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Abstract—Deep neural networks (DNNs) are being incorpo-
rated in resource-constrained IoT devices, which typically rely
on reduced memory footprint and low-performance processors.
While DNNs’ precision and performance can vary and are
essential, it is also vital to deploy trained models that provide
high reliability at low cost. To achieve an unyielding reliability
and safety level, it is imperative to provide electronic computing
systems with appropriate mechanisms to tackle soft errors. This
paper, therefore, investigates the relationship between soft errors
and model accuracy. In this regard, an extensive soft error
assessment of the MobileNet model is conducted considering
precision bitwidth variations (2, 4, and 8 bits) running on an Arm
Cortex-M processor. In addition, this work promotes the use of a
register allocation technique (RAT) that allocates the critical DNN
function/layer to a pool of specific general-purpose processor
registers. Results obtained from more than 4.5 million fault
injections show that RAT gives the best relative performance,
memory utilization, and soft error reliability trade-offs w.r.t. a
more traditional replication-based approach. Results also show
that the MobileNet soft error reliability varies depending on the
precision bitwidth of its convolutional layers.

Index Terms—Soft Error, Reliability, Machine Learning, IoT.

I. INTRODUCTION

More recently, there has been an expedited trend in in-
corporating deep neural networks (DNNs), in particular the
convolutional ones, in resource-constraint Internet of Things
(IoT) devices [1], [2]. To enable DNN models’ execution on
the underlying devices, software libraries and application pro-
gramming interfaces (APIs) have been proposed [3], [4], [5].
Such libraries/APIs are devoted to streamlining the design and
development of embedded deep learning-based applications
through the fine-tuning of pre-trained network models, thus
enabling their efficient execution in edge-computing platforms
[2], [6]. For the time being, the majority of embedded trained
models and their inference engines have been evaluated only
according to their accuracy and performance over a given
dataset.

With the growing adoption of DNNs in safety-critical em-
bedded systems (e.g., medical devices, autonomous vehicles),
increases the demand for safe and reliable models. To reach
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levels of reliability that are comparable to those required by
high safety standards [7], it is imperative to supply electronic
computing systems with appropriate mechanisms to reduce
their vulnerability to radiation-induced soft errors. This work
advocates that traditional redundancy mitigation approaches
may not be suitable templates for tackling the occurrence
of soft errors in IoT edge devices. The underlying ap-
proaches, generally, incur high performance and memory over-
heads, making them impractical to be deployed in resource-
constrained systems. The resulting scenario poses two chal-
lenging questions: (i) which is the relationship between the
soft error susceptibility and model accuracy?, and (ii) how
to reduce the risk of radiation-induced soft errors in DNNs
executing on resource-constrained devices? An initial attempt
to identify the relationship between the soft error susceptibility
and model accuracy was conducted in [8], where authors
show that MobileNet convolutional neural network (CNN)
with higher precision bitwidth configurations led to a higher
number of soft errors. This work only considers 4 and 8 bits
per-layer (PL) compression. On the soft error mitigation side,
traditional techniques have been either implemented in FPGA
[9] or applied to DNN accelerators [10], which benefit from
substantial computational parallelism w.r.t. microprocessors.

To address the aforementioned challenges, this paper con-
tributes by assessing the impact of precision bitwidth on
the soft error reliability of the MobileNet CNN [11] when
running on an Arm Cortex-M7 processor. It is the first work
to consider weights and activations quantization at 2, 4, and
8 bits while applying the per-channel (PC) compression and
integer-channel normalization activation (ICN) technique. The
other contributions of this work are as follows:

– Promote the use of RAT [12], a lightweight soft error
mitigation technique, as an effective alternative to the tra-
ditional replication techniques, which have a reasonable
impact on the resource-constraint system’s performance
and response time;

– Extensive soft error assessment of MobileNet CNN on
ImageNet considering more than 4.5 million fault injec-
tions;

– Relative performance, memory utilization, and soft error
reliability trade-offs analysis considering RAT and a
partial triple modular redundancy (P-TMR);

– Hardened MobileNet source code execution in a real
board.
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The rest of this paper is organized as follows. Section II
presents the related works in machine learning algorithms
soft error assessment and mitigation, considering different
approaches. Section III details the adopted fault injection
framework, along with the description of the fault classifi-
cation, the mitigation techniques, and the evaluation metrics
used in this work. Section IV presents our case study, detailing
both MobileNet CNN and the CMix-NN library. Following,
Section V explores the soft error reliability of the MobileNet
CNN considering different aspects: precision bitwidth, layer
vulnerability, mitigation techniques, and relative trade-off anal-
ysis. Finally, Section VI points out conclusions and future
work.

II. RELATED WORK IN MACHINE LEARNING SOFT ERROR
ASSESSMENT AND MITIGATION

The soft error assessment and mitigation literature is abun-
dant, requiring a taxonomy to classify the different approaches.
This proposal considers the definitions from [13] for fault,
error, and failure. A fault is an event that may cause the
internal state of the system to change, e.g., a radiation particle
strike. When a fault affects the system’s internal state, it
becomes an error. If the error causes a deviation of at least
one of the system’s external states, then it is considered as
a failure. To achieve compliance with safety and reliability
standard requirements, it is utmost importance to provide
systems with appropriate mechanisms to tackle systematic or
transient faults, also known as soft errors or Single Event
Upset (SEU). While the former originates from hardware and
software design defects, soft errors are those caused by alpha
particles or atmospheric neutrons [14].

The occurrence of soft errors problem can be tackled both
in hardware and software. While hardware approaches lead
to the area and power overhead, software techniques are
generally implemented on a per-application basis that usually
incurs performance penalties. The following Section reviews
system-level soft error techniques rather than technology-
specific approaches that required control of the chip fabrication
process, which is often outsourced.

A. Review of System-level Soft Error Mitigation Techniques
Nicolescu et al. [15] propose an error detection technique

that is based on the introduction of data and code redun-
dancy using a set of transformation rules applied to high-
level code. In turn, Benso et al. [16] introduce the REliable
Code COmpiler (RECCO), a tool that exploits code reorder-
ing and selective variable duplication to generate hardened
C/C++ source code automatically. Serrano-Cases et al. [17]
use genetic algorithms to find a combination of optimiza-
tion flags that can increase the final binary reliability while
maintaining a reasonable performance and memory utilization
trade-off. Rodrigues et al. [18] developed software TMR and
Conditional Modular Redundancy (CMR) mitigation imple-
mentations, aiming to reduce the occurrence of soft errors in
a Cortex-A9 processor running Linux kernel.

Another software-based alternative to mitigate soft errors
comes from low-level code protection. Authors in [19], pro-
mote the SWIFT (SoftWare Implemented Fault Tolerance)

technique aiming to reduce the overhead associated with
EDDI (Error Detection by Duplicated Instructions) [20]. They
remove duplicate store instructions, reducing both memory
and performance overhead. The SWIFT technique assumes
that the system’s memory architecture is protected by some
error correction mechanism. Results showed a 14% speed-
up over EDDI when tested with an Intel Itanium 2. Au-
thors in [21] improved SWIFT technique by checking the
load instructions right after a store instruction and creating
redundant load instructions in critical sections to achieve near-
zero the occurrence of silent data corruption (SDC). A popular
instruction-level mitigation technique introduced by Reis et.
al [22] is the SWIFT-R, which implements TMR to recover
from soft errors in the register file. Instead of duplicating
instructions, it triplicates, and change the checking points to
a voter mechanism.

In [23], authors presented the Shoestring technique, which
exploits a low-cost symptom-based error detection mechanism
that focuses on applying instruction duplication to protect only
those code segments that are likely to result in user-visible
faults and do not exhibit symptomatic behaviour. Results show
that Shoestring can recover from an additional 33.9% of
soft errors that are undetected by a symptom-only approach.
[24] presents the Encore, a software-based error recovery
mechanism (paired with other error detection techniques) that
combines program analysis, profile data, and simple code
transformations to create code portions, which can recover
from faults at a minimal cost. Gathered results show that
Encore can recover from 97% of transient faults on average
with 14% additional runtime overhead. Another TMR-based
technique, called ELZAR, is proposed in [25]. It triplicates
arithmetic and logical operations, and the voting mechanisms
are inserted between register operands of memory and control
flow operations for recovery. To reduce the performance
overhead introduced by replicated instructions, they utilize
Intel AVX extensions (i.e., Single Instruction Multiple Data
- SIMD). The experiments show that the performance over-
head is reasonable for CPU-intense applications with many
floating-point operations. However, for some case studies,
the instruction-level parallelism was inefficient, resulting in
a performance penalty that surpassed the SWIFT-R technique.

The NEMESIS technique introduced by [26] is a duplication
with recovery technique. It replicates instructions and checks
the results of memory write operations and branches’ direction.
If an error is detected, it then recovers to a valid state if
possible; otherwise, a power restart is needed. The results
show that at least 97% of the detected errors were recoverable
considering the ten selected applications. Another error recov-
ery technique is the InCheck [27], which is an extension of
the nZDC technique [21]. The proposed technique comprises
of error detection, diagnosis, and recovery schemes. Unlike
SWIFT-R, the InCheck mitigates faults by protecting error
handling routines in addition to the main program instructions.
The authors claim that their technique offers complete error
coverage for the tested applications.
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TABLE I
RELATED WORKS IN MACHINE LEARNING ALGORITHMS SOFT ERROR ASSESSMENT AND MITIGATION.

Work Dataset ML
Algorithm/Model

FI
approach Target Mitigation Description

Li et. al [10]
(2017)

ImageNet,
CIFAR-10

ConvNet,
AlexNet,

CaffeNet, NiN
Simulation DNN accelerator

Symptom-based,
Selective Latch

Hardening

Assess the propagation of soft errors in five neural nets
running on nine DNN accelerators and propose solutions to
mitigate the errors’ impact.

Libano et.
al [28] (2018)

Boston Housing,
Iris Flower 2-layer NN

Emulation,
Heavy-ion
irradiation

Xilinx
Zynq-7000

Evaluate the soft error reliability of two different feedfor-
wards ANNs implemented on Xilinx Artix-7 FPGA. Analyse
the criticality of errors in distinct layers of the ANNs and
evaluate the activation function complexity’s impact on the
neural network reliability.

Reagen et.
al [29] (2018)

MNIST,
CIFAR-10,
ImageNet,
TIDIGITS

Fully connected,
CNN, gated

recurrent unit
(GRU)

Simulation,
Emulation DNN accelerator

Propose Ares, a framework capable of assessing the fault
tolerance and accuracy trade-offs of three types of DNNs
(fully connected, CNN, and GRU) at different levels (model,
layer, structure).

Santos et.
al [30] (2018)

PASCAL VOC,
Caltech

Pedestrian

YOLO, Faster
R-CNN, ResNet

Simulation,
Neutron

irradiation
NVIDIA GPU ABFT

Evaluate the reliability on three GPU platforms executing
three neural networks and investigate the effectiveness of
ABFT technique in the mitigation of soft errors.

Rosa et.
al [31] (2019)

KITTI Visual
Odometry CNN Simulation Arm Cortex-A9

Present a soft error assessment flow that enables the iden-
tification of soft errors in complex software stacks (e.g.,
autonomous vehicles) and determine the correlation between
multicore platform microarchitectural characteristics and de-
tected soft errors using ML techniques.

Trindade et.
al [32] (2019) Fault Detection Support Vector

Machine (SVM)
Neutron

irradiation
Xilinx

Zynq-7000

Assess the intrinsic fault tolerance of an SVM architecture
implemented on Artix-7 FPGA identifying the exact nodes
that are more likely to conduct critical failures.

Libano et.
al [9] (2019)

Iris Flower,
MNIST

2-layer NN,
7-layer CNN

Emulation,
Neutron

irradiation

Xilinx
Zynq-7000,

Zynq Ultrascale+

Partial TMR,
Full TMR

Assess the radiation-induced errors in two neural networks
(a simple two-layer ANN and a larger seven-layer CNN)
implemented on two distinct Xilinx platforms and compared
them with the Full TMR and Partial TMR versions.

Chen et.
al [33] (2019)

MNIST, Survive,
Cifar-10,

ImageNet,
German traffic
sign, Driving

2-layer NN,
LeNet-4, kNN,

AlexNet, VGG16,
VGG11, Nvidia
Dave, Comma.ai

Simulation Intel X86-64
processors

Propose a python-based fault injector, called BinFI, to anal-
yse the safety-critical bits in ML-based applications with
significant lower costs comparing to random FI.

Trindade et.
al [34] (2020) Iris Flower ANN, SVM

Emulation,
Neutron

irradiation
Arm Cortex-M4

Assess the radiation-induced soft error reliability of two ML
algorithms (ANN and SVM) running on a low-power Arm
Cortex-M4 processor using the STM32 NUCLEOL45RE-P
platform.

Luza et.
al [35] (2020) MNIST LeNet-5 CNN Neutron

irradiation
Xilinx

Zynq-7000

Assess the impact of radiation-induced soft errors on Hyper-
RAM memory containing the CNN application weights and
input data. The work utilises three distinct data representa-
tions (32-bit float, 16-bit and 8-bit integer), and experiments
show that when the bitwidth is reduced, the soft error
resiliency also decreases.

Abich et.
al [36] (2020) CIFAR-10 7-layer CNN Simulation Arm Cortex-M3,

Arm Cortex-M4

Assess the layer soft error reliability of a CNN model
implemented with the CMSIS-NN kernels considering two
resource-constrained Arm processor models.

Kundu et.
al [37] (2021)

MNIST,
Fashion-MNIST

Multilayer
Perceptron,

LeNet-5, AlexNet,
VGG16,

ResNet-50

Emulation DNN accelerator

Assess the faults in the accelerator’s memory subsystem run-
ning a Multilayer Perceptron (MLP), analyse MAC circuits’
resilience when faults strike the MSB and LSB logic cone,
and finally propose mitigation solutions for aging, thermal
and endurance issues on neuromorphic hardware.

This work
(2021) ImageNet MobileNet CNN Simulation Arm Cortex-M7 Partial TMR,

RAT

Assess the soft error reliability of the MobileNet CNN
running on the resource-constrained Arm Cortex-M7 pro-
cessor considering mixed-precision bitwidth configurations.
Evaluate the soft error impact on system reliability when
different lightweight software-based mitigation techniques
are applied.

B. Review of Soft Error Assessment of ML algorithms

The number of products integrating Machine Learning (ML)
algorithms is continuously increasing. With this in mind,
researchers have started to investigate the impact of radiation-
induced soft errors on the reliability of such algorithms, as
summarized in Table I.

In the context of soft error assessment, with the exception
of [34], [36] and this work, reviewed approaches do not
consider resource-constraint on their experiments. The ma-
jority of these works consider either FPGA implementations
of ML algorithms [9], [32], [35] or their execution on

GPU [30], DNN accelerators [10], [29], [37] or general-
purpose processors [31], [33]. On the soft error mitigation
side, traditional partial TMR or specific mitigation techniques
have been considered either in FPGA implementations [9]
or applied to specialized hardware accelerator [10] or more
generic GPUs [30].

Li et al. [10] assess the soft error resilience of DNNs
running on specific accelerators. In this work, the authors
conducted an in-depth study of the applications’ functioning
while promoting bespoke mitigation solutions to each case
seeking a lower cost. Different from this work, our approach
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facilitates the application of mitigation techniques through a
more generic and automated approach to protect the most
critical functions/layers of generic or ML-based applications,
considering the possibility of manual configurations to guide
bespoke hardening tuning for resource-constraint devices. Au-
thors in [28], [32] assess the soft error reliability of distinct
ML algorithms implemented in FPGA devices, while Libano
et al. [9] increment the evaluation by presenting full and partial
hardware replication solutions to recover from errors.

Santos et al. [30] focus on Graphics Processing Units
(GPUs), which are widely used in high-computational systems.
In this work, the Algorithm-Based Fault Tolerance (ABFT)
technique has been applied due to its efficient to detect soft
errors in dense linear algebra operations including matrix
multiplication, which is highly performed by CNNs. Although
ABFT brings less performance overhead w.r.t. replication-like
approaches (e.g., TMR), resulting overhead might still lead
to high response times - gold criteria to resource-constrained
devices.

This paper extends from previous work in three key direc-
tions:

– First, this is the first work to investigate the relationship
between the soft error susceptibility and model accuracy,
which is completely ignored in the works presented in
Table I;

– Second, our work puts focus on reducing the occurrence
of soft errors in resource-constraint devices. Therefore,
this is the first work to evaluate the benefits of using a
lightweight technique (e.g., RAT) w.r.t. a partial replica-
tion technique;

– Third, this work explores the relative performance, mem-
ory utilization, and soft error reliability trade-offs of two
system-level mitigation techniques considering a micro-
processor running different precision bitwidth variations
of MobileNet on ImageNet.

III. ADOPTED FAULT INJECTION FRAMEWORK

Rather than developing a fault injection (FI) framework
from scratch, this work adopts the SOFIA soft error assessment
flow [38]. This choice is justified because SOFIA provides a
set of well-accepted FI techniques along with several facilities
(e.g., error tracer module), which allows to identify and
classify the effects of soft errors on the system’s behaviour,
considering both hardware and software architectures. This
Section covers all relevant steps used to assess the impact
of precision bitwidth on the soft error reliability of MobileNet
CNN, including the description of the adopted profiling, the
fault classification, the mitigation techniques, and the evalua-
tion metrics used in this work.

A. Profiling and Soft Error Assessment

To enable the soft error assessment of emerging ML-based
applications, software engineers must be able to execute com-
plex software stacks with hundreds of billions of instructions,
early in the design phase. Due to the complexity of such stacks
(e.g., kernels, drivers, and applications), analysing their soft
error reliability may take several months if conducted at low

level simulations (e.g., gate-level). In this regard, this work
uses SOFIA [38], a framework based on OVPsim [39], which
allows injecting faults at a speed of up to 1000 MIPS while
preserving the soft error analysis accuracy (i.e., mismatch
below to 10%) for single and multicore processors [40].
SOFIA emulates the occurrence of single-bit upsets (SBUs)
by injecting faults into pre-selected data storage elements (i.e.,
registers and memory addresses) during the execution of a
given software stack. The fault injection configuration (e.g.,
bit location and injection time) relies on a random uniform
function, which is a well-accepted fault injection technique
since it covers the majority of possible faults on a system at a
low computation cost. The framework supports the injection of
bit-flips in six different scopes: register file, physical memory,
application virtual memory, application variables and data
structures, function object code, and function lifespan. These
techniques allow covering either architecture aspects as well
as isolate specific kernel (e.g., scheduling) or deep inference
network function (e.g., matrix multiplication), thus covering
both spatial and temporal faults.

This work uses two complementary FI techniques to assess
deep inference networks’ soft error reliability: random register
file and function lifespan. On the one hand, random register file
FI is a well-accepted mechanism that homogeneously covers
most soft errors, striking the general-purpose registers while
both application and operating system codes are executing. On
the other hand, function lifespan reduces the FI spectrum by
limiting the insertion time to those small intervals where the
target function is active.

Figure 1 shows the fault injection flow used in this work.
First, the Platform Setup defines the parameters used in
the fault campaign, such as the target architecture and the
evaluated application. Then, the Gold Reference Model step
is performed to extract the execution data without fail, which
will generate our faultless reference. Fault Injection Setup is
another step with human intervention. This step defines the
number of bit-flips that will be performed according to a
statistical model, thus generating a list of simulation moments
and registers’ bit where the fault injections will occur. Next,
Fault Injection Simulation performs fault injection campaigns;
at the end of each run, SOFIA extracts the processor’s register
bank memory dump, in addition to the application output to
be used for comparison with the gold reference data. Finally,
Fault Analysis compares the experimental results, which are
grouped according to a fault classification that can be defined
by the user.

Golden Reference 
Model

Fault Injection 
Simulation Fault AnalysisPlatform Setup

Fault List Fault Injection 
Data

Fault Injection 
Setup(1) (2) (3) (4) (5)

Golden 
Reference Data

Platform 
Setup

Fault
List

Fault 
Injection 

Data

Fault 
Injection 

Setup

Golden 
Reference 

Data

Golden 
Reference 

Model

Fault 
Injection 

Simulation

1 2 3 4 5
Fault 

Analysis

Fig. 1. FI flow: covering from the platform setup to the fault analysis.

The fault classification adopted in this work follows the
pattern shown in [10], [41], [34], where the authors identify the
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faults in the outputs as: correct output, tolerable faults, critical
faults, and crashes. Correct outputs are those where the output
data (e.g., output probability) is the same as the ones obtained
from the faultless execution (i.e., golden reference data). In
tolerable faults, the output data differs from the gold reference
data. However, they present a top-ranked classification equals
to the fault-free execution. On the other hand, critical faults
affect the output with incorrect probabilities and no predictions
(i.e., cases where odds are dispersed, therefore, they have
no probabilities in the output data). Finally, crash comprises
the application that ends abnormally with an error indication
or does not finish, requiring a preemptive removal after a
threshold execution time.

Note that the main difference between critical fault and
crash is that the former refers to a silent error (i.e., the
application ends without an error signal) while the latter is a
detectable one (i.e., an error signal or unexpected behaviour).
Silent errors are considered critical in this work as they can be
propagated, which might ultimately incur in human life losses
for safety-critical applications (e.g., autonomous vehicles).
In contrast, detectable errors can be handled by the system
as there is the possibility to reset the system or rerun the
algorithm to obtain the correct result.

B. Mitigation Techniques

To ensure failsafe functionality of ML-based systems, reli-
ability engineers should be able not only to identify but also
explore efficient mitigation solutions to reduce the occurrence
of soft errors. This work also aims to improve the soft
error reliability through the application of two software-based
mitigation techniques: P-TMR and RAT.

The first mitigation technique is based on a replication
approach, i.e., a technique that replicates instructions (except
stores and branches) and adds majority voters before con-
ditional branches, load, and store instructions on top of an
intermediate representation (i.e., LLVM IR [42]). However,
unlike traditional approaches that replicate the entire code,
this work uses the partial TMR (P-TMR) technique that
only replicates specific/critical functions, thus minimizing the
performance overhead.

The second adopted mitigation technique is the register
allocation technique (RAT) [12]. This hardening technique
restricts the number of available registers used to execute
specific functions, thus reducing the exposed area. Unlike
replication approaches, RAT does not involve code redundancy
and is an architecture-independent approach. Also, RAT is a
compiler-based technique; thus, it can be associated with other
mitigation techniques applied at the LLVM IR level (e.g., our
P-TMR technique).

C. Evaluation Metrics

To properly assess the soft error reliability impact on a given
system, reliability metrics must be used. This work uses the
mean work to failure (MWTF) metric [43].

Complementary to the fault classification, the MWTF shows
the average amount of work that an application can perform
until reaching a failure (i.e., higher values are better). This is a

fair metric to either compare or evaluate the effects generated
by different mitigation techniques. This metric is evaluated in
the Fault Analysis step (Figure 1). Note that for deep inference
networks, the unit work is defined as the relationship between
the application’s runtime and the most critical vulnerability
(i.e., critical faults), as shown in Equation (1).

MWTF =
1

(execution time×AV FCriticalFaults)
(1)

The Architecture Vulnerability Factor (AVF) is used to
measure the probability of a fault result in an error (i.e., SDC
or Crash) [44]. The AVF critical considers only the SDCs that
actually led to wrong classifications in this case study (i.e.,
critical faults). For example, in safety-critical applications,
such as autonomous cars, a critical fault can alter the detection
of an obstacle in front of the vehicle, which can lead to an
accident. For this reason, this work used the critical-based AVF
(AV Fcritical faults).

IV. CASE STUDY

This Section describes the MobileNet CNN [11], which was
used to investigate the relationship between soft errors and
model accuracy. The MobileNet CNN precision was set using
the CMix-NN library [5] and executed on an Arm Cortex-M7
processor. The MobileNet is trained with the ImageNet dataset
[45], which consists of 10 million labelled images divided into
1000 object classes. To present the adopted CNN application,
Section IV-A describes the MobileNet while Section IV-B
shows the CMix-NN library.

A. MobileNet CNN

MobileNet CNN [11] is a streamlined architecture that
aims to build lightweight deep inference networks. The Mo-
bileNet CNN topology consists of several convolution layers
composed of depthwise and pointwise convolutions, average
pooling layers, and a fully connected layer. In this case study,
the adopted MobileNet CNN was configured with a 3×3
depthwise separable convolution, representing savings of up
to 9 times in computational cost compared to standard convo-
lutions. After convolution layers, an average pooling reduces
the spatial resolution to 1 before the fully connected layer.
In this sense, MobileNet has 29 layers, considering depthwise
and pointwise convolutions as separate layers, except for the
first layer that is a full standard convolution.

B. CMix-NN Library

The adopted MobileNet CNN uses the CMix-NN library [5]
to implement mixed low-precision standard convolution and
depthwise separable convolution layers functions. While tra-
ditional CNN models are trained using 32-bit floating-point
data representation, the CMix-NN uses mixed low-precision
unsigned integer representation, where the weights and bias
are calculated using a custom precision training. The CMix-
NN kernels deploy optimizations focusing on enabling the
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execution of CNNs on Cortex-M based systems that sup-
port single instruction/multiple data (SIMD) instructions, es-
pecially 16-bit multiply-and-accumulate (MAC) instructions
(e.g., SMLAD). The CMix-NN library provides a complete set
of convolutional kernels featuring a mixed low-bitwidth for the
weights, input, and output activations that support 8, 4, and 2
bitwidth combinations and different quantization techniques.

A typical mixed-precision quantized convolutional layer
(QCL) workload splits the convolution between quantized
image-to-column and a matrix multiplication loop. The quan-
tized functions load Q-bits input data in temporary buffers
casting from the original Q-bits format to execute through
vectorized SIMD 2×16 MAC instructions. Figure 2 illustrates
the QCL internal components with memory requirements
(e.g., inputs, weights, and structures) and the computational
dataflow, which implement the mixed low-precision convolu-
tional functions. The low-precision MAC unit accumulates the
convolution result over a temporary 32-bit precision variable
through vectorized MAC operations. In asymmetric quantiza-
tions, Zw and Zi apply the offset to the loaded parameter values
to transpose them into the custom asymmetric domain. While
the Unpack operation loads the convolution operands, the
Compressor unit operates the final compression on the high-
precision accumulation, considering a set of parameters TA,
which varies depending on the applied quantization technique.
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Fig. 2. CMix-NN quantized convolutional layer (adapted from [5]).

In addition, CMix-NN library supports per-layer (PL) and
per-channel (PC) compression techniques for any combination
of bitwidth between input, output, and weights. While a PL
quantization exploits a single min/max value for the entire
layer, the PC computes a min/max value for any output
channel. This latter approach is most beneficial when the
weight distribution varies widely between channels. Further-
more, the CMix-NN library also supports the integer-channel
normalization activation (ICN) [46]. This technique allows
the introduction of lower bitwidth models with negligible
inference loss, opening opportunities to exploit the soft error
reliability of convolutional layers with precision bitwidth.

V. RESULTS

This Section explores the soft error reliability of the Mo-
bileNet CNN considering different aspects: precision bitwidth,
layer vulnerability, mitigation techniques, and relative trade-
off analysis. In this sense, Section V-A details the experi-
mental setup used to perform the fault injection campaigns.

Section V-B exploits the MobileNet soft error reliability con-
sidering different precision bitwidth configurations. Then, Sec-
tion V-C presents the reduction of soft errors when applying
two system-level mitigation techniques. Finally, Section V-D
presents the relative performance and reliability trade-off for
the adopted soft error mitigation techniques.

A. Experimental Setup

To provide trustworthy results, experiments consider more
than 4.5 million fault injections to assess the soft error reliabil-
ity of two mitigation techniques applied to the MobileNet on
ImageNet. This work considers two FI techniques (i.e., func-
tion lifespan and random register file) to inject flipped bits in
the general-purpose registers (i.e., r0-r15) of the Arm Cortex-
M7 processor. This choice was motivated for two reasons.
First, because the two FI techniques provide better coverage
of the soft errors presented. Second, because all CMix-NN
optimizations, including the SIMD instructions, require only
the general-purpose registers. Note that this work focuses on
the assessment and mitigation of soft errors originated from
general-purpose registers, and hence it is assumed that the
memory is protected by some type of error correction, such
as ECC or parity bit.

Table II shows the experimental setup. The adopted Mo-
bileNet CNN has per-channel quantization with ICN layers
(PC+ICN [46]), configured with the width multiplier of 0.5 and
input sizes of 192, since this configuration has the minimum
channel width required by 2-bit configurations.

TABLE II
EXPERIMENTAL SETUP

Processor Arm Cortex-M7

ML Model MobileNet CNN

Dataset ImageNet

1 Standard Convolution,
Topology 13 Depthwise, 13 Pointwise,

1 Average Pooling, 1 Fully-Connected

All, L01, L02,
Target Layers L03, L04, L25, L26,

L27, L28, L29

Evaluated Precisions
(w: weights, a: activations)

w2a2, w2a4, w2a8,
w4a2, w4a4, w4a8,
w8a2, w8a4, w8a8

Mitigation Techniques P-TMR and RAT

Number of FI campaigns 270

Injections per campaign 17k

Total Fault Injections 4.59 millions

In addition, this work uses the same compilation environ-
ment (i.e., Clang 6.0.1 and optimization flag -O2) to set the
bitwidth configurations and the mitigation techniques. Each
fault injection campaign considers a single input image for
each MobileNet CNN execution, thus not considering the
fault propagation to the subsequent executions. Also, each
campaign is a particular configuration scenario and the 270
campaigns comprise: 10 target layers * 9 precision bitwidths
* 3 mitigation cases (Code unprotected, P-TMR, and RAT).
Furthermore, conducting a precise, well-covered, and realistic
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TABLE III
PERCENTAGES OF TOLERABLE AND CRITICAL FAULTS ON MOBILENET CNN CONSIDERING DIFFERENT PRECISION BITWIDTH CONFIGURATIONS.

w2a2 w2a4 w2a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Standard Convolution 91.65 0.01 2.03 6.31 89.98 0.01 1.42 8.58 89.81 0.41 0.93 8.85
2 Depthwise 92.66 0.08 0.15 7.11 92.77 0.01 0.24 6.98 85.62 5.02 2.95 6.41
3 Pointwise 90.58 0.07 3.76 5.58 88.32 0.12 3.44 8.12 83.31 2.06 6.23 8.40
4 Depthwise 91.61 0.06 1.55 6.77 88.55 0.00 4.37 7.08 79.93 6.59 7.11 6.36

25 Pointwise 92.84 1.31 0.47 5.39 89.75 1.85 0.58 7.82 87.53 3.66 0.78 8.03
26 Depthwise 84.49 7.10 1.29 7.12 84.44 7.13 1.26 7.17 82.22 11.27 0.55 5.96
27 Pointwise 80.04 9.84 2.13 8.00 79.94 11.15 1.21 7.70 79.28 12.19 0.71 7.81
28 Average Pooling 65.28 20.11 3.86 10.74 65.19 20.02 4.04 10.75 65.55 20.19 3.47 10.78
29 Fully-Connected 75.08 17.57 1.89 5.46 74.30 18.15 1.93 5.62 74.19 18.17 1.97 5.67
all All 91.32 0.84 1.80 6.04 88.51 1.11 2.66 7.72 83.96 5.45 3.02 7.56

w4a2 w4a4 w4a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Standard Convolution 91.81 0.00 1.75 6.45 90.18 0.01 1.08 8.74 89.60 0.60 0.87 8.93
2 Depthwise 92.84 0.00 0.15 7.01 92.79 0.05 0.18 6.98 84.63 8.72 0.65 6.00
3 Pointwise 90.64 0.03 3.78 5.55 88.51 0.01 3.47 8.01 81.47 6.35 4.31 7.86
4 Depthwise 91.60 0.00 1.54 6.86 88.04 0.04 5.03 6.89 78.94 13.78 1.19 6.08

25 Pointwise 92.11 2.04 0.25 5.60 89.95 1.92 0.42 7.71 85.76 5.78 0.54 7.93
26 Depthwise 85.49 6.77 1.21 6.53 84.36 7.09 1.50 7.05 80.51 13.05 0.46 5.98
27 Pointwise 81.51 8.35 2.32 7.83 82.10 8.89 1.43 7.58 80.22 10.81 0.94 8.04
28 Average Pooling 65.66 19.55 3.85 10.94 65.41 20.21 3.79 10.59 66.04 19.54 3.49 10.94
29 Fully-Connected 75.19 17.18 1.95 5.67 74.21 18.16 1.99 5.64 74.42 17.91 2.16 5.51
all All 91.79 0.66 1.88 5.67 88.43 0.72 3.24 7.61 81.68 8.61 1.86 7.85

w8a2 w8a4 w8a8
Layers Correct Tolerable Critical Crash Correct Tolerable Critical Crash Correct Tolerable Critical Crash

1 Standard Convolution 92.88 0.01 0.70 6.41 90.19 0.01 0.87 8.93 89.78 0.64 0.66 8.92
2 Depthwise 92.85 0.06 0.19 6.89 92.06 0.03 0.32 7.58 83.90 8.90 0.54 6.66
3 Pointwise 90.56 0.04 3.58 5.82 87.73 0.02 3.87 8.38 78.65 11.58 1.49 8.28
4 Depthwise 91.60 0.06 1.39 6.95 86.15 0.02 6.35 7.48 75.77 17.18 0.68 6.36

25 Pointwise 89.99 4.14 0.20 5.68 88.72 3.23 0.28 7.77 79.27 9.22 3.54 7.97
26 Depthwise 84.19 7.03 1.62 7.16 82.93 7.94 1.92 7.21 79.98 8.45 4.94 6.64
27 Pointwise 81.24 8.51 2.49 7.76 81.39 8.86 1.64 8.11 84.01 6.58 1.64 7.78
28 Average Pooling 65.80 19.73 3.55 10.92 65.65 19.56 3.69 11.10 66.73 6.89 15.44 10.94
29 Fully-Connected 74.52 17.67 2.13 5.68 73.56 18.39 2.11 5.94 75.79 16.56 2.23 5.42
all All 91.60 0.74 1.78 5.88 86.84 1.22 3.61 8.34 78.71 11.64 2.21 7.45

approach is key when assessing a system’s soft error reliability.
In this sense, to ensure the results’ statistical significance,
this work injects 17k faults per campaign, which according
to Leveugle et al. [47], generates a margin of error of 1%
with a 99% confidence level.

B. Soft Error Reliability Assessment of the MobileNet CNN
Considering the Precision Bitwidth

Initially, we validated the SOFIA framework’s faultless
reference against the outputs reported by the MobileNet repos-
itory1 and its on-chip execution. In this regard, we executed
MobileNet CNN on an STM32H7432 device, and then com-
pared it with those collected from its execution on SOFIA,
where no difference in the output probabilities was shown.
This experiment is of paramount importance to guarantee the
reproducibility and meaningfulness of the results.

After validating the reference flow, we generate fault injec-
tion campaigns considering the variation of precision bitwidth
with weights raging from w2 to w8 and input/output activations
from a2 to a8. Table III shows the MobileNet CNN soft
error results detailing the fault classification for each bitwidth
configuration.

In general, results show a similar soft error reliability
behaviour between the different quantization configurations.
For example, the results from fault injections in All layers

1https://github.com/EEESlab/mobilenet v1 stm32 cmsis nn.git
2https://www.st.com/en/microcontrollers-microprocessors/stm32h743vi.html

in Table III, crash occurrences handle 6.92% on average
across all precision bitwidth configurations; this is because
MobileNet CNN functions use multiple loops to process data
that require many control instructions. Note that CNNs are
known to have a lot of redundancy built-in, due to which they
present a reasonable masking rate, which justifies the average
of 86.7% of correct outputs. However, a single critical fault
occurrence in safety-critical systems running the underlying
trained models can lead to fatal consequences (i.e., life-
threatening).

Table III also shows how the quantization of inference
activations affects the MobileNet CNN soft error reliability
by reducing the correct outputs in up to 10.12% when varying
from a2 to a8. Although it affects less, increasing the weight
bitwidth also reduces the soft error reliability by up to 2.21%
on the correct outputs when varying the configurations from
w2 to w8. This occurs because a SIMD MAC instruction
splits a 32-bits register into different segments, which are
set according to the bitwidth configuration. This leads to a
higher probability to overwrite the faulty bit, thus reducing
the probability to propagate the fault to the inference phases.
Results show that both higher precision bitwidths and the
unpack/compress process can led to an increase number of
faults. The unpack/compress process is related to load and
store instructions that are executed before and after SIMD
MAC operations, which increases the probability of a fault
impacts on the output probabilities. Note that the increase in
the precision bitwitdh can also reduce the fault criticality since

https://github.com/EEESlab/mobilenet_v1_stm32_cmsis_nn.git
https://www.st.com/en/microcontrollers-microprocessors/stm32h743vi.html
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a soft error in a less significant bit is less likely to generate
a critical fault. Such behaviour can be seen in Table III
All when comparing w8a4 and w8a8 configurations, where
the number of critical faults decreases and tolerable faults
increases significantly.

To understand the layers’ vulnerability to the soft errors,
Table III shows the results obtained from FI campaigns that
target distinct layers of the MobileNet CNN topology con-
sidering different data volumes. Results show that the most
effective faults tend to become either critical or system crashes
in low-precision activation configurations (i.e., a2 and a4).
Such an effect can be seen in convolutional layers with a
high volume of input data processing, where tolerable faults
tend to 0% (i.e., layers 1 to 4). In turn, the number of
tolerable faults increases as the input data volume reduces
in the convolution layers (i.e., layers 25 and 27). This is
because the dimensions of input activations are reduced during
MobileNet CNN execution, while the channel width increases,
thus making the data volume larger in weights w.r.t. input
activations. Consequently, faults occurring in these layers are
more likely to propagate to the output, i.e., the appearance of
a high number of tolerable and critical faults in layers 26 and
27. Note that the occurrence of faults (i.e., Tolerable + Critical
+ Crash) also increases alongside the precision bitwidth.

C. Applying mitigation techniques to MobileNet CNN

Aiming to reduce the MobileNet CNN susceptibility to soft
errors, this Section considers the use of two software-based
mitigation techniques: P-TMR and RAT. Both techniques
are applied to the matrix multiplication function, which is
considered here the most critical one due to its higher active
period within the MobileNet execution time.
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Fig. 3. Results showing fault classifications comparing MobileNet CNN
without protection, with P-TMR, and RAT mitigation techniques. The red
dots indicate the normalized MWTF (right y-axis).

Figure 3 shows the reliability improvement of MobileNet
CNN by applying the two mitigation techniques. The x-axis
has three bars for each adopted precision bitwidth configura-
tion. The first bar represents MobileNet CNN with unprotected
code (λ), and the other two the mitigation techniques P-
TMR (γ) and RAT (β). The left-hand y-axis shows the soft
error percentage obtained from the fault injection campaigns,
and the right-hand y-axis shows the MWTF normalized by
the unprotected version. While the left-hand metric shows an
overview of the generated faults, the one at the right-hand side

relies on a well-accepted reliability metric to compare the two
mitigation techniques.

As expected, Figure 3 shows that both mitigation techniques
significantly increase the number of correct outputs while
reducing the number of critical faults. In general, a lower
precision bitwidth configuration (i.e., 2 and 4-bits to w and
a) lead to a reduction in fault occurrences. On the other hand,
8-bit configurations present a higher occurrence of tolerable
faults. This is due to larger bitwidth operations that reduce
the fault masking rate. Even under these conditions, both
mitigation techniques protect the code and turn critical faults
into correct or tolerable ones. Figure 3 shows that P-TMR
has a significant AVF improvement in all scenarios, but the
performance penalty does not compensate for w4a2 and w8a8
configurations (i.e., normalized MWTF < 1). In turn, the
RAT improved the MWTF in all configurations, raising up to
4.7× in the w8a4 precision bitwidth.
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Fig. 4. Results of fault classification by layer of the two most affected
precision bitwidth configurations.

Figure 4 shows the reliability improvement per layer for
the most affected precision bitwidth configurations (i.e., w8a4
and w8a8). Compared to the unprotected version, both mit-
igation techniques show soft error reliability improvements.
On the one hand, Figure 4.a shows a reduction of up to 8%
in critical faults and system crashes in the 4-bit precision
activation. On the other hand, Figure 4.b illustrates that some
tolerable, critical, and crash faults become correct outputs for
8-bit precision activations. In the P-TMR perspective, this
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effect occurs mainly due to faults striking registers used by
redundant instructions. Unlike, RAT reduces the number of
vulnerable registers during the critical function’s execution,
taking advantage of the inherent high resilience of MobileNet.

D. Trade-off Between Performance and Reliability

This Section details the drawbacks introduced by the two
mitigation techniques and discusses the trade-off between
increased protection and performance penalty. Figure 5 shows
the performance overhead of the P-TMR and RAT compared
to no protection execution. The execution times were extracted
by running the MobileNet CNN on an STM32H743 board. Re-
sults show a performance degradation of up to 1.2× for RAT
and 3.8× for P-TMR, depending on the precision bitwidth
configuration. In this regard, the original MobileNet achieves
∼1.9 inferences per second. In turn, when applying the P-TMR
mitigation technique, the number of inferences per second
reduces to ∼0.5 while the RAT ∼1.5 in worst-case scenarios.
Note that the most remarkable performance overhead occurs
because P-TMR is applied to the application’s intermediate
code without further optimization, i.e., the application is com-
piled with -O2 and the mitigation technique is applied without
architecture-specific optimizations. This approach is required
to avoid code removals made by the compiler’s backend.
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Figure 6 compares the relative trade-off between reliability,
accuracy, performance and memory footprint overhead for two
precision bitwidth configurations (w8a4 and w8a8). Table IV
shows the footprint overhead, which is calculated based on
the additional hardened application code size resulting from
both P-TMR and RAT mitigation techniques w.r.t. the original
application code (i.e., FLASH memory).

TABLE IV
NORMALIZED MOBILENET FOOTPRINT OVERHEAD WHEN APPLYING SOFT

ERROR MITIGATION TECHNIQUES.

w2a2 w2a4 w2a8 w4a2 w4a4 w4a8 w8a2 w8a4 w8a8

P-TMR 1.78 1.80 1.59 1.80 1.82 1.60 1.81 1.82 1.59

RAT 1.16 1.16 1.13 1.16 1.17 1.13 1.16 1.17 1.13

This comparison provides an overview of the advantages
and disadvantages of both mitigation techniques when ap-
plied to the MobileNet CNN. Gathered values are normalized
between 1 and 5, and the top axis represents the MWTF
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Fig. 6. Relative trade-off between P-TMR and RAT mitigation techniques
considering w8a4 and w8a8 precision bitwidth configurations, comparing
Mean Work To Failure (MWTF), Performance Overhead (PO), Footprint
Overhead (FO), Accuracy (AC), and Tolerable Faults (TF).

improvement, the two left axes represent the performance and
memory overheads, and the two right axes show the precision
and the tolerable percentages. Figure 6 clearly shows that
RAT presents a significant lower performance overhead, which
directly led to an improved MWTF w.r.t. the P-TMR.

The resulting performance overhead can be explained not
only by the increased number of instructions but also the
instruction set employed by each mitigation technique. Table V
shows that P-TMR consists of almost 5× more Thumb instruc-
tions, which correspond to near 90% of the entire hardened
code. This highly increase is mainly due to the register
spilling forced by the high register pressure and the impact
of replicated instructions. In turn, RAT slightly increases
the number of executed Thumb and SIMD, maintaining the
percentage of both instruction sets compared to the reference
MobileNet execution. Aforementioned results demonstrate that
RAT provides the best relative performance, reliability and
memory footprint utilisation trade-off.

TABLE V
PERCENTAGE OF USE AND RELATIVE INCREASE IN EXECUTED
INSTRUCTIONS CONSIDERING DIFFERENT INSTRUCTION SETS.

w8a4 w8a8
Type None P-TMR RAT None P-TMR RAT

SIMD 34.3% 9.8% 32.2% 36.7% 10.1% 30.5%

Thumb 65.7% 90.2% 67.8% 63.3% 89.9% 69.5%

Type None P-TMR RAT None P-TMR RAT

SIMD 1× 1.1× 1.05× 1× 1.1× 1.06×

Thumb 1× 4.8× 1.15× 1× 4.9× 1.23×
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These results are of paramount importance for safety-critical
applications because, in addition to reliability, these applica-
tions have real-time requirements. For example, in self-driving
cars, a late reaction can lead to a fatal accident [48]. In this
context, traditional soft error mitigation solutions involving
time redundancy, such as TMR, may not be suitable for
such kind of applications. Even when partially applied, this
technique might inflict a significant response time penalty that
is not tolerable in real-time applications, thus justifying the
need for lightweight techniques, such as RAT, especially for
resource constraint systems.

VI. CONCLUSIONS

This paper assesses the soft error reliability of the Mo-
bileNet CNN when executed on the Arm Cortex-M7 proces-
sor architecture. The evaluated results demonstrate that the
adopted CNN has a high susceptibility to soft errors in higher
precision bitwidth configurations, since the fault occurrence
achieves up to 20%. Results also demonstrate that the variation
of precision bitwidth of the activations is more susceptible to
soft errors than the weights, since critical failures affect both
the reliability and the accuracy of CNN. Moreover, the reduc-
tion of weights and activations precision bitwidth increases
the fault-masking capability of up to 10%, thus reducing the
MobileNet CNN susceptibility to the occurrence of soft errors.
However, such precision bitwidth reduction does not eliminate
the occurrence of critical failures, requiring the use of fault
mitigation techniques. Finally, gathered results show that RAT
provides significant soft error reliability improvement at a
lower performance penalty (i.e., ∼1.2× on average) when
compared to the P-TMR.

Future works will focus on two main directions. The first
direction comprises the soft error assessment of accelerator-
based IoT devices, which are more suitable for highly
computing-intensive AI applications. The second investigation
aims to assess the MobileNet’s behaviour when injecting faults
in memory locations, considering different precision bitwidth
configurations.
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Université Grenoble Alpes, France. Former Postdoc-
toral Fellow at both the prestigious School of Engi-
neering and Applied Sciences of Harvard University
and UFRGS, Brazil. He received his Ph.D. and MSc.
Degree in Microelectronics, respectively from the
University of Montpellier and EMSE, France and his
BSc. Degree in Computer Engineering from PUCRS
University, Brazil. His research activity focuses on
AI safety, robotics and autonomous systems, multi-

core architectures, hardware accelerator and robust deep learning.

Ricardo Reis (M’81–SM’06) received the Electrical
Engineering degree from the Federal University of
Rio Grande do Sul (UFRGS), Brazil, in 1978, and
the Ph.D. degree in informatics, option microelec-
tronics from the Institut National Polytechnique de
Grenoble, France, in 1983. He received the Doc-
tor Honoris Causa from University of Montpellier,
France, in 2016. He has been a Full Professor with
UFRGS since 1981. He is at research level 1A of
the CNPq (Brazilian National Science Foundation),
and the head of several research projects supported

by government agencies and industry. He has published over 700 papers
in journals and conference proceedings and authored or co-authored several
books. His current research interests include physical design, physical design
automation, design methodologies, digital design, EDA, circuits tolerant to
radiation, and microelectronics education. Prof. Reis was a recipient of the
IEEE Circuits and Systems Society (CASS) Meritorious Service Award 2015.
He was the Vice President of the IEEE CASS representing Region 9 (Latin
America) and president of the Brazilian Computer Society (SBC).

Luciano Ost is currently a Faculty Member with
Loughborough University’s Wolfson School - UK.
He received his Ph.D. degree in Computer Science
from PUCRS, Brazil in 2010. During his Ph.D.,
Dr Ost worked as an invited researcher at the Mi-
croelectronic Systems Institute of the Technische
Universitaet Darmstadt (from 2007 to 2008) and
at the University of York (October 2009). After
the completion of his doctorate, he worked as a
research assistant (2 years) and then as an assistant
professor (2 years) at the University of Montpellier

II in France. He has authored more than 90 papers and his research is devoted
to advancing hardware and software architectures to improve performance,
security, and reliability of life-critical and multiprocessing embedded systems.

http://www.ovpworld.org/

