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Supplementary Table 1. Software identified in literature survey, ranked according to number of citations.
	Rank
	Software name
	Number of citations
	Abbreviation
	Purpose
	Reference

	1
	viSNE
	294
	visualization tool for high-dimensional single-cell data based on the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm
	Visualisation of high-dimensional single-cell data via dimensionality reduction
	(1)

	2
	SPADE
	236
	Spanning-tree progression analysis of density-normalized events
	Visualisation of high-dimensional cytometry data by downsampling, clustering and a minimal spanning tree
	(2)

	3
	t-SNE
	194
	t-Distributed Stochastic Neighbor Embedding
	Dimensionality reduction for visualisation
	(3)

	4
	Phenograph
	156
	
	Model cellular phenotypes
	(4)

	5
	FLAME
	107
	Flow analysis with automated multivariate estimation
	Identify cell populations by multivariate mixture modelling
	(5)

	6
	Citrus
	87
	Cluster identification, characterization, and regression
	Identification of stratifying cellular subpopulations
	(6)

	7
	FlowSOM
	75
	Self-organizing map
	Clustering data into self-organizing maps and visualisation by minimal spanning trees
	(7)

	8
	DensVM
	70
	Density-based clustering aided by support vector machine
	Cell population identification and classification
	(8)

	8
	flowMeans
	70
	
	Cell population identification by k-Means based clustering
	(9)

	10
	ACCENSE
	66
	Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding
	Identification of cell subpopulations through t-SNE dimensionality reduction and density-based partitioning
	(10)

	10
	Wanderlust
	66
	
	Developmental trajectory detection
	(11)

	12
	FLOCK
	63
	FLOw Clustering without K
	Cell population identification by density-based clustering
	(12)

	13
	flowClust
	58
	
	Cell population identification by multivariate t-mixture modelling with Box-Cox transformed data
	(13)

	14
	flowMerge 
	53
	
	Cell population identification using flowClust and a cluster merging algorithm
	(14)

	15
	X-Shift
	50
	
	Exploration of single-cell data by clustering (K-nearest neighbour density estimate) and visualisation by divisive marker trees and force-directed layouts
	(15)

	16
	SamSPECTRAL
	48
	
	Cell population identification by spectral clustering and sampling
	(16)

	17
	flowPeaks
	42
	
	Cell population identification by K-means clustering and density peak finding
	(17)

	17
	OpenCyto
	42
	
	Mimicking manual gating based on hierarchical automated gating pipelines
	(18)

	19
	Mixture model
	41
	
	Cell population identification by mixture modelling
	(19)

	20
	HPDGMM
	31
	Hierarchical Dirichlet Process Gaussian Mixture Model 
	Rare event detection and cell subset alignment across multiple samples
	(20)

	21
	flowDensity
	26
	
	Mimicking manual gating based on cellular density distributions
	(21)

	22
	SWIFT
	24
	Scalable Weighted Iterative Flow-clustering Technique
	Identification of rare cell populations based on Gaussian mixture model-based clustering
	(22,23)

	23
	HSNE
	16
	Hierarchical Stochastic Neighbor Embedding
	Visual exploration of the hierarchy in cytometry data
	(24)

	24
	Misty Mountain
	15
	
	Cell population identification by density contour clustering
	(25)

	25
	COMPASS 
	14
	Combinatorial Polyfunctionality Analysis of Single Cells
	Identification of cell subsets correlated with clinical outcomes
	(26)

	25
	FlowFP
	14
	Fingerprinting for Flow Cytometry
	Generation of multivariate distribution 'fingerprints'
	(27)

	25
	immunoClust 
	14
	
	Cell population identification by iterative model-based clustering
	(28)

	28
	JCM
	12
	Joint Clustering and Matching
	Cell population identification and matching across a batch of samples
	(29)

	29
	flowType/RchyOptimyx
	11
	
	Cell population identification by partitioning and correlation with clinical outcomes
	(30)

	30
	ASPIRE
	10
	Anomalous sample phenotype identification with random effects
	Identification of anomalous samples with random effects
	(31)

	30
	DeepCyTOF
	10
	
	Cell classification by deep learning
	(32)

	32
	AutoGate
	9
	
	Sequential selection of cell subsets and visualisation
	(33)

	33
	FloReMi
	8
	Flow Density Survival Regression Using Minimal Feature Redundancy
	Survival time prediction
	(34)

	34
	CCAST 
	7
	Clustering, Classification and Sorting Tree
	Isolation of homogenous subpopulations
	(35)

	35
	flowLearn
	6
	
	Identification and quality checking of cell populations
	(36)

	36
	ACDC
	5
	Automated Cell-type Discovery and Classification
	Cell population discovery and classification
	(37)

	37
	Competitive SWIFT 
	4
	Scalable Weighted Iterative Flow-clustering Technique
	Sample comparison by competitive clustering
	(38)

	37
	SPADE 3
	4
	Spanning-tree progression analysis of density-normalized events
	Visualisation of high-dimensional cytometry data by downsampling, clustering and a minimal spanning tree
	(39)

	39
	cytometree
	2
	
	Cell population identification based on a binary tree algorithm
	(40)

	39
	DAFi
	2
	Directed Automated Filtering and Identification of cell populations
	Cell population identification based on recursive data filtering and clustering
	(41)

	39
	diffcyt
	2
	Differential discovery in high-dimensional cytometry via high-resolution clustering 
	Differential discovery analysis
	(42)

	39
	FlowVIEW
	2
	
	Quantification of cell populations via a supervised learning approach
	(43)

	39
	LDA
	2
	Linear discriminant analysis
	Prediction of cell populations
	(44)

	44
	ECLIPSE
	1
	Elimination of Cells Lying in Pattern Similar to Endogeneity
	Identification of disease-specific cells
	(45)

	44
	NPflow
	1
	Bayesian Nonparametrics for Automatic Gating of Flow-Cytometry Data
	Cell population identification by model-based clustering
	(46)

	44
	PSM with GemStone
	1
	Probability State Modeling
	Cell population identification via a probability-based approach
	(47)

	44
	SOPHE
	1
	Second order polynomial histogram estimators
	Cell population identification by data binning 
	(48)

	48
	PHATE
	0
	Potential of heat diffusion for affinity-based transition embedding
	Dimensionality reduction for visualisation
	(49)

	48
	SIC 
	0
	Subset Identification and Characterisation
	Subset identification and characterisation pipeline
	(50)

	48
	SigClust
	0
	Signature based Single-Cell Clustering
	Cell population identification using phenotypic signatures
	(51)

	48
	UMAP
	0
	Uniform Manifold Approximation and Projection
	Dimensionality reduction for visualisation
	(52)





Supplementary Table 2. Survey questions and answer response choices.
	Q1
	In a typical week, how many hours do you spend analysing (gating) flow cytometry data on a computer?
· Over 30 hours
· 20-30 hours
· 10-20 hours
· 1-10 hours
· Less than 1 hour

	Q2
	How often do you use automated flow cytometry data analysis software to identify cell populations?
· Never – I only use manual gating to identify cell populations.
· Rarely – I mainly use manual gating, but occasionally use automated tools.
· Sometimes – I split my analysis equally between manual and automated cell population identification.
· Usually – I mainly use automated tools, but occasionally use manual gating.
· Always – I use automated tools for all my data analysis.

	Q3
	Which software do you use for manual cell population identification? (Check all that apply)
· BD FACS Diva
· BD FACS Canto
· BD FACSuite
· BD CellQuest
· FCS Express
· FlowJo
· FlowLogic
· Infinicyt
· Kaluza
· Navios
· VenturiOne
· WinList
· Other (please specify)

	Q4
	Which software do you use for automated cell population identification? (Check all that apply)
(Answer choices as in Supplementary Table 1)

	Q5
	Which automated data analysis software are you aware of, but do not currently use? (Check all that apply)
(Answer choices as in Supplementary Table 1)

	Q6
	When using automated data analysis software, which of the following factors is most important to you?
(Answer choices for each factor: Not at all important/ Not so important/ Somewhat important/ Very important/ Extremely important)
· Appearance of software
· Availability of software
· Compatibility with other software
· Level of technical support
· Seen in literature
· Software data output quality
· Software reputation
· Software speed
· Cost 
· Other (please specify)

	Q7
	Please select the automated cell identification tool you are most familiar with. 
(Answer choices as in Supplementary Table 1)

	Q8
	Please mark your response about the software in Q7 to the following statements:
(Answer choices for each statement: Strongly disagree/ Disagree/ Neither agree nor disagree/ Agree/ Strongly agree)
a) I think that I would like to use this software frequently.
b) I found the software unnecessarily complex.
c) I thought the software was easy to use.
d) I think that I would need the support of a technical person to be able to use this software.
e) I found the various functions in this software were well integrated.
f) I thought there was too much inconsistency in this software.
g) I would imagine that most people would learn to use this software very quickly.
h) I found the software very awkward to use.
i) I felt very confident using the software.
j) I needed to learn a lot of things before I could get going with this software.
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Supplementary Figure 1. Software citations by computational method. Citations by algorithm class, showing unsupervised methods with graphical user interfaces (GUIs) only.
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Supplementary Figure 2. Results of a survey of clinical laboratories on the use of automated flow cytometry software.
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