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Invariant Manifold Based Output-Feedback Sliding
Mode Control for Systems with Mismatched

Disturbances
Lu Zhang, Jun Yang, Senior Member, IEEE, Shihua Li, Fellow, IEEE, and Xinghuo Yu, Fellow, IEEE

Abstract—This paper proposes an invariant manifold based
output-feedback sliding mode control (SMC) strategy for systems
with mismatched disturbances to achieve asymptotic tracking
and disturbance rejection. Different from the existing output-
feedback SMC methods, the invariant manifold is employed to
transform the multiple mismatched disturbances into matched
ones, which can provide full system dynamics for controller
design to improve accuracy. An observer is developed to estimate
unmeasurable states, then an output-feedback sliding mode
controller is proposed. Moreover, the switching gain of the
controller adaptively changes with the estimation error, which
reduces chattering in SMC. Experiments on a converter-driven
DC motor system verify the superiority of the proposed method.

Index Terms—Sliding mode control, output-feedback, mis-
matched disturbances, invariant manifold.

I. INTRODUCTION

Sliding mode control has been paid much attention [1]
[2] due to its robustness to matched uncertainties. [3] and
[4] propose sliding-mode neuro-controller and fractional-order
SMC for systems with matched disturbances, respectively.
However, mismatched disturbances widely exist in practical
systems, such as spacecraft system [5], DC-DC converters [6]
and so on. Various control approaches are developed to handle
mismatched disturbances, such as integral SMC [7], distur-
bance observer-based approach [8], anti-disturbance bumpless
transfer control [9]. The results are mostly implemented by
full-state measurement, which would be difficult in practice
due to cost and installation limitations. Therefore, it is of
great importance to investigate output-feedback SMC to reject
mismatched disturbances.

The existing output-feedback SMC methods are mainly di-
vided into two categories. The first strategy is depending on the
outputs directly or on an output-based dynamic compensator
indirectly [10]. In [11], a rate bumpless transfer controller
for switched linear system with output feedback is proposed
using multiple Lyapunov functions and linear matrix inequality
(LMI). [5] investigates output-feedback SMC for spacecraft
hovering system, and the robust stability in the sliding phase
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is derived from LMI. These approaches generally require that
the controller gains are large enough to suppress disturbances,
which sacrifices the nominal performance of the system. The
second strategy is observer-based SMC [12], the key idea of
which is taking nth-order differentiations of the output for
a system with relative degree n and lumping all the rest
dynamics except for the integral chain as lumped disturbances.
Then, an observer is developed to reconstruct unmeasurable
states. [13] proposes a higher-order sliding mode observer
to achieve output-feedback, but the controller is complicated
especially for higher-order systems, which brings difficulties
in implementation. Recently, extended state observer (ESO)
[14] based output-feedback SMC is paid attention due to its
simpleness in implementation [15] [16]. The existing observer-
based method is relatively conservative. Since there is state in-
formation in the lumped disturbance, the observer poles should
be relatively large to obtain satisfactory performance, which
will lead to a drastic rise of observer gains and significant
noise amplification especially for higher-order systems. As
a result, the frequently switching in control signal will be
serious, which has negative effects on the actuator [17].

By utilizing steady state of control input, [18] proposes
a robust granular feedback linearization method to achieve
asymptotic tracking and disturbance rejection, which requires
full-state measurement or tracking differentiator in implemen-
tation. Inspired by [18] and the idea of invariant manifold in
output regulation [19], this paper aims to address the afore-
mentioned problems in output-feedback SMC as well as ensur-
ing satisfactory control performance and disturbance rejection
ability for systems subject to mismatched disturbances. The
main contributions of this paper are summarized as follows:
1) the transformation based on the invariant manifold reduces
the burden on the observer, which admits lower observer poles
to achieve satisfactory performance, thus largely attenuates
measurement noises; 2) the chattering problem in SMC can be
attenuated to a large extent since the switching gain changes
with the estimation error adaptively; 3) the proposed approach
can effectively compensate the influence caused by unknown
time-derivatives of the reference signal without any tracking
differentiator, which leads to a more concise control structure
and simple implementation.

II. PRELIMINARIES

Firstly, we recall the following lemma that will play an
important role in the subsequent analysis.
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Lemma 1. [20] Assume A ∈ Rn×n is Hurwitz, then there
exists a positive scalar c > 0 such that ∥eAt∥ ≤ ce

λmax(A)
2 t,

where λmax(A) = maxi{Re(λi(A))}.

A. Problem Formulation

Consider a system with mismatched disturbances:

ẋ = Ax+Bu+Ω,

y = Cx,
(1)

where A =

a11 a12 · · · a1n
...

...
. . .

...
an1 an2 · · · ann

, B =

0...
1

, C =

[
1, 0, · · · , 0

]
1×n

, with x =
[
x1, x2, · · · , xn

]T ∈ Rn, u ∈
R and y ∈ R are system states, control input and sys-
tem output, respectively. Ω is the unknown exosystem with
Ω =

[
ω1, ω2, · · · , ωn

]T , ωi(i = 1, 2, · · · , n) are unknown
disturbances. The control objective is to design an output
feedback sliding mode controller which drives system output
y(t) to asymptotically track reference signal r(t).

B. Traditional Output-Feedback SMC

Suppose the relative degree of system (1) is m with m ≤ n.
Taking mth-order derivatives of system output, one has

y =Cx, ẏ = Cẋ = CAx+CΩ, · · · ,
y(m) =CAmx+CAm−1Ω+ · · ·+CΩ(m−1) +CAm−1Bu.

(2)
Denote ϖ = CAmx + CAm−1Ω + · · · + CΩ(m−1) as
the lumped disturbance and κ = CAm−1B. Letting ν =[
ν1, ν2, · · · , νm, νm+1

]T
=

[
y, ẏ, · · · , y(m−1), ϖ

]T
, we have

[16] [21]

ν̇ = A1ν +B1u+Ω1, νo = C1ν, (3)

where A1 =


0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

, B1 =


0
...
κ
0

, Ω1 =


0
...
0
ϖ̇

,

C1 =
[
1, 0, · · · , 0, 0

]
1×(m+1)

.
Based on (3), the observer is designed as

˙̂ν = A1ν̂ +B1u+L(C1ν −C1ν̂), (4)

where L =
[
l1, l2, · · · , lm+1

]T
are observer gains. The

sliding manifold is designed as s =
m∑
i=1

βiν̂i, where βi, i =

1, · · · ,m − 1 are selected such that the polynomial λm−1 +
βm−1λ

m−2+ · · ·+β2λ+β1 is Hurwitz, βm = 1. The output-
feedback controller is given by

u = − 1

κ

( m∑
i=1

βiν̂i+1 + k1sgn(s) + k2s
)
, (5)

where k1 = ρ+ |ν1 − ν̂1|
∑m

i=1 liβi,ρ > 0, k2 > 0.

C. Motivations

The traditional output-feedback SMC can remove the off-
set caused by mismatched disturbances effectively. However,
through the coordinate transformation given by (2) and (3),
all unknown states are lumped into ϖ including system states
and disturbances. Large observer poles are required to obtain
satisfactory performance, which needs large gains. It is natural
that large gains will amplify measurement noises, and there
will be high frequency fluctuations in estimations and control
signal. The high frequency switching of controller may excite
the unmodelled dynamics of the system and cause adverse
effects on actuator and even destabilize the system.

III. MAIN RESULTS

A. Controller Design

Motivated by [19], the steady states of system (1) can be
determined by the following regulator equations:

π̇i(t) =
n∑

j=1

aijπj(t) + ωi(t), i = 1, 2, · · · , n− 1,

π̇n(t) =
n∑

j=1

anjπj(t) + πu(t) + ωn(t),

0 = π1(t)− r(t),

(6)

where πi(t)(i = 1, 2, · · · , n) and πu(t) represent the steady
states of system states xi(i = 1, 2, · · · , n) and the controller.
Obviously, the regulator equations given by (6) are impossible
to solve with unknown ωi(t). To overcome this problem,
this section will utilize observation technique and sliding
mode theory to design a controller, which will only need the
computable π1(t) = r(t).

According to system model (1) and (6), the invariant man-
ifold is introduced as

Ē = x−Π, (7)

where Ē =
[
ε1, ε2, · · · , εn

]T
, εi = xi(t) − πi(t), i =

1, 2, · · · , n, Π =
[
π1(t), π2(t), · · · , πn(t)

]T . Based on the
invariant manifold (7), system (1) can be transformed into

˙̄E = AĒ +B
(
u− πu(t)

)
. (8)

It can be observed from (8) that the mismatched disturbances
in (1) are lumped into πu(t), which is matched disturbance
and needs to be compensated in the controller.

Assumption 1. For system (8), the lumped disturbance πu

and its derivative are supposed to be bounded and satisfy
limt→∞ π̇u = 0.

Denote εn+1(t) = πu(t) as an extended state. Let E =[
ĒT , εn+1(t)

]T
. The augmented system is

Ė = ĀE + B̄uu+N ς,

e = C̄E ,
(9)

where Ā =

[
A −B
0 0

]
, B̄u =

[
B
0

]
, C̄ =

[
C, 0

]
, N =[

01×n, 1
]T , ς = π̇u(t).
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Based on (9), an extended state observer is designed as
˙̂E = ĀÊ + B̄uu+L(x1 − π1 − ê),

ê = C̄Ê ,
(10)

where Ê =
[
ε̂1, ε̂2, · · · , ε̂n+1

]T , ε̂1, ε̂2, · · · , ε̂n+1 are estima-
tions of ε1, ε2, · · · , εn+1 in (9), and L =

[
l1, l2, · · · , ln+1

]T
are observer gains to be determined. The sliding manifold is
designed as

s =
n∑

i=1

βiε̂i, (11)

with βn = 1 and βi(i = 1, 2, · · · , n− 1) are parameters to be
designed. The sliding mode controller is constracted as

u = −
n∑

i=1

n∑
j=1

βiaij ε̂j − k1sgn(s)− k2s, (12)

where k1 = ρ+ |x1 − π1 − ε̂1|
∑n

i=1 βili, k2 > 0, and ρ > 0.

Remark 1. The solutions of the regulator equations (6) are
not needed in implementation. From the invariant manifold
(7), the augmented system (9), the observer and controller
given by (10)-(12), it is known that although we cannot cal-
culate πi(t), i = 2, 3, · · · , n due to the presence of unknown
disturbances, the controller can be implemented based on the
invariant manifold and observation technique.

B. Stability Analysis
Taking the derivative of the sliding manifold along (11) and

substituting observer (10) and controller (12), one obtains

ṡ =β1
˙̂ε1 + β2

˙̂ε2 + · · ·+ ˙̂εn,

=

n−1∑
i=1

βi

( n∑
j=1

aij ε̂j + li(x1 − π1 − ê)
)

+
n∑

j=1

anj ε̂j + ln(x1 − π1 − ê) + u

=− k1sgn(s)− k2s+
n∑

i=1

βili(x1 − π1 − ê).

(13)

Define a candidate Lyapunov function V = 1
2s

2. Taking
derivative of V and substituting (13), we have

V̇ = sṡ ≤ −k1|s| − k2s
2 + |s|

n∑
i=1

βili(x1 − π1 − ê)

< −ρ|s| − k2s
2 = −

√
2ρV 1/2 − 2k2V.

(14)

Therefore, system states will reach the sliding manifold in a
finite time Tr with Tr ≤ 1

k2
ln
(
1 +

√
2k2

ρ V 1/2(s(0))
)

[1].

Denote ẽ = E − Ê =
[
ẽ1, ẽ2, · · · , ẽn

]T . Once the sliding
manifold is reached, one has s =

∑n
i=1 βiε̂i = 0, then

εn = ẽn + ε̂n = ẽn −
n−1∑
i=1

βiε̂i = ẽn −
n−1∑
i=1

βi(εi − ẽi). (15)

Denote Ēn−1 =
[
ε1, ε2, · · · , εn−1

]T , ζ =
[
ĒT
n−1, ẽ

T
]T

. The
closed-loop system is written in the following compact form

ζ̇ = Θζ +Ψς, (16)

where Θ =

[
Ã anβ
0 Ā−LC̄

]
, Ψ =

[
0(2n−2)×1

1

]
, Ã =

Ān−1 − anβn−1, an = [a1n, a2n, · · · , a(n−1)n]
T , β =[

β1, β2, · · · , βn−1

]
, Ān−1 =

[
a1, · · · ,an−1

]
, ai =[

a1i, · · · , a(n−1)i

]T for i = 1, 2, · · · , n− 1.
Based on the analysis above, we have the following theorem.

Theorem 1. For bounded ς , if the observer gains in (10) and
the controller parameters in (11) are chosen such that Ā −
LC̄ and Ã are Hurwitz matrices, then the output tracking
error of system (1) and the estimation errors will converge
to a bounded neighbourhood of the origin and the ultimate
bound can be made arbitrarily small. If ς tends to zero as time
goes to infinity, then the closed-loop system (16) is globally
exponentially stable.

Proof. By the input-to-state stability (ISS) [22], there exist
a class of KL function α1 and a class of K function α2

such that for any initial state ζ(0) and bounded ς(t), the
solution of system (16) satisfies ∥ζ(t)∥ ≤ α1(∥ζ(0)∥, t) +
α2(sup0≤τ≤t|ς(τ)|) and ∥ζ(∞)∥ ≤ α2(δ) ≤ ∞ with |ς(t)| ≤
δ, δ > 0. Therefore, the output tracking error and the
estimation errors are bounded.

Along (9), (10) and (16), the observer estimation error
subsystem is depicted by

˙̃e = (Ā−LC̄)ẽ+N ς. (17)

According to the comparison lemma [22], we have

ẽ(t) = e(Ā−LC̄)tẽ(0) +

∫ t

0

e(Ā−LC̄)(t−s)N ς(s)ds. (18)

Without loss of generality, the observer poles are set as ωo < 0.
Combining Lemma 1, one obtains

∥ẽ(t)∥ ≤
∫ t

0

∥e(Ā−LC̄)(t−s)∥∥N∥|ς(s)|ds+ ∥e(Ā−LC̄)t∥∥ẽ(0)∥

≤δ

∫ t

0

c2e
ωo
2

(t−s)ds+ c1e
ωo
2

t∥ẽ(0)∥

≤2δc2(1− e
ωo
2

t)

−ωo
+ c1e

ωo
2

t∥ẽ(0)∥,
(19)

where c1 and c2 are positive constants. When time goes to
infinity, there is lim

t→∞
∥ẽ(t)∥ = 2δc2

−ωo
. If the observer gains are

chosen such that the matrix Ā − LC̄ is Hurwitz, then the
estimation errors are bounded and can be arbitrarily small by
amplifying the observer poles.

From (16), the state subsystem is
˙̄En−1 = ÃĒn−1 + anβẽ. (20)

Based on the comparison lemma [22], we have

Ēn−1(t) = eÃtĒn−1(0) +

∫ t

0

eÃ(t−s)anβẽ(s)ds. (21)

Denote a positive constant ~ = ∥an∥∥β∥∥ẽ∥. The poles of Ã
are set as ωc < 0. Similar with (19), it gets

∥Ēn−1(t)∥ ≤ m1e
ωc
2 t∥Ēn−1(0)∥+

2m2~
−ωc

(1− e
ωc
2 t), (22)

with m1,m2 > 0. Therefore, we have lim
t→∞

∥Ēn−1∥ = 2m2~
−ωc

.

Noting that the ultimate bound for ∥ẽ∥ can be made arbitrarily
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Fig. 1. Block diagram of the proposed invariant manifold based output-feedback SMC.

small by choosing sufficiently large ωo, the ultimate bound for
the tracking error can be made arbitrarily small.

Furthermore, if ς(t) tends to zero as t tends to infinity,
according to [23], we have

lim
t→∞

ẽ(t) = lim
s→0

Ẽ(s) = lim
s→0

[
sI − (Ā−LC̄)

]−1

NL(ς(t))

= lim
s→0

[
sI − (Ā−LC̄)

]−1

N · lim
t→∞

ς(t) = 0.

(23)
Then, based on the above result, one has

lim
t→∞

Ēn−1(t) = lim
s→0

(sI − Ã)−1anL(
n∑

i=1

βiẽi(t))

= lim
s→0

(sI − Ã)−1an lim
t→∞

n∑
i=1

βiẽi(t) = 0.

(24)

Taking (15) in mind, one obtains

lim
t→∞

εn(t) = lim
t→∞

ẽn − lim
t→∞

n−1∑
i=1

βiεi + lim
t→∞

n−1∑
i=1

βiẽi = 0.

(25)
Since ε1 = x1 − r(t), we have lim

t→∞
y(t) = r(t). Therefore,

the system output tracks the desired signal asymptotically.
The control structure of the proposed method in implemen-

tation is shown in Fig. 1.

TABLE I
PARAMETERS OF BUCK CONVERTER-DRIVEN DC MOTOR

Meanings Parameters Nominal value
Input voltage E 40 V

Converter inductor L 10 mH
Converter capacity C 1000 µF

Load resistor R 250 Ω
Armature inductor La 2 mH

Armature winding resistor Ra 1.45 Ω
Viscous friction coefficient b 65.12× 10−6

Moment of inertia of rotor J 32.5× 10−6

Torque constant km 0.0699
Counter electromotive force constant ke 0.0699

IV. APPLICATIONS

A converter-driven DC motor system shown in Fig. 2 is
employed in experiments, and the mathematical model is
diL
dt

= −vo
L

+
E

L
µ,

dvo
dt

=
iL
C

− vo
RC

− ia
C
,

dia
dt

=
vo
La

− Ra

La
ia −

ke
La

ω,
dω

dt
=

km
J

ia −
b

J
ω − τL

J
,

(26)

E

VT

m

a
L

a
R

w

b
VD

L
i a

i

o
v

PWM

Gate  Drive a
E

DC-DC Buck Converter DC Motor

J

L

C

R

Fig. 2. Typical circuit of converter driven DC motor system.

where iL is the converter inductor current, vo the converter
output voltage, the duty ratio µ ∈ [0, 1] is the control input, ia
is the armature circuit current, ω the angular velocity of DC
motor. τL is the unknown load torque, which is the mismatched
disturbance. The physical meanings and nominal values of the
parameters are listed in Table I.

In experiments, the traditional output-feedback SMC is
employed for comparisons, which is designed following the
process given by (2)-(5). The proposed controller is

µ =− L

E

[
−
( 1

L
ε̂1 +

E

L
ε̂5

)
+ β2

( 1

C
ε̂1 −

1

RC
ε̂2 −

1

C
ε̂3

)
+ β3

( 1

La
ε̂2 −

Ra

La
ε̂3 −

ke
La

ε̂4

)
+ β4

(km
J

ε̂3 −
b

J
ε̂4

)
+ k1sgn(s) + k2s

]
,

(27)
with the sliding manifold s = ε̂1 + β2ε̂2 + β3ε̂3 + β4ε̂4, and
k1 = ρ + |ω − ω∗ − ε̂4|

∑4
i=1 βili, ρ > 0, k2 > 0. The

estimations are obtained from the observer based on (10). The
observer poles of the two methods are set as ωo = −500 and
the controller poles in the proposed method are ωc = −150
and ωc = −300 in the traditional method.



5

(a)
0 0.5 1 1.5 2 2.5 3

0

50

100

150

Time, sec

A
n
g
u
la
r
v
el
o
ci
ty

ω
,r
a
d
/
s

 

 
ω
ω∗

(a)

(d)
0 0.5 1 1.5 2 2.5 3

0

50

100

150

Time, sec

A
n
g
u
la
r
v
el
o
ci
ty

ω
,r
a
d
/
s

 

 
ω
ω∗

(g)

(b)
0 0.5 1 1.5 2 2.5 3

−50

−25

0

25

50

Time, sec

T
ra
ck
in
g
er
ro
r
ω
−
ω
∗

(b)

(e)
0 0.5 1 1.5 2 2.5 3

−50

−25

0

25

50

Time, sec

T
ra
ck
in
g
er
ro
r
ω
−
ω
∗

(h)

(c)
0 0.5 1 1.5 2 2.5 3

0

0.25

0.5

0.75

1

Time, sec

D
u
ty

ra
ti
o
µ

(c)

(f)
0 0.5 1 1.5 2 2.5 3

0

0.25

0.5

0.75

1

Time, sec

D
u
ty

ra
ti
o
µ

(i)

Fig. 3. Response curves under the proposed output feedback SMC method
(left) and traditional output feedback SMC (right) for sinusoidal signal
tracking (top: angular velocity; middle: tracking error; bottom: duty ratio).
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Fig. 4. Response curves under the proposed output feedback SMC method
(left) and traditional output feedback SMC (right) in the presence of time-
varying load torque disturbance (top: angular velocity; bottom: duty ratio).

Fig. 3 shows the experimental results in tracking sinusoidal
reference signal ω∗ = 80+75sin(2πt)rad/s. It can be observed
that larger poles are required for traditional method to obtain
similar tracking performance with the proposed controller. As
shown in Fig. 3(c) and Fig. 3(f), the frequently switching
in control signal provided by the traditional method is more
serious than the controller proposed in this paper. In exper-
imental results shown by Fig. 4, the unknown time-varying
load torques are imposed on motor shaft. The reference signal
is 150rad/s, and the unknown load torque changes from 0 to
τL = 0.05sin(2πt)+0.05(N·m) at 2s. The proposed controller
provides much smaller speed fluctuations than the traditional
method, which validates the better disturbance rejection ability
of the proposed method.

V. CONCLUSION

An invariant manifold based output-feedback SMC method
has been proposed in this paper for systems with mismatched
disturbances. An observer has been designed to reconstruct
unmeasurable states by means of the augmented system de-
rived from invariant manifold. Under the controller, system
output tracks the reference signal asymptotically even in the

presence of mismatched disturbances. Experimental results
have validated the effectiveness of the proposed controller.
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