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Abstract

Automated flow cytometry (FC) data analysis tools for cell population identification

and characterization are increasingly being used in academic, biotechnology, pharma-

ceutical, and clinical laboratories. The development of these computational methods

is designed to overcome reproducibility and process bottleneck issues in manual gat-

ing, however, the take-up of these tools remains (anecdotally) low. Here, we per-

formed a comprehensive literature survey of state-of-the-art computational tools

typically published by research, clinical, and biomanufacturing laboratories for auto-

mated FC data analysis and identified popular tools based on literature citation

counts. Dimensionality reduction methods ranked highly, such as generic t-distributed

stochastic neighbor embedding (t-SNE) and its initial Matlab-based implementation

for cytometry data viSNE. Software with graphical user interfaces also ranked highly,

including PhenoGraph, SPADE1, FlowSOM, and Citrus, with unsupervised learning

methods outnumbering supervised learning methods, and algorithm type popularity

spread across K-Means, hierarchical, density-based, model-based, and other classes

of clustering algorithms. Additionally, to illustrate the actual use typically within clini-

cal spaces alongside frequent citations, a survey issued by UK NEQAS Leucocyte

Immunophenotyping to identify software usage trends among clinical laboratories

was completed. The survey revealed 53% of laboratories have not yet taken up auto-

mated cell population identification methods, though among those that have, Infini-

cyt software is the most frequently identified. Survey respondents considered data

output quality to be the most important factor when using automated FC data analy-

sis software, followed by software speed and level of technical support. This review

found differences in software usage between biomedical institutions, with tools for

discovery, data exploration, and visualization more popular in academia, whereas

automated tools for specialized targeted analysis that apply supervised learning

methods were more used in clinical settings.
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1 | INTRODUCTION

Flow cytometry (FC) is an important analytical technique for single-

cell population identification and characterization. It is widely used

within biotechnology, pharmaceutical and clinical laboratories, and

biomanufacturing spaces. Reproducibility and rigor in results are very

important, driven by the needs of regulators around the world, how-

ever, a major source of variation in FC lies within data analysis [1].

Conventional FC data analysis involves sequential manual selection

(gating) of regions of interest typically in two-dimensional scatter or

contour plots, viewing different combinations of parameters as axes.

The analysis is straightforward with three- to four-color immunofluo-

rescence data but becomes significantly more complex when examin-

ing an increasing number of cellular markers, leading to increasing

human operator variation and issues of reproducibility [2, 3]. Current

state-of-the-art flow cytometers are capable of measuring over

40 parameters, generating challenging complex, and time-consuming

multidimensional data sets for manual analysis [4–6].

The past decade has seen a growth in the field of computational

FC as researchers become increasingly motivated to solve the process

bottlenecks, and reproducibility issues in manual gating, and improve

standardization in immunophenotyping [7]. New automated data anal-

ysis software packages have emerged, making use of a range of differ-

ent machine learning and clustering algorithms to replicate or aid

manual data analysis tasks such as; data preprocessing, cell population

identification and enumeration, feature extraction, and sample classifi-

cation [8]. Visualization of data processed through algorithmic ana-

lyses is an essential aspect of analysis workflows, and is often

embedded in the automated analysis itself, therefore making the dis-

tinction between pure analysis tools versus visualization tools some-

what blurred. Graphical outputs aid quality control checking and

enables understanding and interpretation of the data. Examples of FC

visualizations can be: (a) cell populations color-coded according to

clustering results displayed on classic biaxial dot plots, (b) grouped

populations in nodes arranged in the form of spanning trees, and (c)

mapping of high-dimensional data to two-dimensional scatter plots

representing data similarities, with color-coded cell clusters.

These data-driven automated algorithms have been demon-

strated to improve the quality of flow cytometry data compared with

centralized manual analysis, with potential benefits in lower technical

variability in certain cell populations, reduced bias, and better effi-

ciency [9]. Given the proliferation of such algorithms, verification

methods to ensure correct choice would be recommended. It would

be sensible for all users to contextually develop their own robust test-

ing measures for automated analysis. However, this raises subjectivity

issues if testing was based on users' own biological knowledge, com-

pounded by the fact that there are no common toolsets to achieve

this apart from real-world data sets which do not necessarily have an

absolute cell count, and are inflexible compared with the potential of

synthetic data.

Typical workflows in computational cytometry can be divided

based on tools used for discovery versus targeted analysis, that is, the

detection of unknown, novel cell populations compared with known

well-defined ones. In both contexts, automation can help to reduce

variability in the data analysis process. In discovery mode, automated

tools can help uncover cell populations overlooked in sequential man-

ual gating strategies, such as cells gated out in earlier steps. The value

of automated tools in discovery mode is especially notable in facilitat-

ing the interpretation of high dimensional (>30) data, as the data can

be reduced and visualized in two dimensions. These tools assist with

the data exploration process, help to give an overview of the structure

of the data, identify relationships between variables and offer novel

insights. For comparison, in targeted analysis mode, the cell

populations of interest are well characterized, the data analysis pro-

cess follows a standard protocol that is likely to be validated and

approved, for example, in clinical flow laboratories carrying out high

throughput screening; measurement of clinical trial endpoints for

hematological malignancies. The benefit of automated tools here may

be in reducing the workload on users by automating the classification

of healthy or disease cases, only flagging up uncertain cases for man-

ual interpretation, thereby speeding up the data review process.

As the number of automated software increases, comparison

studies have become important to provide guidance for users to

determine which software to use for their analysis, and to evaluate

the performance of the software. The flow cytometry: critical assess-

ment of population identification methods (FlowCAP) consortium ini-

tiated a series of open challenges to objectively evaluate these new

computational methods [10, 11]. FlowCAP provided benchmarking

data sets to critically assess performance in population identification

and sample classification tasks and used the F-measure (the harmonic

mean of precision and recall) to rank the algorithms. These rankings

helped inform potential users on the quality of automated methods

based on different tasks. FlowCAP demonstrated certain automated

methods were able to reliably replicate manual gating.

Several other recent comparison studies have evaluated selected

unsupervised clustering methods in their abilities to reproduce manual

gating, detect rare cell populations and their runtimes. Among those,

one study [12] identified FlowSOM [13] as the best performing clus-

tering method along with the fastest runtimes. X-shift [14],

PhenoGraph [15], Rclusterpp, and FlowMeans [16] were also men-

tioned to perform well across six high dimensional data sets. A sepa-

rate study [17] assessed FLOCK, SWIFT, and ReFlow on their ability

to detect low-frequency populations compared with central manual

gating. SWIFT was found to outperform the others in terms of the

identification of populations <0.1%. This study noted the difficulties

in implementing a fully automated workflow without human interven-

tion. In addition, one study [18] evaluated the reproducibility and

robustness of results based on the cluster stability using the Jaccard

coefficient as the performance metric. PhenoGraph was observed to

generate the highest proportion of stable clusters compared with

SPADE1 and FLOCK.

Despite these recent benchmarking studies, uptake of automated

analysis among academic, biotechnology, pharmaceutical, clinical labo-

ratories, and contract research organizational researchers has been

slow and manual gating remains the default method and standard.

Manual analysis can be performed on instrument-packaged software
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(e.g., Becton Dickinson FACS Diva, BD FACS Canto, Beckman Coulter

Navios) or stand-alone FC analysis software (e.g., FlowJo, FCS

Express, Kaluza, VenturiOne). The primary reasons for clinical centers

not employing automated analysis were recently cited as being a lack

of trust/understanding and lack of resources [19]. In this regard, this

novel analysis of automated software provision and use presented

here is intended for researchers and process operators familiar with

FC who do not necessarily have a computational background, who are

interested in implementing automated methods into their data analy-

sis workflow and require a better understanding of the opportunities

for automated software package selection.

This analysis begins with a comprehensive literature survey to

identify the most frequently used tools in the past 10 years in FC

automated data analysis software. Popular software are identified

based on literature citations, then their common features are outlined

to allow the determination of the toolset most relevant to individual

need. In addition, automated data analysis software adoption trends

from front line clinical laboratories are identified through a survey,

and insights are provided on the reasons uptake of certain software is

higher than others.

2 | SEARCH STRATEGY

The goal of this research was to understand current trends in auto-

mated data analysis software, the characteristics of these software,

and identify which software were the most popular (although this is

not a measure of most effective software). Software mentioned in

recent reviews [10, 12, 17, 18, 20] were included. In addition, the

Web of Science (WoS) database was searched using the following

keywords; flow cytometry, automated, analysis. Using this search

strategy, 89 software were identified from recent reviews and

108 publications were returned from the WoS database, typically

output from research, clinical and biomanufacturing facilities. The

WoS search strategy was designed to be as comprehensive as possi-

ble, although some tools may have been missed due to the frag-

mented nature of the field, such as FLOW-MAP force-directed

graphs [21] and scaffold maps [22]. Use of additional keywords such

as “computational” may have highlighted more software, however,

in practice, the records retrieved from the database were either too

restrictive with the AND Boolean search operator, or excessively

broad with the OR search operator. After removing duplicates, the

software identified in the search were refined based on the follow-

ing specifications.

Inclusion criteria:

• Software is detailed in a publication from a peer-reviewed journal.

• Publication type: article.

• Software for flow cytometry or mass cytometry.

• Software for automated cell population identification (gating).

• Software intended for identification of human or mammalian cells.

• Software source code is available, or the program is made accessi-

ble by authors.

Exclusion criteria:

• Software lacking publication from a peer-reviewed journal.

• Publication type: conference proceedings, reviews, editorial mate-

rial, book chapters. This exclusion criteria were applied in order to

capture work that applied the data analysis software rather than

just citing their use.

• Software unrelated to flow cytometry or mass cytometry technique.

• Software solely for automated data preprocessing, compensation,

transformation, or other quality control feature.

• Software unrelated to the identification of human cells (e.g., beads,

phytoplankton, bacterial identification) to focus the scope on cell

therapy and medical applications.

• Software source code not provided, or program inaccessible.

Certain proprietary software that fell into the exclusion criteria

include automated cell identification features in FACS Diva (Becton,

Dickinson & Company [BD]), Kaluza (Beckman Coulter), FlowJo (BD),

FCS Express (De Novo Software), Gemstone (Verity Software House),

and VenturiOne (Applied Cytometry).

The number of software matching the criteria was refined to 51.

Once shortlisted, software popularity was ranked according to the num-

ber of article citations. The sum total of the number of citations across

all 51 software was 2027. Citing articles were refined to those matching

“cytometry” as a keyword, included articles, and excluded conference

proceedings, reviews, editorial material, and book chapters.

Additional software would have been identified if the search

strategy were broadened to include automated single-cell analysis

approaches from other technologies (e.g., RNA-sequencing analysis

software in genomics, single-cell imaging, single-cell proteomics), and

indeed many tools are transferable between different omics domains,

however, this was beyond the scope of this work.

3 | GENERAL FINDINGS AND TRENDS

As of the end of 2019, this search strategy has been completed sev-

eral times on an annual basis and has currently identified 51 auto-

mated flow cytometry software (Table S1). The earliest software was

released in 2008 and subsequent years saw the number of different

software released ranging from 1 to 6 per year, except for 2014 when

a peak of 11 software were published (Figure 1A). When considering

the country of origin, the USA has led the development with 29 soft-

ware, followed by Canada with six software. Outside of North Amer-

ica, some European studies have come from The Netherlands,

Belgium, France, and Germany (4, 2, 2, and 2 software, respectively).

Australia and Singapore have also produced two apiece (Figure 1B).

The environment in which users interact with the software range

from basic command line inputs to full graphical user interfaces (GUI).

This survey found 41% of software could be accessed with a GUI,

compared with 59% without GUIs (Figure 1C). A caveat here is that

although most likely to have GUIs, as identified in section 2.0 proprie-

tary computational tools lacking peer-reviewed publications and with
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unavailable source code were excluded from our survey. Many of the

tools were available in multiple programming languages, offering FC

analysts a choice of integrated development environments. This sur-

vey found 59% of the software were available in R, 29% in Matlab

and 18% in Python (Figure 1D).

3.1 | Most used software

The findings from the literature survey revealed the top five most

cited automated data analysis software based on the search criteria

and exclusion criteria were: viSNE, SPADE1, t-SNE, PhenoGraph and

FLAME (Table S1). To balance out the effect of earlier software

releases accumulating more citations over time, the number of cita-

tions were averaged over the number years in publication leading to

an adjustment of the highest citation rates; viSNE, PhenoGraph,

SPADE1, FlowSOM, and t-SNE (Figure 2A). Changes in individual soft-

ware citations over time showed viSNE has been the top-cited soft-

ware for the past three consecutive years (Figure 2B), and a recent

rapid increase in FlowSOM citations, moving it from 23rd most cited

software in 2017 to 7th highest in 2019. viSNE has a higher citation

rate than its origin dimensionality reduction method t-SNE, suggesting

many authors consider these separate tools and neglect to cite the

original van der Maaten publication [23].

Software that provided a GUI were considerably more cited than

those without—command line-based software (Figure 3A). The com-

bined total number of citations for software with GUIs was 1459

compared with 613 for those without GUIs. Command line-based

software require computer programming knowledge, which acts as a

barrier to many biomedical researchers. Another factor that influences

software selection is cost and availability. There are three broad levels

of cost in accessing automated flow cytometry data analysis software:

free open source software on a free platform, free open source soft-

ware on a platform requiring a license fee or subscription, and, com-

mercial software on a standalone or paid platform. Currently, access

to software are mostly free and open-source, however, some plat-

forms require a paid subscription. Software are available as packages

built within the Matlab or R statistical software environments, plugins

as part of specialist FC manual data analysis software (such as FlowJo,

FCS Express), and applications on web-based platforms such as Cyto-

bank [24]. The same software can be implemented and be available

on more than one platform. Cost does not appear to be a deciding fac-

tor for users, because the most cited software were accessed through

paid platforms (Figure 3B). The levels of usability and software sup-

port provided typically increase in line with cost.

4 | SOFTWARE ALGORITHM TYPES

For further insight, the software were separated based on the algo-

rithm type. The algorithms broadly fall into two categories: supervised

and unsupervised learning. Thirty-four of 51 software in our survey

employed unsupervised learning algorithms, and 17 used supervised

learning algorithms (Figure 4) [25–41].

(A)

(B)

(C)

(D)

F IGURE 1 General trends in automated data analysis software. (A) Number of software released by year gradually increasing. (B) USA leads
the development of software to analyze flow cytometry data. Counts based on first author affiliation in publications. (C) The majority of software
are released without graphical user interfaces (GUI). (D) Technical trends. Software are released in multiple programming languages and
implementations. R, Matlab and python are the languages most software are available [Color figure can be viewed at wileyonlinelibrary.com]
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4.1 | Supervised learning methods

Supervised learning methods aim to solve classification and regression

problems. These algorithms require training data with known out-

comes to learn from, in order to build a model to classify new inputs.

In practical FC applications, manually annotated cell populations asso-

ciated with healthy or diseased patients could be used as training

data. Cell marker expression features that correlate with the two out-

comes would be extracted from the data and then a model built to

classify the disease status of new samples.

The limitation of these methods is that the algorithm is only

as good as the training data sets available for it to learn from, and

it is also possible to overstrain a learning algorithm. Furthermore,

there are insufficient publicly available training data sets for all

possible scenarios in clinical settings, especially those focused on

rare cell identification. The FlowCAP-II sample classification chal-

lenge used three real-world patient data sets, half of each data set

(training set) was labeled with patient clinical outcomes and the

challenge was to correctly label the other half (test set). The com-

parison study found many algorithms achieved perfect classification

accuracy on two data sets (acute myeloid leukemia detection and

HIV vaccination antigen stimulation groups), but all performed

poorly on a third (HIV exposure on African infants) [10]. Because

the current number of supervised learning software in FC data

(A)

(B)

F IGURE 2 (A) viSNE, Phenograph and SPADE are the highest ranked software based on average number of citations per year. (B) Software
citation trends by year. viSNE has been the top cited software for the past three consecutive years. t-SNE, Phenograph and SPADE are also highly
cited. FlowSOM citations have risen steeply since 2017 compared with other software [Color figure can be viewed at wileyonlinelibrary.com]
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analysis is low, and there is limited availability of large training data

sets, the majority of this analysis concentrates on the significant

number of unsupervised methods.

4.2 | Unsupervised learning methods

With unsupervised learning, no training data set is needed, and the

goal is to correctly identify and quantify cell populations in FC data.

Automated gating of cell subtypes is viewed as a clustering problem.

The unsupervised learning software in this survey apply different clus-

tering methods such as hierarchical clustering, partition clustering,

model-based clustering, density-based clustering (Figure S1).

Dimensionality reduction is also used to simplify multiparameter data

sets. Below is a brief overview of the most frequently used clustering

algorithms. For a comprehensive survey of clustering algorithms, see

Reference [42].

4.2.1 | Hierarchical clustering

Hierarchical clustering has two strategies to group similar datapoints

together, agglomerative, and divisive [43]. The agglomerative method

follows a bottom-up approach, where neighboring datapoints are mer-

ged to form sequentially larger clusters, until only one cluster remains.

The divisive method follows a top-down approach, starting with the

(A)

(B)

F IGURE 3 Factors for software frequency of citation. (A) Software with graphical user interfaces (GUIs) are more highly cited. (B) Cost is not an
important factor for users, with the most cited software requiring fees or access to a paid platform [Color figure can be viewed at wileyonlinelibrary.com]
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whole data set as one cluster and partitioning it to form smaller

clusters down to the level of individual datapoints. The target

number of clusters is determined by the user. The resulting clus-

tered data can be visualized as a hierarchical tree structure (den-

drogram) which resembles phylogenetic trees. Thus, hierarchical

clustering appears well suited to classifying data sets with evolu-

tionary observations and may have natural uses for analyzing cell

development, maturation, and differentiation data from time

course experiments.

The second most frequently cited software in this survey, SPADE1,

applies agglomerative hierarchical clustering in its algorithm [44]. A prior

density-based down-sampling step is performed to equalize low density

populations with high density ones. Down-sampling reduces the time

complexity of the hierarchical clustering step, and also increases the

prevalence of rare cell types and noise events. The SPADE1 algorithm

overcomes the problem of selecting the number of clusters by over-

clustering the data set (e.g., instead of three nodes, set 100 nodes). The

algorithm builds a minimum spanning tree (MST) from the clustered

data, and then relies on expert operator manual analysis to partition the

MST to determine correct number of cell populations. An improvement

on the SPADE1 algorithm, SPADE3, has been released to remove the

stochastic nature of the original agglomerative algorithm by

implementing a deterministic K-means clustering algorithm, and to

introduce a semiautomated interpretation of the MST [45], thus creat-

ing a new software (albeit with the same name) with different mathe-

matical definitions and characteristics, and potentially different data

analysis outcomes. In addition to these algorithmic differences between

the versions, SPADE3 is primarily implemented in Matlab although

stand-alone executable code does exist, SPADE1 and its updated ver-

sion SPADE2 (better GUI and runtimes) are implemented in R and are

available on Cytobank and as a plugin on FlowJo.

4.2.2 | K-means clustering

The K-means clustering method was first published in 1955 and is one of

the most popular clustering algorithms used in pattern recognition [46]. K

denotes the number of clusters, which is user defined. The K-means algo-

rithm begins with K seed points randomly scattered in the data set acting

as cluster centers. Neighboring datapoints are assigned to their nearest

seed to form the initial clusters. The center of the clusters, the centroid, is

calculated and repositioned. The algorithm repeats the assignment of

datapoints to the updated centroid, and then updates the centroid, and

so on. Further iterations to update the clustering are performed until clus-

ter membership stabilizes. K-means is an efficient algorithm, with faster

run times compared with hierarchical and model-based clustering. How-

ever, the drawbacks are its requirement for a predefined number of clus-

ters, its limitation to spherically shaped data and sensitivity to outliers.

These are key issues that need to be addressed for correct analysis of FC

data, which are usually non-convex shaped and noisy.

The software flowMeans [16] and flowPeaks [47] are based on K-

means clustering, and attempt to solve these limitations of K-means

clustering on FC data by over-clustering the data then merging nearby

clusters to obtain a single population. flowMeans applies a change

point detection algorithm to detect the number of clusters, whereas

flowPeaks fits a Gaussian finite mixture model to the initial K-means

clustered data then generates a density function to search and merge

peaks. The results successfully identify nonspherical cluster shapes,

however, rare clusters remain difficult to uncover.

4.2.3 | K-medoids clustering

K-medoids clustering, also known as partition around medoids (PAM),

is similar to the K-means method, intending to partition the data set
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into K clusters, but instead of using centroids (the mean of the

datapoints in a cluster) to assign nearby objects, K-medoids uses the

representative object of a cluster with minimal average dissimilarity to

its assigned objects [43]. K-medoids is less sensitive to outliers than

K-means, however, its main disadvantage is the high computational

cost for analyzing large data sets. Sampling of the data set is one strat-

egy to reduce runtimes (CLARA) [43]. A modified version of PAM has

been proposed for use in a clustering analysis pipeline to identify cell

populations [48].

4.2.4 | Density-based clustering

Density-based clustering algorithms such as DBSCAN (density-based

spatial clustering of applications with noise) [49] and OPTICS [50]

views datapoints in high density regions as clusters, separated by

regions of low density. Density-based clustering identifies core points

belonging to a cluster as well as noise points. These algorithms are

intended to discover clusters of arbitrary shape, such as geographical

data. Key requirements are a threshold for the minimum number of

points in a neighborhood and an arbitrary distance measure for the

density-reachability of a point to a core point. Since the number of

clusters is not a required input parameter, this method is useful for FC

data analysis where the number of cell subtypes is unknown. Generi-

cally, density-based clustering algorithms appear to be a widespread

strategy for software developers to identify cell populations, and are

used by some software: ACCENSE [51], DensVM [25], Flock [52],

flowDensity [26], Misty Mountain [53] and others [54–56], noting

that mathematical implementations and algorithms may vary

depending upon the data analysis approach.

4.2.5 | Model-based clustering

Model-based clustering assumes the data follows a statistical distri-

bution and models this onto the data set. For example, Gaussian

mixture modeling (GMM) views the data as consisting of several

Gaussian (normal) distributions and merges the data to the pre-

determined number of clusters fitting the model. There are numer-

ous mathematical models available, so basic problems arise in

selecting an appropriate model and choosing the number of clusters

for fitting the model. The optimal model neither underfits nor over-

fits data, and can be estimated using criteria such as the Bayesian

Information Criterion (BIC) and Akaike Information Criterion (AIC)

[57]. This approach to fit each model to the data to find the best

fit is computationally expensive.

Model based clustering methods are the most frequent in this

survey and may be due to the plethora of statistical models to

choose from. These include models based on mixtures of Gaussian

distributions, Student's t-distributions, and skew t-distributions. The

following examples of software use model-based clustering

methods: FLAME [58], flowClust [59], flowMerge [60], SWIFT [61,

62] and others [63–70].

4.2.6 | Spectral clustering

Spectral clustering is based on graph theory where each datapoint

represents a node, and the edges are weighted based on a similarity

criterion. Clustering is achieved through graph partitioning [71]. Spec-

tral clustering is used by the software SamSPECTRAL [72] which

includes a subsampling step to reduce runtimes. Wanderlust also

applies a graph-based representation of data in its algorithm [73].

4.2.7 | Self-organizing map

The self-organizing map (SOM) is based on a model of neural network

learning [74]. The premise is to construct a grid and map random

datapoints one at a time onto each node of the grid. The grid self-

organizes so that neighboring nodes have greater similarity, and less

similar nodes are moved further away. The next input datapoint is

applied to the node that matches best with it. In the end, a large high

dimensional data set is reduced to a low dimensional space while

retaining the global structure of the original data [75]. The resulting

SOM can be clustered further to group similar nodes, using traditional

methods such as hierarchical agglomerative clustering and K-means

clustering [76]. The FC data analysis software FlowSOM builds a mini-

mal spanning tree from the SOM, followed by a consensus hierarchical

clustering step to give the expected number of cell types [13].

4.2.8 | Dimensionality reduction

Dimensionality reduction is not strictly a clustering method. The idea

is to take data containing multiple parameters and reduce it to (usu-

ally) two dimensions which can be easily interpreted. Principle compo-

nent analysis (PCA) is an established dimensionality reduction

method, however, newer algorithms such as t-stochastic neighbor-

hood embedding (t-SNE) are a significant improvement that preserves

(to a limited extent) both the local and global structure of the high-

dimensional data, and generates a visual map of the data where similar

points are clustered together [23]. Albeit very large data sets (>106

events) can cause crowding in the layouts that limit meaningful inter-

pretation of the data, and runtimes are slow [77]. The t-SNE algorithm

and its implementation in viSNE successfully visualizes a variety of

large real-world data sets and appear well suited to analysis of large

multidimensional FC data [78]. This is reflected in their overwhelming

popularity in this survey with viSNE and t-SNE ranking first and third

respectively in the software citation analysis, and their numbers com-

bined make up 24% (488 out of 2072) of all citations. Dimensionality

reduction is increasingly being used as the first step of a data analysis

pipeline to extract initial clusters, followed by a clustering step to

identify cell populations [79].

The benefits of data visualization and interpretation following

dimensionality reduction have encouraged further development of

similar data analysis tools that improve scalability, runtimes and are

better able to handle large (>106) data sets and represent the global
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structure. These tools include hierarchical stochastic neighbor embed-

ding (HSNE) [80], PHATE [81] and uniform manifold approximation

projection (UMAP) [77].

4.3 | Preprocessing tools

Although excluded from this study, automated preprocessing tools

play an important role in FC data analysis because they enable high-

quality input data for all the analysis approaches mentioned above.

Preprocessing tools used to clean raw data include quality control

tools to remove fluorescence anomalies (flowClean, flowAI), perform

transformation (flowCore) and normalization (flowStats) [82–85].

Manual gates that exclude doublets, debris and dead cells can be

imported from FlowJo into R using flowWorkspace [86], and these

manual gates can also be automatically replicated using flow-

Density [26].

In summary, the popularity of FC automated data analysis soft-

ware may depend on the convenience of having a GUI. Currently,

unsupervised learning methods receive more citations than supervised

methods. Among unsupervised methods, dimensionality reduction

algorithms are more popular than other clustering algorithms, because

it seems users value the automatic visual output of high-dimensional

data presented in an intuitive way that retains local and global struc-

ture. Among the other unsupervised methods there was no specific

class of algorithm that was more popular than others, although analy-

sis methods that provide novel data visualizations (e.g., SPADE1,

Phenograph, FlowSOM) received more citations than algorithms in

the same class. A caveat in focusing on the popularity of a tool is that

it does not necessarily provide information on its fitness for purpose,

in this regard further investigations on a correlation between popular-

ity and performance is warranted.

This analysis of journal publications is a historical viewpoint over

10 years, but it does not necessarily provide a real-time perspective in

this highly dynamic environment with new toolsets appearing on a

yearly basis. Therefore, it was important to gather new information in

the communities that perform flow cytometry data analysis on a regu-

lar basis. The external quality assessment (EQA) space with a large

range of clinical participants was an ideal platform to investigate this

issue.

5 | CLINICAL LABORATORY USERS
SURVEY

To obtain a full picture of the popularity of automated flow cytometry

data analysis software, it was important to gain insight on their actual

use within clinical centers, not apparent from literature citations. An

invitation to participate in a survey was distributed to laboratories

worldwide registered with the EQA/proficiency testing programme

from UK NEQAS for Leucocyte Immunophenotyping. The survey

aimed for a broad overview and was not intended to extract actual

participant use of specific functions of software. Survey distribution

occurred in January 2020 and responses were gathered over 1 month.

The online survey of eight questions (Table S2) was developed to

expand on the literature review to understand the potential use of

automated software in clinical laboratories.

5.1 | Survey results

The survey received 49 responses out of 310 potential respondents, a

response rate of 16% which is consistent with typical response rates

of 15%–20% from email invitations to participate in online, non-incen-

tivized surveys [87]. The quality of respondents is high because of the

targeted nature of the survey to subscribers of an EQA programme.

Although conclusions from 49 responders should be carefully consid-

ered, the survey is valuable in providing strong suggestions of behav-

ior on the current use of automated FC tools in clinical laboratories.

The survey found more than half of respondents (26 out of 49, 53%)

never use automated FC software and only use manual gating to iden-

tify cell populations (Figure 5A). Thirteen of 49 (27%) mainly use man-

ual gating but occasionally use automated software, and 9 of 49 (18%)

split their analysis between manual and automated methods. One

respondent mainly uses automated software but occasionally use

manual gating. The results suggest (on this basis) that most clinical lab-

oratories rely on manual gating to identify cell populations and the

use of automated methods have yet to be firmly established. The

observed pattern of adoption is expected given the emerging nature

of the software.

The survey asked participants to identify which automated data

analysis software they used (Figure 5B). Nine software platforms

were identified among the 16 respondents who used automated

software, the most frequently identified of which was Infinicyt (63%).

Other software selected included AutoGate (31%) [88] and

FACSCanto (19%).

The survey also asked participants to identify software they were

aware of but do not currently use (Figure 5C). A total of 37 automated

data analysis tools were identified by respondents, an increase of

28 from the number of software respondents actually used. Once

again, Infinicyt software was the most popular response (60%),

followed by FlowSOM (44%), t-SNE (28%), viSNE (24%), and COM-

PASS (24%). For further insight, responses were grouped according to

manual-only users (never use automated software) and automated

users. This grouping revealed the automated-user base of respon-

dents were aware of a wider range of software available compared

with manual-only respondents: 36 software were identified by (13 of

23) automated users compared with eight identified by (11 out of 26)

manual users.

The results gathered from this question suggest many laborato-

ries were aware of what software was available but perhaps have not

had the time or resources available to validate and implement changes

to a manual gating protocol to incorporate automated analysis. It is

also possible that laboratories first consider the many software pack-

ages available before committing to purchase only one software pack-

age, such as Infinicyt. Furthermore, software selection may be partly
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influenced by common consortium recommendations or EQA

schemes.

To understand the factors which users consider important when

using automated software, survey participants were asked to grade

the importance of factors along a 5-point scale from “not important at

all” to “extremely important” (Figure S2A,B). Results from this ques-

tion revealed the most important factors for users was the software

data output quality, followed by software speed, and the level of tech-

nical support. Of lesser importance, scored in decreasing order, were

factors such as compatibility with other software, cost, software repu-

tation, software availability, and, seen in the literature. The appear-

ance of software was the lowest ranked importance factor in the

survey.

To further understand the user interaction with automated soft-

ware and the potential impact this has on software selection, develop-

ment and data quality, the survey participants were asked in Question

8 to assess the software they were most familiar with by responding

to 10 usability statements on a 1 to 5 score scale from “strongly dis-

agree” to “strongly agree.” The statements are based on the System

Usability Scale (SUS) and are designed to provoke extreme disagree-

ment or agreement among all respondents [89]. Statements that com-

monly lead to strong disagreement alternate with those that lead to

strong agreement, to prevent response biases. This arrangement

allows calculation of the SUS score, where (a) the score of each odd-

numbered statement minus 1, and (b) the score of each even-num-

bered statement taken away from five, are summed then multiplied

by 2.5 to obtain a score out of 100, with higher scores indicating bet-

ter usability. Scores for individual statements are not meaningful on

their own and need to be taken together to give a measure of the

overall software usability.

This question received six responses ranking 5 software

(Figure S2C). From the individual surveys, AutoGate, FACS Canto

and FlowMerge received SUS scores above 70, therefore were

judged to have “acceptable” usability based on the benchmark pro-

vided by Bangor et al. [90]. Compass received a SUS score below

70, indicating “marginally acceptable” usability. Infinicyt received a

SUS score below 50, falling into the “unacceptable” region. To our

knowledge, this is the first application of the SUS to quantify the

usability performance of flow cytometry automated software.

While the number of responses to this question were too low to

draw conclusions from, it was interesting to note that the most

identified software among the survey was also the least user-

friendly, and as we anticipate the field of computational cytometry

to mature and for user uptake to increase, these initial SUS scores

(A) (B)

(C)

F IGURE 5 Results of a survey of clinical laboratories on the use of automated flow cytometry software [Color figure can be viewed at
wileyonlinelibrary.com]
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we have calculated will provide a critical baseline for future

benchmarking studies to compare against.

The clinical survey results showed that 16 respondents identified

nine software they make use of, and 25 respondents identified

37 software they were aware of but do not use. Excluding duplicates,

38 unique software were identified. A cross comparison with the

51 software identified from the literature review reveal the majority

(36 of the 38) were included in both surveys. Two software do not

appear in the literature review, which happened to be commercially

available ones. This shows good correlation between the two informa-

tion streams.

The analysis of literature captured the software used at a point in

time (over 10 years) that precedes current usages, whereas the clinical

survey revealed the most up to date patterns of use. Because of this

contrast in timepoints, the clinical survey captured only two more

software that slipped through the literature review.

The most frequently identified software by the online survey,

Infinicyt, was not identified as a function of the original literature sea-

rch strategy, and not mentioned in previous reviews on automated

analysis tools. Infinicyt is proprietary software for analysis of multi-

dimensional flow cytometry data, developed with support from the

EuroFlow Consortium for standardization of immunophenotyping pro-

tocols [91]. The main feature of Infinicyt is the supervised learning

algorithm for automatic identification and classification of cell

populations based on reference databases built from merged multi-

center patient files [92, 93]. Application of these Infinicyt tools are

optimized to samples acquired following fully standardized EuroFlow

standard operating procedures, reagents, instrument settings, and

eight-color antibody panels for hematological malignancies [94]. The

database-guided tool has been shown to successfully classify acute

leukemia cases using a database constructed from 656 patients [93].

The software is also designed to be integrated with a laboratory infor-

mation system (LIS) for secure handling of patient data. The highly

specialized purpose of Infinicyt for clinical diagnostics explains

its common use in clinical laboratories survey, and perhaps its under-

representation in research areas.

Another popular software among the clinical laboratories,

FACSCanto, was not featured in the original literature search because

of the lack of peer-reviewed published work on its automated cell

population identification function, but the clinical survey has identi-

fied it. The survey participants used FACSCanto software for analysis

of CE-in vitro diagnostic (IVD)-marked assays such as CD4 and CD34

absolute count analysis. The software provides automated analysis of

workflows and, similar to Infinicyt, is designed for clinical cytometry

with LIS enabled connectivity. FACSCanto software popularity is pos-

sibly influenced by its bundled distribution with BD cytometer equip-

ment and is therefore used by default by operators.

Common software highly ranked in both the literature citation

analysis and the online survey were: FlowSOM, t-SNE, viSNE, and

SPADE1. Overall, although uptake of automated software is growing,

manual gating remains the standard practice. For clinical laboratory

users, the most important component of automated software is the

data output quality. This factor was not obvious from the findings

from the literature citations, and it will be interesting to investigate

whether software popularity translates to data quality. For automated

analysis techniques to overtake manual gating, not only do the cell

population identification results have to replicate expert manual anal-

ysis, but the results obtained from algorithms must also be robust with

cell population numbers that can be reported with confidence.

6 | CONCLUSIONS

Flow cytometry has evolved to a stage where data analysis can be

approached with unsupervised and supervised learning methods that

automatically cluster cell populations and classify samples

corresponding to clinical outcomes. Automated techniques allow FC

analysis without manual variability, subjectivity, and bias of gating,

and thus many new methods have been developed in the field in the

past decade. However, it should be recognized that many of the auto-

mated techniques require moderate to significant operator control of

software variables (beyond the default settings) and hence human

subjectivity within the data processing chain may still be apparent.

In this literature survey, the current state-of-the-art software

have been identified and their popularity ranked based on literature

citations. Although citation counts do not necessarily reflect the use

of software in labs, they give a good indication. The purpose of this

study was to define the prevalence and perceived volume of use of

automated software, not specifics of use in a laboratory or

manufacturing company. Highly ranked software included: viSNE, t-

SNE, SPADE1, PhenoGraph, FlowSOM, and Citrus. A common attri-

bute of these software packages is the availability of a GUI that

increase ease of use and appearance. This highlights the importance

of usability as a factor for uptake of automated software in the com-

munity. Moreover, these software are implemented in multiple plat-

forms (Bioconductor, FlowJo, Cytobank), and provide novel

visualization outputs to aid interpretation of the data. Trends between

software frequency of citation and factors such as cost or the underly-

ing algorithm type were not apparent.

In addition to the literature survey, an online questionnaire of

clinical laboratories on the use of automated FC software was com-

pleted via the external quality assessment (EQA)/proficiency testing

programme from UK NEQAS for Leucocyte Immunophenotyping. This

survey collected actual real-world usage data and opinions about

automated FC data analysis software from a global targeted audience

which could not be obtained from the literature search. Noting that

this analysis was based on 49 respondents out of a possible 310 par-

ticipants, a strength of this survey lies in its distribution through the

EQA network rather than a public medium, which ensured genuine

trustworthy responses. Very few surveys of this nature have been

published in the literature. The online questionnaire did not capture

users in similarly highly regulated spaces such as biotechnology, phar-

maceutical and contract research organizations and so the rollout of a

similar survey is planned to better understand automated software

usage trends within these groups. However, distribution of a survey

to those parties will be more difficult because they do not necessarily
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subscribe to a comparable EQA network, so networks from the Inter-

national Society for Advancement of Cytometry (ISAC) and the Inter-

national Clinical Cytometry Society (ICCS) could potentially be

explored in the future.

Most frequently identified automated software for clinical

cytometrists were Infinicyt and FACSCanto, noting that 53% of partic-

ipants stated that they never used these automated tools. Infinicyt in

particular makes use of large reference patient databases to classify

new patient samples using a supervised learning algorithm. These

software have highly specialized workflows for analysis of regulated

clinical assays to automated immunophenotyping, along with an

important feature to connect with a hospital laboratory information

system (LIS) to securely manage patient data.

The contrast in software popularity between the two complimen-

tary surveys reflect the different needs and behaviors of the two com-

munities. Clinical users are more likely to run routine, well-defined

assays with standardized processes to enable confident diagnostics of

patient samples. For example, the highly standardized ISHAGE proto-

col for enumeration of hematopoietic stem cells in peripheral blood

recommends the use of specific antibody conjugates and prescribes

manual gating strategies to identify target cell populations [95]. In this

respect, clinical users lean toward tools that replicate expert manual

gating and can automate targeted analysis of well-defined

populations.

This is different in academia, where research is performed on

well-defined cell subsets alongside unknown target cell populations,

and hence users make more use of automated tools that support dis-

covery and exploratory research.

The standardized data sets produced across clinical settings with

the same experimental parameters, and crucially linked with specific

patient outcomes, can be grouped to build a large database collection

that allows for their use as training data sets for the development of

supervised learning algorithms. In comparison, the academic space is

less likely to have a large and diverse resource of labeled data to use

for training purposes, and therefore is dominated by use of

unsupervised learning methods. Overall, there is no “best” method.

The most suitable automated analysis tools to use will be context

dependent, on factors such as cell type, the data structure, and the

purpose of the analysis. The best case is to provide users with com-

plete details of how tools work, for them to make a well-informed

decision. This may call for additional benchmarking methods/results

from a wider selection of data sets.

More than half of the respondents from the clinical survey never

use automated analysis tools and only use manual gating protocols,

suggesting barriers to adoption of software are widespread.

The questionnaire gave an insight into the clinical users' software

preferences when incorporating automated workflows into their data

analysis. High value was given to the data output quality, speed of

software and level of technical support. The low take-up in automated

software may be down to shortcomings in all three factors in the cur-

rent software available. The most critical factor, quality of the data, is

a major driver for the use of automated software. Tools that aid rigor

and reproducibility are expected to be welcomed, so it is intriguing

that adoption rates are low, but it may be down to human sentiment

and trust in manual methods.

With respect to the speed of software, because results need

to reported in a timely (or possibly urgent) manner for clinicians to

make decisions on patient treatment strategies, the analysis time

needs to be in the order of seconds and minutes rather than hours

and days. Current automated software may not offer significantly

faster gains in analysis times over manual analysis that would

incentivize uptake. Finally, better documentation in the form of

detailed user manuals, video tutorials, and troubleshooting guides

would increase the level of technical support, and make automated

analysis more widely used.

Regulatory requirements are a possible factor for the low uptake

of automated methods in the clinical laboratory. Implementation of

new diagnostic methods is driven by international guidelines

(e.g., World Health Organization (WHO), International Council for

Standardization in Hematology (ICSH), International Clinical Cyto-

metry Society (ICCS)). Consensus guidelines regarding use of auto-

mated methods have yet to be established. Even once guidelines are

published, implementing new protocols at the laboratory level

requires documenting process change controls, validations, and verifi-

cations in line with quality management system ISO 15189:2012 [96].

The increased regulatory requirements in clinical spaces compared

with academia may be a barrier to uptake. Diagnostic methods are

typically developed on an individual disease or biomarker basis, so are

narrow in scope by nature. This means the pace of automated adop-

tion occurs one test at a time, rather than all the tests involving flow

cytometry changing to automated analysis at once.

An interesting factor to investigate further may be whether the

number of colors in a staining panel correlates with uptake or use of

an algorithm. As the burden of manual analysis increases with the

number of parameters in a panel, perhaps clinical laboratories with

more complex panels will be keener adopters of automated software

that offer more efficient, scalable and unbiased analyses.

The awareness of new tools can be more dated among the clinical

workforce because day-to-day sample processing demands reduces

the time available to keep up to date with the latest literature.

There are now trends for academic users to acquire programming

skills in R, Python and Matlab to keep up with data analysis require-

ments. This is a less likely scenario in clinical laboratories and may be

the reason for the lower uptake of tools that are executed in those

programming environments.

To a certain degree, usage of these tools relies on the efforts of

commonly used stand-alone software packages (e.g., FlowJo,

FCSExpress) to implement automated tools as plugins integrated into

their GUIs. The skills shortage presents a risk to employers, whether

to train up staff to be knowledgeable in coding but lose that tacit

knowledge when they leave the company, or to buy in a ready-made

software with full GUI that does not require specialist training and is

easy to learn for new users. Indeed, this study has shown a user pref-

erence for tools with GUI. The implication could be for high per-

forming software without a GUI losing ground to lower quality but

easier to use software.
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In this paper, we have investigated the current usage trends and

popularity of automated flow cytometry data analysis software. How-

ever, it is worth emphasizing that the popularity of a tool does not

indicate whether it is the correct or best approach of analyzing data,

and therefore a key question that has emerged from this study is

whether popularity translates to quality. It is clear that challenges in

the data output quality from automated software remain a hurdle to

the widespread uptake of software in flow cytometry. This is an

opportunity for further work to assess the actual performance of dif-

ferent algorithm types through a range of benchmarking real-world

experimental and simulated data sets with controlled cell

characteristics.
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