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Abstract 

High-temperature co-electrolysis of CO2/H2O through the solid oxide electrolysis cells (SOECs) 

is a promising method to generate renewable fuels and chemical feedstocks. Applying this 

technology in flexible scenario, especially when combined with variable renewable powers, 

requires an efficient optimisation strategy to ensure its safety and cost-effective in the long-

term operation. To this purpose, we present a hybrid simulation method for the accurate and 

fast optimisation of the co-electrolysis process in the SOECs. This method builds multi-physics 

models based on experimental data and extends the database to develop the deep neural 

network and genetic algorithm. In the case study, thermal-neutral condition (TNC) is set as the 

optimisation target in various operating conditions, where the SOEC generates no waste heat 

and needs no auxiliary heating equipment. Small peak-temperature-gradient (PTG) inside the 

SOEC is found at the TNC, which is vital to prevent thermal failure in the operation. For the 

cell operating with 1023 K and 1123 K of inlet gas temperatures, the smallest PTGs reach 0.09 

and 0.31 K mm-1 at 1.13 and 1.19 V, respectively. Finally, a 4-D map is presented to show the 

interactions among the applied voltage, required power density, inlet gas composition, and 

temperature under the TNC. The proposed method can be flexibly modified based on different 

optimisation targets for various applications in the energy sector. 

Keywords: Solid oxide electrolyser; Co-electrolysis; Renewable energy; Artificial intelligence; 

Genetic algorithm; Hybrid simulation. 
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1. Introduction 

For the long-term prosperity of human society, the idea of sustainable development is 

becoming a worldwide consensus 1. The global climate change caused by the growing CO2 

level in the atmosphere is one of the largest threats 2. To reduce the CO2 level, the value-added 

utilisation of CO2 is a key step, where positive feedback from the market will boost the 

development of CO2 capture and storage technologies 3. Solid oxide electrolysis cell (SOECs) 

is an advanced technology in reducing oxidants to generate fuels by consuming electricity 

power 4,5. When renewable powers are supplied to the SOEC, green fuels can be generated by 

electrolysing CO2 and/or H2O in the SOECs 6,7. These green fuels can be further utilised 

through the Fischer-Tropsch process to generate the valuable hydrocarbons 8,9. The reversible 

nature and the easily scalable characteristics of the SOEC allow it to work in the hybrid systems 

10,11, making the SOEC promising for a wide range of application. 

SOECs usually work at high temperatures (> 700 oC), which brings high reaction activity and 

enables the use of non-noble catalysts (such as nickel). The catalyst flexibility allows the 

appearance of many gas components (e.g. CO), which could be toxic to the low-temperature 

electrolysers 12. However, the sensitivity to temperature brings challenges in the heat 

management of SOECs 13. With the change of operating parameters, SOECs may adsorb heat 

(e.g. at small applied voltages) or generate heat (e.g. at large applied voltages). To maintain the 

operation of SOECs and avoid the generation of waste heat, the auxiliary heating equipment is 

usually needed 14. Thermal-neutral condition (TNC) is a special status of SOECs, where the 

heat needed for endothermic processes is equal to the heat generated in exothermic processes 

15. In this situation, the SOECs can maintain its operation without external heat supply and 

waste heat generation.  
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Operating conditions including the applied voltage, inlet gas flow rate, operating temperature 

and inner pressure have shown great effects to the performance of the SOEC 16,17. To keep the 

SOEC working at the TNC under different operating parameters, a fast and accurate online 

optimisation method is required. Currently, the widely used methods only fits part of the 

requirements for efficient optimisation of SOECs. One method is the widely developed 

numerical models using multi-physics simulation (MPS)18,19. The MPS considers the detailed 

effects of mass/momentum transport, electrochemical/chemical reactions, and heat transfer. It 

can accurately predict the performance of SOECs under various operating conditions. However, 

MPS usually costs many computing resources to find the optimised results, making it 

unsuitable for online optimisation purpose.  

On the other hand, the data-driven models (such as deep neural network, DNN) can cost-

effectively predict the results under the given input parameters 20,21. When combined with the 

genetic algorithm (GA), fast online optimisation can be further achieved 22. In recent years, 

combing machine learning with energy science, theoretical physical chemistry and material 

science becomes popular as machine learning offers a new sight into traditional scientific 

phenomenon 23. Deep learning treats a system with constant input and output to be black box 

and uses its own way to understand the map from input to output 24. With this unique feature, 

deep learning is a useful and powerful tool in analysing the electrochemical system 25. However, 

the accuracy of data-driven models is largely limited by the generation of high quality training 

dataset, making them too expensive for most application scenarios.  

To date, there is still lack of a reliable predictive toolbox for real time prediction and 

optimisation of complex multi-physics processes such as SOEC for CO2-to-fuel conversions. 

The optimisation of SOEC with the limitation conditions regarding the unmeasurable 

parameters (such as the heat generation in operation) is especially difficult. Herein, we propose 

a hybrid method that combines experimental data, MPS, DNN, and GA to overcome the 
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complexity and substantive costing in the fast and accurate optimisation of SOECs. For the 

first time, we demonstrate a DNN-informed status tracking method that allows SOEC to 

maintain thermal balance subject to changes in its operation conditions. The work, therefore, 

opens a new direction on fast optimisation of any numerically calculable parameters for SOEC 

operations. 

2. Model Development 

2.1 Schematic and framework  

Fig. 1 shows a schematic of an SOEC for H2O and CO2 co-electrolysis. In the SOEC, oxidants 

are reduced into fuels and O2- by accepting electrons from external power sources. O2- ions 

transport through the dense electrolyte to the cathode, where O2 is generated and electrons are 

released through the external circuit. 

 

Fig. 1 The schematic of an SOEC for H2O and CO2 co-electrolysis. 

 

The workflow of the hybrid method is presented in Fig. 2. First, the multi-physics model of the 

SOEC is developed and validated in accordance with the experimental results. A database is 
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then generated with sets of parameters (including the temperature, gas flow rate, gas 

composition at inlets and outlets, voltage, current density, and heat). The extended database is 

used to train the DNN algorithm, where the relationship among input/output parameters is 

mapped. Finally, the well-trained DNN algorithm is adopted as the fitness function in GA to 

predict the optimised parameters of SOECs.  

 

Fig. 2 The workflow of the hybrid method for the optimisation of SOECs. 

 

2.2 Model assumptions and boundary conditions for the MPS model 

For model simplification and easier calculation, below assumptions are adopted in the MPS 

model: 

(1) The electrochemical reactions occur at triple-phase boundaries, which distribute uniformly 

in the porous anode and cathode as the materials are well mixed in the electrode preparing. 
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(2) Ion/electron conducting phases and porous medium are continuous and evenly distributed 

as the ionic and electronic conducting materials are well mixed in the electrode preparing. 

(3) The gas at the cathode inlet contains only H2O and CO2, and all the gas species are ideal 

because the effects of intermolecular forces and molecules sizes are less significant at high 

operating temperature.  

(4) Heat loss caused by thermal radiation is neglected as the SOEC is considered to be an 

adiabatic system. 

Apart from these assumptions, below boundary conditions are also applied in the MPS model: 

(1) The values of voltage are specified at the outside surface of the anode and cathode. 

(2) The values of flow rate, composition, and temperature of the gas are specified at the 

chamber inlets of anode and cathode. 

(3) Free flow condition is specified at the chamber outlets at the anode and cathode. 

(4) Zero flux and thermal insulation are specified at the ends of electrodes and the outside 

surface of the cell. 

2.3 Development of the MPS model for SOEC 

The experimental data of a SOEC presented by Li et al.26 is adopted for the development and 

validation of the MPS model. In their work, the co-electrolysis of CO2 and H2O is successfully 

conducted using the cell with commercially available materials, Ni-YSZ, Ni-ScSZ and LSM-

ScSZ as the cathode (680 um in thickness), electrolyte (15 um in thickness) and anode (20 um 

in thickness), respectively. They also studied the cell performance at various operating 

conditions, making the work suitable for model development and validation. To study the 

temperature distribution effects, the cell structure is extended to a tubular cell with a length of 
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70 mm in the subsequent parametric studies. Processes including heat transfer, chemical 

reaction, electrochemical reaction, and mass/momentum transport are combined to describe the 

complex phenomena in the SOEC. The governing equations are listed in Table 1, for which the 

detailed description can be found in our previous works 27,28. The model is solved in a 

commercial nonlinear finite element solver, COMSOL Multiphysics.  

2.3.1 Electrochemistry 

In the fuel electrode (cathode), the mixture of H2O and CO2 is introduced. Driven by applied 

voltages, H2O and CO2 are reduced as given from Eqs. (1)-(2). 

H2O + 2e− = H2 + O2−  (1) 

CO2 + 2e− = CO + O2− (2) 

In the air electrode (anode), the O2- ions release electrons and form O2 as given in Eq. (3). 

O2− =  0.5O2 + 2e−  (3) 

Along with the internal travel of O2- from cathode to anode, the electrons travel from anode to 

cathode through external circuit. To close the cycle, a certain voltage (V) is applied as shown 

in Eq. (4). 

V = Eeq + ηact + ηohmic  (4) 

Here, Eeq , ηact  and ηohmic  are the equilibrium voltage, activation overpotential and ohmic 

overpotential. To reduce H2O and CO2, the equilibrium potentials (Eeq,H2O and  Eeq,CO2) are 

calculated by Nernst Equation as given in Eqs. (5)-(6), respectively. 

Eeq,H2O = Eeq,H2O
0 + RT

2F
ln �

PH2
L,C(PO2

L,A)1 2�

PH2O
L,C � (5) 

Eeq,CO2 = Eeq,CO2
0 + RT

2F
ln �

PCO
L,C(PO2

L,A)1 2�

PCO2
L,C � (6) 
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Here Eeq,H2O
0  and Eeq,CO2

0  are standard values of equilibrium potentials for the electrolysis of 

H2O and CO2, respectively. PL,C and PL,𝐴𝐴 are local partial pressures at the cathode and the 

anode, respectively. As the local partial pressure is adopted for calculation, the so-called 

concentration overpotential will not be considered. 

ηact reflects the energy barrier in the electrochemical reaction, which is calculated using the 

Butler-Volmer equation as shown in Eq. (7). 

i = i0 �exp �αnFηact
RT

� − exp �− (1−α)nFηact
RT

� � (7) 

The value of exchange current density (i0) for H2O electrolysis is set to be 2.2 times of the i0 

for CO2 electrolysis as suggested by the experiments 26. 

ηohmic  is calculated using Ohm’s law. The ionic resistance and electronic resistance are 

calculated separately as given in Eqs. (8)-(9). 

il = −σleff∇(∅l)  (8) 

is = −σseff∇(∅s)  (9) 

2.3.2 Chemical reaction 

Due to the existence of H2O, CO2, H2 and CO, the water gas shift reaction (WGSR) is very 

important in balancing the concentration of the inner gas compositions. Due to the huge 

difference in reaction rates with and without catalysts, the WGSR is considered on the area 

with nickel catalyst as given in Eq. (10). 

CO + H2O ↔ CO2 + H2  (10) 

2.3.3 Fluid flow 

The transport properties of the gases are adopted according to Young’s work 29. Free molecule 

diffusion and Knudsen diffusion are considered for the mass transport in gas channels and 

porous areas by using the dusty-gas model as shown in Eq. (11). 
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Ni
Dik
eff + ∑ yjNi−yiNj

Dij
eff

𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 = − 1

RT
�∇�yjP� + B0yjP

μDik
eff ∇P�   (11) 

The mass conservation in steady states is calculated using Eq. (12). 

∇ ∙ Nj = Sj  (12) 

Momentum transport is calculated using Navier–Stokes (N-S) equation as shown in Eq. (13). 

ρ ∂u
∂t

+ ρu∇u = −∇p + ∇[μ �∇u + (∇u)T) − 2
3
μ∇u� − εμu

k
   (13) 

2.3.4 Heat transfer  

Heat transfer process in steady state is calculated by heat balance equation as shown in Eq. 

(14). 

ρCpu ∙ ∇T + ∇ ∙ (−λeff∇T) = Q   (14) 

2.4 Development of deep learning (DL) algorithms 

2.4.1 Deep neural network 

DNN can capture the functional relationship between input-output pairs without presumptions 

30. Its computational topology consists of an input layer, multiple hidden layers, and an output 

layer. The layers have processing units, which receive multiple inputs with connection weights. 

In each layer, the inputs are transformed with an activation function (ReLU or linear) to 

generate the outputs. These outputs are then processed as inputs in the next layer 31. 

In this study, a back-propagation DNN (BP-DNN) is adopted with a structure of one input 

payer (four nodes), six hidden layers, and one output layer (three nodes). The input parameters 

are the applied voltage, the gas composition at the cathode inlet, the gas flow rate at the cathode 

inlet, and the temperature at the inlets. The outputs are the generated heat, current density, and 

gas composition at the cathode outlet. A 7211 × 7 dataset is split into a training set (80%) and 

a testing set (20%). 2000 epochs are set with a batch size of 32.  
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2.4.1.1 Pre-process of dataset 

Parameters normalization is firstly conducted because the inlet parameters have different orders 

of magnitude, ranging from 10-1 to 103. The normalization process is accomplished by scaling 

all data within a uniform range as shown in Eq. (15) 32.  

𝑥𝑥𝑖𝑖 = 0.8 � 𝑘𝑘𝑖𝑖−𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚−𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚

� + 0.1   (15) 

Here 𝑥𝑥𝑖𝑖, 𝑘𝑘𝑖𝑖, 𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 are the normalized, actual, the minimum and the maximum values of 

the data, respectively.   

2.4.1.2 Determination of network structure 

The least mean square error (MSE) and correlation coefficient (r) are chosen as the criteria to 

evaluate the performance of the DNN algorithm as shown in Eq. (16) and (17). 

MSE = 1
M
∑ (xi − xı�)2M
i=1    (16) 

r = Correl(xi, xı�) = Cov(xi,xı� )
σxiσxı�

   (17) 

Here M is the number of data, xı�  is the value of the data predicted by the DNN algorithm. σxi, 

σxı� , Cov(xi, xı�) are the variances and covariance of the two datasets generated by the MPS and 

DNN algorithms. 

2.4.2 Genetic algorithm 

GA is a popular evolutionary algorithm widely used in global optimisation problems. Starting 

from random strings (initial population), it generates offspring through three operators: 

selection, crossover, and mutation. Fitness function (the trained DNN algorithm) is adopted to 

evaluate the candidates, after which the qualified individuals are more likely to be chosen for 

reproduction. Such an iteration continues until the stop criteria are reached. 
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The population, generation, crossover rate, mutation frequency, and tournament size are set as 

100, 100, 0.8, 0.2 and 5, respectively. The optimisation criterion is the minimum heat 

generation/adsorption (< 10-7) as shown in Eq. (18). 

|Q| < 10−7 (J)   (18) 

3. Results and Discussion 

First, parametric studies are conducted using the validated MPS model. The key operating 

parameters such as the applied voltage, temperature, gas composition, and flow rate at the inlets 

are studied to investigate their effects on the SOEC performance, including the current/power 

density, fuel conversion rate, heat generation, and peak-temperature-gradient (PTG). The MPS 

results form a database to train a DNN algorithm, which is used in the GA for performance 

prediction and optimisation. In this work, the optimisation targets are the values of operating 

parameters at the TNC of the SOEC. The operating parameters of the below parametric studies 

are listed in Table 5 to 7.  

3.1 Model validation 

3.1.1 Validation of the multi-physics simulation  

The MPS model is validated by comparing the simulation results with experimental data at the 

same operating conditions (given in Table 2 to 4). The two sets of data show high consistence 

at the low operating voltages, while there are some relative large differences at high operating 

voltages. Overall, a small difference (correlation efficient, r = 0.994) is observed as shown in 

Fig. 3.  
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Fig. 3 Validation of the simulation results by comparing with the experimental data. 

3.1.2 Validation of the deep neural network  

10000 epochs are applied to train the DNN algorithm. While as shown in Fig. 4, it converges 

quickly after 10 epochs. The final correlation coefficient in the training set and testing set are 

0.999976 and 0.999259, respectively. The final least mean square error in the training set and 

testing set are 0.0000024 and 0.000133, respectively.  

 

Fig. 4 The change of correlation coefficient and least mean square error in training and 

testing sets with the growth of epochs. 
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The distributions of the relative error in the prediction of current density, H2 conversion rate 

and heat generation using DNN are presented in Fig. 5. Most of the predicted results show a 

small relative error, where 73% predicted current density, 50% predicted fuel generation rate 

and 54% predicted heat generation have relative errors less than 1%, 1%, and 3%, respectively.  

 

 

  

Fig. 5 The distribution of relative errors in predicting the current density, fuel generation rate 

and heat generation using DNN. 

 

3.2 Effects of fluid flow rate and composition 

Compared with a low flow rate (300 sccm), the high flow rate (600 sccm) allows a larger 

current density at high operating potentials, as shown in Fig 6a. In the 90% H2O case, the 

limiting current density at 300 sccm is about 1.6 A cm-2 at 1.34 V, while the current density at 
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600 sccm reaches 2.3 A cm-2. On the other hand, the low flow rate brings a much higher 

conversion rate, where the H2 generation rate reaches 96% in 300 sccm case at 1.34 V. For 

comparison, the H2 generation rate is 54% in 600 sccm case at 1.34 V as shown in Fig. 6b. 

All the studied cases show a negative heat generation at low voltages, as shown in Fig. 6c, 

because the heat consumed in the endothermic processes (entropy change in electrochemical 

reactions) is larger than the heat generated in exothermic processes (activation overpotential 

and ohmic overpotential). Compared with the high flow rate and H2O percentage case, a lower 

flow rate and H2O percentage results in a more negative heat generation, between which the 

gas composition show a larger effect. With the increase of applied voltage, the heat generation 

reaches 0 in all the cases. This thermal-neutral point (TNP) is very important because neither 

the extra heat supply from auxiliary equipment will be needed to maintain the operation of 

SOECs nor the waste heat will be generated that reduces the efficiency of SOECs. In addition, 

the smallest PTG point is very close to the TNP, as shown in Fig. 6d. For the cell operating 

with 10% and 90% H2O as the feedstock (CO2 as the rest component), the smallest PTGs reach 

0.21 and 0.17 K mm-1 at 1.41 and 1.11 V, respectively. As an even temperature distribution is 

crucial in reducing thermal stress and related thermal failure problems in the long-term 

operation of SOECs, the TNP brings additional benefits to the safe operation of SOECs. 
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Fig. 6 Comparison of the SOEC performance at different applied voltages. The selected 

operating conditions are the combinations of flow rate (300/600 sccm) and gas composition 

(10%/90% H2O) at the cathode inlet. (a) The voltage-current density relationship, (b) the 

voltage-H2 generation rate relationship, (c) the voltage-heat generation relationship, and (d) the 

voltage-PTG relationship. 

 

3.3 Effects of gas temperature at the inlet 

Compared with the low temperature (1023K), the high temperature (1123K) at cathode inlet 

significantly improves the current density, as shown in Fig. 7a. The H2 generation rate is highly 

correlated with the power density, indicates a smaller voltage is needed with the higher 

temperature at cathode inlet (Fig. 7b). Because of the improved electrochemical activity at the 
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high operating temperature, more heat is consumed in endothermic processes at low voltages, 

which causes a more negative heat generation (Fig. 7c). With the increasing of the applied 

voltage, increased heat generation is observed at high temperatures due to the significantly 

raised current density and exothermic overpotential process. Although the high temperature 

case shows a larger PTG in most applied voltages, as shown in Fig. 7d, the significant decline 

of the PTG is observed near the TNP. At 1.19 V, the smallest PTG in the high temperature case 

is only 0.31 K mm-1, even lower than that in the low temperature case (0.38 K mm-1). 

 

Fig. 7 Comparison of the SOEC performance at different inlet gas temperatures of 1023 and 

1123 K under different applied voltages. (a) The voltage-current density relationship, (b) the 

power density-voltage-H2 generation rate relationship, (c) the voltage-heat generation 

relationship, and (d) the voltage-PTG relationship. 
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3.4 Optimisation for thermal-neutral condition 

As discussed above, working at the TNC simplifies system structure (no auxiliary heating 

equipment), improves system efficiency (no waste heat), and ensures a safe operating condition 

(small PTG) that avoids the thermal failure. The parameters of the TNC are thus the 

optimisation targets in the SOEC operation. 

In this section, GA is adopted for performance prediction and optimisation based on the DNN. 

In GA, the optimisation target is the operating parameters including the fluid flow rate, 

composition, inlet temperature, voltage and current density at the TNC (i.e. |Q| < 10-7 J). 

Meanwhile, the flow rate is set to between 300 and 600 sccm; the gas temperature at inlets is 

sect to between 1023 and 1123K; the mole fraction of H2O at the cathode inlet is set between 

0.1 and 0.9 (where the rest gas is CO2). It needs to be pointed out that the GA with DNN 

algorithm incorporated significantly reduces the computational time. For GA, it takes about 0.6 

second to predict an optimised point, whereas, for MPS method, it takes more than 60 seconds 

to do only the calculation, let alone the tremendous time required for searching for the 

optimised operating condition.  

Fig. 8 shows the four-dimension map among power density, temperature, gas composition, and 

voltage in the TNC predicted by the GA. In the 3D Fig. 8(a), the x-axis, y-axis and z-axis are 

inlet H2O mole fraction, temperature, and power density, respectively. The 2D figures 8(b), 

8(c) and 8(d) are the x-y projection, x-z projection and y-z projection of Fig. 8(a), respectively. 

For the co-electrolysis of H2O and CO2, working at the high H2O mole fraction (low CO2 level) 

and low operating temperature indicates a low applied voltage and required power density. For 

instance, when the cathode inlet gas contains 90% H2O (10% CO2 as rest gas) with a 

temperature of 1023K, the TNC requires only 1.124 V as applied voltage and 0.258 W cm-2 as 

input power density. On the other hand, the high CO2 mole fraction (low H2O level) and high 

working temperature means the high applied voltage and required power density, where these 
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values at 90% CO2 and 1123 K condition are 1.527 V and 2.801 W cm-2, respectively. For 

comparison, the TNC at lowest-H2O-temperature case requires 1.38 V as applied voltage and 

0.721 W cm-2 as input power density, while the TNC at highest-H2O-temperature case requires 

1.23 V as applied voltage and 1.946 W cm-2 as input power density, both between the above 

two cases. Compared with the inlet H2O mole fraction, the operating temperature shows a 

much larger effect in decreasing the power density at TNC. There are selections among the fuel 

composition, production rate, and power consumption, where a high production rate and high 

CO percentage in the generated syngas usually requires a high voltage and power input. 

Therefore, a careful decision is still needed in the operation. 

 

Fig. 8 (a) The distribution of required power density and applied voltage at different gas 

compositions and temperatures of cathode inlet under the TNC, (b) the voltage-temperature-

gas composition relationship, (c) the voltage-power-gas composition relationship, and (d) the 

voltage-power-temperature relationship. 
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4. Conclusion 

To predict the optimised working parameters of SOECs at the thermal-neutral condition (TNC), 

a hybrid method is developed combing experiments, multi-physics simulation and deep 

learning algorithms.   

First, the multi-physics model is developed and validated based on the experimental data. The 

model is used to analyse the effects of different operating parameters on the performance of 

SOECs and generate an extended database for the training of the deep neural network. The 

thermal-neutral points are found to be significantly affected by the applied voltage (0.9~1.6 V), 

gas composition (H2O, CO2), and operating temperature (1023K vs. 1123K) at the SOEC inlet. 

The preliminary analysis shows a close relationship between the TNC and lowest peak-

temperature-gradient in the cell, indicating its importance to the long-term operation of SOECs. 

A 7211 × 7 database is generated using the validated multi-physics model for the training of 

the deep neural network. An effective neural network with a high correlation coefficient (> 

0.999) is obtained and applied in the subsequent genetic algorithm. Finally, a four-dimensional 

map among the gas composition (10~90%), temperature (1023~1123K), voltage (0.9~1.6 V), 

and power density (0~3 W cm-2) is successfully obtained under the TNC of the SOEC. As 

indicated by the map, the high CO2 percentage and high working temperature require a high 

applied voltage as well as a high power to achieve the TNC.  

The proposed method provides an alternative strategy for fast and accurate prediction and 

optimisation of SOECs. This method shows great potential and can be applied to other complex 

systems for a wide range of optimisation targets for energy decarbonisation applications. 

Although the working conditions in this preliminary work is relatively narrow, the operating 

parameters can be further expanded to a wider range in the future work and practical 

applications. 
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Data Availability 

The data produced by MPS for the training and testing of DNN algorithm is available at 

https://github.com/Ma-Jingbo/SOEC-AI-Haoran-Xu. 

Code Availability 

The Keras package is available from reference 33. The code for the DNN and GA are available 

at https://github.com/Ma-Jingbo/SOEC-AI-Haoran-Xu. 
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DL Deep learning  

DNN Deep neural network 

GA Genetic algorithm 

LSM  Lanthanum strontium manganite 

MPS Multi-physics simulation 

sccm  Standard cubic centime per minute 

ScSZ Scandium stabilized zirconium 

SOEC Solid oxide electrolysis cell 

TPB  Triple phase boundary 

WGSR Water gas shift reaction 

Roman  

B0 Permeability coefficient, m2 

cCO2  Mole concentration of carbon dioxide, mol·m-3 

cH2O  Mole concentration of water, mol·m-3 

Cp  Heat capacity at constant pressure 

Di
eff Effective diffusivity of species 𝑖𝑖, m2·s-1 

Dik
eff  Knudsen diffusion coefficient of 𝑖𝑖, m2·s-1 

Dim
eff  Molecular diffusion coefficient of 𝑖𝑖, m2·s-1 

Eact  Activation energy, J·mol-1 

Eeq,CO2  Equilibrium potential for electrochemical CO2 reduction, V 

Eeq,CO2
0   Standard equilibrium potential for electrochemical CO2 reduction, V 

Eeq  Equilibrium Nernst potential, V 

Eeq,H2O  Equilibrium potential for electrochemical H2O reduction, V 

Eeq,H2O
0   Standard equilibrium potential for electrochemical H2O reduction, V 
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F Faraday constant, 96485 C·mol-1 

i  Operating current density, A·m-2 

io Exchange current density, A·m-2 

n Number of electrons transferred per electrochemical reaction 

Ni  Flux of mass transport, kg·m-3·s-1 

p (partial) Pressure, Pa 

PCOL   Local CO partial pressures, Pa 

PCO2
L   Local CO2 partial pressures, Pa 

PH2
L   Local H2 partial pressures, Pa 

PH2O
L   Local H2O partial pressures, Pa 

PO2
L   Local O2 partial pressures, Pa 

R Gas constant, 8.314 J·mol-1·K-1 

RSMR  Steam methane reforming reaction 

RWGSR  Water gas shift reaction 

T Temperature, K 

TNC Thermal neutral condition 

TNP Thermal neutral point 

u Velocity field, m3·s-1 

V Volume fraction 

𝑥𝑥i   

yi  Mole fraction of component i 

Greek letters 

𝛼𝛼  Charge transfer coefficient 

𝜀𝜀  Porosity 



24 
 

𝜂𝜂𝑚𝑚𝑎𝑎𝑎𝑎  Activation overpotential loss, V 

𝜂𝜂𝑜𝑜ℎ𝑚𝑚𝑖𝑖𝑎𝑎  Ohmic overpotential loss, V 

𝜅𝜅  Permeability, m2 

λ Heat conductivity 

𝜇𝜇  Dynamic viscosity of fluid, Pa·s 

𝜌𝜌  Fluid density, kg·m-3 

σ Conductivity, S·m-1 

𝛾𝛾  Pre-exponential factor, A m-2 

τ  Tortuosity 

Subscripts  

an Anode 

ca Cathode 

CO Carbon monoxide 

CO2 Carbon dioxide 

el Electrolyte 

H2 Hydrogen 

l Ionic phase 

O2 Oxygen 

s Electronic phase 

Superscripts  

0 Parameter at equilibrium conditions 

eff Effective 

L Local 
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Table 1. Governing Equations. 

Electrochemical reaction model 

H2O + 2e− = H2 + O2−  Electrochemical reduction of H2O 

CO2 + 2e− = CO + O2−  Electrochemical reduction of CO2 

2O2− =  O2 + 4e−  Electrochemical evolution of O2 

H2O =  H2 + 0.5O2  Overall electrochemical reaction of 

H2O reduction 

CO2 =  CO + 0.5O2  Overall electrochemical reaction for 

CO2 reduction 

Eeq,H2O = Eeq,H2O
0 + RT

2F
ln �

PH2
L,C(PO2

L,A)
1

2�

PH2O
L,C �  

Equilibrium potential for 

electrochemical reduction of H2O 

Eeq,CO2 = Eeq,CO2
0 + RT

2F
ln �

PCO
L,C(PO2

L,A)
1

2�

PCO2
L,C �  

Equilibrium potential for 

electrochemical reduction of CO2 

Eeq,H2O
0 = 1.253 − 0.00024516T (V)  Standard potential for 

electrochemical reduction of H2O 

Eeq,CO2
0 = 1.46713 − 0.0004527T (V)  Standard potential for 

electrochemical reduction of CO2 

V = Eeq − ηact − ηohmic  Calculation of applied voltage 

i = i0 �exp �αnFηact
RT

� − exp �− (1−α)nFηact
RT

� �  Butler-Volmer equation 

il = −σleff∇(∅l)   Calculation of ionic resistance 

is = −σseff∇(∅s)  Calculation of electronic resistance 

Chemical reaction model 

CO + H2O ↔ CO2 + H2  Water gas shift reaction 

Mass/Momentum transport 

Ni
Dik
eff + ∑ yjNi−yiNj

Dij
eff

𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 = − 1

RT
�∇�yjP� +

B0yjP

μDik
eff ∇P�  

Extended Fick’s model 

∇ ∙ Nj = Sj  Mass conservation equation 

ρ ∂u
∂t

+ ρu∇u = −∇p + ∇[μ �∇u + (∇u)T) −

2
3
μ∇u� − εμu

k
  

Navier-Stokes equation with Darcy’s 

term 

Heat transfer model  
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ρCpu ∙ ∇T + ∇ ∙ (−λeff∇T) = Q  General heat balance equation 

λeff = (1 − ε)λs + ελg  Calculation of effective thermal 

conductivity 

 

Table 2. Material properties 34. 

Parameters Value / expression Unit 

Conductivity   

σScSZ  69,200 × e
−9681
T   S m-1 

σYSZ  33,400 × e
−10300

T   S m-1 

σNi  4.2 × 106 − 1,065.3T  S m-1 

σLSM  4.2 × 107exp (−1,150/T)    S m-1 

Porosity   

εa  0.36  

εc  0.36  

Tortuosity   

τa  3  

τc  3  

Triple Phase Boundary   

STPB  2.14 × 105  m-1 

Heat Conductivity   
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λa  9.6 W m−1 K−1 

λc  6.23 W m−1 K−1 

λel  2.7 W m−1 K−1 

Heat Capacity   

Cp,a  420 J kg−1 K−1 

Cp,c  390 J kg−1 K−1 

Cp,el  300 J kg−1 K−1 

Density   

ρa  6,570 kg m−3 

ρc  6,870 kg m−3 

ρel  2,000 kg m−3 

 

Table 3. Kinetics of reactions. 

Parameters Value or expression Unit 

Electrochemical Reaction    

i0 β ∙ exp (− Ea
RT

)  A m−2  

β   3.3 × 108 A m−2  

Ea  1.2 × 105  J mol-1 

αH2𝑂𝑂  0.65  
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αCO2  0.65  

Chemical Reaction   

RWGSR 35 ksf(pH2OpCO −
pH2pCO2

Kps
)  mol m-3 s-1 

ksf  0.0171exp (−103191
𝑅𝑅𝑅𝑅

)  mol m-3 Pa-2 s-1 

Kps  exp (−0.2935𝑍𝑍3 + 0.6351𝑍𝑍2 +

4.1788𝑍𝑍 + 0.3169)  

 

Z 1000
𝑅𝑅

− 1   

 

Table 4. Operating parameters for model validation. 

Parameter Value Unit 

Cathode gas flow rate  350 sccm 

Anode gas flow rate  350 sccm 

Cathode gas composition 28.6% CO2 + 28.6% H2O + 14.3% H2 + 

28.6% Ar 

 

Anode gas composition Air (O2, 21% + N2, 79%)  

Gas temperature at inlets 1123 K  

Applied voltage 0.9 – 1.4 V 

 

 

Table 5. Operating parameters for studying the effects of the gas flow rate and composition at 

the cathode inlet. 
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Parameter Value Unit 

Cathode gas flow rate  300 - 600 sccm 

Anode gas flow rate  400 sccm 

Cathode gas composition H2O (10% - 90%) + CO2 (rest)  

Anode gas composition Air (O2, 21% + N2, 79%)  

Gas temperature at inlets 1073 K  

Applied voltage 0.9 – 1.6  V 

 

 

Table 6. Operating parameters for studying the effects of the gas temperature of the inlets. 

Parameter Value Unit 

Cathode gas flow rate  400 sccm 

Anode gas flow rate  400 sccm 

Cathode gas composition H2O (50%) + CO2 (50%)  

Anode gas composition Air (O2, 21% + N2, 79%)  

Gas temperature at inlets 1023, 1123 K  

Applied voltage 0.9 – 1.6  V 

 

Table 7. Operating parameters for the optimisation of TNCs. 

Parameter Value Unit 

Anode gas flow rate  300 - 600 sccm 

Cathode gas flow rate  400 sccm 

Anode gas composition H2O (10% - 90%) + CO2 (rest)  

Cathode gas composition Air (O2, 21% + N2, 79%)  



35 
 

Gas temperature at inlets 1023 - 1123 K  

Applied voltage 0.9 – 1.6  V 
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Fig. 1 The schematic of an SOEC for H2O and CO2 co-electrolysis. 
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Fig. 2 The workflow of the hybrid method for the optimisation of SOECs. 
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Fig. 5 The distribution of relative errors in predicting the current density, fuel generation rate 

and heat generation using DNN. 

 



43 
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operating conditions are the combinations of flow rate (300/600 sccm) and gas composition 

(10%/90% H2O) at the cathode inlet. (a) The voltage-current density relationship, (b) the 

voltage-H2 generation rate relationship, (c) the voltage-heat generation relationship, and (d) the 

voltage-PTG relationship. 
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