) ,

-- cheCk to see IoIhothar the line is vertlcal (1.a. parallel to the al<1s of the helil<). in ..,hich
~- case It will not intersect the bounding qlindar of the hellX but 1t may intersect the halil< •

i1 (t(1) •• 2 + t(2) •• 2) 1:: 0 0 than

chack.for .intersection_v.rtical (S. lIIajor _r .. d~us, Minor_radius. intersaction..,possl.ble

11 Intersactlon..,possible ~ tn.re then J

else

putC" No 1ntersection -),

--,

:

"

" , ,

:; . .-.
t" ",:

I~:.)"
~ ~':'." -,,~

' •• J' ~

" ,'-.

" '

- -~-'-------'"-"'-

Intllrsect_boundin9_cyllnder(So t, ",ajor _radJous, ... 1l'1or _racllUS, point_intersllct1.on, intersBction...,Possible.
intar-sactJnner _cyl, lambda) •

if intersection"possible = "1.111.11 ths"

, putC" Ho intersection -);

else

it point_lntarsllction = true than

~ c;heck...,POint (So t. _jar_radius, ainor_r.adius, pitch, lambda(l)) •

alslI

c:hack_lalJlbda_in_range (1 .. bda(2). 1 •• bd.(4). So
chack_lambda_in,J"angll (bmbda(3), lallbdaU). So

elslI

and if

IInd 11

end if

end if •

, ,

, "

, "

"

, '

",'-,".' '-.,

, "
, "
, ,

t, .ajor _radlu5, minor_radius, pitch
t, lIajar_radius, Qinor_radius, pitch

, , ,

','

;" .

, ,
-r:·

'. ;: '.

" ':
, -

, ' . ~- '

, ,
, ,
,'/

'.

"

, ,

:,
.,',

,"

"
, .' ",'

, ,

- ,- .
.,'

"

"

'" . "

, ,

"

Appendix 2

Program to Calculate the Intersection Between a Plane and a Helix

This program uses the following Ada packages :­

pafec_base_types

pafec_standard_types

pafec-'nUo

pafec_double_lo

texUo

pafec_maths

The program was written in Ada (ANSII MIL-STD 1815A) and run on

Apollo DN3000 and DN4000 workstations.

1. Name of Procedure

plane_helix-parametrlc

2. purpose

To calculate pOints of intersection between a plane and a helix. The

points may then be interpolated to give the curves of intersection.

3. Keywords

helix, theta.

4. Language

Ada. ANSI/ MIL - STD 1815A

5, Description

This procedure reads in data specifying a plane and a helix. The helix is

specified by its major and minor radii, pitch, and the number of coils in the helix.

The plane is specified by the direction of its normal and the perpendicular

distance from the plane to the origin. The procedure calculates the intersection

by the method detailed in section 3.6, that is, for each value of theta it solves an

equation in phi to find two points of intersection. For more details see sections

3.6 and 4.2.

6. Parameters

None.

Z. Error Indicators

None.

8. Auxiliary Routines

None.

9. Accuracy

AI! arithmetic Is carried out in double precision.

"......_----

o

o

o

o

o

o
o

begin
putt-type in co-ordinates 01 direction vector of normal to plal'l. =>-);
9at(n(J», get(n(2». g8t(I'I(3»; new_line,
putt-perpendicular dl.stanca frOM plane to origin (d) ">~h l'IewJina,
gatCd) I
put(-•• jor radius of hel:l.x·); newJina.
gat(major _n.dlus).
put{-lIinor r ... diue of helix-). new_line,
get(mil'lor _radIus);
PUtt-pitch factor (k) =>-). new_line;
get(pitch).
put(-l'II,Imber of' rot.hons of' section around helical clu'Itr. I1n. '")-), newJine;
gat(nua);
putt-theta varies between 0 0 and -); put(2 0 • doubla(pi) • nUIII) , new_line,
pute-type in steplangth of theta ... ariaUon-); new_line
get(tl'lata_step) •
theta =00.

-- aolve quadratic equation in t = tan(phi/2) Check for no real root. or a
-- double root

while doubl.(theta) < 2 0 " dovble(pl.) • nUll loop

kl .= 1'1(1) "coa(thet.) - n(2) • ain(thet.).
k2 = n(3) • pitch. double(thot.) .. d.
dbcrirn "lIIinor .radius .'" 2 • n(3) •• 2

- ((lI.jor _r.dius - Minor _r.dlus) '" k1 .. k2) • « .. ajor _r.dlus inor _r.dius) • kl .. k2)~

first check tor cOlIIPlex roots

11 discri. < O.~ then

nllw_line .putC-no 1"'11.1 roots tor theta -). pI,It(double(thet.».

now cheCk tor • double root

elsU dJ.sCI"'lM " 0 0 than

if (_jor _r.dius - Minor_radius) '"' kl .. k2 0.0 then

s(l) .= (fllajor.radlUs. - ainor.udius) '" cos(theta),
s(2) ." -(lII.jor_r.dlua - Minor_r.dlus) '"' ain(thet.).
s(3) t. pitch'" double(theta),

--- --------------- -------~.------ -.------.----~-,---- ._- .. _-------- ----~---....----'

else

t(1)
s(1) .=
a(2}

(-minor .radius '" n(3» I « lIIajor .r.dius - lIIinor .radius) • kl .. k2);
(lIIajorJadius" lIinorJadius.(1 0 - t(l) • tell) I (1 0" t(l) • t(l))) • cos(theta);
- (.. ajor_radius .. Minor.r.dius • (1 () - t(l) '" t(l)) I (1 0 .. to) • t(1))) .. sin(theta),
20'" t(1) .. IIIltlOr.r.dius I (1.0 .. tCl) • t(l}) .. pitch'" doo.Ible(theta). _ s(3) .=

'end if.

put(s(1» ; putC- ") .put(s(2» .putC" ") ,put(s(3» ,ne ... J.ine ; ---
-- two distinct roots. Check for ona root .t intlnity.

if (_jor .radius - .inor .r.dius) '" kl .. k2 " 0 0 then
put(- roots for thet. = -). put(double(theta», ne lina.
s(1) ,. (_jor.r.dlua - Minor_radius) .. cos(thet.);
s(2) ." -(•• jor.r.dius - 1I1nor.r.diua) .. ain(thet.),
a(3) "pitch _ double(thet.),
flew.line.
put(S(I» ,put(" ") ,pl,It(s(2» ,putC" ") ,put.(s(3» ,new_line

0000 the other root, WhICh ia the root ot the linaar equ.tion forllled by putting the
leading coefficient of the qu.dr.tic equ.l to zero

t(l) ,,- ((/IIajor.radius" lIinor.r.diua) • kl .. k2) I (2.0 • minor.radius • n(3)),
s(1) ,,(_jorj.dlus .. lIulor_r.dius "'(1 0 - tU) '" t(l)) I (10'" tU) '" t(1))) _ cos(theta).
s(2) ,. ~ (/IIajClr.rsdlus" Dinor.r.dius '" (1 0- - t(1) '" t(l)) I (107 t(1) '" t(1))) .. sin(thet.).
s(3) "2.0'" tU) " Slloor.r.dius I (1.0" t(l) '" t(1)) .. pitch'" doubl.(theta).

two distinct. tinl te roots

els.

to) ,,(-(lIIioor.r.diu. '" n(3)
t(2) .S (.(.door .r.dlus '" n(3)
n.wJine.
putt-roots tor that. = R).

tor i in 1. 2 loop

.. sqrt(dlscI"'iAl)) I ((m.jor .r.dius - Alioor _radius
- aqrt(dlScria)) I ((SI.jor .radius - Sllnor .r.dius

pu t(double(theta»

*k1"k2).
_kl"k2).

s(1) ,,(•• jor.r.dius .. SllrlOr.r.dius *C 10- t(i) • t(i)) I (10" t(i). t(l))) • cos(theoh),
s(2) .= - (Slajor _r.dius .. IIIlnor _r.dius '" (1 0 - tU) '" t(O) I (1 0 .. t(i) _ t(l))) '" sin(theta),
s(3) = 2 0 • t{i) • 1"'2 I (1.0" t(i) - t(1)) .. pitch'" dOllble(thet.),
put(a(l)) .putC- ") ,put(s(2» ,put(- -) ,put(s(3» ,new.line

end loop.

end if.

end if,

thetA = thet~ .. thet •• step

end loop,
ne line;

I end pl.ne_helix...P.r trlc.

Appendix 3

Suggested Reading

The following books are suitable background reading :-

"Computational Geometry for Design and Manufacture" by I. D. Faux and M. J.

Pratt (Ellis Horwood, 1979)

"Geometric Modelling" by M. E. Mortensen (John Wiley & Sons, 1985)

"Geometry of Spatial Forms" by P. C. Gasson (Ellis Horwood, 1983)

