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a b s t r a c t

Recovering after an abrupt push is essential for bipedal robots in real-world applications within envi-
ronments where humans must collaborate closely with robots. There are several balancing algorithms
for bipedal robots in the literature, however most of them either rely on hard coding or power-hungry
algorithms. We propose a hybrid autonomous controller that hierarchically combines two separate,
efficient systems, to address this problem. The lower-level system is a reliable, high-speed, full state
controller that was hardcoded on a microcontroller to be power efficient. The higher-level system is a
low-speed reinforcement learning controller implemented on a low-power onboard computer. While
one controller offers speed, the other provides trainability and adaptability. An efficient control is then
formed without sacrificing adaptability to new dynamic environments. Additionally, as the higher-level
system is trained via deep reinforcement learning, the robot could learn after deployment, which is
ideal for real-world applications. The system’s performance is validated with a real robot recovering
after a random push in less than 5 s, with minimal steps from its initial positions. The training was
conducted using simulated data.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Balancing of a bipedal robot is a necessary ability that has not
hanged drastically over the last 35 years, using hardcoded Center
f Mass (CoM) or Zero Moment Point (ZMP) algorithms [1]. Few
ew algorithms use Neural Networks (NN) as neural oscillators
o mimic muscles, and by combining the signal of those oscilla-
ors, a balancing algorithm is achieved [2–4]. Additionally, with
einforcement Learning (RL), the oscillators are advancing and
earning within a realistic environment with a wide variety of
ifferent scenarios [5,6]. However, those algorithms need compu-
ationally heavy networks to run locally, otherwise, they cannot
chieve a real-time response.
The ability to adapt in real-time to changes in the environ-

ent, is fundamental for robots to be deployed near humans
s their environment can change drastically, from different floor

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.
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types and slopes to the human’s unexpected behaviors. Animals
and humans solve this by having a higher-level system (motor
cortex) that orchestrates the local motoneurons making it possi-
ble to learn patterns and execute them fast, without consuming
energy from the motor cortex [7]. Neuroscientists found that hu-
mans’ postural adjustments are usually handled by local reflexes
(sensory neurons, interneurons, motoneurons) while feedforward
adjustments are controlled from the spinal cord circuits [8]. The
spinal cord circuits tune the reflexes through experiences, and
with suitable signals from the spinal cord circuits, the reflexes
complete tasks autonomously.

In this paper, a hybrid autonomous onboard, low-power con-
troller is presented for robot balancing. This controller has pre-
deployment and post-deployment learning capabilities that are
based on humans’ and animals gait control. The controller is
a hierarchical Central Pattern Generator (CPG) that is divided
into two independent systems, in contrast to similar approaches
from other researchers where they are combined into a single
controller [9–11]. The higher-level system processes all sensors’
information to produce parameters for the lower-level system.
A lower-level system is a group of pattern generators that uti-
lize local information to adjust their local actuators based on
the parameters from the higher-level controller. Those systems
can work independently where the top part of the CPG can

learn slowly through time-consuming training sessions, whilst

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Linear actuator so that the foot can move upwards without dragging on
the floor.

the lower part can execute closed cyclic local patterns with higher
speed. This method combines the speed and the stability of local
pattern generators (LPGs) with the learning capabilities of NN’s.
The controller’s learning capabilities were enhanced by using
deep RL, which allows the system to learn through experience,
similar to humans [12,13].

This paper focuses on the efficiency of bipedal robots. In order
o conduct experiments, we have built a robot (SARAH - Safe
gile Robust Autono-mous Host) that could maximize efficiency
hrough minimizing its power needs [14]. It utilizes an ostrich-
ike gait as it is more efficient albeit less dexterous than other
nimals and humans [15].

. SARAH, a bipedal robotic host

The contemporary designs of bipedal robots are not much
ifferent from the designs of the past, as most of them focus on
esembling human anatomy, rather than achieving efficiency [1].
ew designs, like Cassie and Digit from Agility Robotics, focus on
lternative designs that are potentially more efficient while sacri-
icing the humanoid look and the dexterity of humans’ legs [16].
imilarly, this paper’s robot host focuses on an alternative design
hat can maximize efficiency using (patent-pending) ‘‘bang–bang"
ctuators [17]. These actuators were designed at Motion Robotics
TD specifically for this robot. Initially, the actuators had two
lectromagnets facing one another, and they were fixed together
n one edge. The other end was coupled with a moving pin such
hat when the electromagnets were energized, the pins moved
loser to create torque. As shown in Fig. 1, the linear actuator
as set up so that it could lift the foot off the ground without
ragging. This is important for efficiency, whereas in traditional
umanoids the leg has to energize two motors (i.e. one for the
nee and one for the hip) to achieve the same result.
The linear actuator is the primary actuator as it was respon-

ible for lifting the leg from the ground, allowing the hip and
bductor actuators to act independently. The actuator was a
ustom-made compact linear actuator capable of lifting 50 kg for
s up to 5 cm in impulse mode while the sustained lifting power
as 20 kg. Additionally, to take advantage of the maximum

ifting power and increase efficiency, the actuator has an internal
nverse braking system that can lock the actuator while not in
se. This allowed the actuator to perform short movements of
 m

2

Fig. 2. SARAH as was presented at the New Scientist Live 2017.

Fig. 3. First generation foot on the left, weighing 2.5 kg. Second generation foot
n the right, weighing 1.5 kg.

cm and climb to the target position. When gravity was in the
irection of the target position, the actuator used a small force
pposite to the motion to act as a dampener. This increased en-
rgy efficiency, especially when the robot was in standby mode,
s it can hold its posture mechanically, effectively limiting its
nergy consumption to its onboard computers. The host included
ultiple custom controller boards with ATMEL SAM C21 [18] for

he LPGs, two Raspberry Pi 3B+ (RPI3) [19] for the higher-level
ystem, communication with the user and the potential future
orso.

SARAH went through different revisions to reduce weight,
ncrease dexterity and efficiency. The first prototype can be seen
n Fig. 2. The robot weighed 45 kg and had a height of 115 cm,
hile the second prototype reduced the weight to 27 kg by
eplacing the hydraulic braking system with an electromagnetic
ystem. Furthermore, to reduce vibration and weight, the flat
ood-foot was replaced by a 3D printed foot fitted in athletic
hoes. Fig. 3 illustrates the difference between the two feet. With
he new lightweight design, the robot was capable of a theoretical
aximum walking speed of 5 km/h.
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Fig. 4. Detailed representation of the second prototype of SARAH with its center
of mass in V-REP Pro Edu.

To accelerate the experiments, the robot’s skeleton was sim-
lated in V-Rep Pro Edu Dynamic simulator [20]. The weight
f the actual robot was divided and distributed to each limb of
he simulated robot skeleton in order to have the most accurate
epresentation. Additionally, all physical actuators were tested
ndividually to match the simulated actuators. At the same time,
he whole model performed a series of tests that were replicated
n the physical robot for further tuning. In Fig. 4, the simulated
obot model is detailed with its center of mass noted by a white
ark.

. Hybrid autonomous controller

SARAH’s mechanical system allowed for a more discrete bal-
ncing algorithm as it could make one-shot movements to bal-
nce its body while remaining in the resulting position without
onsuming energy. This uses small hibernation windows to re-
uce power consumption, hence increasing efficiency. However,
he current control algorithms are not based on one-shot actua-
ions, but on a feedback system that has a target, and normally
equires energy to maintain it. To benefit from this ability, a new
lgorithm is designed to use a stability parameter to assess the
obot’s condition and act only if necessary.

The balancing algorithm is divided in two different systems
ombined hierarchically, as can be seen in Fig. 5. The higher-level
ystem is responsible for analyzing data from the robot and its
nvironment, in order to produce parameters that can modulate
he lower-level system. The lower-level system is responsible for
ollecting local data and acting based on the parameters that the
igher-level system provides. The higher-level system consumes
uch more energy than the lower-level controller to preform its

ob, hence its operating speed is set to a 100 times slower (1 Hz)
han the lower-level controllers (100 Hz) in order to conserve its
nergy consumption over time.

.1. Lower-level controllers

Starting from the lower-level controllers, the system uses
hree LPGs so that each actuator has its own pattern. The linear
ctuator is the main LPG that controls when the robot starts
oving, as the foot must first lift off to avoid drifting on the
3

Fig. 5. Control flow of the hybrid controller on SARAH.

ground while acting in the other two axes. The other two LPGs
(one for hip actuation and one for abduction actuation) are acti-
vated as soon as the leg starts moving upwards. The higher-level
system provides the parameters every second in a memory buffer,
while the lower-level controllers read the buffer’s values at the
beginning of their pattern cycle in order to avoid a mismatch of
parameters halfway through a pattern cycle. The linear LPG has
three external parameters that control the forces acted by the
actuator in different states. The other two LPGs have five external
parameters each, four of which create a local activation variable
while the last one defines the actuation force.

A pseudocode of the Linear LPG can be seen in Procedure 1.
The linear pattern’s control flow is divided to 4 stages repre-
senting the waiting, pushing to ground, lifting to maximum and
returning to the ground stages of the foot. At the beginning of
each stage, the actuator forces (P1, P2 and P3) are set based on
he higher-level controller’s most recent predictions. The LPG for
he other rotational actuators can be seen in Procedure 2.
oth the hip and abduction movement use the same algorithm,
nly with different external parameters and physical limits of
ctuation. The pattern initially calculates a variable based on a
ubic function with the external parameters 1-4 and information
from the Inertial Measurement Unit (IMU). This variable acts
as a stability buffer when the robot has small forces that can
be absorbed from the design without the need of stepping, in
which case the Rotational Force is set based on the last external
parameter. The leg swing is divided into 6 different motions, and
is energized only if the leg is not touching the ground (stage 3
of the linear actuation). If the calculated variable Right/Left has
absolute value within actuation limits and more than 1, then the
leg moves forwards if its positive or backwards if its negative.
If the variable’s absolute value is less than 1, then the actuator
is moving towards 0◦ and is braking if the position is ±1◦.
For the abduction actuation, the external parameters V1-5 are
provided by the higher-level controller, while the parameters H1-
5 are provided by the higher-level controller for hip actuation.
Abduction is limited to act between −10◦ and 5◦, while the hip
s limited between −20◦ and 15◦.

3.2. Higher-level controllers

The external parameters of the lower-level controllers, were

set through the higher-level system by learning the system’s
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Fig. 6. Detailed decomposition of the higher deep learning controller from Fig. 5 with the two individual Raspberry PIs. The left one collects and forms the experiences,
while the right one runs three individual NN, one for each actuator, either every second or based on events that are triggered through experiences.
Procedure 1: LPG(Linear Pseudocode Flow)
Data: IMU, Pressure & Position sensors
hile Robot is ON do
read current Data
switch do

case 1
if Pressure Sensors then

Case 2
case 2

Set Linear Force to P1
if not stable then

Push Ground Down
if Position < 1% of Step then

Case 3
case 3

Set Linear Force to P2
Lift Leg
Mid_Air True
if Position > 10% of Step then

Case 4
case 4

Set Linear Force to P3
Land Leg
if Position < 0 then

Mid_Air False
Brake Robot
Case 1

dynamics through experiences. This added learning capabilities
to classical and non-adaptive pattern generators to enhance their
stability with adaptation to new dynamic requirements. To
achieve this, three individual Deep Neural Networks (DNN) were
pre-trained through V-REP Pro Edu simulator based on Normal-
ized Advantage Functions (NAF) [21] with a continuous replay
memory. The DNN was mapping the sensory system of the robot,
with any hidden dynamics, to the lower-level parameters P1-
3, V1-5 and H1-5. Each network was trained for each actuator
in order to utilize smaller recurrent NN for quicker execution
4

times. Fig. 6 illustrates the onboard execution cycle of the higher-
level system, with the one RPI3 collecting data and filling an
experience file, while the other RPI3 was registering the most
recent experience as a memory to be used on the individual
LPGs. The experience was extracted and used to train the network
externally or onboard if it was required.

Moreover, decoupling the actuators’ LPGs meant that the net-
works can be called on-demand based on external influences
instead of every 1 Hz. For example, on softer ground, like sand,
training can be limited to the linear actuators instead of spending
energy retraining all the actuators. Training and execution on
demand is an effective method of reducing power consumption
and thus increasing efficiency. However, the complex system
dynamics could not be learned without recurrent networks that
introduce memory capabilities to the controller.

Recurrent layers can process previous states and examine the
differences between them and the current states. This process
must take place from the first layer as the previous states can be
lost if the first layer is summing them with the simple neuron,
or complex convolution layers. The original NAF agent was not
able to utilize recurrent networks as first layers, due to the replay
memory that was used, as it was mixing the time-series of the
dataset with random polling. To overcome this issue, episodic
memory was defined, together with random shuffling of episodes
and no shuffling of time-series. Then, the network was provided
with windowed data that preserved the states of each experience.
In comparison, the standard replay memory was creating image-
based data by assorting randomly time-series next to each other.
The extended NAF agent (eNAF) (Procedure 3) was using the cur-
rent data as the primary layer, and was filling the memory cells
with the windowed data as they were recorded in observations.

Observations of the environment were saved as time-series,
and then those time-series were saved in their episode, according
to their timestamp. When the experience was called, memory
function was randomly picking episodes and not the actual time-
series. Afterwards, the random episodes were attached next to
each other, offering continuity in sensor data except where the
episode was changing. The outcome was a time-based experi-
ence and not the usual image-like experience that other mem-
ory methods offer. Fig. 7 demonstrates the differences between
image-based data and time-based data. In real-world robots, the
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Procedure 2: LPG(Rotational Pseudocode flow)
Data: IMU & Position sensors
hile Robot is ON do
read current Data
Right = −(V1 · X3

+ V2 · X2
+ V3 · X + V4)

Left = V1 · X3
+ V2 · X2

+ V3 · X + V4
Set Rotational Force to V5
if Mid_Air then

if |Right| > 1 or |Left| > 1 then
if Right > 0 then

if R_angle < 5o then
Move Right Positive

else
Brake Right Actuator

else
if R_angle > −10o then

Move Right Negative
else

Brake Right Actuator

if Left > 0 then
if L_angle < 5o then

Move Left Positive
else

Brake Left Actuator
else

if L_angle > −10o then
Move Left Negative

else
Brake Left Actuator

else
if R_angle > 1o then

Move Right Negative
else if R_angle < −1o then

Move Right Positive
else

Brake Right Actuator
if L_angle > 1o then

Move Left Negative
else if L_angle < −1o then

Move Left Positive
else

Brake Left Actuator

abrupt change between each time-series can give meaningful
information about the dynamic change of states. Abrupt changes
usually happen when a robot must act quickly, however, if that
point is smoothed without the controlling algorithm noticing it,
the situation may worsen.

4. Experiments

In this project, the scenario used for experiments focused
n the abrupt change through a random push in intensity and
irection on the robot’s torso, which unbalanced it. The force
asted 500 ms, had a random direction in the transverse plane and
cted on SARAH’s main body. The robot was fully stabilized before
he force was applied, and the aim was for it to return to a stable
tate after making a series of small in-place steps (stationary
teps), as it could not micro-adjust its position. The robot would
eep taking steps until the balance parameter (Eq. (1)) is below
user defined threshold (Fig. 8).

table =
1

+
1

(1)

1 + 2IMUA−5 1 + 35−10·IMUG

5

Procedure 3: Pseudocode of eNAF
Initialize a Randomized Q Network with target network weights
Q (x, u|θQ ).
nitialize the Replay R.
hile New Episode do
Random process N to expand exploration.
Initial Windowed Observation x1−10.
Initialize Asynchronous Counter = 0
Select action ut = µ(x(t−1)..(t−11)|θ

µ) + N(t−1)..(t−11).
for New Timestep do

Record Observation xt and calculate reward rt .
Store States (xt−1, ut , rt , xt ) in Replay R.
Increase Asynchronous Counter
if Asynchronous Counter >= Asynchronous Period then

Sample a random batch of I Episodes from R
Calculate L transitions from the batch
Restructure and trim L to form Episodic Memory (E)
for continuity between all timesteps of different
episodes
for E do

yi = ri + γA′(xi+1|θ
Q ′

)
Update θQ to minimize
L =

1
N

∑
i(yi − Q (xi, ui|θ

Q ))2

Update Q model θQ
⇐H τθQ

+ (1 − τ )θQ ′

Reset Asynchronous Counter
Select action ut = µ(x(t−1)..(t−11)|θ

µ) + N(t−1)..(t−11).

Fig. 7. Differences between the conventional image-based data and the
proposed time-based data.

where, Stable: Heuristic variable for the robot’s stability. IMUA:
Acceleration magnitude of Main Body. IMUG: Rotational rate mag-
nitude of Main Body.

The equation was constructed heuristically in combination
with isolated experiments that were carried in the simulator.
During those experiments, the robot was not acting but was
pushed around with a random force (both in magnitude and
in direction) on its torso. The IMU data were collected with a
flag if the robot fell and when. Then, the 90% magnitude of
acceleration and rotation data of each experiment were plotted
in 3 dimensions, with the third axis being the time for the robot
to fall, if it did. The equation was fitted and normalized to 2
with a mean square error of up to 5%. The threshold was chosen
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Fig. 8. Stable as it was calculated from Eq. (1). The red plane shows the
actuation’s cut-off area; anything under this plane was not activating the motion
as it classified the state of the robot as stable.

when 0.1% of the experiments, where the robot was falling. The
experiments were executed for a 1.000.000 times in order to
supply a fair amount of points for an accurate equation.

Training took place entirely in V-REP Pro Edu simulator with-
out the use of the physical robot. The lower-level controllers were
executed every 10 ms inside the simulator, while receiving new
parameters every 1 s from the RL algorithm, running through an
external python script. The algorithm trained the linear LPG, then
the hip LPG and finally the abductor LPG in consecutive order.
In order to keep a balance between the different training runs
and not to over-train(overfit) any of the LPGs, the reward was
designed so that each LPG will affect certain part of the reward
more than others. Additionally, for the linear LPG training, the ac-
tivation (push) force was limited in the forwards and backwards
directions with a magnitude that will destabilize the robot but not
tip it over. For the hip LPG, magnitude force limit was removed
and for the abduction LPG all limitations on the force were lifted.
Each LPG was trained for one million time-steps which resulted
in 3500 − 4000 episodes.

The eNAF agent used a complex reward function to improve its
erformance based on the robot’s performance but not connected
o its dynamics. Other rewards may relate the reward with the
ynamics of the environment or the model, like acceleration,
hich guides the reward to a solution. By allowing the agent to
6

use a decoupled reward, it has more freedom to explore possible
solutions at the expense of training time and the possibility of no
conversing to a solution. The main reward function (Eq. (2)) was
calculated on each time-step and was summed at the end of each
training episode.

r = (1 − Cm[x]) · (1 − Cm[y]) · Cm[z] · 2−(S−3)2 (2)

where, Cm[x−y−z]: Move of CoM in x-y-z axis in absolute metric
value.

S: In-place steps per second.
The parameters Cm[x−y−z] were creating a concave 4 dimen-

sional reward that was at the highest point only when Cm[x] and
Cm[y] were at the origin, and Cm[z] was at the maximum height
of the robot (95 cm). The parameter that considered the steps
per seconds was designed as a negative square function with its
center moved to 3, which was the desired speed. Three steps per
second produced an average speed of 1.425 m/s (step length of
47.5 cm, which is the target stepping speed of 5 km/h (1.39 m/s).

In order to fairly reward the robot, the first 2 s were given a
zero reward as the agent could not improve the scene because
the robot was free-falling from 3 cm and then stabilized soon
after. The main reward was activated after the 2 s, as the force
was activated between 1.5 s to 2 s and thus was crucial for the
next 3 s. During that time, the robot must take steps to stabilize
its body and then stop moving after the 5th s. The agent was
penalized by reducing the reward through dividing it by 100 after
the fifth second as the agent must stabilize the robot in just 3 s
period (between 2 − 5 s of the simulator). If it was achieving
stability, the reward function was turning to zero, thus after the
5th s the reward function was omitting the Steps per second
parameter of the reward if the robot was stable. The omission of
the parameter was increasing the reward, similar to having the
parameter equal to 1 (Eq. (3)).

rs = (1 − Cm[x]) · (1 − Cm[y]) · Cm[z]/100 (3)

If it was unstable, the reward was lower as the parameter will be
less than 1 (Eq. (4)).

ru = (1 − Cm[x]) · (1 − Cm[y]) · Cm[z] · 2−(S−3)2/100 (4)

Graphically, Fig. 10 demonstrates how the reward will be evolved
if the robot does not move from the origin and achieve ±3, ±2,
Fig. 9. Fundamental gait for balancing after a random push in the transverse plane on SARAH’s torso.
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Fig. 10. Reward during an episode with ±3, ±2, ±1, 0 Steps per second
ifference from the target of 3 Steps per second.

1, 0 Steps per second from the targeted 3 Steps per second during
− 5 s while being stable (Eq. (3)) after 5 s.
For the eNAF agent, three NNs were designed to be the ac-

or, Q-Value and Advantage function, respectively, for each LPG.
emory was necessary, particularly from the environment, thus

he actor and Q-Value networks included recurrent layers from
he input layer. The networks had alternating layers of Long–
hort Term Memory (LSTM) and normal (Dense) layers, as is
emonstrated in Fig. 9. After systematic experimentation with
ifferent network architectures. The final network for the actor
ad four LSTM-Dense alternations, with 256 − 256 × 80 −

0 × 80−80 × 256−256 neurons per layer. The Q-value network
ad the same architecture but with 80 − 80 × 32 − 32 × 32 −

2 × 80 − 80 neurons per layer. As for the Advantage function
etwork, the memory was not crucial, as the network was used
s a matrix multiplier capable of advanced learning, hence five
ense layers with 16 neurons each were enough to learn the

ystem’s dynamics.

7

able 1
PGs final parameters.
Training 1 Training 2 Training 3

P1 3.1 ± 0.1 H1 −3.7 ± 0.01 V1 0.3 ± 0.01
P2 1.1 ± 0.1 H2 1.9 ± 0.03 V2 −0.4 ± 0.03
P3 2.0 ± 0.1 H3 −0.1 ± 0.03 V3 0.5 ± 0.03

H4 0.9 ± 0.03 V4 −0.9 ± 0.05
H5 49 ± 0.1 V5 9.1 ± 0.1

The inputs of each network included the past 10 time-steps
resulting in a 100 ms memory. The actor and Q-Value networks
were having memory until their last LSTM layer, which forwarded
only its last (most current) values to the next Dense layer. For
the Advantage function, the windowed data were flattened on the
input with the observations as proposed in the original NAF algo-
rithm [21]. The outputs of all networks had the same connections
as the original NAF algorithm, hence the learning procedure did
not diverge from the original.

The robot was simulated in V-Rep Pro Edu Dynamic simula-
tor [20] with the industrially evaluated Vortex dynamics engine
for high precision realistic simulations [22]. The simulated en-
vironment was necessary to accelerate the training thorough
running continuously while avoiding physical wear and other
common problems normally faced in robotics experimentation.
The LPGs were coded inside the simulator to represent the close
relationship between the robot and its lower-level controllers as
they are part of the actuators. The controllers can achieve real-
time processing (up to 0.1 ms per pattern cycle), and they were
synchronized with the simulator’s computational cycles.

The higher-level system was designed externally, as a back-
end program written in Python, and utilizing the TensorFlow
library [23]. The use of TensorFlow allows the NN to be extracted
and used on the RPI3 for training and execution. Other important
packages used on the controller and are available on the RPI3
are keras [24] and keras-rl [25]. The lateral includes various RL
algorithms from which Normalized Advantage Function was cho-
sen for this project, as it can produce temporal outputs, and it is
better than other model-free algorithms [21]. The algorithm was
extended to include the use of time-based data as input in order
to extract time-domain dynamics that can be lost in image-based
data.

5. Results and discussion

The consecutive training was repeated twice to achieve further
tuning on the second time, as all the LPGs were pre-trained and
Fig. 11. IMU data from robot during evaluation.
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Fig. 12. Fundamental gait for balancing after a random push in the transverse
lane on SARAH’s torso.

Fig. 13. Trunk Movements in 3D space.

xpected to earn a higher initial reward. The high-level controller
as trained in the dynamic simulator (deep reinforcement learn-

ng) with the random force acting on the middle of the torso
s was described in previous section, and was changing/training
he parameters on the LPGs. The parameters stabilized to the
alues that can be seen in Table 1. Those parameters can cre-

te a fundamental gait of SARAH, which can withstand forces

8

of up to 100 N similar to the ones faced in the training sce-
nario. A validation experiment was set up similar to the training
experiment but without using the higher-level controller. This
demonstrated the capabilities of the robot under extreme scenar-
ios where the higher-level system is disconnected or powered off
due to power-saving measures or abnormalities.

A median gait, over the validation experiments can be seen
in Fig. 12 with the robot’s CoM moving in the side and front
view. The blue closed loop line shows the resulting gait as a
movement of the CoM. As the movement is in 3-dimensional
world, a straightforward representation was to present it through
the side and frontal view of the robot. Numbers 1, 2 and 3 from
the side view match the timing of numbers 1, 2 and 3 or 4, 5 and
6 of the frontal view based on which leg is moving.

For the evaluation experiments, torso movements and data
from the IMU (which is placed on the torso) were recorded for
analysis. An example of this data can be seen in Figs. 11 and 13.
In that example, the robot was pushed with a diagonal force of
30 N forward and 50 N from the left to the right. In Fig. 13, the
robot’s CoM is presented with the origin of the 3D spaces adjusted
to (0, 0, 0) at the 1.5 s when the force was applied to the robot.
As can be seen, the robot’s final position was just 5 cm on the
right and 2 cm backwards.

The x-axis position derivative can be used to extract the steps
per second as when the robot was making one step, its speed
in the x-axis was changing direction. That results in seven steps
(omitting the first direction change as it was due to the force)
during 3 s, hence 2.33 steps per seconds.

Additionally, by analyzing the IMU data with Fast Fourier
Transform (FFT), the vibration magnitude and the dominant fre-
quencies were extracted. This can be useful as the design of the
next prototype can incorporate materials that absorb those vibra-
tions and result in less noise, both acoustically and electronically.

To understand the external parameters and how they affect
the fundamental gait, the validation experiment was performed
with the parameters altered by ±50%, one at a time. Fig. 14
demonstrates how each parameter is modulating the fundamen-
tal gait. The yellow lines show the path that a particular point
will follow in order to modulate the gait based on the variables
of LPGs. Those paths were extracted after manually varying the
variables in the LPGs’ one by one. Through training in different
scenarios, the RL agent would relate different gait types to dif-
ferent values and correlate them with different environments.
This would result in a robot that can efficiently adapt to a new
environment with its two controllers working autonomously in

hybrid mode, while running at different execution speeds.
Fig. 14. How higher-level parameters change the final gait.
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. Conclusion

This article proposed a new control algorithm that combines
low-level/high-speed controller with a high-level/low-speed

ontroller to enable learning capabilities without sacrificing high-
peed actuation. The proposed controller was designed to take
dvantage of the power-efficient bipedal robot from Motion
obotics LTD. SARAH does not have a feedback loop on its ac-
uators to eliminate micro-adjustments that draw power in other
ipedal robots while they are not in use. The suggested controller
ffers smoother motions, as the lower-level system acts rapidly
ith speed up to 10 kHz (tested at 100 Hz as the dynamic simula-
or was too slow for the maximum speed which could be achieved
n the physical robot) based on a predefined fundamental gait.
dditionally, it eliminates stuttering as it executes a closed cyclic
attern continuously and blindly.
To control those blind movements, an RL algorithm was added

ierarchically on top of the lower-level system to adjust those
PGs. RL can offer learning through experience before deploy-
ent, as well as after deployment, while the robot is under
ormal use. The higher-level system has the possibility to con-
rol the fundamental gait and change it based on the environ-
ent’s requirements. Furthermore, as both controllers (LPG and
eep Neural Networks) are independent, they can be pre-trained
ffline, and the on-board training of the DNN can happen on
emand, reducing the power requirements of the robot for oth-
rwise power-hungry NN. That is a compromise between micro-
ontrollers that are not power-hungry with neural networks that
ave higher power and computational needs.
This project’s future work will include the robot’s training

nder different environments and the controller’s deployment
n the real robot. After applying the controller on the actual
obot, validation experiments will be conducted to compare the
imulated robot’s performance with the real robot in different
cenarios. Finally, an onboard training session will be conducted
o evaluate the performance and the time needed to adjust the
ait to fit the new environment.
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