
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Deep reinforcement learning with modulated Hebbian plus Q-networkDeep reinforcement learning with modulated Hebbian plus Q-network
architecturearchitecture

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1109/TNNLS.2021.3110281

PUBLISHER

IEEE

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

LICENCE

All Rights Reserved

REPOSITORY RECORD

Ladosz, Pawel, Eseoghene Ben-Iwhiwhu, Jeff Dick, Nicholas Ketz, Soheil Kolouri, Jeffrey L. Krichmar,
Praveen K. Pilly, and Andrea Soltoggio. 2021. “Deep Reinforcement Learning with Modulated Hebbian Plus
Q-network Architecture”. Loughborough University. https://hdl.handle.net/2134/16810543.v1.

https://lboro.figshare.com/
https://doi.org/10.1109/TNNLS.2021.3110281


TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Deep Reinforcement Learning with Modulated
Hebbian plus Q Network Architecture

Pawel Ladosz, Eseoghene Ben-Iwhiwhu, Jeffery Dick, Nicholas Ketz, Soheil Kolouri, Jeffrey L. Krichmar,
Praveen Pilly, Andrea Soltoggio,

Abstract—In this paper, we consider a subclass of partially
observable Markov decision process (POMDP) problems which
we termed confounding POMDPs. In these types of POMDPs
temporal difference (TD)-based RL algorithms struggle, as TD
error cannot be easily derived from observations. We solve these
types of problems using a new bio-inspired neural architecture
that combines a modulated Hebbian network (MOHN) with DQN,
which we call modulated Hebbian plus Q network architecture
(MOHQA). The key idea is to use a Hebbian network with rarely
correlated bio-inspired neural traces to bridge temporal delays
between actions and rewards when confounding observations
and sparse rewards result in inaccurate TD errors. In MOHQA,
DQN learns low-level features and control, while the MOHN
contributes to the high-level decisions by associating rewards with
past states and actions. Thus the proposed architecture combines
two modules with significantly different learning algorithms,
a Hebbian associative network and a classical DQN pipeline,
exploiting the advantages of both. Simulations on a set of
POMDPs and on the Malmo environment show that the proposed
algorithm improved DQN’s results and even outperformed con-
trol tests with advantage-actor critic (A2C), Quantile regression
DQN with long short term memory (QRDQN+LSTM), Monte-
Carlo policy gradient (REINFORCE) and aggregated memory
for reinforcement learning (AMRL) algorithms on most difficult
POMDPs with confounding stimuli and sparse rewards.

Index Terms—Biologically Inspired Learning, Deep Reinforce-
ment Learning, Partially Observable Markov Decision Process,
Decision Making.

I. INTRODUCTION

This material is based upon work supported by the United States Air Force
Research Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under Contract No. FA8750-18-C-0103. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Air
Force Research Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA). This work was also supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2020R1A6A1A03040570)

Pawel Ladosz was with Department of Computer Science, Loughborough
University, Loughborough LE11 3TU, UK. He is now with School of
Mechanical and Nuclear Engineering, UNIST, Ulsan 44919, South Korea
E-mail: pladosz@unist.ac.kr

Eseoghene Ben-Iwhiwhu, Jeffery Dick and Andrea Soltoggio are with the
Department of Computer Science, Loughborough University, Loughborough,
UK.

Nicholas Ketz and Praveen Pilly are with with Information and Systems
Sciences Laboratory, HRL Laboratories, 3011 Malibu Canyon Road, Malibu,
CA 90265, USA

Soheil Kolouri is with the Computer Science Department at Vanderbilt
University, Nashville, TN, 37235. This research was performed when he was
with the Information and Systems Sciences Laboratory, HRL Laboratories,
Malibu, CA, 90265

Jeffrey L. Krichmar is with Department of Cognitive Sciences, Department
of Computer Science, University of California, Irvine, Irvine, CA, 92697, USA

Manuscript submitted to Special Issue on Biologically learned/inspired
methods for sensing, control and decision making, October, 31, 2020

IN this paper we address a sub-class of partially observable
Markov decision processes (POMDPs) problems which

we termed confounding POMDPs. Confounding POMDPs
are characterised by two aspects which are problematic for
reinforcement learning (RL) algorithms: i) observations from
the same set occur at random locations in the POMDP (we
call such observations confounding observations) and ii) both
positive and negative rewards are rare. Note that not all
POMDPs are confounding, for example, using a single frame
from Atari Breakout as a state is a POMDP as the agent
has no information of the ball’s direction and velocity. Non-
confounding POMDPs can be solved with a memory system.
In Atari Breakout one can stack multiple frames to derive
an markov decision process (MDP) state [1]. However, in
confounding POMDPs even memory-based approaches fail [2]
because the histories of observations do not repeat (due to
observations occurring at random locations through POMDP),
thus the underlying state cannot be easily inferred from
observations. The sparsity of the reward implies that many
such uninformative observations occur in between rewards. The
result is that TD errors cannot be computed if the state cannot
be derived either from the present observation or a history,
or alternatively, they become quickly inaccurate due to sparse
rewards. Confounding observations and sparse rewards are
common in many scenarios for example, when driving across
a town from point A to B, cars parked to the side of the road
are not useful landmarks, whereas junctions or buildings are.
Cars parked on the side of the road are creating confounding
observations as they occur randomly in the problem and are
irrelevant to a task of getting from A to B. Also, in this example,
the reward might be rarely provided, i.e. not at each correct
turn, but only when the destination is reached.

One way to apply RL to POMDP is to try to derive a state
from the history of observations, and thus LSTM has been
employed in [3]–[6]. Another notable LSTM-based approach
was shown in [7], where action and states are combined and
inserted into the network as a single input resulting in more
observable states. LSTMs were even used with hierarchical
reinforcement learning to solve some types of POMDPs [8].
One of the more recent approaches called AMRL [9] combines
LSTM-based memory with a latent space averaging over time
to boost the signal to noise ratio in the latent space to solve
POMDP problems. To deal with sparse rewards (in a non-
POMDP setting) [10], proposed the use of “recurrent neural
networks (RNNs) with concrete”, which remembers states for
longer by using multiple RNNs connected in series. [11]
used differential neural computing to solve POMDPs requiring



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

memory. Other memory types, which do not rely on neural
networks, were also developed. For example, in [12] the agent
stores a certain number of past states and retrieves relevant
states when necessary. Zhang et al. [13] introduced continuous
memory states to better deal with problems in the continuous
domain. Such memory-based approaches, while effective in
many cases, suffer in cases in which observations derive from
a large set, and thus histories do not repeat. While the training
phase for an LSTM could provide the network with the ability
to discard confounding observations, in practice this is often
hard to achieve.

There exist other methods that do not rely on memory,
for example, [14] introduced option-observation initiation
sets, to work with options from [15] to make them suitable
for solving POMDPs. Another method is based on the well
known probabilistic inference for learning control (PILCO)
algorithm [16] in [17]. That work proposes two additions for
PILCO: i) direct training and ii) filtering to deal with noisy
state space. Generative models were used to update beliefs
about the environment in [18]. These approaches do not suffer
from non-repeating histories, but require dense rewards.

To address the challenges of solving confounding POMDPs,
we propose an approach called modulated Hebbian plus Q
network architecture (MOHQA). The architecture is composed
of two parts: a standard DQN network, and a layer of reward-
modulated Hebbian network [19], [20] with neural eligibility
traces (MOHN), parallel to the Q-network head that contributes
to decision making. The combination of two learning modules
in one architecture differs from Backpropamine [21], [22].
In Backpropamine, Hebbian learning and backpropagation
are used on the same connection, where backpropagation
determines the utilization of the Hebbian component. In
Backpropamine, Hebbian component does not result in a
permanent weight increase and is nullified at the end of
each episode. In essence Hebbian connections are used for
a within-episode memory, while backpropagation is used to
learn scaling factors, thereby deciding when and how much
of a Hebbian component to use within episodes. On the other
hand, in MOHQA, Hebbian components result in a permanent
weight increase. Also MOHQA is utilizing sparse correlations.
Moreover, Backpropamine has only been shown to work in
a very limited setting in reinforcement learning with a single
layer network and a 1-dimensional state space.

In the proposed architecture, DQN acts as a feature provider
via convolutional layers to the MOHN, and contributes to the
final decision in equal measure as the parallel MOHN. The
addition of MOHN helps DQN discriminate between pivotal
decision points and confounding observations, thus gaining a
learning advantage in confounding POMDP problems. MOHN
uses two key mechanisms: i) rarely correlated eligibility traces
to associate a state-action pair with reward and ii) Hebbian
learning for rapid learning from few examples. The ability of
the modulated Hebbian-like network with rare eligibility traces
to bridge temporal gaps between events and rewards and rapid
learning from few examples was demonstrated in a spiking
neural model in Izhikevich [23], and an equivalent model for
rate-based neurons was shown effective in simulations and
robotics applications [20], [24], [25].

Eligibility traces, which is one of MOHQA’s key mecha-
nisms, is not new in reinforcement learning [26], [27]. However,
eligibility traces in MOHQA use forward view and implement
a rare (or sparse) correlation mechanism that distinguishes
MOHQA’s traces from traditional reinforcement learning ones,
such as SARSA(λ), Q(λ) or Monte Carlo methods (which
are special case of eligibility traces approach when λ = 1)
such as REINFORCE. While forward view and backward
view eligibility traces are largely equivalent, rare correlations
give MOHQA two distinct advantages. Rare correlation means
only a small percentage of all weights are considered for an
update for a given state-action pair. This means that, compared
to traditional reinforcement learning, MOHQA (i) has the
increased ability to perform well with pure rewards signals,
(ii) has the ability to cope with noise in the feature space (a
problem that has been recently discussed in great detail in [9]),
by ignoring the noisy inputs and only focusing on significant
input features.

The architecture is tested on a set of generalized
reward-based decision problems that include confounding
POMDPs. Tests include comparisons with a baseline DQN [1],
QRDQN+LSTM [3], REINFORCE, A2C [28] and AMRL [9].
Our simulations show that MOHQA can solve confounding
POMDPs which DQN cannot, and is even able to outperform
A2C, memory-based AMRL and REINFORCE by at least
33% in more complex scenarios (see Fig. 1). To the best of
the authors’ knowledge, the proposed approach is the first
application of a combined modulated Hebbian and DQN
network to improve learning in the presence of partially
observable Markov states.

II. CONFOUNDING POMDPS PROBLEMS

In this work, confounding POMDPs are represented as
environments where leading-to-reward decision points, occur
occasionally and are separated by confounding wait states
where a fixed policy is required, e.g., wait action. This is
a fairly common case in robotics and games. In the driving
analogy we made above, key decision points are at junctions,
while wait states are those along straight segments where
parked cars are confounding stimuli. The challenge of the
confounding POMDPs derives from i) a large number of
confounding observations and ii) the sparsity of the reward.
Here we encode those type of problems within two benchmarks
i) a graph-based benchmark with 2d synthetic inputs we named
configurable tree graph (CT-graph) and ii) a well known 3D
benchmark, Malmo [9], [12].

A. CT-graph Environment

The CT-graph is an abstraction of the decision-making
process and it allows designing confounding POMDPs with the
measurable complexity and partial observability in quantifiable
metrics (see Fig. 2 for pictographical representation). A CT-
graph can be thought of as a tree-like decision graph with two
types of nodes (i) decision states (where the CT-graph branches
into multiple sub-trees) and (ii) wait states (where the tree
does not branch). Actions are also of two types: wait-actions
and act-actions.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

(a) (b)

Fig. 1: Selected performance of MOHQA on benchmarks considered in this paper. (a) Comparison of results in a very complex
POMDP set in CT-graph. MOHQA outperforms all other baselines by at least 33%, (b) Comparison of results in Malmo
benchmark. MOHQA is outperforming AMRL, DQN and A2C by at least 33%.

…

R
1

2

N

Random wait state (s) 
from set of N states, 

Three different 
states for 

decision points
s ⇠ U(0, N)s ⇠ U(0, N)

s ⇠ U(0, N)s ⇠ U(0, N)

s ⇠ U(0, N)s ⇠ U(0, N) s ⇠ U(0, N)s ⇠ U(0, N)

s ⇠ U(0, N)s ⇠ U(0, N)

s ⇠ U(0, N)s ⇠ U(0, N)

p

p

pp

p p
p

s ⇠ U(0, N)s ⇠ U(0, N)

Hidden Markov decision process for a CT-graph with breadth=2, depth=1

agent

CT-graph

obs. Ot

action
At

reward 
Rt

Rt+1
Ot+1

O
pe

nA
I G

ym
 A

PI

POMDP

conf
parameters

hidden
MDP

visual 
observations set

BA Agent-environment interaction Observation/decision graph renderingC

H W D
a0,Pr=1-p

W

W

E

E

home wait decision

C a1..n

a1..n

a1..n

a1..n

a0

a0, Pr=p

a0, Pr=1-p,

a0, Pr=p

a0, Pr=p

a0, Pr=1-p

a0..n

a1

a2

a0

crash end

 R=1

Fig. 2: The CT-graph problem. (A) The agent-environment interaction is similar to the standard RL with the difference that the
environment provides observations. (B) Representation of the hidden Markov process: the wait-action a0 is required at wait
states, while act-actions a1 and a2 are required at decision points. The panel shows a unit (with one branching point) that can
be repeated to obtain arbitrarily large problems. (C) Graphical representation of the observations and decision for a CT-graph of
depth 2, i.e., two sequential branching points.

A reward is located at one particular leaf node in the tree
graph (Fig. 2(C)). The agent is required to perform wait-actions
while in a wait state. While while at a decision point the agent
chooses from a set of act-actions, where the specific act-action
chosen determines the path that the agent follows along the
tree. Wait states lead to themselves with a delay probability p
or to the next state in the sequence with probability 1− p. At
each decision point there are b options corresponding to the
branches in the sub-trees of a particular decision point. The
number of decision points between home and reward state is
the depth d of the tree graph. The environment has an optimal
sequence of actions that leads to one unique leaf of the tree
graph that returns a reward of one. The branch factor b, the
depth d, the delay probability p, and the sets of observations are
configurable parameters, making this problem a blueprint for
a large set of benchmarks, from simple to extremely difficult
problems for medium to large size graphs (Fig. 2).

a) CT-graph as a confounding POMDP problem.: The
specific configurations of the CT-graph that realise confound-
ing POMDPs are where wait state observations are chosen
randomly from a large set N and reward is sparse (the delay
probability p is high). Such a setup represents a decision-
making process in which confounding observations (wait states)

Fig. 3: Bird’s eye view of maze used in this paper. The structure
of the maze with two decision points and four endings can be
noticed. The teal block signifies position of the reward.

are more common than decision points. With this property, we
observed that RL agents cannot easily learn optimal policies as
histories do not repeat and TD error estimates are inaccurate.

B. Malmo Environment

Malmo [29] is an environment based on the 3D game
Minecraft. The environment (Fig. 3) is configured with a similar
outline as the CT-graph, with junctions (similar to decision
states) which are separated by long corridors (similar to wait
for states). The reward is positioned at one leaf node (see a teal



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

square in Fig. 3). The agent receives no reward or punishment
for every other step.

At each step, the agent makes a discrete move either left,
right or forward. The forward action is equivalent to the wait-
action of the CT-graph while left/right are decisions. To help
with exploration speed, the backward action is disabled and
a step forward after each turn action is performed. Stepping
forward after each turn means: i) the agent can only take one
turn in a decision point; ii) if a left/right action is taken in a
corridor, the episode is terminated. Those two simplifications
stopped the agent from rotating on the spot during exploration.

a) Malmo as a confounding POMDP problem.: The
problem in Malmo is a confounding POMDP as the some
corridor states look similar to each other regardless of the
location in the maze, and therefore affect the ability to compute
the TD-error. For example, the corridor after the first turning
point looks the same regardless of whether the agent chose
the left or right action. While histories are easier to use here
than in the CT-graph, it is still challenging to extract what is
useful to remember due to the same observations appearing at
different places in the problem space.

For more details about the environments please see Appendix
3.

III. THE MODULATED HEBBIAN PLUS Q NETWORK
ARCHITECTURE (MOHQA)

In this section a brief description of MOHQA architecture
is provided, followed by a description of two key components
in MOHQA: DQN and modulated Hebbian network (MOHN)
and their integration.

MOHQA is composed of two main parts: a deep Q-network
[30] (DQN), and a modulated Hebbian network (MOHN) that
is plugged into the Q-network as a parallel unit to the DQN
head (Fig. 4). DQN’s main contribution is providing high-
level features to MOHN, while MOHN’s main contribution is
decision making.

A. DQN description

MOHN is a one layer network which is intended to work
on high level features, thus it needs a ’supplier’ of high level
features. In this work DQN is used but, in theory, any deep
reinforcement learning approach could have been used instead
of DQN. The DQN follows the implementation from [30] 1.
A DQN is used to approximate the optimal Q-value function,
defined as

Q(s, a)? = max
π

E[rt + γrt+1 + γ2rt+2

+ ...|st = s, at = a, π],
(1)

where rt is the reward at time t, st is the state at time t, at is the
action at time t and π is the policy. To solve instability issues
caused by representing action-value pairs with the network,
Minh et al., [30] proposed two innovations i) experience replay
and ii) a target network that is only periodically updated. Note,
Φ− and Φ denote set of parameters of target and predictor

1We used the implementation of that work from Shangtong Zhang URL:
https://github.com/ShangtongZhang/DeepRL

networks respectively. The parameters Φ− are updated with
Φ every K steps. The output of the DQN body is a set of
features that are used as input to both the MOHN and DQN
heads. The layers and sizes of the DQN body are summarized
in supplementary Material 1.

Both the DQN head and the DQN body are trained by back
propagation to minimize the TD error [30].

B. MOHN Description

In this section discussion of key mechanisms allowing
MOHN to solve confounding POMDPs and its formulation is
presented.

1) Associating stimulus-action pairs with distal rewards by
means of MOHN: The MOHN in this work is an adaptation of
a bio-inspired, unsupervised and modulated Hebbian network
proposed in [20], [23]. In those studies, a Hebbian modulated
network was shown to cope with two challenges of confounding
POMDPs — sparse rewards and confounding stimuli — outside
a RL framework, i.e. when neither states nor TD errors are
defined. It is worth reiterating that, in confounding POMDPs,
the TD error computation is inaccurate and cannot be used to
propagate the Q-values. Moreover, even memory does not help
to solve the problem as the history of observations maps to
a large space due to stochastic observations, making learning
history of action-observations ineffective. The MOHN solves
sparse reward and confounding stimuli problems by using rarely
correlated eligibility traces and Hebbian learning. Eligibility
traces do not rely on TD-error computation, instead they directly
associate activation of certain neurons with obtaining rewards
later; while rare correlation allows MOHN to cope with noise
in inputs, grow weights without instability and utilize all the
weights efficiently. Additionally, as MOHN is utilizing Hebbian
learning, it can have a high learning rate without instability
issues. The result is that observations-action pairs are effectively
associated with later rewards by means of traces, weights
responsible for an action are updated rapidly, and intervening
events between actions and rewards are “ignored”.

2) MOHN learning mechanism using STDP-inspired plas-
ticity and neural eligibility traces: The learning mechanism
in MOHN can be briefly summarized as follows. An action
taken in a state triggers a number of traces for weights between
highly correlated input/output neurons. The traces are decayed
exponentially with each step. At each step, weights are either
decreased if the agent did not score or increased if the agent
scored. This mechanism enables the network to find the correct
association between actions and rewards with intervening
confounding stimuli, thus avoiding shortcomings of propagating
TD-error.

To be more specific, neural eligibility traces generation
mechanisms use two principles: (i) causal relationships between
observation and actions, and (ii) sparse correlations. The causal
relationships are derived by applying the Hebbian multiplication
rule to successive, rather than simultaneous, simulation steps,
so that Hebbian terms capture the contribution of presynaptic
activity to the activity of a postsynaptic neuron, similarly to
the Spike-timing-dependent plasticity (STDP) rule. This is
also sometimes called an asymmetrical learning window [31].



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

3-layer
CNN

input
image vo

reward

12x12x1

BP loss

16-feature
space

MOHN
actions

vb

FC 
256x16

DQN body

DQN 
head

vmo
16x3

tracesvmi

vdi vdo
FC 16x3

FC 16x3

gradient of 
TD error 

Sig

SigTanh

Relu

slow BP updates slow BP updates

fast Hebbian updates

Q-values

Fig. 4: Graphical representation of the MOHQA. The DQN body feeds the feature space to both the DQN head and the MOHN.
The action-value vector is the sum of the outputs of the two heads. The learning in the MOHN is regulated by modulated
Hebbian plasticity. The learning in the DQN network is performed by back propagation.

Sparse correlations are explicitly imposed by selecting the top
θ% and bottom θ% of correlations/decorrelations that loosely
map the concept of the STDP time window to a rate-based
model [24]. A modified Hebbian term Θ between a presynaptic
neuron i and a postsynaptic neuron j is updated according to
the equation:

Θpre→post(t) = 1 if vi · vj is in top θ%,
−1 if vi · vj is in bottom θ%,
0 otherwise,

(2)

where vi is the output values of the presynaptic neurons
equivalent to the input to the MOHN, vmi (Fig. 4), minus its
own running average to enhance the detection of changes in
the feature space and vj is defined as:

vj = Γ
(
vmo

)
, (3)

where vmo is an output of MOHN head and Γ is a function
that returns a one-hot vector with the 1 value at the index
of the maximum value (note that vi is used both in forward
pass and weight updates, while vj is used only for weight
update and vmo is used in forward pass). The one-hot function
has the purpose of increasing the traces for the weights that
are afferent to the action-triggering neuron. Finally, the neural
eligibility traces matrix E(t) is formulated based on Θ and a
time decay constant τE as

Ė(t) = −E(t)/τE + Θ(t) . (4)

To update weights, the traces matrix E(t) is multiplied with
modulatory signal (reward plus a small baseline modulation,
i.e., r(t) + b):

∆w(t) = (r(t) + b) · E(t). (5)

The weights are clipped in the interval [-1,1] to contain Hebbian
updates [32], [33].

C. Integration of DQN with MOHN

To integrate DQN with MOHN it is necessary to devise
an action selection mechanism between two head modules of
Fig. 4. Thus, the action is chosen by combining the outputs of
the two heads.

Outputs of both heads are combined to create the MOHQA
Q-values, vo, which are defined as:

vo = vmo + vdo = vmo +Q(s,A; Φ−i ), (6)

where s indicates that an observation is used to approximate
the state, even when this is incorrect due to partial observability.
Then action is chosen from MOHQA Q-values as follows:

ab = arg max
a

(vo), (7)

To help DQN learn features in the desired state, the loss
function uses the difference between best action as indicated by
the Q-value of both DQN and MOHN and Q-value indicated
by the DQN:

L(Φ) =E(s,a,r,s′) U(D)

(
r + γmax

ab
vo(s

′, ab,Φ
−
i )

−Q(s, a; Φi)
)2
,

(8)

where Φ− are parameters from the target network and Φ
are parameters from the prediction network. A summary of
the full MOHQA algorithm is shown in Algorithm 1.

Where xt is observation from the environment and φ(·) is
a function normalizing color between 0 and 1.

IV. RESULTS

This section reports the analysis of how (i) learning mecha-
nisms in MOHN compare to those of REINFORCE and DQN;
(ii) the MOHN and new loss function enhances the features
from DQN to solve the POMDP problems; (iii) the MOHQA
compares against DQN, QRDQN+LSTM, REINFORCE, A2C
and AMRL in the CT-graph and Malmo benchmarks.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

Input: 1 observation xi
Initialize replay memory D to capacity N ;
Initialize DQN with random weights and MOHN with
zero weights

for episode = 1,M do
Initialise state s1 = x1 and preprocessed (normalized
state) φt = φ(s1)

for t = 1, T do
Compute vo using φ(st)
With probability ε select random action at
Otherwise select at = arg maxa(vo)
Execute action at, observe reward rt and image
xt+1

Update eligibility traces using Eq. 2 and 4
Update MOHN weights (Eq. 5)
Set st+1 = xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
foreach k steps do

Sample random minibatch of transitions
(φj , aj , rj , φj + 1) from D

Perform a gradient descent step according to
Eq. 8

end
end
Reset eligibility traces, reset averaging

end
Algorithm 1: MOHQA

A. Comparison of MOHN learning to DQN and REINFORCE

In this section, the MOHN’s learning mechanisms i) Hebbian
learning, ii) eligibility traces and iii) rare correlations are
contrasted against two other classical learning methods i) TD
learning in the form of DQN and ii) policy gradient in the form
of REINFORCE. For this comparison, we train a one-layer
network with each of the techniques and we remove the feature
extraction part. Then, we feed a high-level one-hot feature space
to one layer networks for the sole purpose of analysing the
learning of the head modules. To be exact, observations are
represented by 1-D vector of size k on two different scenarios:
i) with one element equal to 1 and all others equal to 0 to
show the importance of eligibility traces and high learning rates
and ii) with one element equal to 1 and all others assigned a
random value using 10% uniformly distributed random noise to
show the importance of rare correlations. The singular element
represents the unique observation (see Appendix 3 for state-
space visualization). Moreover, the training is performed in an
imitation learning-like fashion, where an agent is led to the
goal directly in each episode by an all-knowing oracle. Such a
simple state space and imitation learning mean that the task is
simplified to carry out the proposed analysis. All configuration
parameters are provided in the supplementary material 1.

1) Importance of eligibility traces and high learning rates
for quick learning: Fig. 5 shows the decision made at each
state at episodes 2, 5 and 10 for DQN, REINFORCE and
MOHN. As can be seen, MOHN can learn from fewer scoring
episodes than DQN and REINFORCE. This ability is vital in
sparse reward problems as a reward is encountered rarely and

needs to be utilized efficiently.
2) Importance of rare correlations for coping with noisy

inputs: Fig. 6 shows the same comparison between three
methods, this time with added noise 10% to the inputs (see
Appendix 3 for input space details). In this scenario, only
MOHN was able to learn correct decisions in 10 episodes. This
demonstrates another key mechanism of MOHN: utilization of
rare correlations. This experiment shows that MOHN exploits
rare correlations to make associations between key observations,
actions and rewards.

B. Analysis of feature learning.
To better understand the need for a new loss function L(Φ)

(Eq. 8) and how it affects feature learning (vb from Fig. 4),
three experiments are performed (Fig. 7): (A) in a one-decision-
point CT-graph, (B) in a two-decision-point CT-graph with
confounding observations, both using the standard DQN’s loss
function, and finally (C) a two-decision-point CT-graph with
confounding observations and the newly proposed loss function.
Each of the snapshots of learned feature space were taken after
the agent started consistently scoring maximum reward.

Fig. 7(A) shows the learned feature space output throughout
one episode. As expected, DQN learns similar high level
features from different observations if those require the
same action. Wait states that require the wait-action a0 are
distinguishable from decision points that require act-actions.

A similar situation is observed in a longer CT-graph with
two decision points and confounding observations Fig. 7(B).
In this case, the two decision points had unique observations,
thus making the problem observable, but only at decision
points. DQN learns two distinct features spaces one for wait
states and one for decision points. This is reasonable because
these two state types require either action a0 (wait state) or
actions a1 or a2 in the decision point. However, the network
is unable to distinguish between two decision points due to
issues with propagating TD-error through confounding wait
states. This confusion between the first and the second decision
point highlights a problem DQN faces when trying to solve
confounding POMDPs: if DQN cannot learn the path to the
reward, it cannot also learn the separate features that would
enable correct decisions.

Finally, in the third experiment, same environment is used
as in Fig. 7(B), but the newly proposed loss function is utilized
instead of the standard DQN’s one. In Fig. 7(C) the feature
space clearly shows a difference between the first and second
decision point. The MOHN, by suggesting optimal actions to
the DQN, was able to also lead the DQN to learn different
features for different decision points, which DQN alone could
not achieve. In this last test, the output values reveal the inner
working of the MOHQA architecture: DQN suggests the wait-
action at wait states, and expresses equal preferences for both
act actions a1 and a2. The MOHN contributes by biasing
the decision towards the act-action (either a1 or a2) that is
associated with the future reward.

C. Computational Speed and Memory Comparison
To analyse the computational effects of adding the MOHN

to DQN, MOHQA and DQN are compared in terms of



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Episode 2 Episode 5 Episode 10

Fig. 5: Decision made by DQN (1st row), REINFORCE (2nd row) and MOHN (3rd row) at episode 2 (1st column), 5 (2nd
column) and 10 (3rd column). The agents were guided to the goal manually for each episode to see how quickly they will
learn the correct path. The correct sequence of actions is to take action 0 in wait state, action 1 in the first decision point and
action 2 in a second decision point. MOHN is the fastest, while DQN is struggling to reach good decisions in a few episodes.

computational speed and GPU memory usage. Both DQN and
MOHQA are run for 100,000 episodes on the same machine
three times to minimize any variability in performance. The
results of these runs are summarized in tables I and II.

It can be seen that MOHQA is about 66% slower than the
original DQN implementations. This is mostly due to operations
in MOHN. In general backpropagation has been extensively
studied and improved over time and it has efficient libraries
written for it. On the other hand the learning mechanism
in MOHN is not currently optimized. In particular, some
operations such as finding maximum/minimum correlations
are very computationally expensive. Comparing memory, a
small increase of a GPU memory usage can be attributed to
the extra layer and associated eligibility traces storage.

Time (seconds) Steps Time per step
(milliseconds)

GPU memory
(per step)

419.51 278477 1.51 971
459.85 309650 1.49 970
463.97 309135 1.50 971

TABLE I: Computational cost of DQN

Time (seconds) Steps Time per step
(milliseconds)

GPU memory
(per step)

669.86 277243 2.42 1027
627.70 257465 2.44 1027
645.41 262397 2.46 1026

TABLE II: Computational cost of MOHQA

D. Comparisons in the CT-graph

Simulations were performed for a range of CT-graphs and
compared with TD-learning approach DQN; three memory
based approaches: classical QRDQN+LSTM, Backpropamine
and AMRL; policy based approach REINFORCE; and hybrid
of policy and TD-learning A2C2. It is worth noting that AMRL
is the most modern approach to compare against and it was
developed to cope with similar type of POMDPs requiring
memory. Backpropamine was implemented similarly to MOHN
only on a final layer of the network. This was done for two

2The simulation code for MOHQA is available at
https://github.com/pladosz/MOHQA.git.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

Episode 2 Episode 5 Episode 10

Fig. 6: Decisions made by DQN (1st row), REINFORCE (2nd row) and MOHN (3rd row) at episode 2 (1st column), 5 (2nd
column) and 10 (3rd column) in a problem with noise. The agents were guided to the goal manually for each episode to see
how quickly they learn the correct path. The correct sequence of actions is to take action 0 in wait state, action 1 in the first
decision point and action 2 in a second decision point. MOHN is the fastest, while DQN and REINFORCE are struggling to
reach good decisions in few episodes due to noise.

reasons. First, memory modules are normally implemented only
on a final layer [3]. Second, in their original implementation
[21], [22] the test in reinforcement learning settings was
done on the high-level features. Six simulations with different
seeds were run and averaged for each algorithm on each of
the CT-graph experiments. Memory in QRDQN+LSTM and
Backpropamine was truncated at the end of each episode, while
in AMRL truncation happened at the end of the iteration. We
tuned all hyper parameters manually to the best performance
of each baseline, for details regarding them see supplementary
material 1. In general we split benchmarks in the CT-graph
into two (rather arbitrary) categories: simple and complex,
where simple are ones which most approaches can solve, while
complex are ones where algorithms start to struggle.

1) Simple CT-graph problems: We run the the simplest
MDP version of the one-decision-point CT-graph (Fig. 8(a))
to verify the correctness of implementations. In Fig. 8(b), the
confounding observations are introduced to the CT-graph by
removing uniqueness from the wait states. MOHQA and other

approaches are able to solve the problem while DQN starts
to struggle as it cannot learn correct actions. Fig. 8(c) shows
the results on the simplest of two decision point CT-graphs
with delay probability of (p = 0) and depth of (d = 2). This
figure shows further advantage of MOHQA over DQN. Note
that the history of observations is still relatively simple as
histories repeat quite often, thus the good performance of
QRDQN+LSTMs (for analysis of histories of observations see
supplementary material 2).

2) The Complex CT-graph: For the complex CT-graph
problems, we compared MOHQA against A2C, REINFORCE
and AMRL. All tests are performed with depth (d = 2) and
three different configurations: i) p = 0.5, N = 64 (Fig. 9(a)),
ii) p = 0.9, N = 64 (Fig. 9(b)) and iii) p = 0.9, N = 500
(Fig. 9(c)), where N is the cardinality of the set of confounding
observations and p is the delay probability. The two-decision-
point CT-graph (Fig. 9(a)) shows very similar trends to the
simple CT-graph problems, with MOHQA still improving
on performance of DQN, achieving similar performance to



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

start
wait

decision
point wait

start
wait

decision
point wait

decision
point wait

start
wait

decision
point wait

decision
point wait

DQ
N 

bo
dy

 
16

-fe
at

ur
e 

sp
ac

e

(A) (B) (C)

DQN only DQN only MOHQA

Fig. 7: Features learned by the DQN without and with the MOHQA. (A) In a one-decision-point CT-graph, DQN correctly
learns that the observations before and after the decision points are the same, so the TD error cannot be computed. (B) In a
two decision-point CT-graph, DQN learns features that are the same for wait states and decision points: this allows navigation
to a leaf node but random actions are taken at decision points. (C) The MOHQA helps with selecting the correct actions, and
as a consequence, DQN learns different features for the two different decision points.

(a) (b) (c)

Fig. 8: Performance on the simpler versions of the CT-graph. (a) In an MDP benchmark test (each observation is unique,
and therefore reveals a unique state, p = 0): as expected, all algorithms learn the optimal behavior. (b) POMDP (p = 0.5,
N = 64): wait states provide similar observations: DQN starts to struggle and collects 50% of the reward. The addition of the
MOHN head means DQN is able to solve the problem better. (c) With a delay probability (p = 0), (d = 2) and confounding
observations (N = 64), MOHQA and QRDQN+LSTM appears to learn a a good strategy, while DQN performance drops.

(a) (b) (c)

Fig. 9: Performance on a more complex CT-graph. As simpler baselines’ performance has started deteriorating, A2C, REINFORCE
and AMRL algorithms are added for extra comparison. (a) The problem with increased delay probability (p = 0.5), depth of
d = 2 and confounding observations N = 64 shows extremely fast convergence of A2C, and a reduction of performance of
DQN, QRDQN+LSTM and Backpropamine. QRDQN+LSTM and Backpropamine might be struggling due to non-repeating
histories, while DQN might suffer from TD-error propagation problems. Albeit a bit slower to converge, MOHQA is able to
achieve the same performance as A2C. (b) The CT-graph with delay probability of p = 0.9, depth of d = 2 and confounding
state number N = 64 is an extremely sparse reward problem with confounding stimuli. On this problem MOHQA performs
on par with AMRL, while beating other approaches. c) The CT-graph with delay probability of p = 0.9, depth of d = 2 and
confounding observations N = 500 shows MOHQA outperforms all of the other approaches in very confounding POMDPs.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

Fig. 10: Comparison of results in Malmo benchmark. MOHQA
is outperforming AMRL, DQN, A2C and Backpropamine.

memory based AMRL. QRDQN+LSTM starts to struggle
due to significantly increased number of possible histories
of observations. Fig. 9(b) shows deterioration of performance
of A2C, QRDQN+LSTM, REINFORCE and DQN, to the
point where MOHQA and AMRL show significant advantage
of performance. Finally, in the most complex CT-graph
(Fig. 9(c)), MOHQA outperforms all other tested algorithms.
Wide confidence intervals are a consequence of the ’all or
nothing’ reward structure. This means that agents either tend
to know how to solve it and score 1 or they don’t know and
they score zero. Thus, a run that scored optimally in five out
of six seeds reports an average normalised fitness of 0.8 with
a standard deviation of +/- 0.14.

E. Comparison in Malmo Benchmark

The Malmo benchmark was configured as a maze with two
decision points (see Fig. 3). An agent requires 30 steps to get
from the home location to the end of the maze. Six simulations
with different seeds were run and averaged. Fig. 10 shows that
the MOHQA was able to achieve a higher average score than all
other baselines. The result shows that the advantage achieved
by MOHQA in the previous benchmarks is transferable to
different domains.

V. DISCUSSION

The confounding POMDP has proven to be a difficult
problem for DQN, QRDQN+LSTM, REINFORCE, A2C and
AMRL. The addition of the MOHN module to the standard
DQN allowed the newly proposed MOHQA to achieve higher
average scores than standard DQN. Such an advantage is
achieved by the ability of MOHN to distinguish important
decision states from confounding wait states and bridge the
temporal gap between state-action pairs and rewards.

REINFORCE and MOHQA appear to have very similar
weight update scheme, yet MOHQA shows very clear advantage
over REINFORCE. We hypothesise that this is a result of a
more effective extraction of cause-effect links with delayed
rewards because we use non-symmetrical Hebbian updates and
rare correlated traces, effectively generating hypotheses about
causal temporal links in the complex POMDPs dynamics, while
ignoring inherent noise in the feature space.

The ability to find important decision points and bridge state-
action-reward gaps was achieved using three key mechanisms:
i) a novel implementation of STDP-inspired eligibility traces,
ii) a novel use of modulated Hebbian learning in a deep RL
and iii) a new deep RL architecture that integrates DQN with
a Hebbian-based structure. STDP-inspired eligibility traces
bridge state-action-reward gaps, allowing MOHQA to solve
problems where TD-learning fails. Modulated Hebbian learning
(Eq. 2) allows large weight updates without gradient explosions.
This means learning happens quickly just from few scoring
examples, which is particularly useful when the agent finds a
reward rarely. The new deep RL architecture is used to guide
DQN to learn to follow a good policy so that it provides good
features to distinguish states. Each of the mechanisms is vital
in achieving good performance.

An interesting consideration is that the MOHN also appears
to be instrumental for guiding DQN to learn useful features.
Due to the confounding observations that are provided during
wait states, the baseline algorithms struggle to learn useful
features of the decision points, which are instrumental to
inform an optimal policy. Thus, learning the appropriate
features depends on the actions which in turn depends on
the features. While this chicken and egg problem is typical in
deep reinforcement learning, the proposed MOHQA appears to
facilitate the process of guiding the learning of useful features
by discovering cause-effect relationships and offering guidance
to the DQN underlying architecture.

It is worth noting that memory does not help to solve
problems in which the history of observations does not repeat
(see performance of QRDQN+LSTM and AMRL). Firstly,
recall that just like in real life, the exact history repeats itself
very rarely in the CT-graph (see supplementary material 2 for
detailed analysis). Secondly, the CT-graph and Malmo have
significant gaps between key states and rewards at all times.
Coping with those two problems require a significant number of
samples, which very quickly become computationally infeasible.
Even in memory approaches designed to find key states such
as FRMQN [12], key states are learned on small problem sizes.

MOHQA is a first proof-of-concept and was tested on a
limited set of sparse reward problems and compared with a
limited number of benchmark algorithms. Further tests with
other sparse reward problems, e.g., the Morris water maze
and some ATARI games, will be essential to test the full
potential of the approach. Yet, the present work suggests that
a fundamentally simple confounding POMDP casts insights on
the challenging problem of learning simultaneously a feature
space and a policy.

The proposed architecture, while proving effective and
posing a new learning paradigm, has some limitations. The
MOHQA is more complex than a standard DQN network, and
requires tuning of additional hyper parameters. However, to the
best of the authors’ knowledge, this is the first successful
attempt to combine a modulated Hebbian network with a
DQN network in a new RL architecture. An interesting future
research direction is to implement MOHQA with different deep
reinforcement learning algorithms such as A2C. This should
extend the capabilities and improve stability to allow solving
even more complex confounding POMDPs.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

MOHQA could also be used to help solve other prob-
lems such as autonomous driving and robotic delivery. In
autonomous driving, roads have different lengths between
junctions. Also, they are full of irrelevant features (cars,
pedestrians, different building etc.) and the key decisions
happen at the junctions. The reward is only given after reaching
its destination. This is similar to the type of problems MOHQA
has been able to solve. Other robotics tasks in stimulus-rich
environments, such as tasks in houses or public places, are
also full of confounding and changeable observations that
are problematic for RL algorithms that have been tested only
in video-game environments. In this paper, we suggest and
demonstrate that better algorithms are required to make RL
more applicable to real-world problems.

VI. CONCLUSION

This paper considers solving confounding POMDPs using
a new neural architecture (MOHQA) for deep reinforcement
learning. The key novelty in MOHQA is the addition of a
modulated Hebbian learning network with neural eligibility
traces (MOHN) to a standard DQN architecture. The objective
is to provide basic RL algorithms with the ability to ignore
confounding observations and delays, and associate key cause-
effect relationships to delayed rewards. It was shown that
the combination of DQN and MOHN can match and even
outperform more advanced algorithms such as A2C, AMRL and
QRDQN+LSTM on confounding POMDPs. While this is the
first proof-of-concept study to propose a combined Hebbian and
backpropagation-learned architecture for deep reinforcement
learning, the promising results encourage further tests on a
wider range of standard deep RL benchmarks.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
ArXiv, vol. abs/1312.5602, 2013.

[2] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Solving deep
memory pomdps with recurrent policy gradients,” in ICANN07, Max-
Planck-Gesellschaft. Berlin, Germany: Springer, Sep. 2007, pp. 697–706.

[3] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” in 2015 AAAI Fall Symposium Series, 2015.

[4] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control
with recurrent neural networks,” arXiv preprint arXiv:1512.04455, 2015.

[5] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu et al., “Learning to
navigate in complex environments,” arXiv preprint arXiv:1611.03673,
2016.

[6] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent policy
gradients,” Logic Journal of the IGPL, vol. 18, no. 5, pp. 620–634, 09
2009. [Online]. Available: https://doi.org/10.1093/jigpal/jzp049

[7] P. Zhu, X. Li, and P. Poupart, “On improving deep reinforcement learning
for pomdps,” ArXiv, vol. abs/1804.06309, 2017.

[8] T. P. Le, N. A. Vien, and T. Chung, “A deep hierarchical reinforcement
learning algorithm in partially observable markov decision processes,”
IEEE Access, vol. 6, pp. 49 089–49 102, 2018.

[9] J. Beck, K. Ciosek, S. Devlin, S. Tschiatschek, C. Zhang, and K. Hof-
mann, “AMRL: AGGREGATED MEMORY FOR REINFORCEMENT
LEARNING,” in ICLR 2020, 2020.

[10] T. Stepleton, R. Pascanu, W. Dabney, S. M. Jayakumar, H. Soyer, and
R. Munos, “Low-pass recurrent neural networks - a memory architecture
for longer-term correlation discovery,” ArXiv, vol. abs/1805.04955, 2018.

[11] E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory for
deep reinforcement learning,” ICLR, 02 2018.

[12] J. Oh, V. Chockalingam, S. Singh, and H. Lee, “Control of memory,
active perception, and action in minecraft,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, p. 2790–2799.

[13] M. Zhang, Z. McCarthy, C. Finn, S. Levine, and P. Abbeel, “Learning
deep neural network policies with continuous memory states,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 520–527.

[14] D. Steckelmacher, D. M. Roijers, A. Harutyunyan, P. Vrancx, and
A. Nowé, “Reinforcement learning in pomdps with memoryless options
and option-observation initiation sets,” in AAAI, 2018.

[15] D. Precup, “Temporal abstraction in reinforcement learning,” 2000.
[16] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and

data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on International Conference on Machine
Learning, ser. ICML’11. Madison, WI, USA: Omnipress, 2011, p.
465–472.

[17] R. McAllister and C. E. Rasmussen, “Data-Efficient Reinforcement
Learning in Continuous State-Action Gaussian-POMDPs,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 2040–2049.

[18] M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson, “Deep
variational reinforcement learning for POMDPs,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp.
2117–2126. [Online]. Available: http://proceedings.mlr.press/v80/igl18a.
html

[19] D. O. Hebb, The organization of behavior: A neuropsychological theory.
Psychology Press, 1949.

[20] A. Soltoggio and J. J. Steil, “Solving the distal reward problem with rare
correlations,” Neural computation, vol. 25, no. 4, pp. 940–978, 2013.

[21] T. Miconi, K. Stanley, and J. Clune, “Differentiable plasticity: training
plastic neural networks with backpropagation,” in Proceedings of the
35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018,
pp. 3559–3568. [Online]. Available: http://proceedings.mlr.press/v80/
miconi18a.html

[22] T. Miconi, A. Rawal, J. Clune, and K. O. Stanley, “Backpropamine: Train-
ing self-modifying neural networks with differentiable neuromodulated
plasticity,” arXiv, pp. 1–15, 2020.

[23] E. M. Izhikevich, “Solving the distal reward problem through linkage
of stdp and dopamine signalinig,” Cerebral cortex, vol. 17, no. 10, pp.
2443–2452, 2007.

[24] A. Soltoggio, A. Lemme, F. Reinhart, and J. J. Steil, “Rare neural
correlations implement robotic conditioning with delayed rewards and
disturbances,” Frontiers in neurorobotics, vol. 7, p. 6, 2013.

[25] A. Soltoggio, F. Reinhart, A. Lemme, and J. Steil, “Learning the
rules of a game: neural conditioning in human-robot interaction with
delayed rewards,” in 2013 IEEE Third Joint International Conference
on Development and Learning and Epigenetic Robotics (ICDL). IEEE,
2013, pp. 1–6.

[26] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[27] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare, “Safe
and efficient off-policy reinforcement learning,” in Proceedings of the
30th International Conference on Neural Information Processing Systems,
ser. NIPS’16. USA: Curran Associates Inc., 2016, pp. 1054–1062.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[29] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell, “The malmo
platform for artificial intelligence experimentation,” in Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, p. 4246–4247.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, p. 529, 2015.

[31] R. Kempter, W. Gerstner, and J. L. Van Hemmen, “Hebbian learning
and spiking neurons,” Physical Review E, vol. 59, no. 4, p. 4498, 1999.

[32] K. D. Miller and D. J. MacKay, “The role of constraints in hebbian
learning,” Neural Computation, vol. 6, no. 1, pp. 100–126, 1994.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

[33] A. Soltoggio and K. O. Stanley, “From modulated hebbian plasticity to
simple behavior learning through noise and weight saturation,” Neural
Networks, vol. 34, pp. 28–41, 2012.

Pawel Ladosz Pawel received the Meng (hons)
degree in aerospace engineering in 2014 from
Manchester University and a PhD degree in 2019
from Loughborough University, UK. He is currently
Research Assistant Professor at Ulsan National In-
stitute of Science and Technology (UNIST), South
Korea. His research interests include reinforcement
learning, robotics, optimization, deep learning and
communication relays.

Eseoghene Ben-Iwhiwhu Eseoghene received a
MSc Computer Science degree from Coventry Uni-
versity in 2017. and he is currently a doctoral
researcher at Loughborough University. His research
is focused on the development of intelligent agents
capable of lifelong learning and adaptation. To
this end, his research investigates the development
of neuromodulated neural networks, intersecting a
number of research areas including; neuromodulation,
neuroevolution, meta-reinforcement learning, deep
reinforcement learning, and Hebbian learning.

Jeffery Dick Jeffery Dick is a graduate student based
at Loughborough University. He earned his BsC in
computer science and mathematics in 2019 from
the same university, and uses his knowledge in both
subjects in his current research.

Nicholas Ketz Nicholas Ketz received his B.A. in
Physics from the University of Minnesota (2007) and
Ph.D. in Computational Cognitive Neuroscience from
University of Colorado Boulder (2016). He joined
HRL Laboratories as a post-doc and eventually a
research scientist within the Information and Systems
Sciences Lab and the Human Machine Collaboration
department. His work focuses on the intersection of
human and artificial intelligence; studying biological
systems and developing computational methods to
advance the fields of machine learning, cognitive

science and human neuroscience. Since 2018 he has been working on Lifelong
Learning and domain adaptation within the context of autonomous driving.

Soheil Kolouri Soheil Kolouri is an Assistant Pro-
fessor of Computer Science at Vanderbilt University,
Nashville, TN, where he directs the Machine Intel-
ligence and Neural Technologies (MINT) lab. He is
broadly interested in machine learning, computer
vision, and applied mathematics. He also has a
standing interest in computational optimal transport
and geometry. Before joining Vanderbilt, Soheil was
a research scientist and a principal investigator at
HRL Laboratories, Malibu, CA. He obtained his Ph.D.
in Biomedical Engineering from Carnegie Mellon

University, where he received the Bertucci Fellowship Award for outstanding
graduate students from the College of Engineering in 2014 and the Outstanding
Dissertation Award from the Biomedical Engineering Department in 2015.

Jeffrey L. Krichmar Jeffrey L. Krichmar received
the B.S. degree in computer science from the Uni-
versity of Massachusetts at Amherst, Amherst, MA,
USA, in 1983, the M.S. degree in computer science
from The George Washington University, Washington,
DC, USA, in 1991, and the Ph.D. degree in computa-
tional sciences and informatics from George Mason
University, Fairfax, VA, USA, in 1997. Currently,
he is a Professor with the Department of Cognitive
Sciences and the Department of Computer Science,
University of California at Irvine, Irvine, CA, USA.

He has over 20 years’ experience in designing adaptive algorithms, creating
neurobiologically plausible network simulations, and constructing brain-based
robots whose behavior is guided by neurobiologically inspired models. His
research interests include neurorobotics, embodied cognition, biologically
plausible models of learning and memory, neuromorphic applications and
tools, and the effect of neural architecture on neural function.

Praveen Pilly Praveen K. Pilly received the B.Tech.
degree in Electrical Engineering from the Indian
Institute of Technology Madras, Chennai in 2003,
and the M.A. and Ph.D. degrees in Cognitive and
Neural Systems from Boston University in 2008 and
2009, respectively. He was a Postdoctoral Research
Associate and a Research Assistant Professor at
Boston University from 2009 to 2012 and from 2012
to 2013, respectively. From 2013, he has been at
HRL Laboratories where he is currently a Senior
Research Scientist and the Leader of the Center for

Human-Machine Collaboration. He was a Principal Investigator (PI) in the
DARPA-funded RAM and RAM Replay programs. He was also the PI of
an internal R&D project, jointly funded by Boeing and General Motors, to
develop real-world applications of HRL’s neuromorphic technology. He is
currently the PI of the Super Turing Evolving Lifelong Learning ARchitecture
(STELLAR) project in the DARPA-funded Lifelong Learning Machines (L2M)
program to develop revolutionary brain-inspired continual learning and raxwpid
adaptation algorithms for autonomous systems. His research interests are in
learning and memory, cognitive and neural systems, artificial intelligence, and
neurotechnology. He has 24 journal articles, 12 conference papers, and 25 US
patents. Dr. Pilly is an Associate Editor for Frontiers in Human Neuroscience.



TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

Andrea Soltoggio Andrea Soltoggio received a B.Sc.
and M.Sc. equivalent degrees in computer engineer-
ing from the Norwegian University of Science and
Technology, Trondheim, Norway, and the Politecnico
di Milano, Italy, in 2004, and a Ph.D. degree in
computer science from the University of Birmingham,
UK, in 2009. Currently, he is a Senior Lecturer in
Computer Science at Loughborough University, UK.
His research interests include evolutionary compu-
tation, learning and plasticity in neural networks,
lifelong learning, and broader aspects of cognition

and intelligence.


	Deep reinforcement learning with modulated Hebbian plus Q-network architecture

