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Abstract. We present a novel length-aware solving algorithm for the
quantifier-free first-order theory over regex membership predicate and lin-
ear arithmetic over string length. We implement and evaluate this algo-
rithm and related heuristics in the Z3 theorem prover. A crucial insight
that underpins our algorithm is that real-world regex and string formu-
las contain a wealth of information about upper and lower bounds on
lengths of strings, and such information can be used very effectively to
simplify operations on automata representing regular expressions. Addi-
tionally, we present a number of novel general heuristics, such as the pre-
fix/suffix method, that can be used to make a variety of regex solving
algorithms more efficient in practice. We showcase the power of our algo-
rithm and heuristics via an extensive empirical evaluation over a large
and diverse benchmark of 57256 regex-heavy instances, almost 75% of
which are derived from industrial applications or contributed by other
solver developers. Our solver outperforms five other state-of-the-art string
solvers, namely, CVC4, OSTRICH, Z3seq, Z3str3, and Z3-Trau, over this
benchmark, in particular achieving a speedup of 2.4x over CVC4, 4.4x
over Z3seq, 6.4x over Z3-Trau, 9.1 X over Z3str3, and 13x over OSTRICH.

Keywords: String solvers - SMT solvers - Regular expressions

1 Introduction

Satisfiability Modulo Theories (SMT) solvers that support theories over regular
expression (regex) membership predicate and linear arithmetic over length of
strings, such as CVC4 [25], Z3str3 [8], Norn [3], S3P [39], and HAMPI [22], have
enabled many important applications in the context of analysis of string-intensive
programs. Examples include symbolic execution and path analysis [11,32], as well
as security analyzers that make use of string and regex constraints for input san-
itization and validation [5,33,35]. Regular expression libraries in programming

© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.): CAV 2021, LNCS 12760, pp. 289-312, 2021.
https://doi.org/10.1007/978-3-030-81688-9_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81688-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-81688-9_14

290 M. Berzish et al.

languages provide very intuitive and popular ways for developers to express
input validation, sanitization, or pattern matching constraints. Common to all
these program analysis applications is the requirement for a rich quantifier-free
(QF) first-order theory over strings, regexes, and integer arithmetic over string
length. Unfortunately, the QF first-order theory of strings containing regex con-
straints, linear integer arithmetic over string length, string-number conversion,
and string concatenation (but no string equations') is undecidable [7,9]. In a
previous paper [19] we showed that a related QF first-order theory over word
equations, linear integer arithmetic over string length, and string-number con-
version predicate, but without regular expressions is also undecidable. It can also
be shown that many non-trivial fragments of this theory are hard to decide (e.g.,
they have exponential-space lower bounds or are PSPACE-complete). Therefore,
the task of creating efficient solvers to handle practical string constraints that
belong to fragments of this theory remains a very difficult challenge.

Many modern solvers typically handle regex constraints via an automata-
based approach [4]. Automata-based methods are powerful and intuitive, but
solvers must handle two key practical challenges in this setting. The first chal-
lenge is that many automata operations, such as intersection, are computa-
tionally expensive, yet handling these operations is required in order to solve
constraints that are relevant to real-world applications. The second challenge
relates to the integration of length information with regex constraints. Length
constraints derived from automata may imply a disjunction of linear constraints,
which is often more challenging for solvers to handle than a conjunction.

As we demonstrate in this paper, the challenges of using automata-based
methods can be addressed via prudent use of lazy extraction of implied length
constraints and lazy regex heuristics in order to avoid performing expensive
automata operations when possible. Inspired by this observation, we introduce
a length-aware automata-based algorithm, Z3str3RE (and its implementation
as part of the Z3 theorem prover [18]), for solving regex constraints and linear
integer arithmetic over length of string terms. Z3str3RE takes advantage of the
compactness of automata in representing regular expressions, while at the same
time mitigating the effects of expensive automata operations such as intersection
by leveraging length information and lazy heuristics.

Contributions: We make the following contributions in this paper.

Z3str3RE: An SMT Solver for Regular Expressions and Linear Integer
Arithmetic over String Length. In Sect. 3, we present a novel decision pro-
cedure for the QF first-order theory over regex membership predicate and lin-
ear integer arithmetic over string length. We also describe its implementation,
Z3str3RE, as part of the Z3 theorem prover [8,18]. The basic idea of our algorithm
is that formulas obtained from practical applications have many implicit and
explicit length constraints that can be used to reason efficiently about automata
representing regexes. In Sect. 4 we present four heuristics that aid in solving reg-
ular expression constraints and that can be leveraged in general settings. Specif-
ically, we present a heuristic to derive explicit length information directly from

1 'We use the terms “word” and “string” interchangeably in this paper.



An SMT Solver for Regexes and String Length 291

regexes, a heuristic to perform expensive automata operations lazily, a heuristic
to refine lower and upper bounds on lengths of string terms with respect to regex
constraints, and a prefix/suffix over-approximation heuristic to find empty inter-
sections without constructing automata. All heuristics are designed to guide the
search and avoid expensive automata operations whenever possible. Our solver,
Z3str3RE, handles the above theory as well as extensions (e.g. word equations and
substring function) via the existing support in Z3str3. We focus on the core algo-
rithm as it is the centerpiece of our regex solver. We also carefully distinguish the
novelty of our method from previous work.

Empirical Evaluation and Comparison of Z3str3RE? Against CVC4,
OSTRICH, Z3seq, Z3str3, and Z3-Trau: To validate the practical efficacy
of our algorithm, we present a thorough and extensive evaluation of Z3str3RE in
Sect. 5, where we compare it against CVC4 [24], OSTRICH [15], Z3’s sequence
solver [18], Z3str3 [42], and Z3-Trau [1] on 57256 instances across four regex-
heavy benchmarks with connections to industrial security applications, includ-
ing instances from Amazon Web Services and AutomatArk [16]. Z3str3RE sig-
nificantly outperforms other state-of-the-art tools on the benchmarks consid-
ered, having more correctly solved instances in total, lower running time, and
fewer combined timeouts/unknowns than other tools, and no soundness errors
or crashes. We note that almost 75% of the benchmarks were obtained from
industrial applications or other solver developers. Over all the benchmarks, we
demonstrate a speedup of 2.4x over CVC4, 4.4x over Z3seq, 6.4x over Z3-Trau,
9.1x over Z3str3, and 13x over OSTRICH.

2 Preliminaries

This section contains some basic definitions as well as a brief overview of the
theoretical results which shape the landscape in which we state our contribution.

2.1 Basic Definitions

We first describe the syntax and semantics of the input language supported by
our solver Z3str3RE (Algorithm 1).

Syntax: The core algorithm we present in Sect.3 accepts formulas of the
quantifier-free many-sorted first-order theory of regex membership predicates
over strings and linear integer arithmetic over string length function. The syn-
tax of this theory is shown in Fig. 1.

We denote the set of all string variables and all integer variables as Varg, and
Varjy; respectively, and the set of all string constants and all integer constants
as Cong; and Conjyg respectively. String constants are any sequence of zero or
more characters over a finite alphabet (e.g., ASCII).

Atomic formulas are regular expression membership constraints and linear
integer (in)equalities. Regex terms are denoted recursively over regex concate-
nation, union, Kleene star, and complement, and for a string constant w, the

2 A reproduction package is available at https://figshare.com/s/5ae73a6f3c55f5c5edcl.
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F = Atom | FAF | FVF | —F

Atom = tsr € RE | Aint

Aint 2= tint = lint tint < lint

RE :=“w” | RE-RE | REURE | RE* | RE, with w € Cons,

tine w=m | v | len(tser) | tint + tint | M+ ting, with m € Coning, v € Varine
tstr = s, with s € Varsy, U Conggy

Fig. 1. Syntax of the input language accepted by Algorithm 1. Z3str3RE accepts an
extension of this syntax supporting word equations and other string terms.

regex term “w” represents the regular language containing w only. All regex
terms must be grounded (i.e. cannot contain variables). Linear integer arith-
metic terms include integer constants and variables, addition, and string length.
Multiplication by a constant is expanded to repeated addition. String terms are
either string variables or string constants. The length of a string S is denoted
by len(S), the number of characters in S. The empty string has length 0.

Our implementation Z3str3RE supports the theory in Fig.1 extended with
more expressive functions and predicates, including word equations (equality
between arbitrary string terms) and functions such as indexof and substr that
are needed for program analysis. Z3str3RE handles these terms via existing
support in Z3str3. We focus on the above input language in the presentation of
our algorithm in this paper and theoretical content.

Semantics: We refer the reader to [42] for a detailed description of the semantics
of standard terms in this theory. We focus here on the semantics of terms which
are less commonly known. The regex membership predicate S € R, where S is a
string term and R is a regex term, is defined by structural recursion as follows:

S e ‘w’ iff S = w (where wis a string constant)
S € Ry - Ry iff there exist strings .Sy, So with S = 57 - 55,51 € R1,52 € Ry
S € Ry U Ry iff either S € RiorS € Ry

SeR* iff either S = eor there exists a positive integer n such that
S=51-5-...-5,andS; € Rfor eachi=1...n
SeR iff S ¢ R (that is, S € Ris false)

2.2 Theoretical Landscape

To put our contributions in context, we briefly discuss a series of (un)decidability
and complexity results developed around the fragments and extensions of the
theory supported by Z3str3RE.

In particular, we consider extensions which may have a string-number con-
version predicate numstr® and/or string concatenation. Both extensions are

3 We introduce numstr, which is not part of the SMT-LIB standard, in order to sim-
plify presentation of the theoretical results. The predicate is no more expressive than
the standard operators str.to_int/str.from_int, except that those terms handle
decimal inputs. The results easily extend to other (finite) alphabets including deci-
mal/hexadecimal digits with appropriate case analysis.
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important to real-world program analysis. The predicate numstr has the syntax
numstr(ting, tstr) and the following semantics: numstr(n, s) is true for a given
integer n and string s iff s is a valid binary representation of the number n (pos-
sibly with leading zeros) and n is a non-negative integer. That is, s only contains

the characters 0 and 1, and Zée:%(s)*l s'[i]2ten ()71 = where s[i] is 0 if the
ith character in s is ‘0’ and 1 if that character is ‘1’. String concatenation has
the syntax tst :=tstr - tser and the usual semantics defined by SMT-LIB [10].
In the following, T rE n,c is the quantifier-free many-sorted first-order theory
of linear integer arithmetic over string length function (L), regex (RE) mem-
bership predicates, string-number conversion (n), and string concatenation (c) *.
The following quantifier-free fragments of Tr, g »,c are of interest: Trrg ¢, TLRE,
TrEncy TRE N, and Tre. The fragment T gg . (vespectively, T1rg) has all func-
tions and predicates of T7rg n,c except the string-number conversion predicate
(and, respectively, except the string concatenation function). The theory Trg n,
(respectively, Trg, ., and Trg) has all functions and predicates of Tr pg . €xcept
the length function (and, respectively, the string concatenation function, and,
in the case of Tgg, the string-number conversion predicate). Note that while
all these theories allow equalities between terms of sort Int, they do not allow
equalities between terms of sort Str and cannot express general word equations.
The theoretical landscape is laid out as follows. Firstly, following the results
and techniques introduced in [3], we obtain that T rp . and, in particular, Ty rp
is decidable. A procedure deciding a formula from Ty, rg . would first construct
for each variable (string or integer), based on the regular expression constraints
and length constraints which involve it, a finite automaton, then reduce the
problem of checking the satisfiability of the formula to checking whether the
constructed automata accept at least one string. A similar approach shows that
TrEn is decidable. We observe that the presence of complements in regular
expressions is an inherent source of complexity for these procedures. Indeed, we
can easily encode the universality problem for regular expressions as a formula
in the theory Trp. Moreover, given a regex R of length n over an alphabet
deciding whether L(R) = X* is equivalent to deciding the satisfiability of the
formula ¢ of Trp consisting of the atoms 2 € R and 2 € X*. Accordingly, by
the results from [37], if the choice for R is restricted to regular expressions with
at least k stacked complements, then there exists a positive rational number ¢

.2 cn
such that the considered problems are not contained in NSPACE 92

k—1times

In other words, the depth of the stack of complements of the formula trans-
lates to the height of the tower of exponents in the complexity of deciding that
formula ¢. On the other hand, if we only consider regular expressions without
stacked complements, then the decision problems for the considered theories are
PSPACE-complete. Indeed, the automata-based approach described above can
be implemented to work in nondeterministic polynomial space; strongly related
complexity results are obtained in [26,27].

4 Note that the fragments considered here do not include word equations.
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Algorithm 1: Z3str3RE’s length-aware algorithm for the theory Tprg of
regex and integer constraints

Input : Conjunction ¢ of constraints of the form S € RE, and conjunction ¢ of linear
integer arithmetic constraints over string lengths
Output : SAT or UNSAT
forall constraints S € RE in ¢ do
Lgs « ComputeLengthAbstraction(S) ;
Lrg < ComputeLengthAbstraction(RE) ;
if ¥ U Ls U Lrg inconsistent then
‘ return UNSAT
end
refine Lg as tightly as possible with respect to Lrg;
end
forall strings S; occurring in ¢ do
let R be the set of all regexes RE in all terms S; € RE ;
Automaton I < intersection of all automata corresponding to regexes in R ;
if I is empty then
‘ return UNSAT
else
‘ L < ComputeLengthAbstraction(l) ;
end

o
HO©®®O N0 hwNH

R
o oA W N

end
Ls < the union of all length abstractions Lg;
Lre < the union of all length abstractions Lrg;
L1 < the union of all length abstractions Ly;
if Y ULsULRre UL has any solution M then
forall strings S occurring in ¢ do
obtain len(S) from M ;
let A be the set of all automata for all regexes RE in all terms S € RE ;
Automaton J « intersection of all terms in A ;
S « any string of length len(S) in J ;
end
return SAT
else
‘ return UNSAT
end

W WNNNNNNNNNNERERSR
H O ®© 10N O s WNKFEOO©®N

At the opposite end of the spectrum is the theory 17, rg n,c, Which is undecid-
able. Indeed, one can show that the more specific theory Trg n  (i-e. disallowing
arithmetic over length) has equivalent expressive power to the theory of word
equations with regular constraints, a predicate allowing the comparison of the
length of string terms, and the numstr predicate. Therefore, using the techniques
from [17], one can show that the theory T rg n.c, in which we additionally allow
arithmetic over length, is undecidable [7].

3 Length-Aware Regular Expression Algorithm

This section outlines the high-level algorithm used by Z3str3RE to solve the sat-
isfiability problem for T1rg, and its extension based on length-aware heuristics.
3.1 High-Level Algorithm

The pseudocode presented in Algorithm 1 captures the essence of Z3str3RE
regex solver. Implementation-specific details are omitted for clarity. Z3str3RE
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incorporates a version of this algorithm as part of a DPLL(T)-style interaction
with a core solver for Boolean combinations of atoms and other theory solvers
able to handle arithmetic constraints and other terms. The tool handles string
concatenation, string equality, and other string terms and predicates besides
regex membership and string length via existing support in Z3str3, and leverages
Z3’s integer arithmetic solver for arithmetic reasoning and model construction.
This high-level presentation is expanded in Sect.4, where we describe several
heuristics used in our implementation as part of the Z3str3RE tool.

The algorithm takes as input a conjunction ¢ of regex membership constraints
and a conjunction % of linear integer arithmetic constraints over the lengths of
string variables appearing in ¢. Without loss of generality, it is assumed that
all constraints in ¢ are positive; negative constraints S ¢ RFE can be replaced
with the positive complement S € RE. The algorithm returns SAT iff there
is a satisfying assignment to all string variables consistent with the regex con-
straints ¢ and length constraints 1. It is assumed that the algorithm has access
to a decision procedure for checking the consistency of linear integer arithmetic
constraints and for obtaining satisfying assignments to these constraints (in our
implementation, this is fulfilled by Z3’s arithmetic solver).

Lines 1-8 check whether the length information implied by ¢ is consistent
with 1. The function ComputeLengthAbstraction takes as input either a string
term S or aregex RFE and computes a system of length constraints corresponding
to derived length information from string constraints or possible lengths of words
accepted by the regex RE. This abstraction is exact, not an over-approximation.
For example, given the regex (abc)* as input, ComputeLengthAbstraction would
construct the length abstraction S € (abc)* — len(S) = 3n,n > 0 for a fresh
integer variable n. If the length abstractions are inconsistent with the given
length constraints, there can be no solution which satisfies both the length and
regex constraints, and hence the algorithm returns UNSAT. Otherwise, line 7
refines the length abstraction Lg with respect to the regex RE. This improves
the efficiency of finding solutions to the augmented system of length constraints
later in the algorithm. In our implementation, the lower and upper bounds of the
length of S are checked against the lengths of accepting paths in the automaton
for RE. For instance, if Lg implies that len(S) > 5, but the shortest accepting
path in the automaton has length 7, the lower bound is refined to len(S) > 7.

Lines 9-17 check that the intersection of all automata constraining each string
variable is non-empty. Although intersecting automata is relatively expensive (as
it runs in quadratic time w.r.t. the size of the intersected automata), it is still
more efficient to do this before enumerating length assignments, and taking the
intersection here is necessary to maintain soundness. (The heuristics in Sect. 4
illustrate some methods by which this computation can be made more efficient
or even avoided.) If the length information is consistent, the algorithm adds a
length abstraction constraint L; encoding the lengths of all possible solutions to
the intersection I.

By construction of ¢y U Lg U Lrg U L, the input formula is satisfiable iff
this system of integer constraints has a solution. If such a solution M exists,
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lines 22-28 construct an assignment for each string variable with respect to its
length assignment. A solution must exist as the lengths of strings considered are
limited to those lengths for which the intersection of the corresponding automata
is non-empty; the solution is consistent by construction with both the input
length constraints and string constraints. If a solution M does not exist, then the
constraints ¢ A 1) are not jointly satisfiable, and the algorithm returns UNSAT.

We demonstrate soundness, completeness, and termination of Algorithm 1 as
follows. On line 4 we check whether v U Lg U L is satisfiable. If not, we return
UNSAT on line 5. Lines 9-17 check whether the intersection of regex constraints
for each string variable is empty. If so, we return UNSAT; otherwise, we add
an additional constraint encoding the lengths of all strings in this intersection.
Therefore, ¥ U Lg U Lrp U L5 has a solution iff there exists an assignment to
each string variable that is consistent with the arithmetic constraints ¢ and that
corresponds to the length of a solution in the intersection of its regex constraints
L;. Lines 22-28 construct this solution if it exists. Therefore, Algorithm 1 is
a decision procedure for the QF first-order theory of regex constraints, string
length, and linear integer arithmetic.

As previously mentioned, Z3str3RE supports other high-level operations that
are not part of this theory via existing support in Z3str3. An extension to this
algorithm provides support for including these operations, which may render the
theory undecidable. These terms are not in Algorithm 1 because their inclusion
would make the algorithm incomplete (see Sect.2.2). Algorithm 1 describes the
part of the implementation which is novel and complete.

4 Length-Aware and Prefix/Suffix Heuristics in Z3str3RE

In this section, we describe the length-aware heuristics that are used in Z3str3RE
to improve the efficiency of regular expression reasoning. We present an empirical
evaluation of the power of these heuristics in Sect. 5.6.

4.1 Computing Length Information from Regexes

The first length-aware heuristic is used when constructing the length abstrac-
tion on line 3. If the regex can be easily converted to a system of equa-
tions describing the lengths of all possible solutions (for instance, in the
case when it does not contain any complements or intersections), this sys-
tem can be returned as the abstraction without constructing the automaton
for RE yet. As previously illustrated, for example, given the regex (abc)*
as input, ComputeLengthAbstraction would construct the length abstraction
S € (abe)* — len(S) = 3n,n > 0 for a fresh integer variable n. Note that this
can be done from the syntax of the regex without converting it to an automaton.
Deriving length information from the automaton would be simple by, for exam-
ple, constructing a corresponding unary automaton and converting to Chrobak
normal form. However, performing automata construction lazily means we can-
not rely on having an automaton in all cases; this technique also provides length
information even when constructing an automaton would be expensive.
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In cases where we cannot directly infer the length abstraction, the heuristic
will fix a lower bound on the length of words in RFE, and possibly an upper
bound if it exists. Reasoning about the length abstraction early in the proce-
dure gives our algorithm the opportunity to detect inconsistencies before expen-
sive automaton operations are performed. This gives the arithmetic solver more
opportunities to propagate facts discovered by refinement and potentially more
chances to find inconsistencies or learn further derived facts.

4.2 Optimizing Automata Operations via Length Information

Similarly, computing the intersection I in line 11 is done lazily in the imple-
mentation of Z3str3RE and over several iterations of the algorithm. The most
expensive intersection operations can be performed at the end of the search, after
as much other information as possible has been learned. We use the following
heuristics recursively to estimate the “cost” of each operation without actually
constructing any automata:

— For a string constant, the estimated cost is the length of the string.

— For a concatenation or a union of two regex terms X and Y, the estimated
cost is the sum of the estimates for X and Y.

— For a regex term X*, the estimated cost is twice the estimate for X.

— For a regex term X under complement, the estimated cost is the product of
the estimates obtained from subterms of X.

In essence, the constructions which “blow up” the least are expected to be the
least expensive and are performed first. In the best-case scenario, this could mean
avoiding the most expensive operations completely if an intersection of smaller
automata ends up being empty. In the worst case, all intersections are computed
eventually, as this is necessary to maintain the soundness of our approach.

4.3 Leveraging Length Information to Optimize Search

Our implementation communicates integer assignments and lower/upper bounds
with the external arithmetic solver in order to prune the search space. Check-
ing for length assignments is done in practice as an abstraction-refinement loop
involving Z3’s arithmetic solver. The arithmetic solver proposes a single candi-
date model for the system of arithmetic constraints; the regex algorithm checks
whether that model has a corresponding solution over the regex constraints. If it
does not, it asserts a conflict clause blocking that combination of length assign-
ments and regex constraints from being considered again. This is necessary in
a DPLL(T)-style solver such as Z3 in order to handle Boolean structure in the
input formula.
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4.4 Prefix/Suffix Over-Approximation Heuristic

As previously mentioned, computing automata intersections is expensive, but
in many cases it is necessary in order to prove that a set of intersecting regex
constraints has no solution. In some cases, this can be done “by inspection” from
the syntax of the regex terms without constructing or intersecting any automata.
From the structure of a regular expression, it is easy to determine the first
letter of all possible accepted strings that it matches. If several regexes would be
intersected over the same string term, this is used to check whether these regexes
have a prefix of length one in common. If they do not, their intersection cannot
contain any strings other than the empty string (and we can also check whether
the empty string could be accepted by a similar syntactic approach). A similar
construction for suffixes of length 1 is also used. In this way, the heuristic can
infer that the intersection of several regex constraints is either empty, resulting in
a conflict clause, or can only contain the empty string, resulting in a new fact and
a simplification of the formula — without actually constructing the intersection
or, in fact, constructing any automata for these regexes.
For example, consider the following regex constraints on a variable X:

X € (abe)*
Xeat bt

In the first constraint, the pattern abc is matched zero or more times, and could
be empty; therefore, either X is empty or it must start with a and end with c.
In the second constraint, each pattern is matched at least once, and cannot be
empty; therefore X must start with a or b, end with a or b, and cannot be the
empty string. Observe that according to the prefix heuristic, these constraints
are consistent, since a is a valid prefix of both regexes; however, according to
the suffix heuristic, they are inconsistent, as the possible suffixes a and b of the
second regex do not include ¢, and the empty string is not a solution to both
constraints. Hence these constraints are not jointly satisfiable.

As demonstrated, all of these facts are derived from the syntax of the reg-
ular expression without constructing any automata. By constructing an over-
approximation of the possible solutions of X allowed by regex constraints, the
heuristic can determine that their intersection is empty (or can only contain the
empty string) without computing it precisely using expensive automata-based
reasoning. We limit this heuristic to the first letter as each additional letter
requires exponentially more space.

5 Empirical Results

In this section, we describe the empirical evaluation of Z3str3RE, our implemen-
tation of the length-aware regular expression algorithm presented in Sect. 3, to
validate the effectiveness of the techniques presented. We evaluate the correct-
ness and efficiency of our tool against other solvers, as well as against different
configurations of the tool in order to demonstrate the efficacy of our heuristics.
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Fig. 2. Cactus plot summarizing performance on all benchmarks. Z3str3RE has the
best overall performance.

Table 1. Combined results of string solvers on all benchmarks. Z3str3RE has the
best overall performance on all benchmarks compared to CVC4, OSTRICH, Z3seq,
Z3str3, and Z3-trau and the biggest lead with a score of 1.02.

CvVC4 Z3Seq OSTRICH |Z3-Trau |Z3str3 Z3str3RE
Sat 33310 31550 22499 24133 27563 33820
Unsat 21897 21411 19281 21038 18566 22339
Unknown 0 0 10901 6504 1164 291
Timeout 2049 4295 4575 5581 9963 806
Soundness error 0 0 28 5325 13 0
Program crashes 0 0 0 2477 2 0
Total correct 55207 52961 41752 39846 46116 56159
Contribution score 95.99 19.87 — - — 145.07
Time (s) 57625.499/103487.844|305243.413|150288.386(213698.954/23339.266
Time w/o timeouts (s)|16645.499(17587.844 |213743.413|38668.386 |14438.954 |7219.266

5.1 Empirical Setup and Solvers Used

We compare Z3str3RE against five other leading string solvers available today.
CVC4 [24] is a general-purpose SMT solver which reasons about strings and regular
expressions algebraically. Z3str3 [8] is the latest solver in the Z3-str family, and uses
a reduction to word equations to reason about regular expressions. Z3str3RE is
based on Z3str3 except for the length-aware algorithm and heuristics described in
Sects. 3 and 4. Z3seq [36] is the Z3 sequence solver, implemented by Nikolaj Bjgrner
and others at Microsoft Research, as part of the Z3 theorem prover. Z3seq uses a
new theory of derivatives for solving extended regular expressions. Z3-Trau [1] is
also based on Z3 and uses an automata-based approach known as “flat automata”
with both under- and over-approximations. OSTRICH [15] uses a reduction from
string functions (including word equations) to a model-checking problem that is
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Fig. 3. Cactus plot summarizing detailed performance on Automatark benchmark.

solved using the SLOTH tool and an implementation of IC3. We used CVC4’s
binary version 1.8, commit 59e9¢c87 of Z3str3, the sequence solver included in Z3’s
binary version 4.8.9, Z3-Trau commit 1628747, and OSTRICH version 1.0.1. All
of these tools support the full SMT-LIB standard for strings. We did not compare
against the Z3str2 [42] or Norn [3] solvers as neither tool supports the str.to_int
or str.from_int terms which represent string-number conversion, which are used
in some sanitizer benchmarks. Additionally, Norn does not support many of the
other high-level string terms such as indexof or substr which are used in the
benchmarks. The ABC [4] solver handles string and length constraints by conver-
sion to automata. However, their method over-approximates the solution set of
the input formula which may be unsound. Thus, we excluded ABC from our eval-
uation. We also were unable to evaluate against Trau [2] as the provided source
code did not compile. All evaluations were performed on a server running Ubuntu
18.04.4 LTS with two AMD EPYC 7742 processors and 2TB of memory using the
ZaligVinder [23] benchmarking framework. A 20s timeout was used. We cross-
verified the models generated by each solver for satisfiable instances against all
competing solvers.

5.2 Benchmarks

The comparison was performed on four suites of regex-based benchmarks with a
total of 57256 instances. In total, almost 75% of the instances in our evaluation
came from previously published industrial benchmarks or other solver devel-
opers. Under 10% contain extended regular expressions (having either comple-
ment or intersection, or both) and 53% contain only regex predicates. Only 201
instances fall into the undecidable theory 17, rE n,c. More details can be found in
[7] where we analyse the benchmarks in greater detail. We briefly describe each
benchmark’s origin and composition.
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Table 2. Detailed results for the Automatark benchmark. Z3str3RE has the biggest
lead with a score of 1.01.

CVC4 Z3Seq OSTRICH | Z3-Trau Z3str3 Z3str3RE
Sat 14376 14204 11461 8157 9151 14437
Unsat 5304 5290 5381 3817 4385 5422
Unknown 1 0 15 5045 406 0
Timeout 298 485 3122 2960 6037 120
Soundness error 0 0 0 1300 0 0
Program crashes 0 0 0 1063 2 0
Total correct 19680 19494 16842 10674 13536 19859
Contribution score 1.0 1.0 2.0 - 0.0 0.5
Time (s) 8789.425 | 18718.425 | 158910.126 | 80021.352 | 126825.967 | 3925.150
Time w/o timeouts (s) | 2829.425 | 9018.425 | 96470.126 | 20821.352 | 6085.967 1525.150

AutomatArk is a set of 19979 benchmarks based on a collection of real-world
regex queries collected by Loris D’Antoni from the University of Wisconsin,
Madison, USA. We translated the provided regexes [16] into SMT-LIB syntax
resulting in two sets of instances: a “simple” set with a single regex membership
predicate per instance, and a “complex” set with 2-5 regex membership predi-
cates (possibly negated) over a single variable per instance. The instances in this
benchmark are evenly divided between simple and complex problems.

RegEx-Collected is a set of 22425 instances taken from existing benchmarks
with the purpose of evaluating the performance of solvers against real-world
regex instances. This benchmark includes all instances from the AppScan [41],
BanditFuzz,> JOACO [38], Kaluza [33], Norn [3], Sloth [21], Stranger [40], and
Z3str3-regression [8] benchmarks in which at least one regex membership con-
straint appears.® No additional restrictions are placed on which instances were
chosen besides the presence of at least one regex membership predicate. This
benchmark tests solvers against challenging instances from widely distributed
benchmark suites. Additionally, these instances may contain regex terms in any
context and with any other supported string operators. As a result, the bench-
mark is also exemplary of how string solvers perform in the presence of operations
and predicates that are relevant to program analysis.

StringFuzz-regex-generated is a set of 4170 problems generated by the
StringFuzz string instance fuzzing tool [12]. These instances only contain regular
expression and linear arithmetic constraints. This benchmark isolates the regex
performance of a string solver in the context of mixed regex and arithmetic con-
straints. Tools with better regex and arithmetic solvers should perform better.
Fuzz testing, as performed in the StringFuzz-regex-generated benchmark,
has been shown to be extremely productive in discovering bugs and performance

5 The BanditFuzz benchmark is an unpublished suite obtained via private communi-
cation with the authors.

5 Other benchmark suites available to us, including the PyEx, PISA, and Kausler
benchmarks, did not include any regex membership constraints.
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Fig. 4. Cactus plot showing detailed results for the StringFuzz-regex-generated bench-
mark.

Table 3. Detailed results for the StringFuzz-regex-generated benchmark. Z3str3RE
has the biggest lead with a score of 1.25.

CvC4 Z3Seq OSTRICH | Z3-Trau Z3str3 Z3str3RE
Sat 2316 2001 2005 1590 3227 3231
Unsat 442 697 819 824 32 830
Unknown 0 0 1 192 0 0
Timeout 1412 1472 1345 1564 911 109
Soundness error 0 0 0 8 0 0
Program crashes 0 0 0 192 0 0
Total correct 2758 2698 2824 2406 3259 4061
Contribution score 0.0 3.17 2.0 0.0 0.17
Time (s) 31236.207 | 35409.000 | 51571.800 | 37323.550 | 22031.636 | 5116.456
Time w/o timeouts (s) | 2996.207 | 5969.000 | 24671.800 | 6043.550 | 3811.636 |2936.456

issues in SMT solvers. We included these instances because they exercise the per-
formance of the solver on regex-heavy constraints in a way that the industrial
benchmarks or instances obtained from other solver developers cannot.

StringFuzz-regex-transformed is a set of 10682 instances which were pro-
duced by transforming existing industrial instances with StringFuzz. We applied
StringFuzz’s transformers to instances supplied by Amazon Web Services related
to security policy validation, handcrafted instances inspired by real-world input
validation vulnerabilities, and the regex test cases in Z3str3’s regression test
suite. The instances contain regex constraints, arithmetic and length constraints,
string-number conversion (numstr), string concatenation, word equations, and
other high-level string operations such as charAt, indexof, and substr. As is



An SMT Solver for Regexes and String Length 303

Stringfuzz RegEx Transformed

1,000 — . === CVC4 e Z3Seq
o e OSTRICH = = Z3-Trau
-- Z3str3 = Z3str3RE
800 — ;

Z 600 -

=1

S

&

o 400 -

g

= a3
200 -~ :
07

| | | | | | | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000

Solved instances

Fig. 5. Cactus plot showing detailed results for the StringFuzz-regex-transformed
benchmark.

Table 4. Detailed results for the StringFuzz-regex-transformed benchmark. Z3str3RE
has the biggest lead with a score of 1.0.

Ccvc4 Z3Seq OSTRICH | Z3-Trau | Z3str3 Z3str3RE
Sat 4541 4633 3899 3672 4417 4599
Unsat 6016 5976 4549 6282 4817 6037
Unknown 0 0 2233 721 0 6
Timeout 125 73 1 7 1448 40
Soundness error 0 0 5 1241 0 0
Program crashes 0 0 0 718 0 0
Total correct 10557 10609 8443 8713 9234 10636
Contribution score 0.5 0.0 — — 0.0 4.83
Time (s) 2969.643 | 2066.935 | 23094.737 | 722.545 | 29788.245 | 1095.209
Time w/o timeouts (s) | 469.643 | 606.935 | 23074.737 | 582.545 | 828.245 295.209

typical for fuzzing in software testing, the goal is to create a suite of tests from a
given input that are similar in structure but that explore interesting behaviour
not captured by a “typical” industrial instance. These transformed instances are
often harder than the original industrial ones.

5.3 Comparison and Scoring Methods

We compare solvers directly against the total number of correctly solved cases,
total time with and without timeouts, and total number of soundness errors and
program crashes. We also computed the biggest lead winner and largest contri-
bution ranking following the scoring system used by the SMT Competition [6].
Briefly, the biggest lead measures the proportion of correct answers of the lead-
ing tool to correct answers of the next ranking tool, and the contribution score
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measures what proportion of instances were solved the fastest by that solver.
In accordance with the SMT Competition guidelines, a solver receives no con-
tribution score (denoted as —) if it produces any incorrect answers on a given
benchmark. In both cases, higher scores are better.

5.4 Analysis of Empirical Results

The cactus plot in Fig. 2 shows the cumulative time taken by each solver on all
cases in increasing order of runtime. Solvers that are further to the right and
closer to the bottom of the plot have better performance.

Overall Z3str3RE solves more instances and performs better than all com-
peting solvers. Across all benchmarks, Z3str3RE is over 2.4x faster than CVC4,
4.4x faster than Z3seq, 6.4x faster than Z3-Trau, 9.1x faster than Z3str3, and
13x faster than OSTRICH (including timeouts). Additionally, Z3str3RE has
fewer combined timeouts and unknowns than other tools considered, and no
soundness errors or crashes. We summarize these results in Table 1. Notably,
both Z3-Trau [1] and OSTRICH [15] had significant runtime issues in our exper-
iments. Z3-Trau produced 5325 soundness errors and 2477 crashes on our bench-
marks (13% of all instances), which is significantly higher than other tools used.
OSTRICH produced 10901 “unknown” responses on the benchmarks (19% of all
instances), due to both unsupported features and crashes, and also produced 28
soundness errors. Over all benchmarks, Z3str3RE produced 291 unknowns. There
are several potential reasons for this; the solver may have encountered a resource
limit and returned UNKNOWN] or it may have detected non-termination and
returned UNKNOWN instead of looping forever. According to SMT Competition
scoring, Z3str3RE won the division across all benchmarks with a lead of 1.02,
and had the largest contribution to the division with a score of 145.07. CVC4
had a contribution score of 95.99, and Z3seq had a score of 19.87. OSTRICH, Z3-
Trau, and Z3str3 received no contribution score as they each returned at least
one incorrect answer. The presented results are typical of the performance of
the evaluated tools over multiple runs. Results were cross-validated within runs
and between multiple runs. For a random single instance, the sample variance
in execution time for 100 runs is 0.001 (0.07% of average execution time). Over
57256 instances, this is negligible.

The empirical results make clear the efficacy of length-aware automata-based
techniques for regular expression constraints when accompanied with length con-
straints (which is typical for industrial instances). The effectiveness of our tech-
nique is demonstrated particularly by comparing Z3str3RE with Z3str3, as the
only differences between these tools are the length-aware regex algorithm and
heuristics implemented in Z3str3RE and bug fixes. By improving the regex algo-
rithm and applying our heuristics, we achieved a speedup of over 9x and solved
over 10000 more cases than Z3str3.
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Table 5. Detailed results for the RegEx-Collected benchmark. CVC4 has the biggest
lead with a score of 1.03.

Ccvc4 Z3Seq OSTRICH | Z3-Trau Z3str3 Z3str3RE
Sat 12077 10712 5134 10714 10768 11553
Unsat 10135 9448 8532 10115 9332 10050
Unknown 0 0 8652 546 758 285
Timeout 213 2265 107 1050 1567 537
Soundness error 0 0 23 2776 13 0
Program crashes 0 0 0 504 0 0
Total correct 22212 20160 13643 18053 20087 21603
Contribution score 91.06 3.51 - - - 14.54
Time (s) 14610.224 | 47293.484 | 71666.750 | 32220.939 | 35053.106 | 13202.451
Time w/o timeouts (s) | 10350.224 | 1993.484 | 69526.750 | 11220.939 | 3713.106 | 2462.451

5.5 Detailed Experimental Results

Figure 3 and Table 2 show the detailed results for the AutomatArk benchmark.
In this benchmark, Z3str3RE solves more instances than all other solvers, has the
fewest timeouts/unknowns, and has the fastest overall running time. Including
timeouts, Z3str3RE is 2.2x faster than CVC4, 4.7x faster than Z3seq, 40.4x
faster than OSTRICH, 20.4x faster than Z3-Trau, and 32.3x faster than Z3str3.

Figure4 and Table3 show the detailed results for the StringFuzz-regex-
generated benchmark. Z3str3RE solves more instances than all other solvers,
has over 90% fewer timeouts than other solvers, no unknowns, and has the fastest
overall running time. Including timeouts, Z3str3RE is 6.1x faster than CVC4,
6.9x faster than Z3seq, 10x faster than OSTRICH, 7.3x faster than Z3-Trau,
and 4.3x faster than Z3str3.
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Fig. 7. Cactus plot comparing performance by disabling individual heuristics on all
benchmarks.

Figure5 and Table4 show the detailed results for the StringFuzz-regex-
transformed benchmark. Z3str3RE solves more instances in total than all other
solvers and has the lowest total running time without timeouts. Including time-
outs, Z3str3RE is 2.7x faster than CVC4, 1.9x faster than Z3seq, 21x faster
than OSTRICH, and 27x faster than Z3str3. Although Z3-Trau is 1.5x faster
than Z3str3RE on this benchmark, including timeouts, Z3-Trau also produces
1241 answers with soundness errors and crashes on 718 other cases. Z3str3RE
produces no wrong answers or soundness errors on the benchmark. Z3-Trau also
solves 1923 fewer cases correctly in total than Z3str3RE.

Figure6 and Table5 show the detailed results for the RegEx-Collected
benchmark. Z3str3RE outperforms Z3seq, Z3str3, OSTRICH, and Z3-Trau on
this benchmark and is competitive with CVC4 both in terms of total number
of instances correctly solved and total running time. CVC4 solves 609 more
instances than Z3str3RE on this benchmark, but Z3str3RE is 1.1x faster over-
all (including timeouts). Z3str3RE is 3.6x faster than Z3seq, 5.4x faster than
OSTRICH, 2.4x faster than Z3-Trau, and 2.6x faster than Z3str3.

5.6 Analysis of Individual Heuristics and Results

To demonstrate the effectiveness of individual heuristics described in Sect. 4 and
implemented in Z3str3RE, we evaluated different configurations of the tool in
which one or more heuristics were disabled. Figure 7 and Table 6 show the results.
The plot line “Z3str3RE” shows the performance of the tool with all heuristics
enabled. The plot line “All heuristics off” shows the performance with all heuris-
tics disabled. Each of the other plot lines shows the performance with the named
heuristic disabled and all others kept enabled. From the plots and table, it is
clear that Z3str3RE performs best with all heuristics enabled. Z3str3RE is 4.4 x
faster using all our heuristics than using none. Every other configuration of the
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Table 6. Comparison of different heuristics in Z3str3RE on all benchmarks.

All off Lazy Prefix/suffix | Automata |Arith. Z3str3RE

intersection |off length solver

off info off integ. off
Sat 31046 31486 33817 33816 33804 33820
Unsat 22090 22085 21880 22264 22131 22339
Unknown 313 323 287 285 283 291
Timeout 3807 3362 1272 891 1038 806
Soundness error 0 0 0 0 0 0
Program crashes 42 39 0 1 0 0
Total correct 53136 53571 55697 56080 55935 56159
Time (s) 102102.388/101799.263 |40068.501 27178.746 |30006.857|23339.266
Time w/o timeouts (s)|25962.388 |34559.263 |1462.8501 9358.746 | 9246.857 |7219.266

tool performs significantly worse relative to the one with all heuristics enabled.
Also, the length-aware and prefix/suffix heuristics provide significant boost over
lazy intersections and the baseline. These results demonstrate empirically that
each heuristic we introduce provides significant benefit in both total number of
solved instances and total solver runtime, and that all of the heuristics can be
used simultaneously for maximum efficacy.

6 Related Work

Comparison with Z3str3: Z3str3 [8] supports regex constraints via (incom-
plete) reduction to word equations. We have replaced this word-based technique
with our automata-based approach introduced in this paper. As demonstrated
by our evaluation, the length-aware automata-based approach used in Z3str3RE
is more efficient at solving these constraints, and is sound and complete for the
QF theory TLRE~

Comparison with Z3’s Sequence Solver: Z3’s sequence solver [18] supports
a more general theory of “sequences” over arbitrary datatypes, which allows
it to be used as a string solver. Z3seq uses regular expression derivatives to
reduce regex constraints without constructing automata. The experiments show
Z3str3RE performs better than Z3seq overall.

Comparison with CVC4: The CVC4 solver [24] uses an algebraic approach
to solving regex constraints. As shown in the experiments, Z3str3RE performs
better than CVC4, widely considered as one of the best SMT solvers for strings
as well as many other theories.

Comparison with Z3-Trau: The Z3-Trau [1] solver builds on Trau [2], re-
implemented in Z3, and enriched with new ideas e.g. a more efficient handling
of string-number conversion. The evaluation of Z3-Trau exposed 5325 soundness
errors and 2477 crashes on our benchmarks.
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Comparison with OSTRICH: The OSTRICH solver [15] implements a reduc-
tion from straight-line and acyclic fragments of an input formula to the emptiness
problem of alternating finite automata. OSTRICH produced 10901 “unknown”
responses and 4575 timeouts on our benchmarks, as well as 28 soundness errors.

Related Algorithms and Theoretical Results: The theory of word equa-
tions and various extensions have been studied extensively for many decades.
In 1977, Makanin proved that satisfiability for the QF theory of word equations
is decidable [28]; in 1999, Plandowski showed that this is in PSPACE [30,31].
Schulz [34] extended Makanin’s algorithm to word equations with regex con-
straints. The satisfiability problem for the theory of word equations with length
constraints still remains open [20,28,29,31], although the status of many other
extensions of this theory was clarified [17]. Automata-based approaches were
used to reason about string constraints enhanced with a ReplaceAll function
[14] or transducers [21].

Liang et al. [25] present a formal calculus for a theory that extends TLrg
with string concatenation (but not word equations). However, in that paper the
authors do not present experimental results regarding implementation of the
string calculus proposed. We have implemented an algorithm based on funda-
mentals of the theory and standard automata-based constructions, and presented
a thorough experimental evaluation of our implementation.

Abdulla et al. [3] present an automata-based solver called Norn built upon
results involving construction of length constraints from regex constraints. This
approach differs significantly from our method. In particular, Norn only uses
automata in inferring length constraints implied by regular expressions, then uses
an algebraic approach to solve the remainder of the formula. By contrast, our tool
uses a hybrid approach that includes both algebraic solving and automata-based
reasoning in a symbiotic loop. In addition, we present several novel heuristics
using length information to guide the search and, in some cases, avoid construct-
ing automata or computing intersections.

The prefix/suffix over-approximation heuristic is inspired partly by the work
of Brzozowski on regex derivatives [13]. The heuristic we introduce is conceptu-
ally different as we examine possible prefixes (and suffixes) of strings that could
be accepted by a regex in order to demonstrate unsatisfiability, rather than
examining the set of all possible suffixes given a fixed prefix in order to demon-
strate satisfiability. Our heuristic computes suffixes as well, whereas Brzozowski
derivatives are traditionally computed with respect to prefixes of a string. Newer
versions of Z3seq, including the one we evaluated, use a regex algorithm based
on symbolic derivatives [36].

7 Conclusions and Future Work

In this paper, we empirically showcase the power of length-aware and pre-
fix/suffix reasoning for regex constraints with our algorithm and its implementa-
tion in Z3str3RE via an extensive empirical comparison against five other state-
of-the-art solvers (namely, CVC4, Z3seq, Z3str3, Z3-Trau, and OSTRICH) over
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a large and diverse benchmark of 57256 instances. Over this entire benchmark
suite, we show that Z3str3RE has a speedup of 2.4x over CVC4, 4.4x over Z3seq,
6.4x over Z3-Trau, 9.1x over Z3str3, and 13x over OSTRICH. Our length-aware
method is very general and has wide applicability in the broad context of string
solving. In the future, we plan to explore further length-aware heuristics which
include more expressive functions and predicates, including indexof, substr,
and string-number conversion.
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