
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Learning feedforward control for industrial manipulatorsLearning feedforward control for industrial manipulators

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1109/DDCLS52934.2021.9455672

PUBLISHER

IEEE

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

LICENCE

All Rights Reserved

REPOSITORY RECORD

Liu, Chengyuan, Atanas Popov, Alison Turner, Emma Shires, and Svetan Ratchev. 2021. “Learning
Feedforward Control for Industrial Manipulators”. Loughborough University.
https://hdl.handle.net/2134/16750531.v1.

https://lboro.figshare.com/
https://doi.org/10.1109/DDCLS52934.2021.9455672


Learning Feedforward Control for Industrial Manipulators
Chengyuan Liu, Atanas Popov, Alison Turner, Emma Shires, Svetan Ratchev

Centre for Aerospace Manufacturing, University of Nottingham, Nottingham NG8 1BB, U.K.
E-mail: chengyuan.liu@nottingham.ac.uk

Abstract: In this work, an iterative learning control (ILC) algorithm is proposed for industrial manipulators. The proposed
ILC algorithm works coordinately with the inverse dynamics of the manipulator and a feedback controller. The entire control
scheme has the ability of compensating both repetitive and non-repetitive disturbances; guaranteeing the control accuracy of the
first implementation; and improving the control accuracy of the manipulator progressively with successive iterations. In order
to build the the convergence of the proposed ILC algorithm, a composite energy function is developed. A case study on a four
degree of freedom industrial manipulator is demonstrated to illustrate the effectiveness of the proposed control scheme. By
implementing the ILC algorithm, the maximum root mean square error of the control accuracy is improved from 0.0262 rad to
0.0016 rad within ten iterations.
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1 Introduction

Industrial robotic manipulators have achieved promising
success in smart manufacturing. Comparing with the be-
spoke gantry-based automation, the industrial manipulators
provide extra flexibility and possibility of human-robot col-
laboration. However, precision control [1] is challenging
with industrial manipulators due to both internal and external
uncertainties during operations such as drilling, machining,
composite fabrication and additive manufacturing. Improv-
ing the control accuracy is particularly prominent in high
precision manufacturing, e.g. aerospace manufacturing.

The conventional manipulator controller contains two
components: feedforward controller and feedback con-
troller. The feedforward controller uses desired robot mo-
tion to compute the joint input; the feedback controller takes
advantage of both the desired and the measured motion to
compute the joint input. The sum of the two joint inputs will
be the final control input to the manipulator. Most of the re-
search paper pay attention on the feedback controller due to
its ability to compensate modelling errors and disturbances.
However, the feedback controller cannot suppress hysteresis
effects such as backlash since the effects are fast [3, 4]. This
makes the feedforward controller, which performs good in
compensating high frequency disturbances, necessary.

The traditional feedforward controller involved in the ma-
nipulator usually designed based on the inverse dynamics.
Pure inverse dynamics only provide online computation of
the joint input based on the desired motion without any com-
pensational function [5]. In order to meet the requirement
of compensating hysteresis effects and some other distur-
bances such as gravity loads and process forces, more ad-
vanced control schemes have been designed. In the absence
of suitable dynamic model of the industrial manipulator, the
data-driven controller, such as neural networks [6–8] and re-
inforcement learning [9] is often adopted to represent the dy-
namic effects. While due to the complexity of the nonlinear
behaviour of the manipulator, model-based control is pre-
ferred when the dynamic model or model approximations are
available [10]. On the other hand, uncertain modelling errors
have large effect on the control performance. This drives
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the development of the adaptive model and partial model-
free control algorithms. For example, Grundel and his col-
leagues designed a model-based controller considering the
external cutting forces, which enables the system to cancel
the effect of the process forces while operation[11]; Fan et
al proposed a fuzzy adaptation algorithm to compensate the
uncertain terms in the dynamics [12].

The feedforward control of the industrial manipulator is
expected to apply corrections in advance for the manipu-
lator using predicted errors before the error actually occur-
ring. Considering the robotic manipulator with repeating op-
erations, compensations are made based on the previously
observed errors, hence the operations become progressively
more accurate with success iterations [13]. This repetitive
nature in the case of manufacturing makes iterative learning
control (ILC) a promising strategy for feedforward control
[14–18]. The latest works have shown the superiority of the
ILC algorithm as the feedforward controller of the industrial
manipulator. Helfrich et al proposed an ILC approach that
works together with the H∞ feedback controller [19] to im-
prove control performance. A dual-loop ILC controller is
designed by Meng et al to compensate the vibrations dur-
ing tracking [20]. The problem of joint hard constraints of
the industrial manipulators has been addressed in the work
of Yovchev et al through bounded error algorithm for ILC
[21]. Angelini et al designed an ILC scheme in combina-
tion with low-gain feedback control for improve tracking
accuracy [22]. Hofer and his colleagues presented a norm-
optimal ILC scheme for articulated soft manipulator to im-
prove the tracking control performance[23]. These existing
works using the ILC controller as an alternative of the pure
inverse dynamics, which is not sufficiently taking advantage
of the dynamic models.

To address the above problem, in this work, we propose an
ILC scheme in combination with the pure inverse dynamics
to improve tracking accuracy of the industrial manipulators.
This structure can guarantee the control accuracy of the first
iteration, reduce peak error, and improve the accuracy pro-
gressively with successive iterations. At the same time, a
feedback controller is adopted to achieve basic control re-
quirement and compensate non-repeating disturbances. Un-
der the coordination work of the ILC, inverse dynamics, and



the feedback controller, both repetitive and non-repetitive
disturbances of any frequency can be suppressed. The rig-
orous convergence analysis is implemented for the proposed
control scheme. Finally, a four degree of freedom (DOF)
manipulator – OpenManipulator [24] is used for simulation
experiment.

The rest of the paper is organised as follows. The dy-
namic system of the industrial manipulator and the platform
used for simulation are present in Section 2. In Section 3, the
control scheme is developed and the convergence of the sys-
tem is proved. In Section 4, simulation test on a four DOF
manipulator is carried out in order to show the efficiency of
the proposed control scheme. Section 5 gives the conclusion
of this work.

2 Platform Overview

The following form of dynamics of a n DOF manipulator
is considered:

M(qk(t))q̈k(t)+C(qk(t), q̇k(t))q̇k(t)+G(qk(t))=τk(t), (1)

where t ∈ R denotes the time instant and k ∈ Z+ de-
notes the number of iteration. qk(t) ∈ Rn, q̇k(t) ∈ Rn
and q̈k(t) ∈ Rn are the joint position, velocity and accelera-
tion vectors, respectively, at time t of the kth iteration. τk(t)
is the vector of torques, which is the system control input.
M(qk(t)) ∈ Rn×n is the inertia matrix, which is symmetric,
bounded and positive definite, C(qk(t), q̇k(t))q̇k(t) ∈ Rn
represents the Coriolis and centrifugal forces, G(qk(t)) ∈
Rn represents the gravitational and frictional forces. For
robotic manipulator, the following properties are hold:
P1 M(q) is positive symmetric and bounded such that

there exist constants ν1 > 0 and ν2 > 0 to achieve
0 ≤ ν1In ≤ M(q) ≤ ν2In for any q ∈ Rn, where In
denotes the identity matrix of dimension n.

P2 The matrix ( 1
2Ṁ(qk(t)) − C(qk(t), q̇k(t))) is skew

symmetric such that

vT(
1

2
Ṁ(qk(t))−C(qk(t), q̇k(t)))v=0,∀v∈Rn. (2)

In order to testing the efficiency of the proposed con-
trol scheme, the 4 DOF ROBOTIS OpenManipulator plat-
form [24] is adopted. The unified robot description format
(URDF) file of this robotic manipulator is imported into the
MATLAB robotics system toolbox, and the robot controller
model is built in Simulink. The home position of the ma-
nipulator is shown in Fig. 1 and the dynamic parameters are
listed in Table. 1.

3 Controller Design

In contrast to the existing research, the proposed ILC feed-
forward controller is designed in combination with the pure
inverse dynamics. The structure of the control diagram is
shown in Fig. 2. The torque input τk to the robotic manipu-
lator consists of three components: the learning feedforward
control τ ILCk (t), the inverse dynamics feedforward control
τ IDk (t), and a PD-type feedback control τPDk (t), i.e.

τk(t) = τ ILCk (t) + τ IDk (t) + τPDk (t). (3)

Suppose qd(t) is a bounded desired trajectory and the sys-
tem satisfy the following assumptions:

Fig. 1: The 4 DOF ROBOTIS OpenManipulator-X

Table 1: Manipulator parameters
Parameters Link 1

Length (mm) 77

Mass (g) 98.4

Inertia (Kg ·m2)

 2.56e−4 2.49e−6 −1.03e−6
2.49e−6 2.54e−4 −2.20e−11
−1.03e−6 −2.20e−11 1.89e−6


Parameters Link 2

Length (mm) 128

Mass (g) 138.5

Inertia (Kg ·m2)

1.76e−3 6.89e−6 1.84e−4
6.89e−6 1.79e−3 6.37e−7
1.84e−4 6.37e−7 7.51e−5


Parameters Link 3

Length (mm) 24

Mass (g) 132.7

Inertia (Kg ·m2)

 3.07e−5 2.31e−11 2.97e−6
2.31e−11 1.34e−3 5.97e−6
2.97e−6 5.97e−6 1.35e−3


Parameters Link 4

Length (mm) 124

Mass (g) 143.3

Inertia (Kg ·m2)

 9.23e−5 4.71e−10 5.75e−5
4.71e−10 3.67e−4 2.33e−9
5.75e−5 2.33e−9 3.73e−4
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A1 The desired trajectory qd(t) is first and second order
continuously differentiable for all t ∈ [0, T ]; qd(t)
and its first and second time derivative q̇d(t), q̈d(t) are
bounded for all t ∈ [0, T ].

A2 The initial conditions qk(0) = qd(0) and q̇k(0) = q̇d(0)
are satisfied for all k ∈ Z+.

First, the inverse dynamics is build based on system (1)
and A1, which gives

τ IDk (t)=M(qd(t))q̈d(t)+C(qd(t), q̇d(t))q̇d(t)+G(qd(t)), (4)

where qd(t) is the bounded desired trajectory, q̇d(t), and
q̈d(t) are the corresponding desired joint velocity and accel-
eration. A low pass filter is used to generate the joint veloc-
ities from the joint position. Note that the inverse dynamics
is identical for each iteration since the desired trajectory is
identical. Hence the inverse dynamics has no mutual influ-
ence with the other controller component.

Then the feedback controller is designed to ensure the sta-
bility of the closed loop system. In this work, four PD con-
trollers work for each motor are utilised, that is

τPDk (t) = Kpek(t) +Kdėk(t), (5)

where

ek(t) = qd(t)− qk(t), (6)
ėk(t) = q̇d(t)− q̇k(t), (7)

are the tracking error and its derivative at time t of the kth
iteration, respectively. Kp ∈ Rn×n and Kd ∈ Rn×n are
diagonal positive definite and are proportional and derivative
control gain matrix, respectively.

After tuned the feedback controller to achieve a best per-
formance, the ILC algorithm can be designed. It is worth to
note that the feedback controller and the ILC algorithm could
influence each other. In the work of Tayebi [25], vibrations
may occur in some of or all manipulator joints as the num-
ber of iterations increases. This is due to the accumulation of
the noise caused by derivative action through the iterations
[26]. In order to decrease this effect, the ILC controller is
proposed in the following structure:

τ ILCk (t) = τ ILCk−1 (t) + γτFBk−1(t), (8)

where γ > 0 ∈ R is a learning factor, τ ILC−1 = 0.
With the above controllers and assumptions, we have the

following result.

Theorem 1. Consider the robotic manipulator (1) satisfy
the assumption (A1-A2), using the control law (3)-(5) and
(8), then for all t ∈ [0, T ],

lim
k→∞

qk(t) = qd(t), (9)

lim
k→∞

q̇k(t) = q̇d(t), (10)

hold.

Proof. In order to facilitate the convergence analysis in The-
orem 1, two fictitious signals are introduced:

τ̄d := M(qk)M−1(qd)τd, (11)

ξk := ėk +K−1d Kpek, (12)

where τd is the desired control input. The time instant in-
dicator (t) is omitted for clarity in here and the following
proof. Due to the property P1 and the assumptions A1, A2,
we have τ̄d continuous and bounded; τ̄d approaches the ac-
tual desired control input τd and ek goes to 0, when qk ap-
proaches the desired trajectory qd and ξk goes to 0. From
system (1), we have

q̈k = f(qk, q̇k) +M−1(qk)τk, (13)

where

f(qk, q̇k) = −M−1(qk)(C(qk, q̇k)q̇k +G(qk)). (14)

Let

τ̃k := τ̄d − τk, (15)

τ̃ ILCk := τ̄d − τ IDk − τ ILCk , (16)

f̃(qk, q̇k) := f(qd, q̇d)− f(qk, q̇k), (17)

and define the Lyapunov-like composite energy function
(CEF):

Jk(t) =

∫ t

0

e−λι(τ̃ ILCk )T (τ̃ ILCk )dι, (18)

where λ ∈ R is a positive constant.
The remaining proof will firstly demonstrate the bound-

edness and non-increasing property of the CEF Jk(t) with
respect to k, then show the convergence (9) and (10).

The difference of the CEF at a time instant t ∈ [0, T ] of
two consequent iterations is

∆Jk = Jk − Jk−1

=

∫ t

0

e−λι(|τ̃ ILCk |2 − |τ̃ ILCk−1 |2)dι.
(19)

From the definition in (5), (8), (12) and (16) we have

τ̃ ILCk = τ̃ ILCk−1 − γKdξk−1. (20)

Substituting this into (19) yields

∆Jk =

∫ t

0

e−λι(|τ̃ ILCk−1 − γKdξk−1|2 − |τ̃ ILCk−1 |2)dι

=

∫ t

0

e−λι(|γKdξk−1|2)dι

− 2

∫ t

0

e−λι(γKdξk−1)T (τ̃ ILCk−1 )dι.

(21)

Utilising the definition of (11), (13) and (15) - (17), we can
derive the the following result:

M(qk−1)ξ̇k−1 = M(qk−1)ëk−1 +M(qk−1)K−1d Kpėk−1

= M(qk−1)f̃(qk−1, q̇k−1) + τ̃k−1 +M(qk−1)K−1d Kpėk−1

= τ̃k−1 − C(qk−1, q̇k−1)ξk−1 + ηk−1

= τ̃ ILCk−1 − τ̃FBk−1 − C(qk−1, q̇k−1)ξk−1 + ηk−1,

(22)

where

ηk−1 =C(qk−1, q̇k−1)ξk−1 +M(qk−1)f̃(qk−1, q̇k−1)

+M(qk−1)K−1d Kpėk−1.
(23)



Hence, we have

τ̃ ILCk−1 =M(qk−1)ξ̇k−1+τ̃
FB
k−1+C(qk−1, q̇k−1)ξk−1−ηk−1. (24)

Substituting this into (21), we have

∆Jk =

∫ t

0

e−λι(γKdξk−1)T (γKdξk−1 + 2ηk−1)dι

− 2

∫ t

0

e−λι(γKdξk−1)T (M(qk−1)ξ̇k−1)dι

− 2

∫ t

0

e−λι(γKdξk−1)T (τ̃FBk−1 )dι

− 2

∫ t

0

e−λι(γKdξk−1)T (C(qk−1, q̇k−1)ξk−1)dι,

(25)

where τFBk−1 = Kdξk−1, and

− 2e−λι(γKdξk−1)T (M(qk−1)ξ̇k−1)

=− d

dt
(e−λι(γKdξk−1)T (M(qk−1)ξk−1))

+ e−λι(γKdξk−1)T (Ṁ(qk−1)ξk−1))

− λe−λι(γKdξk−1)T (M(qk−1)ξk−1).

(26)

Substituting the above equation into (25) and considering
property P2, we have

∆Jk =− e−λι(γKdξk−1)T (M(qk−1)ξk−1)

− λ
∫ t

0

e−λι(γKdξk−1)T (M(qk−1)ξk−1)dι

− 2

∫ t

0

e−λι(γKdξk−1)T (Kdξk−1)dι

+

∫ t

0

e−λι(γKdξk−1)T (γKdξk−1 + 2ηk−1)dι.

(27)

Based on (12) and (23), we have constants a1 > 0 and a2 >
0 [27] such that

|ηk−1| ≤ a1|ξk−1|+ a2|ξk−1|2. (28)

The bounded property P1 gives a constant ν > 0 ∈ R such
that

0 ≤ νIn ≤ KT
dM(qk−1). (29)

Hence we have

∆Jk ≤− νγe−λι|ξk−1|2 − (λ+ 2)γ

∫ t

0

e−λι|ξk−1|2dι

+ γ

∫ t

0

e−λιh(|ξk−1|)|ξk−1|2dι,

(30)

where h(|ξk−1|) = |Kd|(γ|Kd|+ 2a1 + 2a2|ξk−1|). It can be
shown that there exist a positive constant a3 > 0 such that

0 < h(|ξk−1|) < a3, (31)

we have

∆Jk ≤− (λ+ 2− a3)γ

∫ t

0

e−λι|ξk−1|2dι

− νγe−λι|ξk−1|2.
(32)

It follows that if λ is selected such that λ+ 2− a3 > 0, then
∆Jk ≤ 0, which shows the non-increasing property of the
CEF Jk.

Implementing a cumulative sum for (32) shows the con-
vergence of the tracking error since J−1 is bounded and Jk
is positive, which also guarantees the convergence of the
control input in the iteration axis. Furthermore, as (22) is
uniformly bounded, the uniform continuity of ξk is guar-
anteed in the time axis [0, T ]. Hence the tracking error
ek(t) is uniformly convergent, and lim

k→∞
qk(t) = qd(t) and

lim
k→∞

q̇k(t) = q̇d(t) hold.
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Fig. 3: Tracking performance in the four joints. The black
solid line indicates the desired trajectory, the blue dashed
line indicates the tracking path without ILC algorithm, the
red dash-dotted line indicates the tracking path after ten iter-
ations using ILC.

4 Simulation Test

Consider the manipulator platform described in Section 2,
the desired trajectories for the four joints are chosen as

qd(t) =


2
3π sin(0.4t)
π
4 sin(0.6t)
π
4 sin(1.5t)
π
3 sin(t)

 . (33)

The proposed control law (3)-(5) and (8) are applied with
Kp = 8I4, Kd = 0.1I4, and γ = 0.3. The tracking per-
formance of before and after utilising the ILC method have
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Table 2: Before iteration versus after 10 iterations tracking
performance in root mean square errors of the joint position
(rad).

Joint Before iteration After 10 iterations
Joint 1 0.0145 0.0008

Joint 2 0.0217 0.0015

Joint 3 0.0262 0.0016

Joint 4 0.0191 0.0012

been shown in Fig 3. The desired trajectories are shown in
black solid line, the tracking trajectories are shown in blue
dashed line, the tracking trajectories after ten iterations are
shown in red dash-dotted line. Three random portions of the
tracking performance of joint 2 − 4 are enlarged in the plot
to show more details of the tracking difference. The root
mean square errors versus the number of iterations for the
four joints are shown in Fig. 4. The root mean square er-
rors of before iteration and after 10 iterations are shown in
Table 2.

The simulation results shows that the proposed ILC
scheme can improve the tracking accuracy with the increase
of the iteration number. However, due to the noise accumu-
lation problem described in Section 3, the learning process
must be stopped once the tracking error meet the require-
ment to prevent any possible joint oscillations. As addressed
by Tayebi et al [26], trade off between the convergence rate
and the joints chattering phenomenon is considered by tun-
ing the learning gain γ. Furthermore, the cut-off frequency
of the filter used to generate the joint velocity also has large
effect on the convergence property.

5 Conclusion

The control scheme designed in this work contains an
ILC feedforward controller, an inverse dynamics feedfor-
ward controller, and a PD feedback controller. The coordina-
tion work of these three control method makes the compen-
sation for both repetitive and non-repetitive disturbances of
any frequency possible. The control accuracy of the indus-

trial manipulator at the first implementation is guaranteed by
taking advantage of the inverse dynamics. The PD feedback
controller provides compensation of non-repeating and low
frequency disturbances. The ILC algorithm is used to sup-
press the repetitive and high frequency disturbances. The
control accuracy is improved progressively with the succes-
sive iterations. Both the feedback and ILC algorithm con-
tribute to the convergence of the control scheme, which is
proved using CEF method. The simulation on the OpenMa-
nipulator shows promising results in the tracking accuracy.
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