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Abstract. Condition monitoring has demonstrated its effectiveness in improving the economic return of 

wind turbines. However, a wind turbine consists of hundreds, even thousands, of mechanical, electrical and 

power electronic components. The failure of any one of them may lead to the shutdown of the turbine. For 

this reason, a variety of component monitoring systems have been developed dedicated to monitoring these 

different components. Consequently, a wind turbine usually needs to be monitored simultaneously by several 

different types of component monitoring systems that benefit wind turbine operation and maintenance to 

different extents. This not only increases the complexity of the hardware configuration but also increases the 

costs of the entire condition monitoring system. How to achieve a condition monitoring system that can 

monitor the most vulnerable components whilst bringing the most economic benefit to the wind turbine 

operator is an important question. The aim of this paper is to answer such a question with the aid of the Petri 

net modelling method. The model developed in the paper will investigate the influences of condition 

monitoring systems and fault detection using wind farm Supervisory Control and Data Acquisition (SCADA) 

system on the economic return of wind turbines, thereby providing a feasible tool for constructing an optimal 

wind turbine condition monitoring system. 

 

1. Introduction 

Climate change has motivated the rapid development of renewable energy industries in the 21st century. In 

April 2021, the European Union announced it will cut carbon emissions by at least 55% by 2030, compared 

with 1990 levels (BBC, 2021). It is predicted that wind power will continue to play a vital role in achieving 

this challenging goal. Although most wind turbines are still onshore, an increasing number of wind turbines 

are being deployed offshore due to better wind resources, less noise pollution and land use issues at offshore 

sites (GWEC, 2019). Offshore wind farms have largely expanded during the past decade and it is expected to 

grow at a rate of more than 94 GW per year until 2025 (GWEC, 2021). However, the current operation and 

maintenance (O&M) costs of offshore wind turbines (OWTs) remains as high as 30% of the overall cost of 

energy (May et al., 2015). In particular, due to the remote locations of OWTs, their inspection and 

maintenance are much more difficult than for onshore ones. 

In order to improve the reliability and availability of OWTs, condition monitoring techniques have been 

installed in many. Condition-Monitoring Systems (CMS) aim at detecting abnormal changes in the 

conditions that indicate a developing fault. The maintenance engineers are then able to perform the 

preventive maintenance based on the fault detected correspondingly, thereby avoiding catastrophic failures. 

This is known as condition-based maintenance (CBM). Many studies have been conducted to evaluate the 

feasibility and effectiveness of different Wind Turbine Condition-Monitoring Systems (WTCMS) for wind 

turbines. For example, Yang et al. proposed a new WT blade CM method based on the concept of 

transmissibility of frequency response functions (2015). Siegel et al. compared different vibration-based 

condition monitoring algorithms for wind turbine drive trains and discussed the effectiveness of these 

algorithms on the gear tooth problems and bearing-related failures, respectively (2014). Yang and Jiang 

investigated the potential values of Supervisory Control and Data Acquisition (SCADA) data for wind 

turbine condition monitoring and O&M (Yang & Jiang, 2011). 

Despite these efforts, a fundamental question remains unanswered, i.e. how to achieve a condition 

monitoring system that can monitor the most vulnerable components whilst bringing the most economic 

benefit to the wind turbine operator. This paper aims to develop a mathematic simulation model using Petri 



 

nets (PN), which is able to evaluate the impact of different monitoring systems on the reliability, availability, 

and O&M cost of the OWTs. 

The remaining part of the paper is organised as follows. In Section 2, a typical OWT structure, the 

monitoring systems considered, and the maintenance strategies adopted are defined; In Section 3, the PN 

modelling technique is briefly reviewed; In Section 4, four different PN models are developed for describing 

the maintenance activities in offshore wind farms; In Section 5, the simulation results obtained using the PN 

simulation including the average number of repairs conducted in different scenarios and the corresponding 

maintenance costs are discussed; In Section 6, the paper concludes with key research findings and potential 

future works. 

 

2. Structure, Maintenance Strategies, and CMSs of the Offshore Wind Turbine 

 

2.1. Structure of the OWT 

To facilitate mathematical modelling, a gear-driven OWT composed of six critical subsystems is considered 

in the research. The six subsystems are the rotor system, yaw and pitch (YP) system, drivetrain system, 

braking system, power system, and turbine structures, respectively. The brief description of each subsystem 

is given below. 

• The rotor system is composed of the blades and the hub. 

• The function of the yaw and pitch system is to adjust the blade pitch angle and orientation of the rotor 

to optimise the power output and maximise the wind energy conversion. 

• The drivetrain system consists of the main shaft and a gearbox. 

• The braking system locks the wind turbine position in non-operational mode during the maintenance 

of the wind turbine or extreme weather conditions. The braking system is used to slow down the rotor 

when the wind speed is beyond the cut-out speed of 25 m/s (Dalgic et al., 2015; Abdollahzadeh et al., 

2016). 

• The power system converts mechanical torque into electrical power and transfer the frequency and 

voltage of the electricity generated to match grid requirements. 

• The turbine structures include a nacelle, tower, and foundation. 

In the study, it was assumed that any subsystem failure would cause the turbine to shut down. In addition, 

the health state of these subsystems is classified into three categories, i.e. healthy, fault, and failure. The 

wind turbine is able to operate normally if all the subsystems are in a healthy state. When a minor fault 

occurs in a subsystem, it is assumed that the subsystem is still able to work but it will generate abnormal 

conditions which could be detected by CMS. When a fault develops into a failure, the wind turbine will be 

shut down immediately. The natural degradation process of each subsystem is assumed to follow a Weibull 

distribution, and the parameters are derived based on the wind turbine failure rate data published in open 

literature (Le & Andrews, 2016; Leigh & Dunnett, 2016). The scale parameters (η) in the distributions for 

computing the times from ‘normal’ to ‘fault’ and ‘failure’ are estimated based on the assumption that the 

time spans in the two scenarios will cover 70% and 30% of the Mean Time to Failure (MTTF) respectively 

of the corresponding subsystems. The MTTF of each subsystem is the inverse of the failure rate listed in 

Table 1. 

 

Subsystem Annual failure rate (/year) 

Rotor 0.0868 

Drivetrain 0.0600 

Power system 0.1430 

YP system 0.1534 

Braking system 0.0799 

Structure 0.0790 

TABLE 1. Failure rate of wind turbine subsystem 

 

 



 

2.2. Maintenance strategy 

Three different maintenance strategies (Nakagawa, 2005), i.e. corrective maintenance, periodic maintenance, 

and condition-based maintenance, are adopted to improve the reliability and availability of the turbine. The 

corrective maintenance is conducted after a subsystem failure occurs. It should be noted that after corrective 

maintenance has been carried out, a full inspection of the turbine will be carried out. The condition-based 

maintenance is the maintenance carried out after a fault is detected. Hence, its effectiveness is highly 

dependent on the fault detection capability of the CMS installed in the wind turbine. To use maintenance 

resources (e.g. maintenance staffs, vessels, service time, etc.) more efficiently and minimise unnecessary 

investigations, the periodic maintenance in the study is delivered via two levels of service, namely ‘basic 

service’ (BS) and ‘advanced service’ (AS), as described in (Yan & Dunnett, 2021). BS aims to fix the issues 

that may occur frequently but are difficult to monitor and may accelerate the degradation of the turbine 

components, such as the looseness of bolts, insufficient lubrication, etc. By contrast, AS requires more 

expensive maintenance resources to inspect all the subsystems of the wind turbine so that those faults that are 

not detected by the CMS can be revealed. 

 

2.3. Condition monitoring systems considered 

There are mainly two types of WTCMSs available in the commercial wind market (Yang et al., 2014). The 

first one is designed based on the Supervisory Control and Data Acquisition (SCADA) systems. The 

SCADA system integrated in all modern wind turbines is originally designed for the operation of wind 

turbines by monitoring energy generated and confirming the operation status of the turbine (Kuseyri, 2015). 

It records data using high frequency sampling and transmits 10 minutes averaged values back to the 

operators. The parameters monitored usually includes active power output, generator currents and voltages, 

wind speed, turbine and generator shaft speeds, gearbox bearing temperatures, generator bearing 

temperatures, average nacelle temperature and so on. Abnormal statuses in any of these components’ 

conditions are able to trigger alarms. Many wind power companies have applied the SCADA-based 

condition monitoring because it is available at no or very low additional cost (Yang et al., 2014). However, 

these alarms could be too frequent if the detection margins are set to be too narrow. This is because the 

environmental conditions such as wind speed around the wind turbines are never constant and could change 

dramatically in a short period of time (especially at sea). In addition, SCADA systems do not collect all the 

signals which are capable to fully monitor the health statuses of all the turbine components. Also, data 

change such as an increase in the generator bearing temperature is a late stage indication of a fault, which 

means there might not be a large enough time window for repair before it develops to a failure. 

The second one is the CMSs specifically designed for wind turbines. There have been many technologies, 

for example vibration analysis, oil particle counter, and ultrasonic testing, applied to the condition 

monitoring of wind turbines, some of which are already in commercial applications (Yang et al., 2014). 

Different CMSs with various capabilities are able to monitor different components/subsystems of the 

turbines. Although they do have a positive impact on ensuring the availability and reliability of wind 

turbines, their high cost is always an issue. In this paper, the CMS of the OWT considered consists of 

vibration analysis and oil particle counter whose cost is relatively low compared with others (García 

Márquez et al., 2012; Yang et al., 2014). 

Both monitoring systems are installed in the OWT considered in the research. The subsystems they can 

monitor and their detection capabilities assumed are listed in Table 2 and are assumed based on expert 

knowledge and past literature (Yang et al., 2014). The detection capabilities include two aspects, i.e. (1) the 

time that the condition statuses monitored by the monitoring systems become abnormal; (2) the probabilities 

of successfully detecting the abnormal conditions. It should be noted that the time is assumed to follow a 

Weibull distribution and the scale parameters η are estimated based on the percentage of the MTTF after the 

occurrence of the fault of each subsystem. 

 

 

 

 

 



 

                 

 
 

Subsystem 

SCADA system CMS 

MTTF 

percentage after 

fault 

 
Detectability 

MTTF 

percentage after 

fault 

 
Detectability 

Rotor 20% 0.50 - - 

Drivetrain 25% 0.95 0 0.90 

Power system 25% 0.95 0 0.90 

YP system 10% 0.95 0 0.90 

Braking system 10% 0.60 0 0.90 

Structures - - 0 0.90 

TABLE 2. Fault detection capability for each subsystem of the OWT 

 

 

3. A brief review of Petri net-based modelling technology 

To understand the PN models developed in this paper, the basics of the PN modelling method are briefly 

reviewed. A PN is a direct bipartite graph that consists of three types of symbols, namely circles, rectangles, 

and arrows as illustrated in Figure 1. Bigger circles represent the places, which are conditions or states of a 

system, such as failure. Coloured patterns inside the circles are used in order to differentiate between 

different places as described in (Yan & Dunnett, 2021). The condition place, marked with yellow-horizontal-

lines in the figure, means that the model will perform predefined actions if the conditions set for the place are 

met. The place filled by red-vertical-lines means that the simulation will be ended if a token is placed in it. 

Small solid black circles are used to represent tokens in the places. Rectangles represent the transitions, 

which are actions or events causing the change of condition or state. If the time of the transition is zero, the 

rectangle will be filled black, otherwise it is empty. Arrows, known as arcs, in the figure are used to connect 

places and transitions. Arcs with a slash on and a number, n, next to the slash represent a combination of n 

single arcs and the arc is said to have a weight n. The dashed arrow shown in the figure is a conditional arc. 

It means if the transition connecting to the arc is enabled, the probability of the expected tokens being 

produced in the output places is predefined. In addition, an arc with a small circle on one end is known as an 

inhibitor arc. This can prevent a transition from firing when enabled. A transition is enabled if the number of 

tokens in every input place is greater than or equal to the corresponding weights of the arcs to the transition. 

Once a transition is enabled, it will fire after the time associated with it and the tokens will be removed from 

the input places and put into the output places according to the weight of the corresponding arcs. The 

movement of the tokens gives the dynamic property of the PNs. 

FIGURE 1. Different symbols used in the PN models (Yan & Dunnett, 2021)  

 

 



 

4. Dynamic PN modelling of the O&M of an offshore wind turbine 

The following four PN models are developed to simulate the O&M of an OWT. 

• Operation Petri net (OPN) – for simulating the normal operation and periodic maintenance of an 

OWT. In the OPN, the design life of the turbine and the interval of the periodic maintenance will be 

defined. 

• System Petri net (SPN) – for simulating the degradation, the health state of the turbine subsystems 

over time, and the shutdown of the turbine due to failure. 

• Detection Petri net (DPN) – for simulating fault detection by the monitoring systems. 

• Recovery and Maintenance Petri net (RMPN) – for simulating the process to prepare and conduct the 

maintenance when a subsystem fails or a subsystem fault is detected. 

These PNs work together and communicate with each other as required. It should be noted that the OPN 

and SPN are two core models for the simulation, their structures will not change over the process. The other 

two PN models (i.e. DPN and RMPN) will join the simulation only when they are required. This is achieved 

by importing new places, transitions, tokens, and connections (i.e. arcs) defined in DPN and RMPN models 

into the existing PN structure. They will be removed from the simulation when the assigned PN simulation 

task is completed or cancelled. The details of the nets are discussed in the following sections. 

 
4.1. Operational Petri Net (OPN) 

The OPN adapted from (Yan & Dunnett, 2021) aims to simulate the normal operation and periodic 

maintenance of an OWT as shown in Figure 2. In the figure, the top part of the PN governs the normal 

operation of the wind turbine within the design life. Transition ‘S1’ represents the time the wind turbine is 

designed to operate, which is set to be 20 years because it is the typical design life of modern wind turbines 

(Tchakoua et al., 2014; Santos et al., 2015; Leigh & Dunnett, 2016). A token produced in the place ‘End of 

design life’ after the firing of Transition ‘S1’ means the end of the operation of the wind turbine, which also 

refers to the end of one simulation. 

The second part of the PN labelled ‘periodic maintenance’ is developed to simulate the periodic 

maintenance of the wind turbine. Both levels of services, i.e. AS and BS described in the previous sections, 

are included in the model. Transitions ‘PM1’ and ‘PM3’ are the time intervals of the two levels of services 

BS and AS respectively. In the study, they are set to be 6 months and 2 years respectively. Transitions ‘PM2’ 

and ‘PM5’ are the times required for performing the ‘basic service’ and ‘advanced service’, which are 

assumed to be 1 day and 2 days, respectively. It should be noted that the turbine will be stopped during the 

services. If a token is produced in the place, ‘AS completed’, the RMPN will be embedded into the model for 

preparing and conducting the maintenance if any fault was detected during the periodic maintenance. It is 

assumed that all the faults can be detected successfully in an AS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Operation Petri net (OPN) (Yan & Dunnett, 2021).

 
 



 

4.2. System Petri Net (SPN) 

In the paper, the SPN is developed to simulate the degradation and the health state of the wind turbine 

subsystems over time and is modified based on the model developed in (Yan & Dunnett, 2021) to simulate 

the occurrence of abnormal conditions that can be detected by the CMS or SCADA system. As mentioned in 

Section 2, the natural degradation of the turbine’s subsystems is indicated by three health states, namely 

‘Normal operation’, ‘Subsystem fault’, and ‘Subsystem failure’ as shown in Figure 3. The degradation time 

from ‘normal’ to ‘fault’ is indicated by Transitions ‘W1’ to ‘W6’. Once a token is produced in any of the 

condition places ‘Subsystem fault’ except for the rotor, the DPN will be embedded into the model to 

simulate the fault detection by the CMS as required by the predefined condition. This is because the CMS 

installed for the OWT is not capable to detect the rotor fault in the study. If the subsystem fault was not 

detected by the CMS, the fault may continue to develop. Before the failure occurs, new abnormal conditions 

(e.g. increase in the bearing temperature) which is detectable by the SCADA system could appear. The times 

taken for them are modelled via Transitions ‘W7’ to ‘W11’. The firing of these transitions will also embed 

the DPN into the model. Once a subsystem fault is successfully detected by the CMS or SCADA system, the 

RMPN will be embedded into the model. 

 

 

 

FIGURE 3. System Petri Net (SPN)

 

 

 

If the fault was still not detected or repaired in time, the subsystem will fail eventually as modelled by 

Transitions ‘W12’ to ‘W17’. In the study, it is assumed that times associated with Transitions ‘W1’ to ‘W17’ 

satisfy Weibull distributions characterised by the parameters listed in Table 3. The shape parameters β in the 

distributions are assumed to be larger than 1 for all six subsystems in order to describe the increasing 

 

 



 

deterioration of the subsystems over time. Once a token is produced in the place, ‘Shutdown of wind 

turbine’, it means a critical subsystem of the turbine has failed. Hence, the RMPN will be embedded into the 

model. 

 

Transition 
Subsystem fault 

Transition 
Subsystem failure 

 year  year 

W1 β = 1.2 η = 8.06 W10 β = 1.2 η = 0.65 

W2 β = 1.2 η = 10.00 W11 β = 1.2 η = 1.25 

W3 β = 1.2 η = 4.90 W12 β = 1.2 η = 3.80 

W4 β = 1.2 η = 4.56 W13 β = 1.2 η = 1.15 

W5 β = 1.2 η = 8.76 W14 β = 1.5 η = 0.71 

W6 β = 1.2 η = 8.86 W15 β = 1.2 η = 0.35 

W7 β = 1.2 η = 2.30 W16 β = 1.2 η = 1.30 

W8 β = 1.5 η = 2.37 W17 β = 1.2 η = 2.50 

W9 β = 1.2 η = 1.75 - - - 

TABLE 3. Weibull distribution parameters for Transitions ‘W1’ to ‘W17’. 

 

4.3 Detection Petri Net (DPN) 

In the DPN, as shown in Figure 4, there is only one transition, ‘D1’, which governs the whole detection 

process in the net. The arcs, represented by the dashed arrow lines, connect Transition ‘D1’ with the 

condition places ‘Fault is detected’ and ‘Fault is not detected’. The probabilities that a token transfers to 

either of the two places are dependent on the fault detection capability of the CMS or the SCADA system as 

listed in Table 2. It is worth mentioning that this fault detection capability may be affected by many factors, 

such as the condition monitoring algorithm, types of the sensors, etc (Yang & Jiang, 2011). Once a token is 

produced in the place, ‘Fault is detected’, the RMPN will then be embedded into the model to prepare the 

essential maintenance resources and then fix the fault. If the fault is not detected, a token will be produced in 

Place ‘Fault is not detected’ and no further action will be taken. 

 

 

FIGURE 4. Detection Petri Net (DPN) (Yan & Dunnett, 2021). 

 

 

4.4. Recovery and Maintenance Petri Net (RMPN) 

The RMPN shown in Figure 5 is developed in (Yan & Dunnett, 2021) to simulate the preparation and 

implementation of the maintenance when any subsystem fails or a subsystem fault is detected by the 

monitoring systems or revealed during an ‘advanced service’. In the figure, once a subsystem failure occurs 

or a subsystem fault is detected, a repair request will be made via the instant transition, ‘M1’. Transition 

’M2’, which is assumed to be 12 hours, represents the time required to arrange the meeting for planning the 

maintenance. Also, Transition ‘M3’ is assumed to be 12 hours, which models the time required for planning 

and approving the maintenance. After the firing of Transition ‘M3’, the tokens produced in Places ‘Charter 

vessel’ and ‘Organise crews, tools and spare parts’ will enables the Transitions ‘M4’ and ‘M5’, respectively. 

These two transitions represent the actions for chartering the appropriate maintenance vessel and organising 

maintenance crews, collecting maintenance tools, and preparing spare parts. Their times are assumed to be 

20 days and 10 days respectively. Once all the preparation works are completed, a token will be generated in 

Place ‘Travel to site’, which indicates the maintenance vessel is ready to depart. The time for reaching the 

 

 



 

OWT is assumed to be 3 hours which is represented by Transition ‘M7’. The onsite preparation time 

assumed to be 2 hours is denoted by Transition ‘M8’. The actual maintenance time, indicated by Transition 

‘M9’, is assumed to be 1 day for repairing all faults or 7 days for recovering the subsystem from the failure. 

It is worth noting that all parameters used in the models developed above are only for facilitating model 

development. Theses parameters can be updated according to the actual situations of the OWT in practical 

applications. Finally, a token will be produced in the place, ‘Maintenance completed’, and the RMPN will be 

removed from the model when the maintenance is completed. The new health state of the corresponding 

subsystem will be fed back to the SPN. This is achieved by removing the token in the corresponding place, 

‘Subsystem failure’ or ‘Subsystem fault’, and placing a new token in the corresponding place, ‘Normal 

operation’, in the SPN. 
 

 

FIGURE 5. Recovery and Maintenance Petri Net (RMPN) (Yan & Dunnett, 2021). 
 

5. Simulation results and discussions 

In order to evaluate the effectiveness of the monitoring systems on the wind turbine, the PN models proposed 

in the previous section can be used for simulation. The following are the simulation assumptions: 

• The CMS and the SCADA system have no hardware reliability issues. 

• The subsystem fault and failure caused by natural disasters are not considered. 

• The impact of the weather condition on the maintenance is not considered. 

• The health state of a subsystem after maintenance is regarded as good as new. 

• The false alarms generated by monitoring systems are not considered. 

• The ‘Advanced service’ and ‘Basic service’ are assumed to be conducted every 2 years and 6 months 

respectively. 

Then, based on the data listed in Tables 1, 2, and 3, the simulation calculation is carried out. It is found 

that the simulation results finally converge to stable values after about 50,000 simulations. To ensure the 

reliability and convergence of the calculation results, 100,000 simulations will be performed for all the 

simulations in the research. 

The effectiveness of the CMS and the SCADA system installed on the wind turbine is investigated. The 

average number of failures and the number of faults detected by each monitoring system and the average 

times of maintenance conducted within the design life of the wind turbine are calculated via the simulation. 

The calculation results are listed in Table 4. 

 

 

 
  

 

 

 



 

 
Subsystems 

 
Failure 

recovered 

Fault 

repaired after 

being 

detected 

Fault repaired 

after full 

inspection 

Fault 

detected by 

CMS 

Fault 

detected by 

SCADA 

Rotor 0.142 0.357 1.565 0.000 0.363 

Drivetrain 0.001 1.801 0.135 1.766 0.047 

Power system 0.009 3.824 0.241 3.696 0.156 

Bearing system 0.007 4.246 0.148 3.964 0.311 

Braking system 0.009 2.079 0.140 2.026 0.066 

Structures 0.044 1.990 0.163 2.006 0.000 

Sum 0.212 14.297 2.392 13.458 0.945 

TABLE 4. The average number of subsystem failures and subsystem faults 

 

From the table, it is found that the number of subsystem failures causing the shutdown of the turbine 

within its lifetime is 0.212 although 16.689 subsystem faults are repaired in total before developing to 

failure. Also, from the simulation results obtained, the effectiveness of the monitoring systems defined as the 

probability of the fault being detected (𝑃𝑑) can be calculated via equation (5.1). 

 

 

It is found that the effectiveness of the monitoring system consisting of the CMS and the SCADA system 

is about 0.852. In addition, 93.44% of the faults detected are found by the CMS, which indicates the 

effectiveness of the SCADA system being used as an additional monitoring system is limited. However, the 

installation of the CMS on an offshore wind turbine could be expensive (García Márquez et al., 2012; Yang 

et al., 2014). Hence, the actual effectiveness of the SCADA system is important to evaluate whether the wind 

turbine only monitored by the SCADA system could be more cost effective than the one installing both the 

CMS and the SCADA system. In addition, as some of the SCADA systems generate false alarms too 

frequently, the operators may decide to ignore the alarms generated by the SCADA system (Yang et al., 

2014). Therefore, the impact of removing the fault detection ability of the SCADA system on the wind 

turbine should also be investigated. 

The simulations are then conducted for the wind turbine system without the CMS and the one without the 

SCADA detection respectively. By assuming the average costs for repairing a subsystem failure, a fault 

detected by monitoring system, and a fault revealed during period maintenance to be £40,000, £12,000, and 

£5,000 respectively, the overall cost for maintaining the availability of the wind turbine through its lifetime 

can be calculated and the results are listed in Table 5. It should be noted that these costs are deduced based 

on (McMillan & Ault, 2009; Le & Andrews, 2016; Leigh & Dunnett, 2016; Yan & Dunnett, 2021). 

From the results in Table 5, it is found that if only the SCADA detection is adopted, most of the faults 

will be revealed during the periodic maintenance rather than detected by the monitoring system. Also, the 

number of failures is increased by about 280% without the CMS. This will certainly lead to a longer 

downtime and a lower availability of the wind turbine. On the other hand, it is noticed that the combined use 

of the CMS and the SCADA system could save about £160,000. It also suggests that if the cost of CMS is 

over £160,000, it will not be cost-effective based on the data used in the study if we do not consider about 

the availability of the wind turbine. 

 

 
 
 

 

 

 

𝑃𝑑 =
𝐹𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐶𝑀𝑆 + 𝐹𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑆𝐶𝐴𝐷𝐴

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑒𝑝𝑎𝑖𝑟 + 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑
 (5.1) 



 

 

Monitoring system 

configuration 

 

Failure 

repaired 

Fault repaired 

after being 

detected 

Fault repaired 

after full 

inspection 

 

Overall 

cost (£) 

CMS and SCADA detection 0.212 14.297 2.392 268,351.21 

SCADA detection only 0.798 5.458 8.708 428,146.45 

CMS only 0.592 13.338 2.839 410,870.13 

TABLE 5. The overall maintenance cost with different monitoring system configurations 

 

On the other hand, if the operators decide to completely ignore the alarms from the SCADA detection and 

only rely on the detection of the CMS, the overall maintenance cost will be increased by about £140,000, 

which is similar to the cost when only the SCADA detection is adopted. Therefore, the effective of SCADA 

should not be neglected even if the CMS is installed on the wind turbine. However, a better monitoring 

algorithm might be necessary to reduce the false alarms generated by the SCADA system. 

 

6. Conclusions 

To achieve an optimal design of a wind turbine condition monitoring system, a new PN model is developed 

in this paper. With the aid of the model developed, the effectiveness of the CMS and the SCADA system 

ensuring the reliability and availability of the offshore wind turbine and their impact on the maintenance cost 

are studied and assessed. From the research reported above, the following conclusions can be made: 

1. Using the CMS on the offshore wind power is an effective way to reduce the maintenance 

cost and improve the availability of the wind turbine. However, the associated cost of the 

CMS should not be higher than £160,000 based on the data used in the research. 

2. Periodic maintenance is essential to achieve the economical operation of OWTs especially 

when there is no CMS installed. 

3. The fault detection by the SCADA system should not be ignored for achieving an optimal 

wind turbine condition monitoring system. 

It should be noted that the failure of the monitoring systems, the possible false alarms they could generate 

and the responses to them are not modelled in the study. In the future, their impact on the O&M of the OWTs 

will be investigated. In addition, the impact of extreme environmental events such as earthquakes and 

typhoons, on the reliability and availability of OWTs should also be considered. 
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