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a b s t r a c t   

The benefits of the fourth industrial revolution are realised through accurate capture and processing of data 
relating to product, process, asset and supply chain activities. Although services such as Global Positioning 
Services (GPS) can be relied on outdoors, indoor positioning remains a challenge due to the characteristics 
of indoor environments (including metal structures, changing environments and personnel). An accurate 
Indoor Positioning System (IPS) is required to provide end-to-end asset tracking within a manufacturing 
supply chain to improve security and process monitoring. Inertial measurement units (IMU) are commonly 
used for indoor positioning and routing services due to their low cost and ease of implementation. However, 
IMU accuracy (including heading and orientation detection) is reduced by the effects of indoor environ-
mental conditions (such as motors and metallic structures) and require low-cost reliable solutions to im-
prove accuracy. The current state of the art utilises algorithms to adjust the IMU data and improve accuracy, 
resulting in error propagation. The research outlined in this paper explores the use of passive RFID tags as a 
low cost, non-invasive method to reorient an IMU step and heading algorithm. This is achieved by con-
firming reference location to correct drift in scenarios where magnetometer and zero velocity updates are 
not available. The RFID tag correction method is demonstrated to map the route taken by an asset carried by 
personnel in an indoor environment. The test scenario task is representative of warehousing and delivery 
tasks where asset and personnel tracking are required. 

© 2021 The Author(s). 
CC_BY_4.0   

Introduction and motivation 

Manufacturers have started investing in hardware, software and 
global networking systems to further the advancement of the 
Internet of Things (IoT) [1]. The German government heralded this as 
the next industrial revolution and termed the research and devel-
opment to achieve this global network of intelligent products and 
processes “Industrie 4.0″ [2]. Worldwide industrial initiatives are 
aiming to bring cross platform communications to the shop floor, e.g. 
in the United Kingdom the “Future of Manufacturing” movement, in 
the US the ‘Advanced Manufacturing Partnership’ and in Japan ‘The 
5th Science and Technology Basic Plan’ [3]. The vision for these 
Smart Industries is to include intelligent networks comprising 
Cyber-Physical Systems (CPSs), which link the physical world and 
information communication technology (ICT) services to create 
systems that can control, maintain and analyse capabilities and 
performances to respond to changes in production [1]. One of the 

most critical requirements is accurate positioning data to provide 
contextually relevant, location-based services [4]. Two of the pillars 
for this revolution are to know one’s location and the location of 
objects in the surroundings (i.e. the location of one object with re-
spect to others). These data are critical to a CPS to ensure autono-
mous actions can address the frequently changing environment and 
material handling requirements within a factory and its supply 
chain. Many localisation systems require additional infrastructure 
and anchor nodes that may require dedicated servers and databases. 
Changes to infrastructure adds cost and implementation complexity, 
which are recognised as barriers to adoption of Industry 4 technol-
ogies, particularly in small/medium scale enterprises with limited 
resources [5]. Minimising the costs and barriers to adoption of CPS 
technologies highlights the need for a low cost, low infrastructure 
impact system. 

The deployment of an increasing number of communicating and 
intelligent devices (i.e. 35 billion in 2021 [6]) increases the viability 
of an indoor location system which utilises the capabilities of such 
devices. Location methods can be differentiated as suitable for in-
door localisation and outdoor localisation. Both methods rely on 
communication between a receiver node at the object of interest and 
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several fixed points [7]. An Indoor Positioning System (IPS) uses 
information gathered from one or more devices to create a naviga-
tion system to locate objects or people in indoor environments [8]. 
The IPS provides the data for any Indoor Location Based Service 
(ILBS), such as navigation or equipment tracking within an indoor 
environment [9]. The predicted ILBS market was expected to be 
worth $10bn by 2020 [9]. 

In addition, manufacturers are under increasing pressure to im-
prove their efficiency and productivity and minimise loss and waste. 
Traceability of assets within the supplier premises often has limited 
granularity, with localisation given on a room-by-room basis, iden-
tifying object passage through gateways with no visibility between 
these gateways. This loss of visibility presents possible vulner-
abilities for stock loss, also known as ‘shrinkage’, in industry [10]. 
One common example of stock loss is theft, which may be com-
mitted internally (by employees) or externally (for example by a 
customer or vendor) [10]. In the consumer goods domain shrinkage 
accounts for 2.41% of the sector turnover value, equating to €24 
million in 2003 [11]. Knowing the location of mobile equipment and 
assets in manufacturing is a key part of increasing efficiency and 
productivity, since misplaced equipment can lead to lost time spent 
finding parts, delaying production [12]. Several examples of the four 
common methods of record discrepancy: (i) stock loss, (ii) transac-
tion error, (iii) inaccessible inventory, and (iv) incorrect product 
identification [10]. 

The asset supply chain can be considered as several links be-
tween supplier and consumer which are often delivered by a third- 
party courier. The key asset tracking points within these supply 
chains are illustrated in Fig. 1 and can be summarised as: (i) Storage 
of assets, (ii) Asset relocation within a factory (iii) Loading of assets 
for transport, (iv) Asset transport to the customer and (v) Physical 
delivery to the customer. 

A loss of assets may also refer to the loss of digital assets 
alongside the physical ones. The nature of ubiquitous connectivity 
within IoT and Industry 4 systems brings an increased need for 
improved traceability since a loss of assets would additionally lead 
to a loss of the data contained within it. Risk mitigation has gained 
recognition as an increasingly important part of CPS and IoT design 

due to the increasing number of IoT devices that are interconnected 
each year [13]. Additionally, there is a need to consider data privacy 
and protection in order to comply with legislation and ethical 
system development (e.g. the European General Data Protection 
Regulation (GDPR) and the UK implementation of this as the Data 
Protection Act (DPA) 2018). The DPA guidelines Section 57 deals 
specifically with protection of data in transit/transport requiring 
“Data protection by design and default”, the article states “Each 
controller must implement appropriate technical and organisational 
measures for ensuring that, by default, only personal data which is 
necessary for each specific purpose of the processing is processed”  
[14]. The data protection measures apply to the data’s availability 
requiring that, to the best of the holder’s ability, data be protected 
from malicious damage and access. When transporting data holding 
assets, knowing the location and security status of the media con-
tributes towards section 57 compliance, mitigating risk and asso-
ciated costs of data loss, in addition to reputational damage, failure 
to comply with section 57 could lead to fines up to 4% of a firm’s 
annual global turnover or €20 Million [15]. Knowing the location of 
such assets can highlight unauthorized movement indicating pos-
sible intention of misuse, enabling supervisors to address arising 
issues and reduce the risk of data loss. Fig. 2 illustrates how in-
creased localisation granularity is likely to improve stock loss due to 
theft and transactional errors, primarily stemming from incorrect 
asset logging. 

The goal of the research presented in this paper was to develop a 
localisation solution for tracking assets carried by personnel indoors, 
a scenario in which zero velocity updates are not possible i.e. the 
asset is carried by hand [16] and strong electromagnetic fields make 
heading determination from a magnetometer unfeasible such as in a 
factory environment where an abundance of ferromagnetic mate-
rials degrade heading estimation [9]. Furthermore, to support 
deployment in industry for a variety of settings, budgets and en-
vironments, the solution must minimise the impact on current in-
frastructure by allowing for easy deployment, utilising low-cost 
equipment requiring minimal maintenance. 

The structure of this paper is as follows: Section II summarises 
academic literature related to the system and IPS proposed 

Fig. 1. Key stages of an asset delivery process from supplier to customer and the important aspects at each stage.  
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application. Sections III and IV define system concept and hardware 
respectively. Sections V summarises the limitations of using RFID 
technology. Section VI details the collection, preparation, and ana-
lysis of inertial measurements to determine location. The two 
techniques have been combined using sensor fusion to create a 
prototype system discussed in section VII. Finally, Section VIII pre-
sents the findings of this research, the effectiveness of the proposed 
system, implications for practitioners and presents future work. 

Related work and theory 

The indoor location methods identified in the academic literature 
can be considered in three categories: (i) Network based systems – 
using information within wireless network signals to determine lo-
cation, (ii) Inertial based systems – using self-contained sensors to 
analyse motion to determine location and (iii) Hybrid systems – 
combining two or more approaches [8,9,17]. Several methods that 
are being used to improve the accuracy of indoor positioning sys-
tems were identified in the literature (based on information from  
[8,9,17]) shown in Fig. 3. 

To reduce the need for infrastructure changes, inertial based 
systems have been explored, often in conjunction with RF techni-
ques, by using the responses from IMUs to perform Dead Reckoning  
[7,18,19]. Micro Electro Mechanical Systems (MEMS) have increased 
the availability of low cost microsensors which can be used to detect 
environmental changes by measuring mechanical, thermal, mag-
netic, chemical or electromagnetic information [20]. An IMU is a 
combination of microsensors, commonly containing three accel-
erometers measuring linear accelerations acting on an object with a 
local frame of reference oriented perpendicular to one another, three 
gyroscopes to measure angular speed about these axes and a mag-
netometer to detect ambient magnetic fields associated with the 
same three axes. Location determined using this technology is de-
termined based on previously known locations, the direction tra-
velled and distance travelled in that direction [21]. Typical 
accuracies quoted are to 0.3–1.5% of the path travelled [9]. 

Some IMUs include an altimeter to detect external air pressure 
giving nine degrees of freedom and current elevation [22]. Critically, 
IMUs can meet requirements for scalable deployment using low cost 
sensors (e.g. LSM6DS3TR ST Microelectronics costs £2.64 [23]) for 
estimating position whilst being self-contained, without the need of 

supporting infrastructures [3]. Dead reckoning can be achieved with 
an IMU using either the Integration or Step and Heading techniques  
[9]. The Integration technique is where the sensor is mounted along 
three orthogonal axes to the rigid body to be tracked, resulting in, 
theoretically, no relative motion so the measurements can be di-
rectly identified as the assets motion [24]. The angular speed is in-
tegrated to give the heading used to orientate the measured 
accelerations, which following corrections for gravitational accel-
eration, can be integrated twice to get distance travelled [9]. The 
process is shown in Fig. 4 and the calculation for speed and direction 
travelled are given in Eqs. (1) and (2). 

x

x a g

Distance Travelled from acceleration measured by an IMU t

t dt

[25] ( )

(0) ( ( ) )
t

0

= +
(1)  

Derivation of heading from angular speed measured by an

t t dt

IMU [25]

( ) (0) ( )
t

0
= + (2)  

x = Displacement Vector a= Linear Acceleration Vector =
Heading Angle. 

= Angular Speed about gravitational axis t= Time. 
To remove the effect of gravity, the IMU data need to be trans-

formed from the local or body frame to the global reference frame. 
To achieve this, gravity is used as the global Z-axis and the rotation 
operation (often expressed as a quaternion) which rotates the local 
Z-axis to the global Z-axis is applied to the IMU prior to double in-
tegration [26]. However, there are limitations to the successful use of 
IMUs in IPS. An issue with Inertial measurements is that all calcu-
lated movements are determined with respect to the initial start 
point, only allowing extraction of a relative path rather than a known 
position in the real world requiring initialisation [18,21]. In lower 
cost sensors some errors in the measurement can occur from in-
fluences such as: (i) Non-orthoganity – misalignment of the sensor 
axes in the IMU leads to partial measurement of the same compo-
nents [27], (ii) Scaling – multiplicative errors such as sensors re-
sponding with 10% larger outputs the actual value [27] and (iii) Bias 
– adding constant offset values to the axes [27]. Unfortunately, the 
integration to obtain distance and angle leads to such errors pro-
pagating over time and any inaccuracies in the acceleration or an-
gular speed causes the location to deviate quickly from the ground 

Fig. 2. Possible opportunities for asset record discrepancies, highlighting areas where localisation granularity would be beneficial.  
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truth [9]. The alternative Step and Heading technique uses the ac-
celeration response from the IMU to determine features of a step, 
with the obvious drawback that it is only valid for motions including 
steps or repetitive features within acceleration signatures. The lo-
cation can then be calculated using the heading from Eq. 2 and an 
estimated step length to give the next location point [9]. Unlike the 
Strap-Down with integration method, Step and Heading errors pro-
pagate linearly, potentially reducing the error in estimation. How-
ever this technique when applied to items that are carried by 
humans is reliant on accurate step detection and stride length which 
may vary (typically set to 150–170 cm for an adult male [28]) adding 
an additional source of error or requirement for user interaction for 
calibration on each use. 

Pedestrian dead reckoning (PDR) is a technique of great interest 
to researchers in the field of indoor positioning [8,9,17]. In dead 
reckoning, the error increases as a percentage of distance leading to 
inaccuracies of as much as several meters over 2 s as seen in Fig. 5. 
Sensor drift (in cheaper sensors the zero-g offset can be in the order 
of ±  1 m/s2 [22]) and summation of errors over time require addi-
tional information (such as zero velocity conditions) in order to 
determine absolute position [21]. Researchers have attempted to 
develop multi-modal systems to address these issues by combining 
IMU dead reckoning with additional technologies [18,22]. For ex-
ample Yoon et al. used dead reckoning as a guide when Global Na-
vigation Satellite System (GNSS) signal was lost in an outdoor 
application [18]. Chen et al. supported proposed the use of an IMU 
with time of arrival (ToA) calculations using radio frequency and 
ultrasound pulses [22]. This approach was improved by a maximum 
a posteriori (MAP) algorithm reducing the mean error from 0.46 m 

using ToA alone to 0.31 m over a path >  50 m within a room of di-
mensions 25 m by 8 m [22]. 

Haverinen et al. explored the use of IMU’s magnetometer for 
magnetic field mapping, a technique relying on the disturbance of 
the earth’s magnetic field due to ferrous structures and electronic 
appliances. These disturbances provide a static magnetic fingerprint 
which can be combined with a lookup table for the closest matching 
location to the measured fingerprint to determine localisation [29]. 
However this approach is likely to function poorly in a factory en-
vironment, due to varying magnetic fields induced by machinery in 
manufacturing processes (e.g. electronic motors) as magnetic fin-
gerprinting is vulnerable to external magnetic perturbations [30]. 

Fig. 3. Technologies commonly used to attempt to provide a solution to indoor localisation.  

Fig. 4. Schematic for position estimation based on IMU readings redrawn from [25].  

Fig. 5. Deviation of location calculated from sensors over time due to sensor offset 
and noise. 
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Network based systems commonly use Received Signal Strength 
(RSS) of radio signals to estimate location or to support location 
information extracted from inertial measurement units (IMUs) and 
magnetic field mapping [31]. Radio frequency identification (RFID) 
technologies are widely used to collect location data [32], due to 
being low cost (complete systems obtainable for < £100) and uti-
lising radio-wave data communication [33]. The technique uses re-
ference tags attached to objects of interest and the power of the 
response received from the reference tag in dB is recorded. This RSS 
is used to estimate an object’s location using a power curve in which 
the RSS is typically proportional to the square of the distance from 
the tag. Several studies used RSS indicators as a variable for identi-
fying location [34–36]. The technologies used included radio fre-
quency emitters (e.g. RFID tags, Bluetooth Low Energy (BLE) beacons 
or Wi-Fi routers [9]). The cost varied from £ 0.01 to >  £100 per 
beacon depending on the technology [37]. In addition to set up costs, 
through life costs such as maintenance and adaptations to the in-
frastructure for implementation can be a significant deterrent for 
industrial adoption. Accuracy of systems utilising RSS for localisation 
presented positional errors of 1.4–3 m [9]. However, radio signals 
suffered from multipath errors due to Non-Line of Sight (NLOS) re-
flections causing signal attenuation (i.e. a reduction in RSS) due to 
absorption, amplification (i.e. an increase in RSS) or attenuation due 
to signal scattering from environmental objects. These variations 
were reported to cause deviation from the expected response model, 
severely affecting location estimation and uncertainty [33]. Until 
recently cellular networks were poor candidates for IPS, however, 
with the introduction of 5 G, emerging technology may make use of 
cellular networks [9] with research reporting decimetre accuracy 
with line of sight when using time of flight (ToF) measurements [38]. 
The limitations of 5 G are that ToF is impacted by NLOS conditions  
[38] and, at the time of writing, 5 G equipment was expensive, in-
volving significant infrastructure impact for installation, therefore, 
although 5 G shows potential for future systems, it was considered 
out of scope for this work. 

Many algorithms have been developed to improve the reliability 
and accuracy of RSS methods, by positioning reference tags in a grid 
format. Two such approaches can be found in LANDMARC which 
utilises nearest neighbour conditions to estimate a target location  
[33] and VIRE which sub-divides each group of 4 reference tags into 
N N× elements to determine location based on a weighting of the 
nearest neighbours [33]. The main drawback of these systems is that 
many nodes (e.g. 1 tag per m2) are required to improve accuracy 
which also increases the algorithm complexity and implementation 
costs. However, the accuracy of such algorithms in harsh environ-
ments, such as highly metallic factories with significant radio fre-
quency noise generators, has not been tested. These harsh 
environment scenarios are of paramount importance for manu-
facturing deployments due to their prevalence. This is particularly 
important when using RFID methods since metallic objects greatly 
affect the radiation efficiency and gain of RFID antennas, reducing 
reading distance by >  40% of the tag specification [1] and reducing 
signal strength by up to 60% [39]. 

The use of a network of RFID tags with unique Electronic Product 
Code (EPC) values could be used to indicate known positions in a 
real-world space, allowing a link between path travelled and real- 
world position on a floorplan. A similar approach has been reported 
in [40] where active (i.e. tags which broadcast continually using a 
battery [41]) RFID tags were used. In addition the authors utilised a 
foot mounted IMU which allowed the use of zero velocity updates 
(ZUPTs) in the identification of steps (i.e. identification of the stance 
phase [42] as no motion) which is not a possibility for tracking non- 
human assets since assets transported by stillages, forklift trucks or 
automated guided vehicles and not carried by humans and do not 
have a regular zero velocity position in their patterns of motion [16]. 
In addition, the use of active RFID tags requires additional 

maintenance and cost as the price for an active RFID tag is often tens 
to hundreds of dollars depending on functionality and can require 
replacement batteries every 1–12 months depending on broadcast 
rate and power [41]. Passive RFID tags can cost as low as a few pence 
and require no maintenance or batteries to continue to function [41], 
making them suitable for an inexpensive method of deploying an 
IPS. Passive RFID can be used in conjunction with IMUs. The relative 
movement of a directional antenna and passive RFID tags induces an 
increase and reduction of signal strength dependent on field align-
ment of the antenna to the tag (see Fig. 6). This response could be 
used as an update point for a dead reckoning indoor positioning 
system using an IMU by determining footsteps in a given direction 
and updating location based on observation of fixed RFID tags at 
known locations. 

To track an object carried by a human via dead reckoning, the 
IMU would need to be attached to the object which whilst being 
carried, exhibits no repeatable zero velocity conditions. Thus, the 
ZUPT feature extraction technique cannot be used to mitigate the 
drift integration discussed in Section II. Due to this the Strap-Down 
method with a step and heading approach was used to determine 
asset motion and location. The “steps” were detected using a com-
bination of low pass (i.e. Butterworth second order filter for fre-
quencies over 10 Hz) filtering to remove noise the accelerations in 
the Z-Axis and identifying changes in gradients in acceleration and 
zero crossings. The algorithm used for detecting steps will be dis-
cussed later in Section VI. The Strap-Down technique is supported by 
a network of RFID tags detected when a received signal strength 
indication (RSSI) was greater than a pre-determined threshold as 
discussed in Section V. 

The novelty in this method lies in the use of feature extraction 
from passing Passive RFID tags in a location where a magnetometer 
cannot be used to obtain a heading. The method utilises the rela-
tively short range of passive RFID tags (i.e. a maximum stated range 
of < 10 m [41]), to enable more accurate location updates than si-
milar methods which use the variation in RSSI to determine position 
in order to reduce the variability in the update of the inertial unit’s 
position. It is noted however, that the location of the RFID tags needs 
to consider the material of its surroundings since metallic surfaces 
greatly reduce the read range of RFID tags therefore RFID tags will be 
positioned with sufficient clearance of metal objects where practical. 
To mirror the situation where larger items are being carried around a 
workspace, a regular tote box container (i.e. HDPE container with 

Fig. 6. Angular impact on sensitivity and read range for the ALN-9640 UHF RFID 
tag [43]. 
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dimensions 600×400×365mm) was fitted with an antenna and RFID 
reader in addition to an IMU mounted internally. A summary of the 
technologies and their corresponding attributes is shown in Table 1, 
derived from both academic and commercial applications. It should 
be noted the accuracy is dependent on the size of the area the 
system is deployed over. Although IPS technologies have been 
compared and contrasted in the reviewed literature [53,46,45], a 
single, preferred algorithm or technology combination has yet to be 
established. A preferred IPS system should provide large path cov-
erage (which this paper will consider as > 50 m) minimal infra-
structure impact (which this paper will consider as battery operated, 
or mains powered equipment attached to the building) and minimal 
cost and maintenance requirements (considered in this paper as 
infrastructure maintenance of no more frequent than 6 months). At 
present, no solution maintains acceptable accuracy (considered as a 
mean distance error < 1 m with a standard deviation of 0.5 m) [46] 
whilst meeting the identified requirements. 

Methodology 

From the limitations of individual technologies, it was clear that a 
multi-modal solution is required. Therefore, the proposed IPS ap-
proach combines the two technologies with the lowest infra-
structural impact whilst maintaining the required accuracy from  
Table 1: (i) Inertial Measurements and (ii) passive RFID. The research 
outlined in this paper integrates a dead reckoning technique for 
tracking handheld objects using peak detection within a continuous 
recording of an RFID tag’s RSS indicator to identify the strongest 
signal received. This provides the closest point and best alignment of 
the reader and the tag which could then be used as an update fi-
ducial. The use of a system incorporating IMU’s and passive RFID 
tags as an inexpensive and very low infrastructure impact is a novel 
approach to correcting IMU drift and inaccuracy over time whilst 
linking relative path to absolute location. A hardware architecture 
for a multimodal system to determine indoor location has been 
developed that can be used to build services such as traceability, 
observability, routing and building utilisation applications. This 
system results in advantages over other proposed systems due to the 
use of passive RFID tags positioned around the building, leading to 
little infrastructure cost and maintenance frequency (i.e. > 2 years). 
The use of a novel portable RFID reader transfers the system cost to 
the asset in place of the infrastructure. 

This use of RFID passive tags was selected due to their longevity 
and low cost, minimal infrastructure impact from the use of a por-
table RFID reader. Additionally, these enable the transfer of costs and 
maintenance requirements from the infrastructure to the tracked 
item. Unfortunately, at larger distances (e.g. > 2 m) variability in the 
RSS of passive ultra-high frequency (UHF) RFID tags make distance 
measurements error prone and unreliable when using RSS 
alone [54]. 

Based on the limitations and benefits of each of the evaluated 
technologies, the proposed system was developed using an IMU with 
supporting RFID passive tags and tested in a real-world environment 
to simulate tracking in a warehouse and factory whilst minimising 
confounding factors and ensuring repeatability of the tests. The 
materials, protocol and evaluation of results are described in the 
following sections. 

Hardware and testing setup 

An illustration of the hardware for the developed system can be 
seen in Fig. 7. The IMU selected was a PMOD NAV development 
board with data collected by an Espressif ESP32-WROOM-32D [55]. 
Data were stored by a Raspberry Pi 3 [56] via the serial port. The IMU 
was located at a fixed orientation with respect to the handles of the 
box so the Z-Axis could be readily determined (i.e. the base of the Ta
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box should be parallel with the ground plane). Similarly, the fixed 
mounting orientation enabled changes in direction to be extracted 
easily as positive changes in angular speed would correspond to a 
right-hand turn whilst negative changes in angular speed would 
correspond to a left-hand turn. The Raspberry Pi was also used to 
receive and record data picked up by the Alien ALR-8696-C Circular 
polarised antenna [57] through the Alien Reader ALR-9900 +EMA  
[58] (from here referred to as the portable reader / antenna). This 
equipment was only to be used for proof of principal, smaller more 
accessible equipment would need to be used in future work and for 
an optimal solution. In addition, the power consumption of such 
equipment would need to be assessed to allow for a smaller power 
supply and a more discreet using. to be used for more practical 
applications. 

The testing was conducted using a carrying tote equipped with 
RFID tags and reader, extracting features of walking motion from the 
carried IMU. The IMU location estimate was supported using loca-
tion estimated from temporal features in addition to maximum RSSI 
value of the UHF RFID tags, positioned at known locations. 

RFID capability testing 

Position of the asset tags 

To ensure the ideal orientations of RFID tags with respect to the 
portable reader, positioning of the tags on the tracked asset were 
analysed and the optimal placement was identified. The correct 

positioning was evaluated through real world testing (see Fig. 8 
(left)) with thirty readings of RSSI and angle of tag with respect to 
reader for a range of tags positioned 2 m away from the reader. The 
tests were repeated with each tag rotated by + 90-degree offsets in a 
clockwise direction. Each set of tests was repeated 3 times. Based on 
analysis of the results (see Section VIII – A) the antenna was posi-
tioned on the side of the box and tags aligned with the long side 
parallel to the floor to ensure the maximum opportunity for tag 
alignment. 

Position of environmental reference tags considering personnel 
carrying item 

To determine the effect of horizontal and vertical offset on the 
RSS of a tag and to ensure a peak feature could be identified by 
moving an antenna laterally with respect to a tag in addition to 
testing the effect of carry height of an asset, a stationary test was 
conducted with the RFID antenna positioned 1 m away from a wall 
where the tags were attached (see Fig. 8 (right)). Good manual 
handling technique suggests items carried by hand, should be car-
ried with upper arms parallel to the torso and elbows at 90º [59], 
therefore the equipment carried would be approximately elbow 
height. Due to the nature of the RFID tag being located at a fixed 
location on a wall it was not possible to accommodate a range of 
heights for a varying population carry heights. In this case, the limits 
of elbow height were to be used, for a mixed male/female popula-
tion, this dimension is 1100 mm with a range of ±  150 mm [60]. 
Therefore, the RFID tags for testing were located at an upper limit 
1250 mm, centre point of 1100 mm and lower limit of 950 mm. The 
antenna was positioned at 1100 mm high so the results for each tag 
would then account for the likely range of person carry height. The 
test was repeated at 500 mm lateral intervals (with an 250 mm 
section nearer the tag) to identify what RSS values could be seen 
when parallel to the tag with the given offsets. The results of this test 
have been presented in Section VIII – A. This test resulted in a po-
sitional accuracy of ±  0.75 m within 3 standard deviations for a 
threshold value >  5000 RSSI. Hence for the RFID tag to be registered 
with the system, the minimum update frequency must be such that 
a single reading takes place within the 1.5 m window. 

To confirm the correct functioning of the antenna and tags, a test 
was conducted (total duration 5 min) with the antenna pointing at 
an individual tag to determine the maximum rate at which the tag 
could be read. It was found the average sample rate of the system 
was 0.32  ±  0.1 s. A summary of the testing conducted is given in  
Table 2. 

IMU step and heading detection 

It has been reported in previous studies the average stride length 
of a 95th percentile adult male is between 150 cm and 170 cm (i.e. 
full walking cycle is from heel strike on one leg to heel strike on the 
same leg therefore 2 steps [42]) which yields step lengths of be-
tween 75 cm and 85 cm. In addition, the average walking speed was 
found to be 1.4 m/s [28]. Combining the average read rate with the 
average walking speed equates to a distance between reads of 
0.45  ±  0.14 m, as shown in Equation 3. 

Distance Walking Speed Sample Rate

m

1.4 0.32

0.45 0.14

= × = ×
= ± (3)  

Fig. 7. IMU Box Setup With power supply and Controller board to orchestrate the data 
collection and RFID reader operations. 

Fig. 8. Experimental setup for RFID tag rotation test (left) and Horizontal offset 
testing setup for antenna and tags (right). 

Table 2 
Summary of testing conducted.        

Fixed Component Variable Component Variable Increment Measurement Number of Tags  

Antenna Tag Angle (°) 90 RSSI  1 
Tag Antenna Horizontal Offset (mm) 500 (250 either side of centre) RSSI  3 
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Given the 1.5 m window resulting from the adoption of a RSSI 
threshold = 5000, at least 3 readings should be taken whilst walking 
past the tag at this pace in a worst-case scenario. In addition, re-
arranging Equation 3 it can also be shown that, to ensure a single 
reading is taken in the 1.5 m window, the maximum traveling speed 
of the person and the box must be ≤ 3.6 ms−1 as shown in Equation 4. 

Max walking speed
Distance

Sample Rate
ms

1.5
0.42

3.6 1= = =
(4)  

The theoretical maximum speed is hence double the average 
walking speed of 1.4 m/s which indicates the viability of the ap-
proach. 

From the unprocessed sensor measurements taken from the IMU, 
individual steps could be identified by features in the Z-axis accel-
eration as found in [21], combined with the gyroscopic motion about 
the Z axis (see Fig. 9). A step detection algorithm is used to analyse 

the acceleration data collected by the IMU to identify when steps 
occur. This algorithm uses an acceleration threshold value (i.e. 1.1 g) 
on the Z-axis above which turning points are detected. These turning 
points are further classified such that only one turning point can 
occur within a 0.5 s window to reduce the impact of secondary 
peaks. In addition, steps that were correlated with large changes in 
gyroscopic motion were also eliminated from distance calculations 
as steps undertaken within a turn do not add to distance travelled. 
The performance of the step detection functionality is shown in  
Fig. 9 which present the number of steps detected using vertical blue 
dotted lines given the acceleration and gyroscopic motion input to 
the algorithm. 

It can be seen in Fig. 9, that a simple peak detection algorithm 
would not be sufficient in determining the location of each step as 
several secondary peaks occur during walking whilst carrying boxes 
and when rotating see Fig. 9. The algorithm used to detect steps is 
presented as script written in Python 3 [61] below. The step detec-
tion algorithm was initiated each time a new RFID tag is detected to 
determine the positional changes between each tag read event. 

This algorithm is a reliable indicator of the number of steps taken 
with a regular stride, detecting 116 steps in a test consisting of 120 
steps, however it should be noted an additional 3 steps were iden-
tified upon pickup of the box, so the total step detection effective-
ness is 94%. Using the method outlined in this paper missing steps 
becomes less of an issue in determining location as the RFID tags are 
used to update the current position. Should the step detection be-
come insufficient in extended tests, a more complex algorithm could 
be utilised to detect features indicating a step, similar to the trained 
long short-term memory neural network which was accurately used 
to detect features of zero velocity conditions in [62]. 

Once the steps have been detected, the location of the box from 
the inertial navigation system (INS) is determined using step length 
of 0.75  ±  0.05 m. The heading is calculated by rotating a vector in-
itially pointing in the Y direction and applying the quaternion ob-
tained using Madgwick’s algorithm [26]. 

Integrated RFID tag update system evaluation 

Using the hardware as illustrated in Fig. 7, an initial trial was 
conducted in which a 10 m length of corridor was tracked forwards 
and backwards, rotating 180º between lengths. The trial consisted of 

Fig. 9. Short timespan visualisation of step detection algorithm, highlighting secondary peaks whilst walking and repeated peaks during a turn.  

Fig. 10. Strap-down location with heading from Madgwick Algorithm.  
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Fig. 11. RFID location update function process flow (left) and resulting path (right).  

Fig. 12. RFID heading update function process flow (left) and resulting path (right).  
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walking the 10 m length for a total of 6 repetitions (12 lengths) in a 
straight line, down the centre of the corridor, rotating 180° left at 
0 m and right at 10 m. RFID tags were positioned along the walls 
either side of a corridor at 0 m, 5 m and 10 m, using these locations 
as the known ground truth. Throughout the test, acceleration and 
angular speed were recorded to be able to apply the Strap-Down 
algorithm, in addition to utilising the RSSI of all surrounding tags 
determined by the portable antenna / reader system. A threshold of 
5000 was applied to the recorded RSSI to reduce the number of er-
roneous readings due to reflections within the corridor (typically 
33% of the maximum signal recorded). In addition, the time of the 
maximum and the absolute value of each RSSI peak was taken to 
determine the most probable timestamp of passing specific loca-
tions. This approach measured the baseline “known” positions with 
a margin of error of approximately 0.75 m at 3 standard deviations 
as determined in Section V. The results of these tests have been 
summarised and presented in Section VIII-B. 

To measure how well the predicted model matched the “known” 
RFID path, the results were analysed for mean error of location va-
lues using Eq. (5) where ypred & xpred denotes the predicted location 
of the algorithm and y & x denotes the “actual” path taken between 
the furthest RFID tags with 13 steps taken in each direction. 

Mean Error

x x y y

steps

( ) ( )i
n

pred i i pred i i1
2 2

1
2

=

+=

(5)  

As an initial baseline, the Strap-Down approach using integrated 
Gyroscope response (Blue) was plotted against the ground truth 
(Orange) in Fig. 15. It can be seen in the diagram that as the initial 
heading is unknown from the gyroscope, the path is out of align-
ment with the actual motion. Furthermore, inaccuracy in the gyro-
scope angle calculation leads to an underestimate of angle rotated 
through at each turn (up to 5°), this further increases the deviation 
from the straight-line path walked shown in Fig. 10. The mean lo-
cation distance error for this approach is 3.55  ±  1.58 m showing a 
poor accuracy. 

Two approaches were adopted to reduce this error in position. 
Firstly, the location was updated as the midpoint between the 
known RFID location and the location determined by the Strap-Down 
algorithm. The Strap-Down approach would always need initialisa-
tion as mentioned previously, therefore the algorithm applies a 100% 
location weighting to the first tag found, updating the location as the 
midpoint between the Strap-Down heading prediction and the RFID 
location position thereafter the function process flow is given in  
Fig. 11. (left) This was found to have the effect of improving the lo-
cation drift between the RFID tags, thus improving the overall lo-
cation error and standard deviation to 1.89  ±  0.92 m however, this 
was unable to correct the error in initial heading as explained pre-
viously. The second approach is to update the heading when a 
number of tags are been found by updating the heading with the 
difference between the last two known tag locations the function 

Fig. 13. Resulting path (right) from actual location over the distance travelled during 
combined Strap-down location estimation approach. 

Fig. 14. Mapped path on building floorplan with updated location from RFID tags over a 65 m Track (known locations i.e. tag placements are depicted by red circles).  

Fig. 15. Average RSSI from 60 readings at varying distances with an antenna per-
pendicular to the tag showing 3 error bars. 
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operations are given in Fig. 12. (left) This was found to improve the 
alignment of the path with the corridor and thus reduce the average 
and standard deviation to 2.0  ±  1.1 m however it did not account for 
the Strap-Down drift that occurs between RFID tag sightings and 
rotation underestimate, as a result the path is offset to the right of 
the expected path (see Fig. 12. (right)). 

As both approaches were found to improve different aspects of 
the location with heading correction having the greatest impact, the 
heading update and location update algorithm were integrated with 
the Strap-Down approach applied to the accelerometers. This al-
lowed for correction of the initial heading to align with the corridor 
and correct for the heading drift between RFID locations. The re-
sulting tracked position can be seen in Fig. 13. This path estimation 
follows the “actual” path accurately after the recording of several 
consecutive tags, yielding a mean error of 0.97  ±  0.69 m, confirming 
the improved path fit when updated with the known RFID locations. 
Inspection of the data suggests the estimation of 0.75 m per stride 
was an accurate fit given the total distance travelled of 120.8 m and 
the expected path length of 120 m. Based on the visual representa-
tion of the path undertaken in Fig. 13 the path predicted closely 
follows the “actual” path travelled. It is noted that since the esti-
mation of the total distance travelled is greater than that of the 
distance between tags, correctly estimating average stride length 
was not critical with frequent RFID sightings and meant that the 
proposed system could compensate for variable stride length within/ 
between persons. 

To simulate an industrial environment, a longer test was con-
ducted with a 65 m route of an along the corridor with multiple 
interferences such as a metallic stairwell, and rooms with opera-
tional computers. Results are summarised in Section VIII – C. Two 
RFID tags were positioned at the start of the route to align the initial 
path estimation and avoid early drift due to no heading information. 
The predicted route on the floorplan is given in map view of this test 
can be seen in Fig. 14. The predicted path (blue) follows the ap-
proximate known route recorded at intervals with floor markings 
(Red Dots). It is noted that the path travelled near the stairwell (Stair 
7) has an increased location error. This is possibly due to the highly 
metallic structure in the stairwell or possibly due to tags being lo-
cated near wire mesh glass. Either of these influences may have led 
to RFID readings occurring earlier or later than expected, in addition 
the error continues to increase after this point as no other tags were 
available to correct the drift. The tags in this test were set 20 m apart 
which may have been too large a distance leading to the continual 
drift and then correction seen in the error shown in Fig. 17. The 
optimal distance between reference tags is a trade-off between po-
sitional resolution required and cost, however, the approach using 
RFID tags has improved the location estimation by yielding an 

improved heading and location once two tags have been observed. 
Following this the algorithm has improved alignment with a max-
imum error of 7.6 m, mean error of 3 m and final location error 
of 0.9 m. 

Results and discussion 

RFID tag testing results 

The results from the RFID tag rotation test indicate that values of 
RSSI varied by 80% and were a minimum when oriented perpendi-
cular to the antenna (i.e. 90º and 270º), the results of these tests are 
summarised in Table 2. 

In the vertical offset test (the antenna was moved past the tags’ 
locations), an average RSSI of 16573 was recorded when in line with 
tag which fell with increase in the lateral offset from the tag, see  
Fig. 15. The results suggest that readings were strongest (i.e. RSSI >  
5000) within a 0.75 m range of the tag. The full width half max-
imum (FWHM), rise time and fall time calculation results are shown 
in Table 3. 

In addition, the variability of readings when the antenna offset 
was 0.75 m were small, yielding a maximum standard deviation for 
the tag at 950 mm, of 307.2 (i.e. 2%) when in line with the tag (i.e. at 
position 0 m). Overall, the height variation had very little impact on 
the signals received with respect to the full width half maximum 
(FWHM), with the largest impact being the lower tag, increasing the 
FWHM by 0.124 m from the central tag (14%). The position de-
termined from walking past an RFID tag was however considered as 
a binary classifier in terms of an output of detected vs not detected via 
implementing a lower threshold of 5000 units of RSSI, utilising the 
steepest section of the slope. 

RFID update algorithm short repeated 10 m track evaluation route 

The results for the RFID update algorithm development tests, are 
summarised in Table 4. The predicted location error is plotted 
against distance travelled in Fig. 16. The path with no heading in-
formation showed the largest error and standard deviation 
(3.55  ±  1.58 m). Each of the techniques of updating the path location 
and the heading individually resulted in an improvement of the 
mean error by 1.66 m and 1.55 m respectively. 

Fig. 16 shows a cyclical error increase over the 10 m path, these 
cycles coincide with the 180º turn as the error in heading produced 
the largest source of inaccuracy in the original path. This cyclical 
nature was reduced when the combined heading and location up-
date of the RFID tags was applied, reducing the standard deviation 
from 1.58 m to 0.69 m. 

Final RFID update algorithm extended 75 m evaluation route 

The final algorithm evaluation test was conducted on 65 m route 
along an internal corridor with multiple interference effects. The 
location error for this test is presented as a function of the distance 
in Fig. 17. The location error increased (see Table 5) from path be-
tween 34 m and 44 m to a maximum of 7.6 m at 38 m. 

The algorithm yields location and path alignment with a 
minimum error of 0.26 m, a maximum error of 7.6 m which occurred 
at 38 m, mean error of 3 m and final location error of 0.9 m. This 
mean error for the 65 m route is increased when compared with the 
repeated shorter 10 m path, however the final location lies within 
the mean error of the algorithm. These results suggest that the al-
gorithm recovers after a loss of location accuracy once additional 
tags are detected (Table 6). 

Table 3 
Results of the tag orientation testing.    

Orientation RSSI  

0°  3201 
90°  621 
180°  2074 
270°  645    

Table 4 
Results of the FWHM and rise and fall time calculations for the perpendicular offset 
of tags.      

Tag Height FWHM Rise Time Fall Time  

1250 mm 0.869 m 1.273 0.799 
1100 mm 0.879 m 1.226 0.799 
950 mm 1.003 m 1.143 0.807 
Average 0.917  ±  0.061 1.214  ±  0.054 0.802  ±  0.004 
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Limitations, implications for practitioners and further work 

The research presented in this paper demonstrates the devel-
opment of a system utilising low cost, low infrastructure impact 
technologies to provide accurate tracking of assets when carried by 
personnel in indoor environments including those with interference. 
The results outlined in this paper demonstrate the promising ap-
proach to improve the Strap-Down technique that has been applied 
in other studies [9,46]. In addition, the EPC values of each tag can be 
used to relate individual readings to a known position in a real- 
world map, linking the path to an accurate position in the real world. 

Fig. 16. Evolution of estimated error from actual location over the distance travelled for the repeated 10 m track for each approach.  

Fig. 17. Evolution of estimated error from actual location over the distance travelled for the 65 m track.  

Table 5 
Summary of the error found for the repeated 10 m walk test for each analysis tech-
nique.     

Technique Mean 
Error (m) 

Error Standard 
Deviation (m)  

No RFID input  3.55  1.58 
RFID to update location  1.89  0.92 
RFID to update heading  2.0  1.1 
RFID to update location and 

heading  
0.97  0.69 
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There are a number of limitations that will be addressed through the 
iterative refinement of the system. However, the novel findings of 
the reported testing contribute to the refinement of IPS system de-
velopment in general. In addition, the protocol for evaluation and 
analysis provide several successful techniques for use in further re-
search and academia. The improved Strap-Down technique with 
updated positioning based on short range (i.e. < 10 m) passive RFID 
tags has thus far been tested with an indoor corridor scenario which 
resulted in errors of 0.97  ±  0.69 m. However, a significant limitation 
was that this value deviated when stride estimation was incorrect 
for the individual using the system. To remove this error, an accurate 
individual stride length would need to be input or calculated by the 
system during a configuration phase, prior to position and path es-
timation. One example method would be to calculate average stride 
length using the number of strides between two tags. An additional 
limitation of the step and heading technique is that 3 ‘steps’ were 
identified when the unit was picked up, this may lead to inaccuracies 
for interrupted paths where the user places the container down for a 
rest for example. Further work will be needed to refine the step 
detection algorithm and test how the system responds to inter-
mittent pauses on route. 

The use of passive RFID tags was evaluated as an inexpensive 
infrastructural addition to update the heading and location of an 
IMU based location system is a novel approach for scenarios in 
which the use of zero velocity conditions and magnetometer 
heading are not possible. Unfortunately, commercial RFID reader 
systems are currently expensive (i.e. > £100 per system, primarily 
due to the reader cost) for use cases when transporting low value 
goods. The system was developed as a proof-of-concept system and 
smaller form factor equipment with lower power consumption 
would need to be sourced for future iterations to make the system 
more practical for use in industry. The proposed approach could 
support practitioners in utilising combined methods to ensure tra-
ceability of assets with more accuracy and less cost to implement. 
Although the proposed system was not as low cost as possible, this 
was a necessary compromise to ensure accuracy. For practitioners, 
this is an important consideration due to the introduction of GDPR, 
the cost of loss of data carrying media could incur fines of up to €20 
million [63] and should be included in system cost evaluation. A 
system such as the one proposed may be a justifiable cost when 
compared with the financial risk of data loss. However, there are 
limited pilot studies revealing the benefits of this risk mitigation 
approach within industrial settings and further work is needed to 
clarify return on investment, especially for small / medium en-
terprise [1]. In addition to the cost of the system, further work will 
be needed to reduce the size of the components, at current the 
prototype uses components which are heavy and have a large 
package volume, this will increase load and detrimentally impact 
manual handling performance. A possible avenue would be to re-
place the RFID reader with a smaller device, such as the Thingmagic 

M6E-NANO [64], which would greatly reduce the weight of the 
system and reduce the power requirements, allowing a smaller 
battery to be used. Acceptable weight, package volume and device 
fixture requirements for industrial application are still to be ex-
plored. 

Further work will include testing the accuracy on more complex 
building areas and in larger open spaces and over multiple floors. In 
the 65 m test it was noted that the optimal position of the reference 
tags needs refinement, future work will determine the optimum 
placement of each tag with respect to other tags and surrounding 
materials whilst reducing the length of the initial, non-oriented 
path. Further work on the system will introduce redundancy by 
utilising other opportune signals such as Wi-Fi or Bluetooth beacon 
locations within a building where available to allow orientation if 
the RFID signals are compromised (i.e. in close proximity to metal 
objects). A drawback of the current system is that the RFID tags must 
be manually assigned to their positions, further work could utilise 
the tag EPC to write the location allowing the reader to auto-
matically determine its location in real time. Further to this, the 
system currently utilises recorded data to calculate path and location 
estimation. Future work will investigate developing the system such 
that location updates are based on real-time measurements sent to a 
local server and displayed to the user using a user interface. 
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