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using a Digital Twin and Design Structure Matrix 2 

 3 

 4 

ABSTRACT 5 

Purpose 6 

As the engineering design process becomes increasingly complex, multidisciplinary teams need to 7 

work together, integrating diverse expertise across a range of disciplinary models. Where changes arise, 8 

these design teams often find it difficult to handle these design changes due to the complexity and 9 

interdependencies inherent in engineering systems. This paper aims to develop an innovative approach 10 

to clarifying system interdependencies and predicting the design change propagation at the asset level 11 

in complex engineering systems based on the digital-twin-driven design structure matrix (DSM). 12 

Design/methodology/approach 13 

The paper first defines the digital-twin-driven DSM in terms of elements and interdependencies, where 14 

we have defined three types of interdependency, namely, geospatial, physical and logical at the asset 15 

level. The digital twin model was then used to generate the large-scale DSMs of complex engineering 16 

systems. The cluster analysis was further conducted based on the improved Idicula-Gutierrez-Thebeau 17 

Algorithm (IGTA-Plus) to decompose such DSMs into modules for the convenience and efficiency of 18 

predicting design change propagation. Finally, a design change propagation prediction method based 19 

on the digital-twin-driven DSM has been developed by integrating the change prediction method 20 

(CPM), a load-capacity model and fuzzy linguistics. A section of an infrastructure mega-project in 21 

London was selected as a case study to illustrate and validate the developed approach. 22 

Findings 23 

The digital-twin-driven DSM has been formally defined by the spatial algebra and Industry Foundation 24 

Classes (IFC) schema. Based on the definitions, an innovative approach has been further developed to 25 

(1) automatically generate a digital-twin-driven DSM through the use of IFC files, (2) to decompose 26 

these large-scale DSMs into modules through the use of IGTA-Plus, and (3) predict the design change 27 

propagation by integrating a digital-twin-driven DSM, CPM, a load-capacity model and fuzzy 28 

linguistics. From the case study, the results showed that the developed approach can help designers to 29 

predict and manage design changes quantitatively and conveniently. 30 

Originality/value 31 
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This research contributes to a new perspective of the DSM and digital twin for design change 32 

management and can be beneficial to assist designers in making reasonable decisions when changing 33 

the designs of complex engineering systems. 34 

Keywords: Digital twin; Design structure matrix; Design change propagation 35 

1. Introduction 36 

Through a series of infrastructure projects and programmes including those at Heathrow, London, the 37 

2012 Olympics, Crossrail, Tideway and High-Speed 2 (HS2), the UK is developing significant 38 

expertise in the delivery of major infrastructure projects (Whyte, 2019; Davies, 2017). To address the 39 

challenges of infrastructure delivery, multidisciplinary teams work together, integrating diverse 40 

expertise across disciplines. One challenge that arises is that design teams find it difficult to understand 41 

the impacts of late design changes in such complex engineering systems (e.g. infrastructures), where 42 

changes in one sub-system may have implications for other systems (Whyte et al., 2016). While there 43 

is ongoing interest in systems integration in large projects, there is a need to articulate the complexity 44 

of and interdependencies found in such systems to understand the design change propagation and its 45 

impacts. 46 

Previous efforts have been made to identify system interdependencies and trace design changes of 47 

complex infrastructures. Eusgeld et al. (2011) proposed a ‘system-of-systems’ approach to identify and 48 

analyse interdependencies between industrial control systems (ICS). Goldbeck et al. (2019) developed 49 

a new, effect-based classification of interdependencies between infrastructure systems. The Design 50 

Structure Matrix (DSM) is a matrix showing interdependencies between components in the system 51 

(Browning, 2001). With the increasing complexity of infrastructures, it has become used as a simple, 52 

compact and visual representation of a complex system. It has been adopted widely to model and 53 

analyse the product decomposition and interdependencies (Pimmler and Eppinger, 1994), to show data 54 

interdependencies in the multidisciplinary design process (Lambe and Martins, 2012), to formulate the 55 

interdependencies between drawings of physical components at the lowest level of abstraction in 56 

construction design (Senthilkumar and Varghese, 2009), and to predict and manage design changes in 57 

complex engineering systems (Clarkson et al., 2004; Fu et al., 2012). 58 

While data consistency and quality have traditionally been relatively poor, such complex engineering 59 

systems are becoming rich sources of data deriving from multidisciplinary models and systems (Whyte 60 

et al., 2016), raising new opportunities to understand the interdependencies and model design change 61 

propagation in the design of new infrastructures. However, current DSM methods are inefficient in 62 

handling design changes with a large number of elements and the complex interdependencies of 63 
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increasingly integrated and expanded complex engineering systems. There is a need to develop a new 64 

method applicable to complex engineering systems which can not only generate the large-scale DSMs 65 

conveniently but analyse the design change propagation risk reliably. 66 

The development of digital technologies, especially Building Information Modelling (BIM) and digital 67 

twin techniques, provides a way to transfer complex engineering systems into the digital built 68 

environment, which enables the identification of complex building components and interdependencies 69 

digitally and automatically. The IFC functioning as a standard representation of BIM knowledge for 70 

interoperability further opens the possibility to integrate DSM with digital data for more convenient 71 

identification of system interdependencies and more effective design change management. Inspired by 72 

the interoperability of the IFC schema, Pektas (2010) proposed the complementary integration of IFC 73 

process modelling (e.g. IDEF0) and a parameter-based DSM in modelling the collaborative building 74 

design process. Jacob and Varghese (2011) proposed a logic of integration of BIM and DSM to improve 75 

construction design processes through the definition of new classes ‘IfcDSM’ and 76 

‘IfcConnectsByInformation’. Based on that, Jacob and Varghese (2012) made further efforts to handle 77 

design process complexity, derived from the increased sophistication of product models through an 78 

integrating process model (e.g. IFC process model and DSM) with a product model (i.e. IFC product 79 

model). However, these efforts were mainly premised on the hypothesis of potential IFC extensions 80 

(e.g. IfcDSM) and were limited to activity-/parameter-based DSM. Gopsill et al. (2016) succeeded in 81 

automatically generating a component-based DSM by monitoring the design changes in the digital 82 

models representing products. Saoud et al. (2017) proposed the integration of a parameter-based DSM 83 

with BIM to predict change propagation of design parameters within the BIM model. Although these 84 

efforts have succeeded in generating component-based or design parameter-based DSMs for predicting 85 

design change propagation, the work of Gopsill et al. (2016) is found to be inadequate for clarifying 86 

and classifying different kinds of interdependencies between elements in a DSM, and the work of 87 

Saoud et al. (2017) only focused on the spatial and analytical interdependencies for predicting and 88 

visualising design change propagation. There is still a need to develop an approach for predicting 89 

design change propagation based on a digital-twin-driven DSM with comprehensive system 90 

interdependencies identified. 91 

This research aims to develop an innovative approach to clarifying system interdependencies to predict 92 

change propagation in complex engineering systems at the asset level based on the digital-twin-driven 93 

DSM. Drawing on the literature review, this research first defined the digital-twin-driven DSM in 94 

terms of elements and interdependencies. The IFC files from a digital twin model were then used to 95 

generate the large-scale DSMs of complex engineering systems. Cluster analysis was further 96 
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conducted based on the IGTA-Plus to decompose such DSMs into modules for the convenience and 97 

efficiency of predicting design change propagation. Finally, a design change propagation prediction 98 

method based on the digital-twin-driven DSM was developed by integrating the CPM, a load-capacity 99 

model and fuzzy linguistics. A tunnel section of an infrastructure mega-project in London was selected 100 

as a case study to illustrate and validate the developed approach. 101 

The structure of the paper is organised as follows: We define the key concepts and clarify their 102 

relationships in section 2; The research methodology is set out in section 3; The development and 103 

modularity of digital-twin-driven DSM are introduced in section 4; Section 5 develops the design 104 

change propagation prediction method based on a digital-twin-driven DSM; Section 6 introduces the 105 

implementation of the developed approach in a case study; Section 7 is the discussion and conclusions 106 

are in section 8. 107 

2. Background 108 

2.1 System interdependencies in complex engineering systems 109 

Complex engineering systems are characterised by having a large number of dimensions, non-linear 110 

models, strong interactions, unknown or inherently random plant parameters and time delays in the 111 

dynamical structure (Jamshidi, 1996; Eusgeld et al., 2011). Many modern engineering projects are 112 

large complex engineering systems within dynamic environments, which usually comprise a large 113 

number of interacting sub-systems for components, processes, activities, stakeholders, resources and 114 

information (Abdoli and Kara, 2020; Zhu and Mostafavi, 2017). As shown in Table 1, these complex 115 

engineering systems can be divided into four levels based on the unified classification from Uniclass, 116 

namely, the system-of-systems, system, sub-system and asset levels (Pimmler and Eppinger, 1994; 117 

Senthilkumar and Varghese, 2009; Chou and Tseng, 2010; Eusgeld et al., 2011; Delany, 2019). 118 

The design of such complex engineering systems is very challenging due to complex system 119 

interdependencies among or within systems and with external environments (Li, 2018). These system 120 

interdependencies can be defined as bi-directional or uni-directional relationships at different levels 121 

where the output of one item is essential to the input of another (Rinaldi et al., 2001; Zimmerman, 122 

2001). For example, interdependency exists between a water pumping station and an electricity 123 

substation providing electricity for it (Holden et al., 2013). Another kind of system interdependency 124 

also exists between the water pumping station and a sewer tunnel which transports the sewage from 125 

the pumping station (Whyte et al., 2019). 126 

Table 1 Decomposition of complex engineering systems 127 

Level Sub-level Definition Example References 
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System-of-systems Assembly of multiple, 

heterogeneous, distributed, 

occasionally independently 

operating systems embedded 

in networks at multiple levels 

• National infrastructure 

scheme 

• Smart city 

• Community 

• Space exploration etc. 

Zhang and Peeta, 2011; 

Eusgeld et al., 2011; 

Chen and Whyte, 2020. 

System Assembly of physical sub-

systems for high-level 

functions 

• Transportation engineering 

system: Airport, railway etc. 

• Water engineering system: 

sewer etc. 

Pimmler and Eppinger, 

1994; Rinaldi et al., 

2001; Senthilkumar 

and Varghese, 2009; 

Chou and Tseng, 2010; 

Eusgeld et al., 2011.  

Sub-system Geographically distinct entity 

created to meet specific high-

level functions for the users of 

the system. 

• Terminal building or station 

in transportation engineering 

system 

• Pumping station, tank and 

tunnel section etc. in water 

engineering system 

Pimmler and Eppinger, 

1994; Eusgeld et al., 

2011; Heracleous et al., 

2017; Chen and Whyte, 

2020. 

Asset Section Physical entity created to meet 

specific functions for the 

system. 

• Architecture 

• Structure 

• MEP 

• HVAC etc. 

Senthilkumar and 

Varghese, 2009; Chou 

and Tseng, 2010. 

Component Physical entity with specific 

functions in each section. 

• Duct 

• Beam 

• Column 

• Foundation pile etc. 

Pimmler and Eppinger, 

1994; Senthilkumar 

and Varghese, 2009; 

Chou and Tseng, 2010; 

Saoud et al., 2017; 

Chen and Whyte, 2020. 

 128 

Infrastructure projects are complex engineering systems in which large sets of components are brought 129 

together and interact with one another. Each component of infrastructure constitutes a small part of the 130 

intricate web that forms the overall infrastructure (Rinaldi et al., 2001). This complexity exhibited by 131 

infrastructure as a whole is beyond the simple aggregation of its components and should be 132 

investigated by clarifying the system interdependencies of infrastructures (Chen et al., 2020). For 133 

instance, Rinaldi et al. (2001) identified four types of system interdependency between infrastructure 134 

systems, including physical, cyber, geographic and logical. Mendonça and Wallace (2006) focused on 135 

service and space connections and also defined four categories of system interdependency, namely 136 

input, shared, exclusive-or, and co-location. Eusgeld et al. (2011) extended the aforementioned insights 137 

and looked at different system interdependencies in more detail, where nine types of system 138 

interdependency have been identified, including input, mutual, co-located, shared, exclusive-or, 139 

physical, cyber, geographic, and logical. Most of the previous works focused on the system or sub-140 

system levels while the system interdependencies at the asset level were rarely explored which, 141 

however, are significant for the delivery and service provision of infrastructures (Table 2). Although 142 

Saoud et al. (2017) identified spatial and analytical interdependencies at the asset level, it is still 143 

necessary to identify the system interdependencies at the asset level more comprehensively and 144 

systematically. 145 
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Table 2 System interdependencies identified in previous works 146 

Level Identified system interdependencies References 

System Four types of interdependency, including physical, cyber, geographic, and logical. Rinaldi et al., 

2001 

Two types of interdependency, including functional and spatial. Zimmerman, 

2001 

Four interdependent conditions defined, including input, shared, exclusive-or, and 

colocation. 

Mendonça and 

Wallace, 2006 

Five types of interdependency, including physical, informational, geospatial, 

procedural and societal. 

Dudenhoeffer et 

al., 2007 

Four types of interdependency, including functional, physical, budgetary, market 

and economic. 

Zhang and Peeta, 

2011 

Two categories of interdependency, including location-specific (physical), and 

functional. 

Utne et al., 2011 

System & 

sub-system 

Nine categories of interdependency, including input, mutual, co-located, shared, 

exclusive-or, physical, cyber, geographic, and logical. 

Eusgeld et al., 

2011 

Two kinds of interdependency defined, including internal and external, where the 

external interdependencies were further represented by physical, cyber, geographic, 

and logical. 

Heracleous et al., 

2017 

Four types of interdependency, including stochastic failure propagation, logic, asset 

utilisation, and resource input. 

Goldbeck et al., 

2019 

Asset Two kinds of interdependency defined with BIM, including spatial and analytical 

interdependencies. 

Saoud et al., 

2017 

 147 

Within the context of the above complex system interdependencies, different approaches have been 148 

proposed to represent and visualise system interdependencies. Utne et al. (2011) adopted the cascade 149 

diagram to show interdependencies between critical infrastructures, which was useful to quantify the 150 

system interdependencies but ignored the bidirectional ones and did not leverage the network and 151 

spatial characteristics of infrastructures (Zhang and Peeta, 2011). 152 

To address this limitation, many efforts have been made based on network-based approaches. For 153 

instance, Jeong et al. (2006) developed a network-based model to show interdependencies at the sub-154 

system level in water systems, which were composed of a plant, transmission pipelines, storage 155 

stations, and distribution lines. Wang et al. (2012) developed a network-based model for representing 156 

and analysing topological interdependencies between power and water systems. Based on these, Zhang 157 

and Peeta (2011) developed a multilayer infrastructure network framework to model infrastructure 158 

interdependencies, where individual infrastructure systems were represented as network layers and 159 

system interdependencies were represented as links within and across network layers. Using this 160 

framework, Holden et al. (2013) and Goldbeck et al. (2019) proposed a network flow model for 161 

interdependent infrastructures, which consisted of a set of directed edges representing 162 

interdependencies and vertices indicating general multi-functional infrastructure systems or sub-163 

systems. Eusgeld et al. (2011) adopted a “system-of-systems” architecture to describe the 164 
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interdependencies between the supervisory control and data acquisition (SCADA) and the system 165 

under control (SuC) including the electric power supply system and the gas supply system. However, 166 

the granularity of these network-based models was not suitable to describe system interdependencies 167 

at an asset level, nor sufficiently efficient to perform functional analysis (Eusgeld et al., 2011; 168 

Heracleous et al., 2017). 169 

Some software has also been developed and applied to the identification and visualisation of system 170 

interdependencies at the asset level, such as Solibri, BIM 360 and Navisworks, which is convenient 171 

for analysing spatial interdependencies through clash detection and is becoming popular among 172 

designers due to the straightforward 3D visualisation. However, they are not capable of the holistic 173 

“what-if” analysis of design changes (Zhang and Peeta, 2011). The matrix structure has been further 174 

employed by Mendonça and Wallace (2006) and Saoud et al. (2017) to create “what-if” scenarios for 175 

interdependency analysis, raising new opportunities to improve the performance of the software by 176 

combining it with the matrix structure. 177 

2.2 Design change propagation via system interdependencies 178 

Change is common in project delivery processes, with design changes arising to improve the 179 

performance of projects or to address newly emerged requirements (Eckert et al., 2004). Yet it is costly, 180 

with changes and rework activities having a significant impact on the project delivery schedule, cost 181 

and quality (Ma et al., 2017). It is, thus, necessary to manage design changes properly. The system 182 

interdependencies in complex engineering systems have a major impact on design change management, 183 

where changes to one part of such systems may induce a change to another part via system 184 

interdependencies. The greater the interdependencies between parts, the larger the chance that a change 185 

to one part spreads to others. A change, thus, rarely occurs alone, and multiple changes can have 186 

interacting effects on other elements of the system (Eckert et al., 2004). Understanding how and why 187 

changes propagate during the design process is critical for the design change management of complex 188 

engineering systems (Giffin et al., 2009; Pasqual and de Weck, 2012). 189 

In this research, the design change propagation is defined as a process “by which a change to one part 190 

or element of an existing system or product configuration or design results in one or more additional 191 

changes to the system, when those changes would not have otherwise been required” (Giffin et al., 192 

2009). Change propagation occurs due to the interdependencies between the sub-systems or assets of 193 

complex engineering systems (Pasqual and de Weck, 2012). Eckert et al. (2004) distinguished between 194 

two types of design change with change propagation behaviour taken into account, namely, initiated 195 

change and emergent change. The initiated change usually arises from new requirements and needs, 196 

while the emergent change is unintended and occurs when some aspects of the system design require 197 
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changing because of errors or undesirable emergent system properties, often due to an earlier initiated 198 

change. Based on that, the authors further provided the basic framework for classifying change 199 

propagation effects within a certain time frame, including ripple, blossom and avalanche, where the 200 

former two are predictable and can be contained within the expected duration while the last one is 201 

unpredictable and can become completely out of control (Eckert et al., 2004; Li et al., 2020). 202 

To mitigate small changes propagating and becoming an undesirable avalanche of changes, multiple 203 

methods of predicting the design change propagation risk have been developed, which assess the risk 204 

in terms of propagation probability and the impact of change for each component. For instance, Isaac 205 

and Navon (2013) developed a graph-based model to detect the impact of a proposed design change, 206 

and they also adopted a clustering algorithm to identify directly affected components and a path-search 207 

algorithm to identify the indirect impact on the project. Lee and Hong (2017) developed a Bayesian 208 

approach to change propagation analysis. Lee et al. (2010) used the analytic network process (ANP) 209 

to measure the relative importance of parts and modules in a modular product in terms of design change 210 

impacts and propagation. Kocar and Akgunduz (2010) employed sequential pattern mining techniques 211 

to process captured engineering change history for a virtual engineering change management solution. 212 

However, these approaches cannot accommodate feedback and iterations that are commonly extant in 213 

the design of complex engineering systems. Recent studies pay more attention to network-based 214 

methods because complex engineering systems are more readily modelled as networks (Pasqual and 215 

de Weck, 2012; Li et al., 2020). For instance, Fu et al. (2012) established a network-based model to 216 

predict the risk of change propagation and thereby optimise module organisation. Li et al. (2020) 217 

proposed multilayer networks with a product layer and an organisation layer to reveal the law of design 218 

change risk propagation and mitigate the disruptive design change risk. The network-based methods 219 

can effectively represent and analyse the interdependencies in and between different elements in 220 

complex engineering systems, which have been thus applied to this research to predict and analyse the 221 

design change propagation risk. 222 

2.3 A design structure matrix for design change propagation 223 

The DSM has been the most widely adopted network-based method and provides a simple, compact, 224 

and visual representation of complex engineering systems that is effective in addressing decomposition 225 

and integration problems, and managing iterative tasks (e.g. design process). A DSM is a square matrix 226 

(𝑁2) with identical row and column labels, where an off-diagonal mark (‘cross’ in Figure 1) signifies 227 

the dependency of one element on another. Reading across a row indicates input sources while reading 228 

down a column reveals sinking outputs. In Figure 1, element B provides something to or is related to 229 

element E, and it depends on something from or relates to element A (Browning, 2001). 230 



9 
 

 231 

Figure 1. Related elements and the representation of interdependencies in DSM 232 

There are four main categories of DSM in applications (Browning, 1999, 2001). These are (1) 233 

Component-based or an architecture DSM, which is used for modelling system architectures based on 234 

components and/or sub-systems and their relationships; (2) Team-based or organisation DSM, which 235 

is used for modelling organisation structures based on people and/or groups and their interactions; (3) 236 

Activity-based or schedule DSM, which is used for modelling processes and activity networks based 237 

on activities and their information flow and other dependencies; and (4) Parameter-based or low-level 238 

schedule DSM: which is used for modelling low-level relationships between design decisions and 239 

parameters, systems of equations, subroutine parameter exchanges etc. (Table 3). 240 

The use of DSM in analysing and managing project designs has been increasing, especially in the 241 

design change management of complex engineering systems, where the development of such DSM is 242 

based on either knowledge-driven methods, data-driven methods, or digitally-driven methods (Table 243 

3). 244 

The majority of DSM-related studies are based the knowledge-driven methods, which leveraged expert 245 

opinions from design documents and interviews when identifying the system elements and 246 

interdependencies. For example, Clarkson et al. (2004) developed the CPM-based DSM which 247 

estimated the combined risk of change propagation by quantifying both the likelihood and impact of 248 

design changes by interviewing designers. Li et al. (2020) mapped the complex product development 249 

projects into multilayer DSMs with product layers and organisation layers based on multilayer network 250 

theory and built the model of design change risk propagation based on DSM and load-capacity model. 251 

Although the knowledge-driven methods are flexible to generate DSMs for different purposes, they 252 

are labour intensive and time-consuming when dealing with a large-scale DSM. For instance, it took 253 

five months to construct the 4622 NASA pathfinder DSM (Brady, 2002). 254 

Data-driven methods made use of historical design record to identify co-changing relationships and 255 

probability. For example, Giffin et al. (2009) used data mining to process 41,500 change requests for 256 
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constructing a change network. Similarly, Gopsill et al. (2016) developed an automatic generation 257 

method for DSM by monitoring the design changes in the digital models representing the product. 258 

These methods are efficient in generating DSMs from large datasets, but they are lacking in a 259 

systematic view of system elements and interdependencies. 260 

Digitally-driven methods have been proposed recently to make full use of digital information (e.g. 261 

BIM and IFC files) from complex engineering systems. Jacob and Varghese (2011) defined a new IFC 262 

class ‘IfcDSM’ and proposed to generate a DSM using object parameters and relationships from IFC 263 

model files. They further proposed a DSM-based framework to integrate the information from the 264 

product, design process, and design teams by using IFC files and manually pre-defined rules (Jacob 265 

and Varghese, 2012, 2018). Saoud et al. (2017) integrated a parameter-based DSM with BIM to predict 266 

the change propagation of design parameters. These pioneering works are time-saving and can clarify 267 

system elements and interdependencies, but they only focused on design sequences or specific spatial 268 

and analytical interdependencies, lacking a comprehensive understanding of such elements and 269 

interdependencies at different levels. 270 

These DSM-based methods are inefficient to handle a large number of complex elements and 271 

interdependencies for increasingly integrated and expanded complex engineering systems. There is a 272 

need to develop a new DSM-based method that can both automatically generate a DSM 273 

comprehensively and systematically and conveniently analyse design change propagation risk for 274 

complex engineering systems. 275 

Table 3. Example of DSM in design change management of complex engineering systems 276 

DSM Types References Elements of DSM Interdependencies of DSM Data Collection 

Component-based Brady, 2002 Technologies Technology interface Knowledge-

driven 

Clarkson et al., 2004 Product sub-

systems 

Design change propagation 

risk 

Knowledge-

driven 

Senthilkumar and 

Varghese, 2009 

Drawings Design issues of drawings Knowledge-

driven 

Giffin et al., 2009 Design areas Design change propagation Data-driven 

Fu et al., 2012 Product 

architectural 

components 

Design change propagation 

risk 

Knowledge-

driven 

Jacob and Varghese, 

2012 

Building 

components 

Spatial dependencies Digitally-driven 

Colombo et al., 2015 Product 

architectural 

components 

Component interfaces Data-driven 

Gopsill et al., 2016 Digital models (e.g. 

CAD, CFD, FEA1) 

Component dependencies 

across models 

Data-driven 

Li et al., 2020 Product 

architectural 

components 

Inter-component interfaces Knowledge-

driven 

Team-based Senthilkumar and Design teams Design interfaces between Knowledge-
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Varghese, 2009 teams driven 

Li et al., 2020 Design teams Inter-team iterations Knowledge-

driven 

Activity-based Austin et al., 2000 Design activities Design information 

dependencies 

Knowledge-

driven 

Jacob and Varghese, 

2012 

Design activities Design sequence Digitally-driven 

Prasad and Jacob, 2018 Design activities Design information 

dependencies 

Knowledge-

driven 

Parameter-based Pektaş and Pultar, 2006 Design parameters 

and requirements 

Design information flows Knowledge-

driven 

Pektas, 2010 Design parameters Design information flows Knowledge-

driven 

Jacob and Varghese, 

2011 

Design parameters Spatial dependencies Digitally-driven 

Saoud et al., 2017 Design parameters 

(geometry, position, 

specification) 

Spatial and analytical 

dependencies (in, inter, self, 

join, host, s.host, s.sys2) 

Digitally-

driven/Knowled

ge-driven 

Hybrid Jacob and Varghese, 

2018 

Building 

components, work 

sets, design teams 

Spatial, temporal and 

organisational dependencies 

Digitally-

driven/Knowled

ge-driven 

Note: 1CAD: Computer-aided design; CFD: Computational fluid dynamics; FEA: Finite element analysis. 277 
2in: elements belong to; inter: intersection between; self: relation within the same item; join: elements are connected to 278 
each other; host: being the host element; s.host: two elements have the same host element; s.sys: elements are defined in 279 
one system. 280 

2.4 Digital twin and IFC for system interdependencies 281 

As the wave of digitalisation is already here, infrastructures are becoming increasingly cyber-282 

physically integrated, being rich sources of data from multidisciplinary models and systems for 283 

understanding complex interdependencies and design change propagation in complex engineering 284 

systems (Whyte et al., 2016). At the heart of digitalisation, the digital twin was first proposed by 285 

Michael Grieves in 2002 as the virtual representation of current physical products (Tchana et al., 2019). 286 

Then the digital twin in infrastructure was further clarified as: “realistic digital representations of 287 

physical things. They unlock value by enabling improved insights that support better decisions, leading 288 

to better outcomes in the physical world” (Bolton et al. 2018). While the shift from computer-aided 289 

design (CAD) to Building Information Modelling (BIM) involved the addition of semantic information 290 

of infrastructure assets as well as geometry, the shift to a digital twin requires the use of a broader 291 

range of sources of data, which may involve geometries, asset information and associated time series 292 

data on processes. Such data may be generated through the activities of professionals, in production 293 

and operation, and through a range of sensing devices (including photographs, laser scans, and 294 

embedded sensors). 295 

Currently, attention is being drawn to the use of flows of such digital information to identify specific 296 

system interdependencies of infrastructures for better decisions, outcomes and performance, which are 297 

mainly based on IFC. As a comprehensive international standard for information interoperability, IFC 298 
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is developed and managed by building SMART. It is a set of definitions describing the consistent data 299 

representation of building components for storing and exchanging building information over the whole 300 

life cycle (Zhang and Issa, 2013). The IFC entities represent not only geometric information (e.g., 301 

geometry representation and spatial topology) but also semantic properties, processes and relationships 302 

(e.g., materials, fabrication, and ontology), thereby endowing the IFC entities with intelligence. Based 303 

on the IFC schema, most current efforts have concentrated on developing semantic object-oriented 304 

information models for clarifying specific system interdependencies of assets. For instance, Dibley et 305 

al. (2012) captured the interdependencies of building and sensors by developing an ontology 306 

framework. Zhang and Issa (2013) modelled and extracted the logical interdependencies of building 307 

elements with a web ontology language (OWL) based on IFC specifications. Terkaj and Šojić (2015) 308 

also defined the interdependencies between non-abstract subtypes of IfcObject and IfcTypeObject 309 

using ifcOWL. However, these works are unable to interpret the geometric information including 310 

spatial objects and interdependencies that are implicitly or explicitly contained in the digital models. 311 

To fill this gap, Borrmann and Rank (2009) developed concepts and techniques for topological 312 

operators for spatial topological analysis based on an octree-based algorithm. They further developed 313 

a boundary representation based method for processing spatial topologies (Daum and Borrmann, 2014). 314 

These efforts are beneficial in identifying and extracting specific system interdependencies, but they 315 

cannot support the development of DSM with complex and multiple system interdependencies for 316 

design change management of infrastructures. A new digital-twin-driven method is, thus, needed to be 317 

developed for automatic DSM generation and analysis using the IFC schema, wherein both the 318 

geometry information and the objectified relationships can be used for both spatial and non-spatial 319 

interdependencies’ identification of infrastructure assets. 320 

3. Research Methodology 321 

This research developed a new digital-twin-driven method for understanding design change 322 

propagation in complex engineering systems at the asset level by integrating IFC and DSM. The 323 

innovative digital-twin-driven DSM and associated design change propagation prediction method will 324 

be developed and validated based on three interconnected steps, namely, (1) the development of DSM 325 

at the asset level, (2) design change propagation based on DSM and fuzzy linguistics, and (3) a case 326 

study for validation (Figure 2). 327 
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 328 

Figure 2. Research structure of design change propagation using DSM 329 

The critical interdependencies of DSM at the asset level have first been proposed and defined 330 

according to the IFC schema for design change management of complex engineering systems. In total, 331 

three types of interdependency have been formally defined. The 9-Intersection Model (9-IM) based on 332 

spatial algebra was used in this research to formally define the spatial topological interdependencies 333 

contained in the digital twin model, which is useful when defining spatial topological 334 

interdependencies in a BIM environment, including cases of solid-to-solid relationships (Borrmann 335 

and Rank, 2009; Daum and Borrmann, 2014). The IfcRelationship entity and its subtypes were also 336 

adopted in this research to handle non-spatial interdependencies between assets, which were the 337 

abstract generalisation of all objectified relationships in IFC and can be sufficient for defining most 338 

semantic interdependencies in practice (buildingSMART, 2019). 339 

These three types of system interdependency at the asset level were further examined through focus 340 

group meetings and a workshop. The monthly focus group meetings were held between the research 341 

team and key stakeholders from the industry partner (i.e. the infrastructure mega-project) from 342 

December 2018 to June 2019 at Imperial College London. Each meeting lasted for around 1 hour and 343 

focused on defining, identifying and qualifying the critical interdependencies emerging in complex 344 

engineering systems. One workshop with the wider community involved input from academia and 345 

project managers and data scientists from the major infrastructure project and was held on 2nd July 346 
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2019 at Imperial College London. It lasted for around four hours and mainly focused on evaluating, 347 

modifying and verifying the findings. 348 

Based on the developed digital-twin-driven DSM, the IGTA-Plus with suppressing multi-cluster 349 

allocation (SMA) was then used to break up the large-scale DSMs into smaller sub-DSMs, i.e. modules 350 

(Borjesson and Hölttä-Otto, 2012). The IGTA-Plus with SMA improvement was adopted in this 351 

research due to its sound extension to IGTA and widely validated usefulness in the past decade 352 

(Thebeau, 2001; Borjesson and Hölttä-Otto, 2012; Borjesson and Sellgren, 2013). This cluster analysis 353 

was concerned with the grouping of elements into homogeneous modules based on their 354 

interdependencies, which will maximise interactions within the modules while minimising the 355 

interactions between modules (Michelena and Papalambros, 1995). Designers can, thus, focus only on 356 

corresponding modules and changes within modules, simplifying the design architecture significantly 357 

and improving the efficiency of computational procedures. 358 

A novel hybrid approach has been further developed to predict design change propagation within 359 

modules of complex engineering systems by integrating fuzzy linguistics, CPM and the load-capacity 360 

model (Clarkson et al., 2004; Chen and Pan, 2016; Li et al., 2020). The risk-capacity model is one of 361 

the most popular models to deal with the risk of change propagation in complex project networks, 362 

which contains two elements: risk load and risk resisting capacity (Li et al., 2020). When risk loads of 363 

elements surpass their capacities, these elements will trigger the potential change in neighbouring 364 

elements. However, such a model only focuses on the adjacent elements for the direct risk of change 365 

propagation while ignoring the indirect risk. In this research, the CPM (Clarkson et al., 2004) was thus 366 

integrated into the load-capacity model for calculating the combined risk of change propagation from 367 

both direct and indirect elements. Fuzzy linguistics (Chen and Pan, 2016) was also adopted to deal 368 

with uncertainty and minimise bias when collecting subjective data for qualifying the design change 369 

propagation risks in focus group meetings. This novel hybrid approach first computed the risk load of 370 

design change propagation for each element based on CPM, where the fuzzy linguistic scales were 371 

used to estimate the change propagation probability (𝑝𝑖←𝑗) and change impact (𝑙𝑖←𝑗). It then identified 372 

the critical design change paths in DSM based on the load-capacity model. The results were finally 373 

visualised in a digital-twin-driven DSM for better understanding (as shown in Figure 2). 374 

A tunnel section of a major infrastructure project in London was selected as a case study to validate 375 

this developed approach for design change propagation using digital-twin-driven DSM (Figure 2). A 376 

tunnel section of the infrastructure mega-project was chosen with the following considerations in mind: 377 

(1) the project is representative by its complexity, importance and size. It involves a major ongoing 378 

intervention in London, developing an infrastructure that crosses or impinges on a range of existing 379 
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infrastructures; (2) there has been intensive use of digital modelling in this project, with operational 380 

models driving design decisions, as well as an emergent set of increasingly sophisticated modelling 381 

practices developing over time (Whyte et al., 2019); and (3) the tunnel section is a sub-system level 382 

model where the volume of data is appropriate to conduct analyses at the asset level. The digital twin 383 

model and drawings of the tunnel section were collected from the project management team, and the 384 

parameters related to design change parameters were collected from experts during focus group 385 

meetings and examined at the workshop. These parameters included (1) change propagation 386 

probability (𝑝𝑖←𝑗), (2) change impact (𝑙𝑖←𝑗), and (3) change resisting capacity (𝐶𝑖). 387 

4. Development and Modularity of Digital-twin-driven DSM 388 

Based on the IFC files converted from digital models, the geometric and semantic information can be 389 

extracted for defining and identifying the elements and system interdependencies, which can finally 390 

generate the required DSMs at the asset level. 391 

The elements have been defined as the assets of infrastructures in this research, which can be directly 392 

identified through mining the IFC files or using BIM Views engine in BIMserver. For example, the 393 

assets ‘Civil Concrete: C-G215-M Foundations Piles’ with different globally unique identifiers can be 394 

identified directly in the definition of IfcBuildingElementProxy (Figure 3). 395 

 396 

Figure 3. Example of identifying DSM elements in IFC file 397 

The system interdependencies are classified based on the work of Rinaldi et al. (2001), where three 398 

types of interdependency have been defined, including geospatial, physical and logical 399 

interdependencies (Table 4). The cyber interdependencies are ignored here because the behaviours of 400 

information exchange are beyond the scope of this research, which focuses instead on the design of 401 

infrastructures from the perspective of civil engineering. 402 

Table 4. Definitions of interdependencies for digital-twin-driven DSM at the asset level 403 

Interdependency 

types 

Sub-types Definitions Demonstrations in digital 

twins 

References 

Geospatial The physical adjacency or 

topological relationship 

between assets. 

Disjoint, Inside, Equal, 

Touch, Contain, Overlap, 

Cover, CoveredBy 

Borrmann and Rank, 

2009; buildingSMART, 

2019 

Physical An objectified relationship 

between a material 

definition and elements or 

element types to which this 

material definition applies 

IfcRelAssociatesMaterial Rinaldi et al., 2001; 

Borrmann et al., 2015; 

buildingSMART, 2019; 

Goldbeck et al., 2019 
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Logical Grouping The state of each asset 

depends on the state of the 

other via a functional 

mechanism, or that is 

neither a physical nor a 

geospatial connection. 

IfcRelAssignsToGroup1 Rinaldi et al., 2001; 

buildingSMART, 2019; 

Goldbeck et al., 2019 

Resource 

sharing 

IfcRelAssignsToResource2 

Note: 1An objectified relationship assigning object definitions (IfcObject) to a group (IfcGroup). 404 
2An objectified relationship assigning objects (IfcObject), acting as a resource usage or consumption, to a resource 405 
(IfcResource). 406 

Geospatial interdependencies occur when an environmental event can create state changes in entities, 407 

which is usually identified as physical adjacency or a topological relationship between assets. The 9-408 

IM has been adopted in this research to define the geospatial interdependencies. The 9-IM calculus is 409 

extended from 4-IM and based on the mathematical theories of algebraic topology and set topology 410 

(Egenhofer and Franzosa, 1991). The geospatial interdependencies can, thus, be defined by the 411 

intersection of the interior, exterior and boundary of two operands, where an intersection can yield an 412 

empty ∅ or a non-empty set ¬∅ in a 3 × 3 matrix to represent eight solid-solid relations in a digital 413 

twin environment, as shown in eq. (1) (Daum and Borrmann, 2014): 414 

𝐼 = (
𝐴° ∩ 𝐵° 𝐴° ∩ 𝜕𝐵 𝐴° ∩ 𝐵−

𝜕𝐴 ∩ 𝐵° 𝜕𝐴 ∩ 𝜕𝐵 𝜕𝐴 ∩ 𝐵−

𝐴− ∩ 𝐵° 𝐴− ∩ 𝜕𝐵 𝐴− ∩ 𝐵−

)        (1) 415 

where 𝐴° and 𝐵° are the interiors; 𝜕𝐴 and 𝜕𝐵 are the boundaries; 𝐴− and 𝐵− are the exteriors 416 

of the solids 𝐴 and 𝐵 respectively. These eight geospatial interdependencies include Disjoint, Inside, 417 

Equal, Touching, Containing, Overlapping, Covering, and CoveredBy (Table 5). 418 

Table 5. Definitions of the geospatial interdependencies by the 9-IM 419 

𝐴° ∩ 𝐵° 𝐴° ∩ 𝜕𝐵 𝐴° ∩ 𝐵− 𝜕𝐴 ∩ 𝐵° 𝜕𝐴 ∩ 𝜕𝐵 𝜕𝐴 ∩ 𝐵− 𝐴− ∩ 𝐵° 𝐴− ∩ 𝜕𝐵 𝐴− ∩ 𝐵−  

∅ ∅ ¬∅ ∅ ∅ ¬∅ ¬∅ ¬∅ ¬∅ Disjoint 

¬∅ ¬∅ ¬∅ ∅ ∅ ¬∅ ∅ ∅ ¬∅ Inside/ 

Contain 

¬∅ ∅ ∅ ∅ ¬∅ ∅ ∅ ∅ ¬∅ Equal 

∅ ∅ ¬∅ ∅ ¬∅ ¬∅ ¬∅ ¬∅ ¬∅ Touch 

¬∅ ¬∅ ¬∅ ¬∅ ¬∅ ¬∅ ¬∅ ¬∅ ¬∅ Overlap 

¬∅ ¬∅ ¬∅ ∅ ¬∅ ¬∅ ∅ ∅ ¬∅ Cover/ 
CoveredBy 

The physical interdependencies represent the relationships between elements via material, which can 420 

be identified from IFC files using IfcRelAssociatesMaterial (Rinaldi et al., 2001). For example, the 421 

IfcRelAssociatesMaterial denotes that the physical interdependencies occur between elements 422 

#101355 and #101853 sharing the same type of material #1917 ‘C-L35-M_Structural metal’, where 423 

the material change of one element will affect usage of the material in the other element (Figure 4). 424 
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 425 

Figure 4. Example of physical interdependencies in IFC file 426 

The logical interdependencies represent the functional relationships, or not geospatial or physical 427 

connections (Rinaldi et al., 2001; Goldbeck et al., 2019). Two sub-types of logical interdependencies 428 

have been defined in this research, including grouping and resource sharing. The grouping 429 

interdependencies are essential in identifying the interactive elements (i.e. IfcObject) under a logical 430 

aggregation (i.e. IfcGroup), to provide specific functions, where the entity IfcRelAssignsToGroup can 431 

be adopted to extract such interdependencies. For example, the IfcRelAssignsToGroup assigns objects 432 

(i.e. IfcObject #575641, #575667 etc.) to a group (i.e. IfcGroup #1188039) for lighting, where the 433 

functional change in one object will affect the functions of other objects in this group. The resource 434 

sharing interdependencies define the logical relationships of objects (i.e. IfcObject) in resource (i.e. 435 

IfcResource) assignment, where the resources contain the costs, schedules, and other impacts from the 436 

use of a thing in a process except the materials. For example, the objects will interact logically if they 437 

share the budget, where the cost change in one object will affect the budget of other objects. 438 

 439 

Figure 5. Example of logical interdependencies (Grouping) in IFC file 440 

With the digital-twin-driven DSM developed, the IGTA-Plus is then adopted to decompose the large-441 

scale DSMs into modular configurations, which will cluster a square matrix by moving elements from 442 

one cluster to another while minimising the interactions between modules and maximising the 443 

interactions within the modules. 444 

To apply the IGTA-Plus, each element is initially and randomly placed in a module. Then the total 445 

coordination cost 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 of DSM is calculated out as the criteria to determine whether the DSM 446 

is clustered optimally by (Thebeau, 2001): 447 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 + 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡      (3) 448 

𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = ∑ (𝐷𝑆𝑀(𝑖, 𝑘) + 𝐷𝑆𝑀(𝑘, 𝑖)) × 𝐷𝑆𝑀𝑆𝑖𝑧𝑒𝑝𝑜𝑤𝑐𝑐
𝑖,𝑘∉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

   (4) 449 

𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 = ∑ (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒𝑗
𝑝𝑜𝑤𝑐𝑐 ∑ (𝐷𝑆𝑀(𝑖, 𝑘) + 𝐷𝑆𝑀(𝑘, 𝑖))𝑖,𝑘∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

)
𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑗=1   (5) 450 

where 𝑗  is the cluster (i.e. module) number; 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡  is the cost of interdependencies 451 

within a module; 𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡  is the cost of interdependencies outside any module; 452 
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𝐷𝑆𝑀(𝑖, 𝑘) and 𝐷𝑆𝑀(𝑘, 𝑖) are the interdependencies between the 𝑖th and 𝑗th elements; 𝐷𝑆𝑀𝑆𝑖𝑧𝑒 453 

is the number of elements in the DSM; 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒𝑗 is the number of elements within 𝑗th module; 454 

𝑝𝑜𝑤𝑐𝑐 is the penalty of the size of modules and 𝑝𝑜𝑤𝑐𝑐 = 1 in most cases (Thebeau, 2001). 455 

It will then select an element randomly from an existing module and determine whether there is another 456 

module with a better fit, where the degree of fit can be calculated out by the ClusterBid (Thebeau, 457 

2001): 458 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵𝑖𝑑𝑗 =
𝑖𝑛𝑜𝑢𝑡𝑗

𝑝𝑜𝑤𝑑𝑒𝑝

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒
𝑗
𝑝𝑜𝑤𝑏𝑖𝑑         (6) 459 

where 𝑖𝑛𝑜𝑢𝑡 is the sum of DSM interdependencies between the chosen element and every other in 460 

the 𝑗 th module; 𝑝𝑜𝑤𝑑𝑒𝑝  is the exponential to emphasise interdependencies and 𝑝𝑜𝑤𝑑𝑒𝑝 = 4  in 461 

most cases; 𝑝𝑜𝑤𝑏𝑖𝑑 is the exponential to penalise size of the 𝑗th module and 𝑝𝑜𝑤𝑏𝑖𝑑 = 1 in most 462 

cases. The selected element will be moved to the module with the highest value of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵𝑖𝑑𝑗. When 463 

two or more modules have the same value of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵𝑖𝑑𝑗, the SWA feature will assign the selected 464 

element randomly to one of these modules (Borjesson and Hölttä-Otto, 2012). Finally, 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 465 

will be updated accordingly and the procedure will be repeated for a new randomly selected element 466 

until the value of 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 cannot be made any lower. 467 

5. Design Change Propagation Prediction based on DSM 468 

Based on the developed DSM, the designers need only focus on the essential interdependencies within 469 

the clustered modules while ignoring the non-essential interdependencies outside the modules for high 470 

efficiency and acceptable accuracy in design change propagation prediction. 471 

The design change propagation can be traced and predicted properly based on change propagation 472 

probability and change impact (Fu et al., 2012; Li et al., 2020). The change propagation probability 473 

measures the likelihood of a change of one element directly causing a change of others, and the change 474 

impact measures how significantly the impacted elements will change. Both can be measured using 475 

the 5-point triangular fuzzy linguistic scales (Table 6). 476 

Table 6. Triangular fuzzy linguistic scales 477 

Linguistic scale for change 

propagation probability 

Linguistic scale for change impact Triangular fuzzy numbers 

Extremely unlikely (EU) Extremely insignificant (EI) (0, 0, 0.25) 

Unlikely (U) Insignificant (I) (0, 0.25, 0.50) 

Moderately likely (ML) Moderately significant (MS) (0.25, 0.50, 0.75) 

Likely (L) Significant (S) (0.50, 0.75, 1) 

Extremely likely (EL) Extremely significant (ES) (0.75, 1, 1) 

 478 
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The arithmetic of two triangular fuzzy numbers 𝐴̃1 = (𝑙1, 𝑚1, 𝑢1)  and 𝐴̃2 = (𝑙2, 𝑚2, 𝑢2)  are as 479 

follows (Chen and Pan, 2016): 480 

𝐴̃1 + 𝐴̃2 = (𝑙1 + 𝑙2, 𝑚1 + 𝑚2, 𝑢1 + 𝑢2)                      (7) 481 

𝐴̃1 − 𝐴̃2 = (𝑙1 − 𝑢2, 𝑚1 − 𝑚2, 𝑢1 − 𝑙2)                      (8) 482 

𝐴̃1 × 𝐴̃2 = (𝑙1 × 𝑙2, 𝑚1 × 𝑚2, 𝑢1 × 𝑢2) (𝑙𝑖 > 0, 𝑚𝑖 > 0, 𝑢𝑖 > 0)           (9) 483 

𝐴̃1/𝐴̃2 = (𝑙1/𝑢2, 𝑚1/𝑚2, 𝑢1/𝑙2) (𝑙𝑖 > 0, 𝑚𝑖 > 0, 𝑢𝑖 > 0)             (10) 484 

According to the load-capacity model, each element in DSM for complex engineering systems 485 

embodies the maximum capacity to resist design change. When the risk load of design change 486 

propagation is higher, the elements will need to be paid more attention to for design changes. 487 

Specifically, the design of the element must be changed when the risk load exceeds the capacity: 488 

𝑠𝑖←𝑗 = {
0, 𝑅𝑖←𝑗 ≤ 𝐶𝑖

1, 𝑅𝑖←𝑗 > 𝐶𝑖
                               (11) 489 

where 𝑠𝑖←𝑗 is the state of the 𝑖th element (𝑒𝑖) when impacted by the 𝑗th element (𝑒𝑗), 𝑅𝑖←𝑗 is the 490 

combined risk of change propagation from the 𝑗 th to 𝑖 th element, and 𝐶𝑖  is the change resisting 491 

capacity of 𝑒𝑖. 492 

The risk of change propagation can be defined as the product of change propagation probability (𝑝𝑖←𝑗) 493 

and change impact (𝑙𝑖←𝑗) using triangular fuzzy numbers (Fu et al., 2012; Li et al., 2020): 494 

𝑟̃𝑖←𝑗 = 𝑝𝑖←𝑗 × 𝑙𝑖←𝑗                                (12) 495 

Where 𝑟̃𝑖←𝑗 is the risk of change propagation from 𝑒𝑗 to 𝑒𝑖, and 𝑝𝑖←𝑗 and 𝑙𝑖←𝑗 are the probability 496 

and impact of change propagation from 𝑒𝑗 to 𝑒𝑗, respectively. 497 

A predictive model for design change propagation should include such risks from both direct and 498 

indirect elements (Clarkson et al., 2004; Fu et al., 2012). The combination of these risks can be 499 

estimated through ∩ (AND) and ∪ (OR) operators: 500 

𝑝𝑖←𝑗 ∩ 𝑝𝑟←𝑠 = 𝑝𝑖←𝑗 × 𝑝𝑟←𝑠                           (13) 501 

𝑝𝑖←𝑗 ∪ 𝑝𝑟←𝑠 = 𝑝𝑖←𝑗 + 𝑝𝑟←𝑠 − (𝑝𝑖←𝑗 × 𝑝𝑟←𝑠) = 𝐼 − (𝐼 − 𝑝𝑖←𝑗) × (𝐼 − 𝑝𝑟←𝑠)      (14) 502 

where the risks of elements in the same branch (e.g., A-C-D-B in Figure 6) are combined by an ‘AND’ 503 

operator, while the risks of elements in different branches (e.g., C-D-B and D-B in Figure 6) are 504 

combined by an ‘OR’ operator. The combined risk of change propagation 𝑅𝑖←𝑗 can be calculated as 505 
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the cumulative risk from both direct and indirect elements: 506 

𝑟̃𝑖←𝑗
(𝑚)

= (𝑝𝑖←𝑚−1 × 𝑝𝑚−1←𝑚−2 × ⋯ × 𝑝2←1 × 𝑝1←𝑗) × 𝑙𝑖←𝑚−1            (15) 507 

𝑅[𝑅̃𝑖←𝑗]
𝑁×𝑁

= [𝑅̃𝑖←𝑗]
𝑁×𝑁

= [∑ 𝑟̃𝑖←𝑗
(𝑚)𝑁

𝑚−1 ]
𝑁×𝑁

                  (16) 508 

where 𝑚  indicates that a design change from 𝑒𝑗  propagates to 𝑒𝑖  after 𝑚  transmission steps 509 

(Figure 6). When 𝑚 = 1, 𝑟̃𝑖←𝑗
(1)

 is the direct risk of change propagation. 𝑟̃𝑖←𝑗
(𝑚)

 is the indirect risk when 510 

𝑚 ≥ 1. A practical limit of three or four steps is suggested for saving time with required accuracy, and 511 

the routes returning to previously visited elements can be ignored for clarity and simplification 512 

(Clarkson et al., 2004). 513 

 514 

Figure 6. Design change propagation tree 515 

When the risk is propagated to the element, its capacity of resisting change will decide whether this 516 

element needs to be changed or not. The capacity of 𝑖th element (𝐶̃𝑖) shows the design flexibility and 517 

is related to the out-degree of the impacted element (𝐾𝑖(𝑜𝑢𝑡)) and the average impact of all probable 518 

change risks (𝐿̅̃𝑖) (Pasqual and de Weck, 2012; Zhang and Yang, 2013; Li et al., 2020): 519 

𝐶[𝐶̃𝑖]𝑁
= [𝐶̃𝑖]𝑁

= [𝛼𝐾𝑖(𝑜𝑢𝑡)
𝛽

𝐿̅̃𝑖]
𝑁

                       (17) 520 

𝐿̅̃𝑖 = ∑ 𝑅̃𝑖←𝑗
𝑀
𝑗=1 /𝑀                               (18) 521 

where 𝛼  and 𝛽  are adjustable parameters and 𝛼, 𝛽 > 0 . 𝐾𝑖(𝑜𝑢𝑡)  represents the out-degree of the 522 

element 𝑒𝑖, and 𝐿̅̃𝑖 shows the average impact when upstream elements propagate change risks to the 523 

element 𝑒𝑖. In this research, we fix 𝛼 = 0.1, 𝛽 = 1 (Li et al., 2020). 524 

After determining the risk load and resisting capacity, the triangular fuzzy numbers need to be de-525 

fuzzified into crisp numbers for comparison in eq. (11) and visualisation in DSM: 526 

𝑥𝑑𝑒𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑒𝑑 = [(𝑢𝑖 − 𝑙𝑖) + (𝑚𝑖 − 𝑙𝑖)]/3 + 𝑙𝑖                   (19) 527 

6. Case Study 528 

A tunnel section of a major infrastructure project in London was selected as a case study to validate 529 



21 
 

this developed approach for design change propagation using a digital-twin-driven DSM (Figure 7). 530 

This ongoing project is delivering a 25 km super sewer under the Thames that will prevent the tens of 531 

millions of tonnes of pollution from entering the River Thames every year. This complex and important 532 

infrastructure mega-project is being built across 24 construction sites/sections, spanning from Acton 533 

in West London to Beckton in the East and will be completed in 2025. 534 

With the digital model and drawings of this case project, the digital-twin-driven large-scale DSMs at 535 

the asset level can be established based on IFC files and further clustered into modules using IGTA-536 

Plus. This research focused on just one of these modules in this case study to demonstrate and validate 537 

the developed approach due to the limited data access and data confidentiality. However, it can be 538 

representative to fully examine the usefulness in practice through generating the digital-twin-driven 539 

DSM and predicting the design change propagation. 540 

Based on IFC files of the tunnel section, the digital-twin-driven DSMs have been developed and 541 

clustered, where the geospatial and physical interdependencies have been identified automatically 542 

while the logical interdependencies were not defined in these IFC files (Figure 7). The five elements 543 

have been clustered into one module in the geospatial DSM. 544 

With this module of DSM generated (Figure 8(1)), the change propagation probability (𝑝𝑖←𝑗 ) and 545 

change impact (𝑙𝑖←𝑗) were estimated using triangular fuzzy linguistic scales (Figure 8(2)), where such 546 

parameters were defined according to the literature review and authors’ project experience in this 547 

research for demonstration purpose only (Li et al., 2020). Then using eq. (12–16) and eq. (19), the 548 

combined risks of design change propagation were predicted and visualised in DSM (Figure 8(4)). 549 

Finally, by comparing the change-resisting capacity (eq. (17–18)) and combined risk, the design 550 

change propagation can be predicted and visualised (Figure 8(6)). For example, when the element 𝐴 551 

is changed, the combined risks of downstream elements 𝐵, 𝐶, 𝐷, 𝐸  exceed the change-resisting 552 

capacities and such elements must be changed accordingly. 553 

 554 
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 555 

Figure 7. Generating digital-twin-driven DSM for tunnel section at the asset level 556 

 557 

Figure 8. Design change propagation prediction based on a digital-twin-driven DSM 558 

7. Discussion 559 
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This research contributes to the literature on the design change propagation of complex engineering 560 

systems by developing a digital solution based on digital-twin-driven DSM. Compared to previous 561 

methods, this developed approach can (1) comprehensively clarify the system interdependencies of 562 

infrastructures at the asset level; (2) generate and modularise the DSM in a more convenient way 563 

through digital information and clustering analysis; and (3) provide a more reliable prediction of design 564 

change propagation. 565 

First, this research has extended the definitions of system interdependencies to the asset level of 566 

infrastructures. Three types of system interdependency have been formally defined for infrastructures 567 

at the asset level, including geospatial, physical and logical interdependencies (Table 4). Unlike 568 

previous works (e.g. Jacob and Varghese, 2011, 2012; Saoud et al., 2017) which focused on limited 569 

interdependencies (e.g. design sequence, spatial and analytical interdependencies), this approach 570 

provided a more comprehensive insight into the complexity of infrastructures by defining three types 571 

of system interdependency at the asset level, including geospatial, physical, and logical 572 

interdependencies. These formally defined interdependencies can cover most interactions between 573 

infrastructure assets. 574 

It further identified the demonstrations of these defined interdependencies in digital twins, where the 575 

9-IM based on spatial algebra has been adopted to define eight geospatial interdependencies and the 576 

entity IfcRelationship and its subtypes, IfcRelAssociatesMaterial, IfcRelAssignsToGroup and 577 

IfcRelAssignsToResource, which were adopted to handle physical and logical interdependencies, 578 

respectively (Table 4). Based on these definitions and digital information, the DSMs at the asset level 579 

have been developed automatically and conveniently for infrastructures by mining the IFC files or 580 

using the BIM Views engine in the BIMserver. This digitally-driven method of generating DSMs can 581 

be more time-saving and efficient than previous knowledge-driven methods (e.g. Clarkson et al., 2004; 582 

Li et al., 2020) when dealing with complex engineering systems with thousands of elements. The 583 

generated DSMs are usually large-scale due to the complexity of infrastructures. The clustering 584 

analysis has been further conducted to modularise large-scale DSMs using IGTA-Plus, which is helpful 585 

for designers to focus on design changes and estimate the strengths of interdependencies (i.e. change 586 

propagation probability and impact) within decomposed small-scale modules. 587 

Finally, the newly developed change propagation prediction method improved the robustness of 588 

traditional CPM by integrating CPM with a load-capacity model. This method considered both the 589 

combined risk load and resisting capacity to judge whether the design changes can be propagated, 590 

which is more reliable than the CPM propagating the changes all the time (Clarkson et al., 2004; Fu et 591 

al., 2012; Zhang and Yang et al., 2013; Li et al., 2020). The fuzzy linguistics has also been integrated 592 
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into the prediction method to deal with the uncertainty and reduce the bias when estimating the 593 

strengths of interdependencies, thereby improving the reliability of collected data and results. 594 

8. Conclusions 595 

Design change can introduce uncertainty and complexity into the design of complex engineering 596 

systems, where tracking and predicting such change propagation is significant for project delivery with 597 

high quality and data consistency. This research developed a new approach for predicting design 598 

change propagation of complex engineering systems based on the use of a digital twin and DSM. It 599 

first defined the digital-twin-driven DSM in terms of elements and interdependencies at the asset level, 600 

providing both a theoretical understanding and a practical approach for integrating the digital twin 601 

with a DSM. A clustering analysis based on IGTA-Plus was then conducted to decompose the large-602 

scale DSMs into modules for the convenience and efficiency of predicting design change propagation. 603 

Then the design change propagation prediction method has been developed through integrating CPM, 604 

load-capacity model and fuzzy linguistics. A case study of the tunnel section of an infrastructure mega-605 

project in London finally illustrated how the digital-twin-driven DSM at the asset level helped to 606 

predict design change propagation in infrastructures. 607 

This research makes a theoretical contribution to the body of knowledge by defining the system 608 

interdependencies of a digital-twin-driven DSM at the asset level. It provides the first step towards 609 

next-generation complex engineering systems by demonstrating the feasibility of using a digital twin 610 

to generate new insights on systems relationships and interdependencies. The developed approach also 611 

makes a practical contribution to generating a digital-twin-driven DSM and the attendant design 612 

change management of complex engineering systems. Using spatial algebra and IFC schema, large-613 

scale DSMs can be generated from IFC files automatically and conveniently. The integration of 614 

digitally-driven DSM and design change propagation analytics can further enable decision-makers to 615 

rapidly understand interdependencies and design change propagation within modules and across their 616 

boundaries in complex engineering systems. 617 

Some limitations also need to be addressed in future research. First, the interdependencies defined 618 

based on the IFC schema (Table 4) are limited. Second, the size of DSM generated in the case study is 619 

limited by data access and confidentiality. Third, although the size of clustered modules is small, it is 620 

still time-consuming for experts to estimate the interdependency strengths. Future research should be 621 

conducted to address these limitations through (1) generalising the definition of digital-twin-driven 622 

DSM not only based on IFC but considering the behaviour data from the digital twin; (2) validating 623 

and tailoring the developed approach by generating and analysing large-scale DSMs with rich data 624 
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from more case studies and feedback in the industry; and (3) integrating machine learning techniques 625 

to provide risk estimations based on past project experience. 626 
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